
Softw Syst Model (2005) 4: 123–140 / Digital Object Identifier (DOI) 10.1007/s10270-004-0071-0

Model-based a-posteriori integration of engineering tools

for incremental development processes

Simon M. Becker, Thomas Haase, Bernhard Westfechtel

Department of Computer Science III, University of Technology Aachen, Ahornstr. 55, 52074 Aachen, Germany

e-mail: {sbecker,thaase,bernhard}@i3.informatik.rwth-aachen.de

Received: 1 December 2003/Accepted: 28 June 2004

Published online: 10 November 2004 – Springer-Verlag 2004

Abstract. A-posteriori integration of heterogeneous engin-

eering tools supplied by different vendors constitutes a chal-

lenging task. In particular, this statement applies to incremen-

tal development processes where small changes have to be

propagated – potentially bidirectionally – through a set of

inter-dependent design documents which have to be kept con-

sistent with each other. Responding to these challenges, we

have developed an approach to tool integration which puts

strong emphasis on software architecture and model-driven

development. Starting from an abstract description of a soft-

ware architecture, the architecture is gradually refined down

to an implementation level. To integrate heterogeneous en-

gineering tools, wrappers are constructed for abstracting from

technical details and for providing homogenized data access.

On top of these wrappers, incremental integration tools pro-

vide for inter-document consistency. These tools are based on

graph models of the respective document classes and graph

transformation rules for maintaining inter-document consis-

tency. Altogether, the collection of support tools and the

respective infrastructure considerably leverage the problem

of composing a tightly integrated development environment

from a set of heterogeneous engineering tools.

Keywords: A-posteriori integration – Incremental consis-

tency management – Graph transformation – UML – Wrap-

ping – Software architecture

1 Introduction

Development processes in different engineering disciplines

are hard to support. Throughout the development process,

a large number of documents are created which constitute

the inputs and outputs of development tasks. These docu-

ments describe the product to be developed from different

perspectives and at different levels of abstractions. They are

connected by manifold dependencies and have to kept con-

sistent with each other. In this respect, it has to be taken into

account that development processes often are highly incre-

mental: Rather than creating documents in a phase-oriented

order, activities in different phases are performed in an in-

tertwined way, implying that small changes have to be prop-

agated back and forth between inter-dependent documents.

While this constitutes a major challenge in its own, a further

complication results from the fact that different documents

may be processed by heterogeneous tools supplied by differ-

ent vendors. A-posteriori integration of heterogeneous tools

requires highly sophisticated modeling and implementation

techniques in order to construct a development environment

for incremental development processes with feasible effort.

In response to these challenges, we have developed an ap-

proach to tool integration which puts strong emphasis on soft-

ware architecture and model-driven development. The term

“approach” is not confined to the conceptual level, i.e., we

have not merely defined concepts for tool integration. Rather,

we have realized our approach by a collection of support

tools and a respective tool infrastructure. In this way, we

considerably leverage the problem of composing a tightly

integrated development environment from a set of heteroge-

neous engineering tools. This is achieved through a model-

based tool construction process which consists of the follow-

ing steps:

1. Architecture modeling and refinement (Sect. 3). The soft-

ware architecture of the integrated development environ-

ment to be constructed is modeled initially at a high level

of abstraction. The initial architecture is refined gradu-

ally by means of architectural transformations which take

care of technical details and introduce technical compo-

nents such as tool wrappers required to make integration

work. The transformation process results in a concrete ar-

chitecture consisting of the components which need to be

implemented (either manually or automatically).

124 S.M. Becker et al. : Model-based a-posteriori integration of engineering tools for incremental development processes

2. Modeling and construction of wrappers (Sect. 4). In the

case of a-posteriori integration, we have to deal with tools

supplied by different vendors, using different data man-

agement systems, etc. To make use of these tools, we have

to provide components which abstract from technical de-

tails and make them available at a conceptual level. These

components, which are called wrappers, are constructed

in a semi-automatic way with an interactive tool which

supports the exploration of the interface of the develop-

ment tool to be integrated.

3. Construction of executable models for incremental consis-

tency management (Sect. 5). By providing tool wrappers,

we decompose the problem of tool integration into man-

ageable pieces. In the third (and final) step, we develop

integration tools for incremental consistency management

which make use of the wrappers’ interfaces. Here, we

follow a model-based approach: First, the documents to

be integrated are described by corresponding document

models. Subsequently, an integration model is constructed

which defines correspondences between documents and

rules for maintaining inter-document consistency. The in-

tegration model, which is based on graphs and graph

transformations, is executable. In this way, we manage to

construct integration tools with acceptable effort.

The rest of this paper is structured as follows: Section 2

provides an overview of our approach. Sections 3–5, which

constitute the core part of this paper, are devoted to the steps

of the model-based tool construction process. Section 6 dis-

cusses related work. Finally, Sect. 7 concludes this paper.

2 Overview

2.1 Context

Although our tool integration approach is generic (it may

be applied in different engineering disciplines), it has been

developed in the context of a research project which is con-

cerned with a specific domain. The Collaborative Research

center IMPROVE [43], a long-term research project carried

out at Aachen University of Technology, deals with de-

sign processes in chemical engineering. The mission of this

project is to develop models and tools for supporting design

processes in chemical engineering, focusing on early phases

(conceptual design and basic engineering).

Figure 1 illustrates the overall vision of IMPROVE with

respect to tool support for the engineering design process1. As

in other disciplines, in chemical engineering many tools are

already available each of which supports a certain part of the

overall design process. However, these tools are provided by

different vendors and are not integrated with each other. This

1 In the sequel, we prefer the term “design” to the term “development”

when referring to chemical engineering because it is more appropriate in

that context. On the other hand, we will continue to use the term “devel-

opment” in the context of software engineering (development of tools for

chemical engineers).

Fig. 1. Integrated tool environment

is illustrated by the bottom layer of Fig. 1, which shows sev-

eral tools for designing and simulating chemical plants. These

design tools are integrated into an overall environment for

supporting engineering design processes. To this end, an in-

frastructure for tool integration is provided (not shown in the

figure). Furthermore, new tools are developed which compose

the existing tools and add further innovative functionality (top

layer of Fig. 1).

In the sequel, we will focus on one type of tools of the up-

per layer: incremental integration tools for maintaining inter-

document consistency. We will discuss the development of

integration tools using a specific example: a-posteriori inte-

gration of a tool for editing flowsheets (Comos PT) with a tool

for performing simulations (Aspen Plus).

2.2 Example

In chemical engineering, the flowsheet acts as a central docu-

ment for describing the chemical process. The flowsheet is

refined iteratively so that it eventually describes the chem-

ical plant to be built. Simulations are performed in order to

evaluate design alternatives. Simulation results are fed back

to the flowsheet designer, who annotates the flowsheet with

flow rates, temperatures, pressures, etc. Thus, information is

propagated back and forth between flowsheets and simula-

tion models. Unfortunately, the relationships between them

are not always straightforward. To use a simulator such as

Aspen Plus, the simulation model has to be composed from

pre-defined blocks. Therefore, the composition of the simu-

lation model is specific to the respective simulator and may

deviate structurally from the flowsheet.

Figure 2 illustrates how an incremental integration tool

assists in maintaining consistency between flowsheets and

simulation models. The chemical process taken as example

produces ethanol from ethen and water. Flowsheet and simu-

lation model are shown above and below the dashed line,

respectively. The integration document for connecting them

contains links which are drawn on the dashed line. The figure

illustrates a design process consisting of four steps:

S.M. Becker et al. : Model-based a-posteriori integration of engineering tools for incremental development processes 125

Fig. 2. Integration between flowsheet and simulation model

1. An initial flowsheet is created in Comos PT. This flow-

sheet is still incomplete, i.e., it describes only a part of the

chemical process (heating of substances and reaction in

a plug flow reactor, PFR).

2. The integration tool is used to transform the initial flow-

sheet into a simulation model for Aspen Plus. Here, the

user has to perform two decisions. While the heating step

can be mapped structurally 1:1 into the simulation model,

the user has to select the most appropriate block for the

simulation to be performed. Second, there are multiple

alternatives to map the PFR. Since the most straightfor-

ward 1:1 mapping is not considered sufficient, the user

decides to map the PFR into a cascade of two blocks.

These decisions are made by selecting among the different

possibilities of rule applications the tool presents to the

user.

3. The simulation is performed in Aspen Plus, resulting in

a simulation model which is augmented with simulation

results. In parallel, the flowsheet is extended with the

chemical process steps that have not been specified so far

(flashing and splitting).

4. Finally, the integration tool is used to synchronize the par-

allel work performed in the previous step. This involves

information flow in both directions. First, the simulation

results are propagated from the simulation model back

to the flowsheet. Second, the extensions are propagated

from the flowsheet to the simulation model. After these

propagations have been performed, mutual consistency is

re-established.

From this example, we may derive several features of

the kinds of integration tools that we are addressing. Con-

cerning the mode of operation, our focus lies on incremen-

tal integration tools rather than on tools which operate in

a batch-wise fashion. Rather than transforming documents as

a whole, incremental changes are propagated – in general in

both directions – between inter-dependent documents. Often,

the integration tool cannot operate automatically because the

transformation process is non-deterministic. Then, the user

has to resolve non-deterministic choices interactively. In gen-

eral, the user also maintains control on the time of activation,

i.e., the integration tool is invoked to re-establish consistency

whenever appropriate. Finally, it should be noted that integra-

tion tools do not merely support transformations. In addition,

they are used for analyzing inter-document consistency or

browsing along the links between inter-dependent documents.

