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Abstract: In many scientific and medical applications, such as laser
systems and microscopes, wavefront-sensor-less (WFSless) adaptive optics
(AO) systems are used to improve the laser beam quality or the image
resolution by correcting the wavefront aberration in the optical path. The
lack of direct wavefront measurement in WFSless AO systems imposes a
challenge to achieve efficient aberration correction. This paper presents an
aberration correction approach for WFSlss AO systems based on the model
of the WFSless AO system and a small number of intensity measurements,
where the model is identified from the input-output data of the WFSless
AO system by black-box identification. This approach is validated in an
experimental setup with 20 static aberrations having Kolmogorov spatial
distributions. By correcting N = 9 Zernike modes (N is the number of
aberration modes), an intensity improvement from 49% of the maximum
value to 89% has been achieved in average based on N + 5 = 14 intensity
measurements. With the worst initial intensity, an improvement from 17%
of the maximum value to 86% has been achieved based on N + 4 = 13
intensity measurements.
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1. Introduction

In recent years, wavefront-sensor-less (WFSless) adaptive optics (AO) systems have been used
in many scientific and medical applications, such as laser systems [1–10] and microscopes [11–
18], to improve the laser beam quality or the image resolution, by correcting the air-turbulence-
, heat- or specimen-induced wavefront aberrations in the optical path. Unlike the AO systems
in astronomy applications [19, 20] where the wavefront aberration can be measured directly
with dedicated wavefront sensors (e.g., the Shack-Hartmann WFS), there is no direct wavefront
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measurement in WFSless AO systems and the sensor signal (e.g., the intensity within a pin hole)
is usually nonlinearly related to the wavefront aberration. Aberration correction is performed
by adapting the shape of the deformable mirror (DM) such that certain performance metric
(e.g., the light intensity measurement or the sharpness of the image) reaches its maximum.

Different optimization algorithms, such as gradient descent optimization algorithm, simplex
optimization algorithm, genetic algorithm, simulated annealing algorithm, etc., have been used
for aberration correction in WFSless AO systems and the improvements in the performance
metric have been demonstrated in [1–12,14–16]. By exploring the structure of the performance
metric function, model-based approaches have been proposed to speed up the correction [13,
17,18,21]. In a recent work by Débarre [18], the performance metric is locally represented as a
separable quadratic function of the aberration modal coefficients by sophisticated choice of the
aberration modal basis, such that N aberration modes can be corrected after 2N +1 images.

In this paper, we further improve the correction speed of the WFSless AO system by wave-
front aberration estimation and correction in three steps. First, with the external aberration ab-
sent (e.g., the aberration induced by air turbulence, heat or specimen), the WFSless AO system
is calibrated such that the system aberration (e.g., initial aberration in the DM, misalignment of
the optical components) is removed. Second, still with the external aberration absent, a nonlin-
ear static model of the calibrated WFSless AO system is identified from the measurement data,
which describes the transfer from the DM control signal to the intensity measurement. This step
is analogue to determining the influence matrix of the DM in WFS-based AO systems; how-
ever, in WFSless AO systems, because the transfer from the DM control signal to the intensity
measurement is nonlinear, a nonlinear model identification approach is required. Third, when
the external aberration is present, the DM is initially excited by N +2 predefined control signals
and the corresponding N +2 intensity measurements are collected. Aberration is estimated and
corrected based on these N + 2 pairs of input-output data and the model of the WFSless AO
system, by solving a nonlinear least squares (NLLS) optimization problem online. With new
input-output data available, the aberration estimation and correction are refined iteratively. This
approach is validated in a WFSless AO experimental setup and the performance of the resulting
closed-loop system is evaluated.

The contribution of our work is that a new model-based approach has been proposed and
validated for aberration estimation and correction in WFSless AO systems. The paper is orga-
nized as follows. Section 2 analyzes the WFSless AO system. Section 3 explains our approach
on wavefront aberration estimation and correction. Section 4 describes the experimental setup.
Section 5 reports and evaluates the experimental results. Section 6 concludes the work.

2. System analysis

The schematic of a common closed-loop WFSless AO system [2, 3, 21] under investigation is
depicted in Fig. 1. The incident light beam is disturbed in front of the entrance pupil. The en-
trance pupil is conjugated to the DM by two lenses L1 and L2. After the beam is reflected by the
DM, it is focused by the lens L3. A pin hole is placed at the focal point of L3. After the pin hole,
a photodiode measures the intensity within the pin hole and feeds the intensity measurement to
the control system. The control objective is to maximize the intensity measurement y(k) ∈ R at
time k by adapting the control signal u(k) ∈ R

N to the DM, i.e,

max
u(k)

y(k), (1)

where u(k) can be the zonal or modal representation of the control signal, with dimension N.
By physical modeling [22], the intensity measurement y(k) is related to the incident

wavefront aberration and the DM deformation as:
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Fig. 1. Schematic of a common closed-loop WFSless AO system. The incident light beam
is disturbed in front of the entrance pupil. The control system adapts the control signal u(k)
to maximize the intensity measurement y(k).

y(k) =
∫∫

Σ2

|
∫∫

Σ1

ai(ξ ,η ,k)exp[− j
2π
λ

(φx(ξ ,η ,k)+φm(ξ ,η ,k))]

· exp[− j
2π
λd

(αξ +βη)]dξdη |2dαdβ +w(k). (2)

Here (ξ ,η) and (α,β ) represent the coordinates in the input plane and the focal plane of the
lens L3, respectively, and with j =

√−1. ai(ξ ,η ,k) is the amplitude of the complex optical
field at time instant k. φx(ξ ,η ,k) and φm(ξ ,η ,k) represent the incident wavefront aberration
and wavefront manipulation by the DM at time k, respectively. The phase of the complex optical
field is given by φx(ξ ,η ,k) + φm(ξ ,η ,k). λ is the wavelength of the light and d the focal
distance of L3. Σ1 represents the illuminated area of L3 and Σ2 the area of the pin hole. w(k) is
the measurement noise.