A-posteriori integration constitutes an important chal-

lenge being addressed by our approach. For example, it is

crucial that chemical engineers may continue to use their

favorite tools for flowsheet design and simulation. In our

case study, we assume two wide-spread commercial tools,

namely Comos PT (for flowsheet design) and Aspen Plus

(for simulation). Both tools are fairly typical with respect to

their technical features: Both maintain proprietary databases

for storing flowsheet designs and simulation models, respec-

tively. In addition, they both offer COM interfaces for tool

integration. These interfaces allow to query the respective

tool’s functionality as well as to invoke operations to read and

manipulate the tool’s database, etc. Integration tools have to

cooperate harmoniously with such existing tools, adding the

“glue” which has been missing so far.

2.3 Tool development process

In the following, we will sketch the approach that we have

followed in order to solve the integration problems described

above. Please note that we have actually implemented this ap-

proach, i.e., we have realized both the tools used for the tool

development process and the integration tool between Comos

PT and Aspen Plus [7, 28, 30].

2.3.1 Architecture modeling and refinement

The generic architecture of integration tools is sketched in

an informal way in the grey region at the center of Fig. 3.

Inter-document links are stored in integration documents sep-

arately from the native data structures used by the tools to

be integrated. The integration tool is driven by rules which

are created in a correspondency definition tool. The integrator

core applies these rules, modifying the integration document

as well as the documents to be integrated. The document in-

tegration process may be controlled through the user interface

Fig. 3. Informal architecture of the integration tool

126 S.M. Becker et al. : Model-based a-posteriori integration of engineering tools for incremental development processes

of the integration tool. Tools and their documents are ac-

cessed via wrappers which provide homogenized data access

and abstract from technical details. As a consequence, the in-

tegration tool may focus on logical issues. Furthermore, the

integrated tools may be replaced without affecting the inte-

gration tool provided that the wrapper interfaces need not be

changed.

The first step of the tool integration process – architecture

modeling and refinement – is concerned with embedding the

integration tool to be developed into the architecture of the

overall environment depicted in Fig. 1. Please note that we

will focus in this paper on just these integration aspects. We

will consider neither the architecture of the overall environ-

ment nor the architecture of integration tools in detail. Rather,

we will investigate the “gluing parts” needed for performing

the integration.

To this end, we essentially refine the wrapper components

displayed in the informal architecture of Fig. 3. In fact, it

turns out that the refinement results in a fairly sophisticated

subsystem which is designed systematically by applying ar-

chitectural transformations. Here, we distinguish between a

logical architecture abstracting from technical details and a

concrete architecture which realizes the logical architecture.

Starting from a high-level simple architectural configuration,

wrappers are introduced and decomposed, resulting in a re-

fined logical architecture (Fig. 5). Subsequently, the logical

architecture is further refined into a concrete architecture

which eventually takes care of all of the details of the under-

lying technical infrastructure (Fig. 6).

2.3.2 Interactive modeling and construction of wrappers

In the previous step, the architecture is refined such that the

problem of wrapper construction is decomposed into two lev-

els. Technical wrappers are responsible for hiding the tech-

nical details of the interfaces provided by the tools. For ex-

ample, the clients of technical wrappers are shielded from

the underlying communication infrastructure such as COM or

CORBA. This is illustrated in Fig. 7 for the wrapper of Aspen

Plus, which provides a COM interface.

Apart from this abstraction, the operations provided by

the tools are mapped 1:1 onto the interface of the technical

wrapper. In contrast, the homogenizer wrapper located on top

of the technical wrapper realizes the data abstraction required

by the integration tool. In our running example, both flow-

sheets and simulation models can be mapped onto a common

meta model, namely process flow diagrams (PFDs) [6]. The

wrapper establishes a view which is based on the PFD meta

model. For example, Aspen Plus documents are modeled in

terms of ports and components (Fig. 8).

The method implementations for the homogenizer wrap-

per may be constructed in a semi-automatic way in the case

of tools providing a COM interface (Figures 9–11). To this

end, the implementer of the wrapper executes a method in-

teractively through the COM interface. Method invocations

are traced and visualized by sequence diagrams, which the

implementer generalizes into method implementations.

2.3.3 Executable models for incremental consistency

management

So far, we have considered the development of wrappers for

accessing the tools to be integrated as well as their docu-

ments. Now, we address the adaptation of the integration tool,

which makes use of the homogenizer wrappers. As illustrated

in Fig. 3, the integration tool consists of a generic core which

is driven by domain-specific rules. These rules are defined

with the help of the UML. Executable rules are constructed as

follows (Fig. 13):

1. The integration tool is based on a generic meta model

which defines graph-based documents as well as the

contents of integration documents. If required, the meta

model may be extended to define base concepts for a spe-

cific domain. For the integration of COMOS PT and

Aspen Plus, we have defined the PFD meta model as

a common meta model. In this way, integration rules may

be expressed in terms of this meta model. Moreover, the

PFD meta model determines the interface of the homoge-

nizer wrapper.

2. Documents are integrated on the type level by defining

link types which relate types of increments being parts of

the respective documents (Fig. 15). To define these link

types, the type hierarchies of the related documents are re-

trieved through the homogenizer interface and are made

available in the correspondency definition tool.

3. On the abstract instance level, link templates relate corres-

ponding patterns of the related documents. Initially, link

templates are modeled as object diagrams (static collab-

oration diagrams, Fig. 16). Subsequently, they are refined

by adding dynamic information. In this way, linking rules

are constructed which describe graph transformations by

dynamic collaboration diagrams (Fig. 17).

4. Finally, linking rules are converted into an executable

form. Then, a generic integration algorithm realized as

part of the integrator core executes them (Fig. 18). The in-

tegration algorithm operates interactively: The user of the

integration tool is provided with a set of applicable rules

to resolve conflicts and non-determinism; unique rules are

executed automatically to reduce user interactions.

2.3.4 Discussion

So far, we have described the architecture- and model-based

integration tool development process in a simplified way as

a sequence of three steps. However, the actual process may

deviate from this simplified structure in the following ways:

Reuse. The development process need not be performed from

scratch for each integration tool to be developed. Rather,

results of previous processes may be reused. For ex-

ample, the architectural patterns created through archi-

tectural modeling and refinement may be reused, in

a potentially adapted way, from previous developments.

Parallelism. Some steps of the development process may be

executed in parallel. For example, wrapper construction

(Step 2) and development of executable integration rules

S.M. Becker et al. : Model-based a-posteriori integration of engineering tools for incremental development processes 127

(Step 3) may proceed in parallel after the interfaces of the

homogenizer wrappers have been negotiated and fixed.

3 Architecture modeling and refinement

3.1 Overview

Ordinarily, the term software architecture is defined as a de-

scription of “the structure of the components of a program/sys-

tem (and) their interrelationships” [26]. This description

serves different purposes, among other things e.g. analyzing

certain software qualities, such as adaptability, maintainabil-

ity, or portability, or managing the software development

process [5]. What this simple definition disregards, when de-

veloping a large, complex system as it was introduced in

Sect. 2.1, more than one structural perspective together with

the dependencies among them will be necessary with respect

to the goals mentioned above. These structural views, for ex-

ample, include a conceptual, a development, and a process

view [15]. Therefore, “high-level”-diagrams as in Figs. 1 or 3

are helpful to get a first impression of the overall systems

structure, but are not an adequate description of a software

system in the sense of a software architecture.

In our modeling process, the architecture refinement pro-

cess is not performed in an ad-hoc manner, rather it is con-

trolled by domain-specific knowledge about a-posteriori in-

tegration. Therefore, we defined the relevant concepts in this

area, like e.g. Application, Wrapper, Application Programming

Interface, or Document, their relationships, and additional

constraints and transformation rules by a graph-based (meta)

model (see Fig. 4 for a cutout of the meta model concern-

ing the logical architecture modeling part). This model again

was implemented using a programmed graph rewriting sys-

tem (PROGRES [62]). Using a framework for building graph-

based interactive tools (UPGRADE [11]) we finally imple-

mented an architecture modeling tool, called Fire3 (Friendly

Integration Refinement Environment [29]).

In the following Sect. 3.2 we demonstrate how the coarse-

grained “architecture” of the integration tool (see Fig. 3)

is stepwise refined towards a detailed architecture descrip-

tion considering aspects like decomposing components, in-

Fig. 4. Logical architecture meta model (cutout)

troducing wrappers, and distributing components via certain

middleware-techniques. We call the first and the second as-

pect logical architecture refinement, respectively; the third

aspect is called concrete architecture refinement.

3.2 Stepwise architecture refinement

3.2.1 Logical architecture refinement

The system description sketched in Fig. 3 serves as starting

point for the architecture refinement process. The structure de-

scribed there is modeled in Box 1 of Fig. 5 with the concepts

provided by the logical architecture meta model (see Fig. 4).

As the first refinement step the access to the application

to be integrated by the integration tool is defined2. This can

be done either by accessing the application via an API (ap-

plication programming interface) (see Box 2a of Fig. 5) or, in

the case no API is offered by the application, via the docu-

ments produced by the application (see Box 2b of Fig. 5). The

latter refinement alternative is applicable e.g. when the appli-

cation is equipped with an XML import and export function

and only data integration is intended. Mixtures of alterna-

tive 2a and 2b are possible, as well (not shown in Fig. 5): if

the API, for example, is a read-only interface, as in earlier

releases of Aspen Plus, read access is realized via the API,

while for write access the document solution is used.

Choosing alternative 2a leads to the model shown in Box

2a of Fig. 5: the ≪Application≫ Aspen Plus is extended

with an additional ≪ArchitectureComponent≫ representing

the API, that is used by the Comos_Aspen API Accessor,

which is an ≪ArchitectureComponent≫ of the Integrator.

This ≪Uses≫ relation between the Comos_Aspen API Ac-

cessor and the Aspen API is subsequently refined in step 3

and 4: An ≪ApplicationWrapper≫ is introduced (see Box 3

of Fig. 5) which is subdivided into a so-called homoge-

nizer wrapper (AspenHomWrapper) and a technical wrapper

(AspenTecWrapper) (see Box 4 of Fig. 5). This is done for the

following reasons: The integration tool expects the tool’s data

to be provided as attributed, directed, node- and edge-labeled

graphs (see Fig. 13 and Fig. 14). Therefore, the proprietary

data model provided by the tool’s API has to be transformed

by the homogenizer wrapper into the graph model. In this

context the technical wrapper offers the homogenizer wrap-

per a location- and implementation-independent access to the

tool’s API. How the homogenizer and the technical wrapper

can be further refined, will be explained in Sect. 4.

Please note that for the refinement steps shown in Box 2a

(or alternatively in Box 2b) user interactions are necessary:

it is the software engineer’s knowledge to decide how the

≪Application≫ is accessed by the ≪Integrator≫. After

defining this, the transformations shown in Box 3 and Box 4

are performed by the architecture modeling tool automati-

cally. When, for example, the software engineer decides later

2 For the following explanations we will focus on the right ≪Inte-
grates≫ relation between Comos_Aspen and Aspen Plus. The left

≪Integrates≫ relation can be refined analogously.

128 S.M. Becker et al. : Model-based a-posteriori integration of engineering tools for incremental development processes

Fig. 5. Logical architecture refinement

that no homogenizer wrapper is necessary, he can delete this

component manually.

3.2.2 Concrete architecture refinement

So far we have specified the logical architecture of our sys-

tem. The next step is to define the concrete architecture.

Therefore, the logical structure is transformed in an iso-

morphic, concrete one (see Box 5 of Fig. 6): instances of

the classes Application and Integrator, respectively instances

of subclasses, are transformed into instances of class Pro-

cessNode. They represent a process in the operating system

sense. Instances of class ArchitectureComponent, respectively

instances of subclasses, are transformed into instances of

class ComponentImplementation, respectively into instances

of corresponding subclasses. While the ≪Contains≫ rela-

tions are kept, the ≪Uses≫ relations are as well trans-

formed into equivalent≪MethodInvocation≫ or ≪Interpro-

cess_Call≫ relations. A ≪MethodInvocation≫ represents

a local communication, an ≪Interprocess_Call≫ represents

a distributed one. The architecture modeling tool again carries

out these transformations automatically.

Specifying how the ≪Interprocess_Call≫ relations will

be implemented are the final steps of architecture refine-

ment. Because the Aspen API is implemented by the tool’s

vendor using COM (Component Object Model [40]), the

≪Interprocess_Call≫ relation between the AspenTecWrap-

per and the Aspen API is simply refined into a≪COM_Call≫

and additionally the Aspen API is transformed into an in-

stance of class ≪COM_Interface≫ (see Box 5 of Fig. 6).

In the case of the ≪Interprocess_Call≫ relation between

the Comos_Aspen API Accessor and the AspenHomWrap-

per, different alternatives are possible. Realizing the Aspen-

Wrapper as an independent operating system process is one

alternative3. The interprocess communication between the

≪Integrator≫ and the≪Wrapper≫ can be implemented e.g.

using CORBA (Common Object Request Broker Architec-

ture [47]). This alternative offers the opportunity to distribute

the ≪Integrator≫ and the ≪Application≫ to be integrated

over various nodes in a computing network. If the software

engineer decides so, the architecture is refined as shown in

Box 6a of Fig. 6. If no distributed solution is desired, the in-

dependent≪ProcessNode≫ AspenWrapper is resolved, i.e.

the AspenWrapper is deleted, the AspenHomWrapper and the

AspenTecWrapper are realized as components of the integra-

tion tool, and the communication between them is refined to

a local≪MethodInvocation≫ (see Box 6b of Fig. 6).

3 This alternative was already suggested by the initial transformation of

the logical into the concrete architecture.

S.M. Becker et al. : Model-based a-posteriori integration of engineering tools for incremental development processes 129

Fig. 6. Concrete architecture refinement

4 Interactive modeling and construction of wrappers

4.1 Overview

A wrapper acts as an adapter “convert(ing) the interface of

a class into another interface clients expect” [23]. Therefore,

application of wrappers enables the reuse of existing software

in a new context [63].

Developing a wrapper includes several tasks: the syntax

and the semantics of the given tool’s interface to be wrapped,

the source interface, as well as of the interface required by the

client, the target interface, have to be specified. Furthermore,

the transformation of the source into the target interface has to

be defined. According to these tasks a wrapper is not a mono-

lithic component, rather it is a subsystem consisting of several

subcomponents. Our architecture takes this into consideration

130 S.M. Becker et al. : Model-based a-posteriori integration of engineering tools for incremental development processes

by dividing a wrapper into a technical wrapper, realizing the

access to the source interface, and a homogenizer wrapper,

realizing the target interface (see Box 4 of Fig. 5).

In Sect. 4.2 we present the modeling of the technical and

the homogenizer wrappers’ interfaces and an example of our

approach to interactively specify the transformation of the

source into the target interface.

4.2 Interface modeling and interactive exploration

As described in the previous section, in our scenario As-

pen Plus, the tool to be integrated, contains an API imple-

mented using COM. The syntax of such a COM interface is

documented in a standardized way through a so-called type

library. A type library contains a static description of the

classes and their attributes and operations offered by the in-

terface in form of signatures. By simply parsing this type

library our architecture can automatically be refined as shown

in Fig. 74. This class diagram defines the internal data model

of Aspen Plus.

Figure 2 shows an example of an Aspen Plus simulation

model. As this example illustrates, a simulation model con-

sists of several components, e.g. blocks, representing chem-

ical devices, streams, connecting blocks, or ports, modeling

the connection between a block and a stream. Each of these

components has its own type, for example a block represents

a heater or reactor.

According to the requirements of the integration tool, the

internal data model of Aspen Plus has to be transformed

into a graph model in conformity with the graph layer in

Fig. 14. Therefore, an Aspen Plus simulation model compon-

ent is modeled as a Node containing an attribute meta type,

which is the component’s meta type, e.g. block, stream or

port, and an attribute type, which is the component’s con-

crete type, e.g., in the case of a block, heater or reactor (see

Fig. 8)5. The necessary operations to access instances of this

model are offered by the export interface of the homoge-

nizer wrapper. An example for such an operation is shown in

Fig. 8.

So far, we have modeled the internal, static data struc-

tures of the technical and the homogenizer wrapper. Now we

4 The figure shows a simplified model of the COM interface. The COM

interface of Comos PT, for example, consists of 101 classes with a total of

7680 methods.
5 For the following example we use this simplified model of the real

model. It is simplified in the sense that the relations between the nodes are

not considered.

Fig. 7. Technical wrapper refinement

Fig. 8. Homogenizer wrapper refinement

have to define the transformation between these two struc-

tures. This is usually done by implementing it manually. To

support the software engineer carrying out this implementa-

tion, we have developed a tool allowing the exploration of the

dynamic behavior of an application offering a COM interface

at runtime interactively. Using this tool, parts of the code to be

implemented can be generated automatically.

The following example illustrates how the internal data

model of the homogenizer wrapper is materialized. There-

fore, specifications for the internal operations of the homog-

enizer wrapper realizing this materialization are created with

the help of our tool in the following way: Firstly, the tool

generates specifications for basic operations by tracing user

interactions. Subsequently, these operation specifications are

generalized and extended6.

After parsing the type library of a COM interface, the

tool starts the underlying application as an operating sys-

tem process via a generic start operation that every COM

interface implements. The return value of this operation is

a reference to the initial object of the COM interface. The tool

determines the object’s class and, based upon the static infor-

mation parsed out of the type library, a GUI (graphical user

interface) for the given COM object is generated by the tool.

Using this GUI, the software engineer can query the values of

object attributes or can invoke the object’s methods.

An attribute value or a return value of a method can be ei-

ther an atomic value, like a string or an integer, or a reference

to another COM object. In this case another GUI according to

the referenced object is generated allowing to inspect the ref-

erenced object. In this way the software engineer can explore

the COM interface of an application interactively.

Furthermore, the user’s interactions are traced by the tool

and can be visualized as UML sequence diagrams. The trace

shown in Fig. 9, for example, illustrates how to access the

collection of blocks included in an Aspen Plus simulation

model using the operations offered by the tool’s API. This

trace serves as a specification for an internal operation called

GetAspenBlocks of the homogenizer wrapper7.

By composing such traces we get further specifications for

internal operations, e.g. for retrieving the number of blocks

included in the simulation model (see the left sequence dia-

gram of Fig. 10) or for accessing the (concrete) type of a sin-

gle block (see the right sequence diagram of Fig. 10)8.

6 At the moment the latter has to be done by the software engineer

manually. Extending our tool in this way is our current work.
7 With respect to our previous explanations the homogenizer wrapper

communicates with the COM objects via the technical wrapper, which is not

shown to keep the figure simple.
8 These UML sequence diagrams as well as their composition are gener-

ated by the tool automatically.

S.M. Becker et al. : Model-based a-posteriori integration of engineering tools for incremental development processes 131

Fig. 9. Specification of operation GetAspenBlocks

Fig. 10. Specification of operation NumberOfBlocks (left sequence

diagram) and of operation GetAspenBlockType (right
sequence diagram)

Fig. 11. Generalization of operation GetAspenBlockType (left sequence
diagram) and specification of operation CreateBlockNodes (right

sequence diagram)

By substituting the constant 2 with a parameter and speci-

fying the range of the parameter (the range is given through

the specification of the operation NumberOfBlocks) we get

a generalized specification for accessing the (concrete) type

of any block included in an Aspen Plus simulation model

(see the left sequence diagram of Fig. 11). In contrast to

the traced operation GetAspenBlockType():String, the gener-

alized operation has the signature GetAspenBlockType(index:-

Integer):String. Based upon this operation, we can finally

specify an operation (see the right sequence diagram of

Fig. 11) that instantiates the Node classes. This operation ma-

terializes the internal data model of the homogenizer wrap-

per regarding the blocks in an Aspen Plus simulation model.

Analogously, operations to handle streams and ports can be

specified.

5 Executable models for incremental consistency

mangement

5.1 Overview

Whereas in Sect. 3 the overall architecture of an integrated

system was discussed, in this section we describe how the

consistency management between existing tools is performed

in detail. In Fig. 5 a class Comos_Aspen was contained in

the coarse-grained architecture of the system, connecting Co-

mos PT and Aspen Plus. This class is a placeholder for an

incremental integration tool, which in general supports in-

cremental transformation and change propagation, browsing,

and consistency check between dependent documents. In our

running example, the integration tool in question supports the

consistency management between flowsheets in Comos PT

and simulation models in Aspen Plus with focus on the bidi-

rectional, incremental transformation and change propagation

between the two documents.

Unlike other approaches to rule-based consistency man-

agement which first check for inconsistencies and then apply

inconsistency resolving rules, our approach is transformation-

centered: New elements and changes of existing ones in one

document are detected and propagated to the other one.

The propagation works rule based, with the rules being

defined in a special modeling environment called rule editor.

The set of rules controlling an integration tool in general is

neither complete nor unambiguous w.r.t. the documents that

are to be integrated. As a result of that integration tools do

not work batch-wise but rely on two different kinds of user

interaction: First, if a rule is missing for a given situation,

transformation can be performed manually. Second, if multi-

ple rules are applicable and their execution is conflicting, one

of the rules has to be chosen for execution by the user.

The main idea behind the realization of our consistency

management approach is to keep track of the fine-grained

inter-dependencies between the contents of dependent docu-

ments. The resulting inter-document relationships are explic-

itly stored, which is an essential prerequisite for incremental

change propagation between the documents. This is done in

an additional document which is called integration document.

An integration document contains a set of links which

represent the relationships mentioned above. Each link re-

lates a set of syntactic elements (increments) belonging to

one document with a corresponding set belonging to another

document. The integration is controlled by rules: One link is

created by the execution of one integration rule. If a link has

to be further structured, this can be done by adding sublinks

to a link. A sublink relates subsets of the increments refer-

enced by its parent link and is created during the same rule

execution as its parent.9

Figure 12 shows the structure of links in a UML class di-

agram. Most constraints needed for a detailed definition are

omitted, only examples are shown. An increment can have

9 The usage of sublinks could be avoided by creating additional links

by additional rules but this often leads to integration rules that are hard to

understand.

132 S.M. Becker et al. : Model-based a-posteriori integration of engineering tools for incremental development processes

Fig. 12. Structure of links

different roles w.r.t. a referencing link: Increments can be

owned by a link or be referenced as context increments. While

an increment can be referenced by at most one link as owned

increment, it can be referenced by an arbitrary number of

links as context increments. Owned increments can be created

during rule execution, whereas only existing increments can

be referenced by new links as context increments. Context in-

crements are needed when the execution of a rule depends

on increments created by an existing link, for instance to em-

bed newly created edges. Owned increments can be further

divided into dominant and normal increments. Dominant in-

crements play a special role in the execution of integration

rules (see Sect. 5.3). Each link can have at most one domin-

ant increment in each document. A link can relate an arbitrary

number of normal increments.

Please note that there is additional information stored at

a link like its state and information about possible rule appli-

cations. This information is needed by the integration algo-

rithm but not for the definition of integration rules.

The documents’ contents are provided as attributed, dir-

ected, node- and edge-labeled graphs by the tool wrappers

introduced in Sect. 4. The integration document forms an ad-

ditional graph with inter-graph edges leading to the nodes

in the other documents. To simplify the integration, it is

performed on the union of all single graph documents and

the inter-graph edges (otherwise, distributed graph transform-

ations [65] would have to be used). The execution of in-

tegration rules dealing with the graph structure is done by

using graph transformations. Rule definition and execution

is inspired by the triple graph approach [37, 60] which was

modified to fit the practical requirements in our domain of

application [9]. Our approach supports transformation and

consistency check of node attributes as well, but in this paper,

we only present the structural part of the integration.

If an integration tool is started for the first time for two

documents, a new integration document is created. Then, all

integration rules that are unambiguously applicable are ap-

plied to the documents, modifying them and creating new

links in the integration document. After that, a list of all rules

that are applicable but conflicting to other rules is presented

to the user, who has to select a rule that is to be executed.

Again, unambiguously applicable rules are applied and deci-

sions are made by the user until there are neither decisions nor

unambiguous rules. Now, the user can manually complete the

integration if the result is not satisfying, yet.

When the integration tool is activated again, each existing

link in the integration document is checked for consistency

first. I.e. the referenced increments are checked for modifica-

tions that violate the rule that created this link. Then, incon-

sistency resolving rules are applied to all inconsistent links,

which can lead to user interaction, too. Next, integration rules

are applied to the new increments which are not referenced by

a link, yet, as when started for the first time.

In this paper, we will focus on the presentation of the

definition and enactment of integration rules. A detailed de-

scription of the realization of the integration tool is provided

in [7]. The rest of this section is structured as follows: In

Sect. 5.2 our approach for the definition of integration rules

using UML is presented, and Sect. 5.3 gives an overview of

how integration rules can be executed using a graph trans-

formation system.

5.2 UML-based modeling of integration rules

For the definition of integration rules, we follow a multi-

layered approach as postulated by OMG’s meta object facility

(MOF) [49]. Figure 13 provides an overview of the different

modeling levels and their contents for the running example.

Using MOF as meta-meta model, on the meta level the exist-

ing UML meta model is extended by additional elements that

form a language to define models of the documents to be in-

tegrated and to express all aspects concerning the documents’

integration. The meta model itself is layered, too, which will

be explained in detail below.

On the model level, we distinguish between a type (or

class) level and an instance level, like standard UML does.

Fig. 13. Levels of modeling

S.M. Becker et al. : Model-based a-posteriori integration of engineering tools for incremental development processes 133

On the type level, class hierarchies describing the different

types of documents and link types constraining which in-

crements can be related by a link are defined using UML

class diagrams. The instance level is divided into an ab-

stract and a concrete level. On abstract instance level, link

templates and linking rules are specified using collabora-

tion diagrams. Link templates are instances of link types

relating a pattern (which is a set of increments and their

interrelations) that may exist in one document to a corres-

ponding pattern in another document. Link templates can

be annotated to define linking rules. The annotations pro-

vide information about which objects in the patterns are to

be matched against existing objects in concrete documents

and which have to be created, comparable to graph trans-

formations. On the concrete instance level, existing docu-

ments and integration documents can be modeled, which is

not further described here. In this paper we will give a coarse

overview of our modeling approach only, for a detailed de-

scription including more examples, the reader is referred

to [10]10.

The modeling process to define a concrete integration tool

is enacted as follows: First, if needed, specific meta model ex-

tensions for the types of documents to be integrated have to

be created (see Sect. 5.2.1). Next, document models and link

types have to be defined. To define the meta model extensions

and link types on type level, domain knowledge like con-

tained in the conceptual data model for chemical engineering

CLiP [6] is required. The document models can be generated

with the help of the tool wrappers described in Sect. 4. Now,

the integration tool could be applied in the domain of appli-

cation, because link templates and integration rules can be

defined on the fly [10]. Nevertheless, a basic set of integra-

tion rules should be defined first to keep the additional effort

low for the user. Therefore, link templates are to be modeled,

which are consistency checked against the link types. From

each link template a set of standard linking rules is automat-

ically derived. All rules are stored in a rule base and finally,

are interpreted by the integration tool at runtime, using the

algorithm described in Sect. 5.3.

5.2.1 Meta model

To extend the UML meta model, we make use of restric-

tive meta model extension as described in [59]. The meta

classes introduced by our meta model extension are referred

to by stereotypes on the model level. Figure 14 depicts an ex-

cerpt of the meta model underlying our modeling formalism

that shows its layered structure. It is presented using MOF,

but a lot of details are omitted. The top layer contains the

standard UML meta model which is extended by the next

lower layer to a meta model for attributed, directed, node-

and edge-labeled graphs. Replaces-constraints, in the figure

depicted as dashed arrows marked with {r}, ensure that the

10 Please note that we changed our terminology: In former publications

we used association instead of link type and correspondency instead of link

template.

Fig. 14. Extension of the UML meta model

model elements of different layers cannot be used together in

an unwanted fashion, e. g. resulting in an Edge connecting

a Node and a UML Class.

The layer below consists of a generic integration meta

model with all elements being subclasses of the elements

from the graph layer. As a result of that, documents that are to

be integrated and integration documents can both be regarded

as being graphs, and they can be dealt with using graph

techniques like graph transformations. The tool wrappers de-

scribed in Sect. 4 provide us with access to the documents’

contents via an interface that conforms to the graph layer

of the meta model during the integration process. The con-

straints and multiplicities in Fig. 12 concerning links and their

associations to increments are contained in the meta model

but not explicitly visible because they have to be defined as

constraints on the meta model restricting the associations’

cardinalities on the type level.

The meta model layers presented so far are fixed for all in-

tegration models and tools. That is, our implementation of the

integration framework and the modeling formalism relies on

this model. If needed, on the layers below extensions for spe-

cific types of documents can be made, which are interpreted

by all our tools.

In our running example, we deal with Comos PT flow-

sheets and Aspen Plus simulation models. The overall struc-

ture of both types of documents is rather similar, because

both describe technical systems consisting of pieces of equip-

ment that are connected by via connection ports. We call these

types of documents PFD-like (process flow diagram like).

Therefore, we defined a common meta model for PFD-like

documents, to make the modeling of rules more user-friendly.

The definition of the meta model for chemical engineering

is based on the conceptual data model CLiP [6]. Here, both

documents to be integrated are instances of PDF-like docu-

ments but in general, our approach supports the integration of

134 S.M. Becker et al. : Model-based a-posteriori integration of engineering tools for incremental development processes

documents being instances of different specific meta models.

The PFD-like metamodel is provided by the tool wrappers

when importing the tools’ document models into the rule edi-

tor model.

5.2.2 Type level

Detailed document models are specified on the type level

using UML class diagrams. Here, the increment types and

their intra-document relations are defined. Increment types

are modeled as classes in the documents’ class hierarchies,

their intra-document relations are modeled as associations.

Increments can be attributed but in this paper we only deal

with the structural aspects of the integration. Most parts of

the document models can be directly imported from the tools’

internal type systems using the tool wrappers.

Using the increment types from the detailed document

models, link types are defined. Because all link templates

have to be instances of link types, link types constrain the

types of increments that can be related by a link template.

They also define whether a link template can be further struc-

tured by sublinks and which types of increments can be re-

lated by them. Figure 15 shows an example of a link type

definition. Increments and links are modeled as classes and

their inter-relations as associations. Instances of the new link

type StreamLink can relate one stream in a Comos PT flow

sheet (an increment of type PhaseSystem) with one stream

in an Aspen Plus simulation model (an increment of type

MaterialStream). The stream increments are the dominant in-

crements in both documents for the StreamLink. Additionally,

up to two ports connected to the stream in each document

can be referenced by the link as normal increments. In most

flowsheets and simulation models, streams have one input

and one output port, where other pieces of equipment can be

connected. To map the corresponding ports on both sides of

the link, up to two sub links of type StreamPortMapping can

be added to the StreamLink. The sample link type definition

described here is rather concrete because it is specifically tai-

lored to relate streams. Other link types can be defined that

are more generic. For instance, in [10] a link type is presented

that allows to link any pattern in a flowsheet to any other pat-

tern in a simulation model.

Fig. 15. Link type definition

5.2.3 Abstract instance level

Link templates relate corresponding patterns of the docu-

ments. A pattern is an abstract description of a situation that

may occur in a concrete document. From a semantic point of

view, link templates describe that if the patterns are present in

the documents they may be related by a link. There is no in-

formation about how this link is established or whether parts

of the patterns are generated. Link templates are modeled as

(static) UML collaboration diagrams containing instances of

link and sublink types that are connected via UML links with

instances of increment types. Additional constraints can be

defined concerning attributes and their values.

Figure 16 depicts a link template if the constraints are not

taken into account. This link template is an instance of the

link type in Fig. 15. A StreamLink relates a PhaseSystem and

a Material Stream and their input and output ports. Two sub-

links map the input and the output ports, which is needed

for handling connections between ports during the transform-

ation of documents as explained below. Please note that all

object names are placeholders and no concrete identifiers be-

longing to existing documents. The instances’ stereotypes ref-

erencing the meta model elements are not explicitly shown in

the figure, but they can be derived from the instances abstrac-

tions on type level.

Link templates are purely declarative, but they can be

extended to executable linking rules. Therefore, UML con-

straints are added, for example {new} marks an object of the

template that currently is not present and has to be created.

Other constraints are {not} for objects that are not present and

{delete} for objects that have to be present and are deleted.

By applying these constraints to the objects of a link tem-

plate, a graph transformation rule is created. The execution of

linking rules is presented in the next subsection.

Comparable to the triple graph grammar approach, dif-

ferent linking rules can be automatically derived from a link

template. A forward transformation rule finds an increment

structure in the source document (here: the flowsheet) and

creates a corresponding structure in the target document

(here: the simulation model). Both structures are then related

Fig. 16. Link template (without constraints printed in gray), linking rule
(with constraints)

S.M. Becker et al. : Model-based a-posteriori integration of engineering tools for incremental development processes 135

by a link. To derive a forward transformation rule, all in-

crements, links, and sublinks are marked with the constraint

{new}, except the context increments of all documents and

the owned increments in the flowsheet document. Associa-

tion instances that have a least one end outside the flowsheet

document are marked with {new}, too. The linking rule in

Fig. 16 is the resulting forward transformation rule. Please

note that in this example link template there are no context

increments. A backward transformation rule and other rules

can be derived similarly. For special needs, link templates can

be manually extended to rules.

Another linking rule is presented in Fig. 17. Please note

that the corresponding link type definition is not shown. In

flowsheets and simulation models, pieces of equipment are

connected via their ports by special increments called con-

nection. The depicted rule is used to ensure that, if two sub-

structures of a source document are connected and are trans-

formed to a target document, the resulting substructures are

connected according to the original topology. It is a forward

transformation rule propagating a connection in the flowsheet

to the simulation model. The rules that transformed the two

substructures already established sublinks to map the corres-

ponding ports of the source and the target structures. The

rule in Fig. 17 references the ports and the sublinks that map

them as context (dashed lines). With the help of this informa-

tion the rule is able to locate the ports in the target document

that have to be connected by creating a new connection. The

new link references the connections in both documents as

dominant increment and the ports and sublinks as context

increments.

The integration rules presented so far reference rather

similar structures of the two documents. In general, rules

can relate arbitrary substructures of the documents. For in-

stance, the rule used in the running example (Sect. 2) in step 2

to transform the reactor relates a reactor in the flowsheet to

a cascade of two reactors in the simulation model. Beside

linking rules, there are inconsistency repair rules that can be

applied after an existing link has become inconsistent because

of modifications in the documents. Another aspect of inte-

gration not presented in this paper is the transformation of

Fig. 17. Linking rule (forward) transforming a connection

attribute values. This is done executing special scripts defined

for each link template [7].

5.3 Execution of integration rules

In this subsection an overview of our approach for the exe-

cution of integration rules is given. A detailed description is

provided in [8].

Although the integration rules presented so far can be in-

terpreted as graph transformations, they cannot be executed

straightforward by simply translating each rule to one graph

transformation rule. Instead, the integration rules are executed

by a complex algorithm consisting of rule-independent and

rule-specific steps. This is necessary for several reasons:

– The sequence of rule applications has to be determined.

– Different rule applications may be possible for a given set

of increments.

– The sets of increments used by two rule applications may

intersect.

– To resolve conflicts and ambiguities, user interaction is

necessary.

Figure 18 shows the integration algorithm for new links.

As stated in Sect. 5.1, existing links are dealt with in a dif-

ferent phase of the overall integration algorithm which is

Fig. 18. The integration algorithm

136 S.M. Becker et al. : Model-based a-posteriori integration of engineering tools for incremental development processes

not presented here. The algorithm is presented using a UML

activity diagram. The activities are informally grouped into

three phases by rectangles. Activities that are rule-specific

are filled gray whereas rule-independent activities are filled

white. The rule-specific activities are derived from the spe-

cification of the linking rules. In the algorithm’s first phase

(create), information about all potential rule applications is

collected. In the second phase (select), all potential rule ap-

plications are checked for their applicability and then one rule

is automatically or manually chosen for application. The third

phase (execute and cleanup) consists of the application of

the chosen rule and some cleanup activities adapting the in-

formation gathered in the create-phase to the changes made

during the execution of the chosen rule. Then the execution

is continued in the second phase until there are neither user

decisions nor rules that can be executed automatically. In the

following paragraphs, the three phases will be explained in

more detail.

During the first activity in the create phase (create half-

links), for each increment, that could be the dominant incre-

ment for at least one rule, a link referencing this increment as

dominant is created (half link). The linking rules as presented

in the previous subsections can be regarded as graph trans-

formation rules with both sides of the transformation being

compressed into one diagram. They can be divided into a left-

hand side containing a graph pattern that has to be matched

against the host graph before the transformation and a right-

hand side describing the transformation result for the matched

pattern. In the next activity (find potential rule applications),

which is the first rule-specific activity, for each half link the

left-hand sides of all rules that comply to the dominant in-

crement are tried to be matched against the graph consisting

of the documents to be integrated and the integration docu-

ment. All possible matchings are stored at the half link. Please

note that the context increments are not matched, yet, because

these increments may still be created later by other rule appli-

cations. The other rule-specific activities are carried out simi-

larly based on parts of the graph transformations described by

the linking rules. In the next activity (detect overlappings), all

intersections between the mapped increments of possible rule

applications belonging to different links are found and stored

in the graph.

In the first activity of the select phase, the context incre-

ments for all potential rule applications are tried to match

and the result is stored in the graph. By doing this in this

phase, the context increments are checked after each rule ex-

ecution. Next, a potential rule application is searched that

can be executed unambiguously. This is the case if all con-

text increments are mapped, the rule is the only potential

rule application connected to its half link, and there is no

potential application residing at another half link with inter-

secting normal or dominant increments. If there is at least one

unambiguous rule application, one of them is executed auto-

matically. If there is no such rule, all ambiguities are collected

and presented to the user, who can now manually select a po-

tential rule application for execution. If there are no decisions,

the algorithm terminates.

In the third phase (execute and cleanup), the selected

rule is executed by replacing the already mapped left side

in the host graph by its right side (execute rule). The next

activities propagate the consequences of the changes to the

data structure created during the create phase: First, all

half links are deleted that cannot be made consistent be-

cause their dominant increment is now used by the exe-

cuted rule. Next, all potential rule applications are deleted

that became impossible because increments they needed are

used by the executed rule. Last, all overlappings that are

obsolete because one of the overlapping potential rule ap-

plication involved was deleted are removed. Afterwards, the

execution returns to the check context activity in the select

phase.

The loop of the last two phases is continued until no

unambiguous rules and no user decisions are present. It is

possible that the integration is not completed after the termi-

nation of the algorithm. In such cases, the user has to com-

plete the integration by modifying the documents and manu-

ally adding links to the integration document. From manually

modified links, link templates can be interactively derived as

is explained in [10].

6 Related work

We use UML [52] to express both the architectural refinement

model and the multi-layered integration model. Therefore,

extensions to the UML meta model have to be made [59]

using the MOF [49]. Extensions of the OCL concerning graph

transformation concepts like proposed in [61] will be used in

future work to extend the modeling formalism.

6.1 Architecture modeling and refinement

The observation that specifying the structure of a software

system as coupled units with precise interfaces is a major con-

tributing factor for developing a software system is almost as

old as the software engineering discipline itself [53]. Due to

the definition of a software architecture given in Sect. 3.1 it is

not surprising that graph grammars were identified as a sim-

ple and natural way to model software architectures. Conse-

quently, the rules and constraints for the dynamic evolution

of the architecture, e.g. adding or removing components and

relations between them, can be defined as graph transform-

ations. Following this idea we use PROGRES [62] to describe

these both aspects in an unified way.

Several related approaches are described in literature: Le

Métayer [36] uses graph grammars to specify the static struc-

ture of a system. However, the dynamic evolution of an archi-

tecture has to be defined independently by a so-called coordi-

nator. A uniform description language based on graph rewrit-

ing covering both aspects is presented by Hirsch et al. [31].

But in contrast to PROGRES this approach is limited to the

use of context-free rules for specifying dynamic aspects. Sim-

ilarly to us, Fahmy and Holt [21] also applies PROGRES to

specify software architectural transformations.

S.M. Becker et al. : Model-based a-posteriori integration of engineering tools for incremental development processes 137

Despite of this, these and other approaches for architec-

ture modeling [34] claim to be usable to specify universal ar-

chitectures independent from the domain and do not consider

the needs for domain-specific architectures [39]. Therefore,

PsiGene [58] allows to combine design patterns as presented

in [13] and to apply them to class diagrams. A technique to

specify patterns in the area of distributed applications and to

combine them to a suitable software architecture is shown

in [56].

While these approaches offer solutions for architectural

patterns on a technical level, e.g. distributing components

and defining patterns for their communication, they do not

overcome the problem of semantic heterogeneity. This prob-

lem is addressed by numerous standardization efforts to de-

fine domain-specific interfaces based on corresponding archi-

tectural frameworks, e.g., OMG domain specifications [48],

ebXML (electronic business using eXtensible Markup Lan-

guage [18]) or OAGIS (Open Applications Group [46]). How-

ever, to adapt legacy systems to such standards they have to be

wrapped. In this paper, we have shown how wrapping can be

performed systematically at the architectural level.

6.2 Interactive modeling and construction of wrappers

An architecture-based approach for developing wrappers,

similar to the one of us, is described by Gannod et al. [24]:

interfaces to command line tools are specified as architec-

tural components by using ACME [25], a generic architecture

description language. Subsequently, based upon the specifica-

tion the wrapper source code for the interface is synthesized.

In comparison with our method presented in Sect. 4, Gannod

et al. only cover the construction of the technical wrapper;

any kind of data homogenization is not considered.

To enrich the expressiveness of a given interface to be

wrapped, Jacobsen and Krämer modified CORBA IDL (in-

terface definition language) [47] for adding specifications of

semantic properties, so that a wrapper’s source code can be

extended by additional semantic checks automatically [32].

When wrapping tools in an a-priori manner, i.e. the seman-

tics of the tool’s interface is well-known, such descriptions

are applicable for synthesizing the wrapper. Unfortunately, in

the context of a-posteriori integration the semantic properties

to be specified for generating the wrapper are unknown. This

was one reason for developing our interface exploration tool.

Other attempts to discover the structure and behavior of

a software system automatically come from the field of soft-

ware reengineering. Cimitile et al. [14] describe an approach

that involves the use of data flow analysis in order to deter-

mine various properties of the source code to be wrapped.

A necessary prerequisite for this and the most other tech-

niques in the area of software reengineering is the availability

of the source code that is to be analyzed. Again, a-posteriori

integration as presented in this paper does not satisfy this con-

straint.

The solution we have chosen is an application of the

“programming by example” principle [38]. Several ap-

proaches for wrapping semi-structured data sources, e.g. web

pages, following this principle can be found in literature.

Turquoise [41] is a prototype of an intelligent web browser

creating scripts to combine data from different web pages.

The scripts are demonstrated by the user’s browsing and

editing actions, which Turquoise traces and generalizes into

a program. Similar, NoDoSE [1] combines automatic analy-

sis with user input to specify grammars for unstructured text

documents. An automation of the generalization step, neces-

sary in every programming by example approach, is presented

in [35]. For a set of web pages single wrappers are speci-

fied manually, then an automatic learning algorithm generates

a generalized wrapper by induction.

While these “programming by example” approaches con-

centrate on data integration, we are moreover interested in

function and event integration, e.g. for offering the integration

tool a visualized browsing functionality between integrated

documents in the future.

6.3 Consistency management

Our approach to consistency Management is based on differ-

ent foundations in computer sciences:

The idea of relating dependent pieces of information by

links is borrowed from hypertexts [16]. The Chimera sys-

tem [3] is an application of hypertext concepts to software

engineering. In most hypertext systems – including Chimera

– links have to be established manually. Some approaches to

traceability, e.g. [57], follow the same principles.

Execution and definition of integration rules is based

on graph transformation [19, 62], in particular pair gram-

mars [55] and triple graph grammars [60]. Early work at

our department concerning integration in software engineer-

ing [37] was carried out on the basis of these techniques

during the construction of the integrated software engineer-

ing environment IPSEN [42]. We adapted the results to our

current domain of application and extended the original ap-

proach: now, we are dealing with the problem of a-posteriori

integration, the rule definition formalism was modified to the

UML-based one described in this contribution (see Sect. 5.2)

and the rule execution algorithm was further elaborated (see

Sect. 5.3).

Related areas of interest in computer science are (in-)

consistency checking [64] and model transformation. Consis-

tency checkers apply rules to detect inconsistencies between

models which then can be resolved manually or by inconsis-

tency repair rules. Model transformation deals with consistent

translations between heterogeneous models. Both fields of

research recently gained increasing importance because of

the model driven approaches for software development like

the model driven architecture (MDA) [50]. In [27] the need

for model transformations in the context of the MDA is de-

scribed, some basic approaches are compared, and require-

ments on transformation languages and tools are proposed.

In [33] requirements for mapping languages between differ-

ent models are elaborated.

Without claiming the list to be exhaustive, here are some

references to important projects in these areas:

138 S.M. Becker et al. : Model-based a-posteriori integration of engineering tools for incremental development processes

XlinkIt [44, 45] is a project dealing with consistency

checks. XML technology is used to check for inconsisten-

cies and to repair them. Because of the structure of the

documents in our domain, we believe that UML and graph

grammars are better suited to model and execute integration

functionality.

The ViewPoint framework [22] dates back to the early

nineties. Its main idea is to identify different perspectives

(view points) of a product that is to be developed and to exam-

ine their inter-relations. This framework is applied as a basis

in [20] using the formalism of distributed graph transform-

ations [65] to detect and repair inconsistencies. To the best

of our knowledge, this approach does not support conflicting

rules and user interaction.

In the context of the Fujaba project, a consistency man-

agement approach was developed [67]. It checks intra-model

as well as inter-model consistency. Parts of the inter-model

consistency check [66], which can be used to transform

models, are based on the triple graph grammar approach [60]

like ours, but offer restricted transformation functional-

ity only, w.r.t. the detection of conflicting rules and user

interaction.

As part of the Kent Modeling Framework, in [2] a rela-

tional approach to the definition and implementation of model

transformations is proposed. The definition of transformation

rules is accomplished using UML class diagrams enriched

with OCL constraints. This approach has the formal back-

ground of mathematical relations. It is not applicable in our

domain of application because the rules are not intuitively

understandable.

The QVT Partner’s proposal [4] to the QVT RFP of the

OMG [51] is very similar to Kent’s approach but comple-

ments it with graphical definition of patterns and operational

transformation rules. It does not support incrementality and

user interaction.

BOTL [12] is a transformation language based on UML

object diagrams. A BOTL rule consists of a left hand side dia-

gram being matched in the source document and a right hand

side diagram being created in the target document if a left

hand side matching was found. The transformation process is

neither incremental nor interactive.

In general, it can be observed that most approaches from

the area of consistency management support an incremental

mode of operation and user interaction, whereas most model

transformation approaches work batch-wise. In our domain

of application, chemical engineering, incremental transform-

ation between models is urgently needed. But unlike MDA, in

chemical engineering a complete and unambiguous definition

of the translation between for instance flowsheets and simu-

lation models is not feasible. Instead, a lot of decisions have

to be made by the user and a lot of situations have to be dealt

with manually. Consistency checking approaches with repair

actions could be used for transformation, but there are prob-

lems like conflicting transformation rules and termination of

the transformation process, which require further extensions

of the approaches. We address these problems with the inte-

gration algorithm described in Sect. 5.3.

The advantage of our integration approach is that it uses

standard UML for intuitive definition of integration rules and

supports an incremental mode of operation as well as bidi-

rectional transformation including conflict detection and user

interaction.

7 Conclusion

We have presented an architecture-based and model-driven

approach to the a-posteriori integration of engineering tools

for incremental development processes. We have realized this

approach in the context of the CRC 476 IMPROVE, which is

concerned with models and tools for supporting design pro-

cesses in chemical engineering. The case study presented in

this paper – an integration tool for consistency management

between flowsheets and simulation models – demonstrates

that tight integration can be achieved even in the case of a-

posteriori integration of heterogeneous tools developed by

different vendors. Furthermore, since the tool development

process is strongly architecture- and model-driven, the pro-

cess can be performed at a fairly high level of abstraction with

considerably reduced effort.

An important goal of IMPROVE is to transfer research

into industrial practice. The work reported in this paper con-

stitutes a contribution towards this goal. The integration tool

between Comos PT and Aspen Plus has been developed in

close cooperation with innotec, a software company which

develops and sells Comos PT. Tool development has been

performed in close cooperation with innotec, taking the re-

quirements of the industrial partner into account. Thus, the

integration tool developed in this cooperation provides a test

case for our approach to tool development. The experiences

we have gained so far are promising, but clearly further work

on practical applications will have to be performed to obtain

substantial feedback on the advantages and drawbacks of our

approach to tool development.

Acknowledgements. This work was in part funded by the CRC 476 IM-

PROVE of the Deutsche Forschungsgemeinschaft (DFG). Furthermore, the

authors gratefully acknowledge the fruitful cooperation with innotec.

References

1. Adelberg B (1998) NoDoSE – a tool for semi-automatically ex-
tracting structured and semistructured data from text documents.
In: Proc. of the 1998 ACM SIGMOD Intl. Conf. on Management
of Data, Seattle, Washington, USA. ACM, pp 283–294

2. Akehurst D, Kent S, Patrascoiu O (2003) A relational approach to
defining and implementing transformations between metamodels.
Journal on Software and Systems Modeling 2(4):215–239

3. Anderson KM, Taylor RN, Whitehead EJ (2000) Chimera: Hy-
permedia for heterogeneous software development environments.
ACM Transactions on Information Systems 18(3):211–245

4. Appukuttan BK, Clark T, Reddy S, Tratt L, Venkatesh R (2003)
A model driven approach to model transformations. In: Proc.
of the 2003 Model Driven Architecture: Foundations and Appli-
cations (MDAFA2003), CTIT Technical Report TR-CTIT-03-27.
Univ. of Twente, The Netherlands

5. Bass L, Kazman R (1999) Architecture-based development. Tech-
nical Report CMU/SEI-99-TR-007, Carnegie Mellon University,
Software Engineering Institute (SEI)

S.M. Becker et al. : Model-based a-posteriori integration of engineering tools for incremental development processes 139

6. Bayer B (2003) Conceptual information modeling for computer
aided support of chemical process design. Fortschritt-Berichte
VDI, Reihe 3, 787. VDI Verlag, Düsseldorf, Germany

7. Becker S, Haase T, Westfechtel B, Wilhelms J (2002) Integration
tools supporting cooperative development processes in chemical
engineering. In: Proc. of the 6th Biennial World Conf. on Inte-
grated Design and Process Technology (IDPT-2002), Pasadena,
California, USA. Society for Design and Process Science, p 24

8. Becker SM, Lohmann S, Westfechtel B (2004) Rule execution
in graph-based incremental interactive integration tools. In: Proc.
of the 2nd Intl. Conf. on Graph Transformations (ICGT 2004),
LNCS, vol 3256. Springer, pp 22–38

9. Becker SM, Westfechtel B (2003) Incremental integration tools
for chemical engineering: An industrial application of triple graph
grammars. In: Proc. of the 29th Workshop on Graph-Theoretic
Concepts in Computer Science (WG 2003), LNCS, vol 2880.
Springer, pp 46–57

10. Becker SM, Westfechtel B (2003) UML-based definition of inte-
gration models for incremental development processes in chemical
engineering. In: Proc. of the 7th World Conf. on Integrated De-
sign and Process Technology (IDPT-2003), Austin, Texas, USA.
Society for Design and Process Science, p 46

11. Böhlen B, Jäger D, Schleicher A, Westfechtel B (2002) UP-
GRADE: Building interactive tools for visual languages. In: Proc.
of the 6th World Multiconference on Systemics, Cybernetics, and
Informatics (SCI 2002), Orlando, Florida, USA, pp 17–22

12. Braun P, Marschall F (2003) Transforming object oriented models
with BOTL. In: Electronic Notes in Theoretical Computer Science,
vol 72. Elsevier

13. Buschmann F, Meunier R, Rohnert H, Sommerlad P, Stal M (1996)
Pattern-Oriented Software Architecture: A System of Patterns,
vol 1. Wiley

14. Cimitile A, de Lucia A, de Carlini U (1998) Incremental migra-
tion strategies: Data flow analysis for wrapping. In: Proc. of the
5th Working Conf. on Reverse Engineering (WCRE’98), Hawaii,
USA. IEEE, pp 59–68

15. Clements PC, Northrop L (1996) Software architecture: An exec-
utive overview. Technical Report CMU/SEI-96-TR-003, Carnegie
Mellon University, Software Engineering Institute (SEI)

16. Conklin J (1987) Hypertext: an introduction and survey. IEEE
Computer 20(9):17–41

17. Donohoe P (ed) (1999) Software Architecture (TC2 1st Working
IFIP Conf. on Software Architecture, WICSA1). Kluwer, San An-
tonio, Texas, USA

18. ebXML (2004) Technical architecture specification. Available
from World Wide Web:
http://www.ebxml.org/specs/index.htm [cited July
2004]

19. Ehrig H, Engels G, Kreowski HJ, Rozenberg G (eds) (1999) Hand-
book on Graph Grammars and Computing by Graph Transform-
ation: Application, Languages, and Tools, vol 2. World Scientific

20. Enders BE, Heverhagen T, Goedicke M, Tröpfner P, Tracht R
(2002) Towards an integration of different specification methods
by using the viewpoint framework. Transactions of the SDPS
6(2):1–23

21. Fahmy H, Holt RC (2000) Using graph rewriting to specify soft-
ware architectural transformations. In: Proc. of the 15th Intl.
Conf. on Automated Software Engineering (ASE 2000). IEEE, pp
187–196

22. Finkelstein A, Kramer J, Goedicke M (1990) ViewPoint oriented
software development. In: Intl. Workshop on Software Engineer-
ing and Its Applications, pp 374–384

23. Gamma E, Helm R, Johnson R, Vlissides J (1995) Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley

24. Gannod GC, Mudiam SV, Lindquist TE (2000) An architec-
tural based approach for synthesizing and integrating adapters for
legacy software. In: Proc. of the 7th Working Conf. on Reverse
Engineering (WCRE’00), Brisbane, Australia

25. Garlan D, Monroe R, Wile D (1997) Acme: An architecture de-
scription interchange language. In: Proc. of the 1997 Conf. of the
Centre for Advanced Studies on Collaborative Research (CAS-
CON’97), Toronto, Ontario, Canada. IBM, pp 169–183

26. Garlan D, Perry DE (1995) Introduction to the special issue on
software architecture. IEEE Transactions on Software Engineering
21(4):269–274

27. Gerber A, Lawley M, Raymond K, Steel J, Wood A (2002) Trans-
formation: The missing link of MDA. In: Proc. of 1st Intl. Conf. on
Graph Transformations (ICGT 2002), LNCS, vol 2505, Barcelona,
Spain. Springer, pp 90–105

28. Haase T (2003) Semi-automatic wrapper generation for a-
posteriori integration. In: Workshop on Tool Integration in System
Development (TIS 2003), Helsinki, Finland, pp 84–88

29. Haase T, Meyer O, Böhlen B, Gatzemeier F (2004) A domain spe-
cific architecture tool: Rapid prototyping with graph grammars. In:
Pfaltz et al. [54], pp 236–242

30. Haase T, Meyer O, Böhlen B, Gatzemeier F (2004) Fire3: Archi-
tecture refinement for a-posteriori integration. In: Pfaltz et al. [54],
pp 461–467

31. Hirsch D, Inverardi P, Montanari U (1999) Modeling software ar-
chitectures and styles with graph grammars and constraint solving.
In: Donohoe [17], pp 127–143

32. Jacobsen H-A, Krämer BJ (1998) A design pattern based ap-
proach to generating synchronization adaptors from annotated idl.
In: Proc. of the 13th Intl. Conf. on Automated Software Engineer-
ing (ASE’98), Hawaii, USA. IEEE, pp 63–72.

33. Kent S, Smith R (2003) The Bidirectional Mapping Problem. Elec-
tronic Notes in Theoretical Computer Science 82(7)

34. Klein P (2001) Architecture Modeling of Distributed and Concur-
rent Software Systems. PhD thesis. Wissenschaftsverlag Mainz,
Aachen, Germany

35. Kushmerick N (2000) Wrapper induction: Efficiency and expres-
siveness. Artificial Intelligence 118(1–2):15–68

36. Le Métayer D (1998) Describing software architecture styles using
graph grammars. IEEE Transactions on Software Engineering
27(7):521–533

37. Lefering M, Schürr A (1996) Specification of integration tools. In:
Nagl [42], pp 324–334

38. Lieberman H (ed) (2001) Your wish is my command: Program-
ming by example. Academic Press

39. Mettala E, Graham MH (1992) The domain-specific software
architecture program. Technical Report CMU/SEI-92-SR-009,
Carnegie Mellon University, Software Engineering Institute (SEI)

40. Microsoft (2004) The component object model specification.
Available from World Wide Web: http://www.microsoft.
com/com/resources/comdocs.asp [cited July 2004]

41. Miller RC, Myers BA (1999) Creating dynamic world wide
web pages by demonstration. Technical Report CMU-CS-97-131,
Carnegie Mellon University, School of Computer Science

42. Nagl M (ed) (1996) Building Tightly-Integrated Software Devel-
opment Environments: The IPSEN Approach. LNCS, vol 1170.
Springer

43. Nagl M, Marquardt W (1997) SFB 476 IMPROVE: Informatische
Unterstützung übergreifender Entwicklungsprozesse in der Verfah-
renstechnik. In: Informatik ‘97: Informatik als Innovationsmotor,
Informatik aktuell. Springer, pp 143–154. in German.

44. Nentwich C, Capra L, Emmerich W, Finkelstein A (2002) xlinkit:
A consistency checking and smart link generation service. Trans-
actions on Internet Technology 2(2):151–185

45. Nentwich C, Emmerich W, Finkelstein A (2003) Consistency man-
agement with repair actions. In: Proc. of Intl. Conf. on Software
Engineering (ICSE). ACM, pp 455–464

46. OAGIS (2004) Open Applications Group. Available from World
Wide Web: http://www.openapplications.org [cited
July 2004]

47. OMG (2004) CORBA/IIOP specification. Available from
World Wide Web: http://www.omg.org/technology/
documents/formal/corba_iiop.htm [cited July 2004]

48. OMG (2004) Domain specifications. Available from World Wide
Web: http://www.omg.org/technology/documents/
domain_spec_catalog.htm [cited July 2004]

49. OMG (2004) Meta object facility (MOF) specification. Available
from World Wide Web: http://www.omg.org/technology/
documents/formal/mof.htm [cited July 2004]

50. OMG (2004) Model driven architecture (MDA) specifications.
Available from World Wide Web:
http://www.omg.org/mda/specs.htm [cited July 2004]

51. OMG (2004) MOF 2.0 query / view / transformations, request for
proposal. Available from World Wide Web: http://www.omg.
org/techprocess/meetings/schedule/MOF_2.0_
Query_View_Transf._RFP.html [cited July 2004]

140 S.M. Becker et al. : Model-based a-posteriori integration of engineering tools for incremental development processes

52. OMG (2004) Unified modeling language (UML) specification.
Available from World Wide Web: http://www.omg.org/
technology/documents/formal/uml.htm [cited July
2004]

53. Parnas DL (1972) A technique for software module specification
with examples. Communications of the ACM 15(5):330–336

54. Pfaltz JL, Nagl M, Böhlen D (eds) (2004) Applications of Graph
Transformations with Industrial Relevance (Proc. 2nd Intl. Work-
shop AGTIVE 2003). LNCS, vol 3062. Springer

55. Pratt TW (1971) Pair grammars, graph languages and string-
to-graph translations. Journal of Computer and System Sciences
(JCSS) 5(6):560–595

56. Radermacher A (2000) Support for design patterns through graph
transformation tools. In: Applications of Graph Transformation
with Industrial Relevance (Proc. Intl. Workshop AGTIVE’99),
LNCS, vol 1779. Springer, pp 111–126

57. Ramesh B, Jarke M (2001) Toward reference models of require-
ments traceability. Software Engineering 27(1):58–93

58. Riegel JP, Kaesling C, Schütze M (1999) Modeling software ar-
chitecture using domain-specific patterns. In: Donohoe [17], pp
273–301

59. Schleicher A, Westfechtel B (2001) Beyond stereotyping: Meta-
modeling approaches for the UML. In: Proc. of the 34th Annual
Hawaii Intl. Conf. on System Sciences (HICSS-34), Hawaii, USA.
IEEE

60. Schürr A (1995) Specification of graph translators with triple
graph grammars. In: Proc. of the 20th Intl. Workshop on Graph-
Theoretic Concepts in Computer Science (WG 1994), LNCS, vol
903, Herrsching, Germany. Springer, pp 151–163

61. Schürr A (2001) Adding graph transformation concepts to UM-
L’s constraint language OCL. In: Electronic Notes in Computer
Science, vol 44. Elsevier

62. Schürr A, Winter A, Zündorf A (1999) The PROGRES approach:
Language and environment. In: Ehrig et al. [19], pp 487–550

63. Sneed HM (2000) Encapsulation of legacy software: A technique
for reusing legacy software components. Annals of Software En-
gineering 9(1–4):293–313

64. Spanoudakis G, Zisman A (2001) Inconsistency management in
software engineering: Survey and open research issues. In: Hand-
book of Software Engineering and Knowledge Engineering, vol 1.
World Scientific, pp 329–380

65. Taentzer G, Koch M, Fischer I, Volle V (1999) Distributed graph
transformation with application to visual design of distributed sys-
tems. In: Handbook on Graph Grammars and Computing by Graph
Transformation: Concurrency, Parallelism, and Distribution, vol 3.
World Scientific, pp 269–340

66. Wagner R (2001) Realisierung eines diagrammübergreifenden
Konsistenzmanagement-Systems für UML-Spezifikationen. Mas-
ter’s thesis, University of Paderborn. in German.

67. Wagner R, Giese H, Nickel UA (2003) A plug-in for flexible and
incremental consistency mangement. In: Proc. of the Intl. Conf.
on the Unified Modeling Language (UML 2003), San Francisco,
California, USA. Springer

Simon M. Becker received his

degree in computer science from

the RWTH Aachen University in

2001. Since then, he has been work-

ing at the Department of Computer

Science III of the RWTH Aachen

University as research assistant. His

main area of research is data inte-

gration, especially concerning the

a-posteriori integration of depen-

dent documents in development pro-

cesses. The research is carried out

under the umbrella of the collaborative research centre 476 IM-

PROVE which deals with computer science support for develop-

ment processes in chemical engineering.

Thomas Haase is research assis-

tant at the Department of Computer

Science III at the University of

Technology Aachen, Germany. He

is a member of the collaborative re-

search centre 476 IMPROVE, deal-

ing with computer science support

for development processes in chem-

ical engineering. His research areas

include architectures and frame-

works for the a-posteriori integra-

tion of software tools. He holds

a diploma degree in computer science from the University of

Koblenz-Landau, Germany.

Bernhard Westfechtel received his

diploma degree in 1983 from Uni-

versity of Erlangen-Nürnberg and

his doctoral degree (PhD) in 1991

from Aachen University of Tech-

nology, where he has been working

as a senior researcher since then.

He is interested in software en-

gineering environments, software

configuration management, process

modeling, workflow management,

object-oriented modeling, engineer-

ing/product data management, database systems for engineering

applications, and software architectures.