Because in many cases wavefront aberration is the main factor for intensity measurement
reduction at given incident light power [12, 13, 17], the amplitude variation in the optical field
is omitted such that

ai(ξ ,η ,k) = ai, (3)

where ai is a constant. Apart from that, if the aberration is corrected within a short time, it is
reasonable to consider the wavefront aberration as constant (e.g., when any single point in the
specimen is imaged in scanning-type microscopes under normal operational conditions). This
simplifies φx(ξ ,η ,k) as

φx(ξ ,η ,k) = φx(ξ ,η), (4)

such that φx(ξ ,η) is time-independent.
The speed of aberration correction generally depends on the correction algorithm and the

sampling rate of the WFSless AO system. As the sampling rate increases, the dynamics in
the DM becomes more significant. Since the static nonlinearity in the intensity measurement
is a common bottleneck for efficient aberration correction in WFSless AO systems while the
DM dynamics is device- and sampling-rate- dependent, in this paper we focus on the static
nonlinearity in the intensity measurement. Dynamics in the DM at high sampling rate is left for
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future research. In this case, the DM wavefront manipulation φm(ξ ,η ,k) can be written as

φm(ξ ,η ,k) = D(ξ ,η)u(k) (5)

where D(ξ ,η) represents the static linear response of the DM. This linear representation of the
DM response is valid for most commonly-used DMs when they are appropriately linearized,
e.g, taking the square root of the voltage as the control signal for electrostatic-actuated DM
[2], or by hysteresis compensation in piezo-driven DM [23]. Each column of D(ξ ,η) can be
considered as a mode of the DM deformation and u(k) contains all the modal coefficients.
The column space of D(ξ ,η) forms a basis for φm(ξ ,η ,k). Different basis can be used (e.g.,
DM actuator basis, Zernike basis, Lukosz basis), depending on how the control signal u(k) is
defined. For instance, if u(k) is same as the voltage applied to each actuator of the DM (i.e,
zonal control), then D(ξ ,η) is the influence function of the DM; otherwise, Zernike modal
control or Lukosz modal control can also be applied.

Combining Eq. (2)–(5), the behavior of the WFSless AO system can be represented as

y(k) =
∫∫

Σ2

|
∫∫

Σ1

ai exp[− j
2π
λ

(φx(ξ ,η)+D(ξ ,η)u(k))]

· exp[− j
2π
λd

(αξ +βη)]dξdη |2dαdβ +w(k). (6)

Static nonlinearity is visible in Eq. (6) in the wavefront-intensity mapping. Because this map-
ping is surjective (i.e., different wavefronts can give the same intensity measurement) and not
invertible, the wavefront can not be obtained from single intensity measurement. However, with
the model of the WFSless AO system describing the transfer from u(k) to y(k) with the aberra-
tion φx(ξ ,η) absent, and at least N +2 pairs of u(k) and y(k) collected with φx(ξ ,η) present,
the aberration φx(ξ ,η) can be estimated in the basis defined by D(ξ ,η), as will be explained
in Section 3.

3. Model-based aberration estimation and correction

3.1. Modeling of the WFSless AO system

Because the DM deformation φm(ξ ,η) can not be measured in the WFSless AO system and
D(ξ ,η) can not be obtained with high accuracy, it is difficult to get an accurate model of the
real system from Eq. (6). The artifacts in the optical components may also degrade the accuracy
of Eq. (6). As will be shown later on, since hundreds of times of intensity calculations are
needed by our proposed algorithm to estimate the aberration, the computational complexity in
Eq. (6) (e.g., two double integrals for each intensity calculation) will slow down the aberration
correction speed. Therefore in our work the AO model is identified directly from u(k) and y(k)
by black-box identification [24, 25].

In this sense, the system description in Eq. (6) is represented by

y(k) = g(φx(ξ ,η)+D(ξ ,η)u(k))+w(k), (7)

where g represents the static nonlinear wavefront-intensity mapping, including the double in-
tegral over the coordinate (ξ ,η). The wavefront aberration φx(ξ ,η) can be split into two parts
as

φx(ξ ,η) = D(ξ ,η)x︸ ︷︷ ︸
φ1(ξ ,η)

+Δφx(ξ ,η). (8)
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Here φ1(ξ ,η) represents the part of φx(ξ ,η) lying within the range of D(ξ ,η) and Δφx(ξ ,η)
represents the part of φx(ξ ,η) which is orthogonal to the range of D(ξ ,η). It is assumed that the
wavefront aberration can be represented by a finite low-order Zernike aberrations [13, 26, 27],
then it is possible that the DM can generate these low-order Zernike modes efficiently and
Δφx(ξ ,η) can be neglected. As a result, Eq. (8) can be approximated by

φx(ξ ,η) ≈ D(ξ ,η)x. (9)

Substitute Eq. (9) into (7), we have

y(k) ≈ g(D(ξ ,η)(x+u(k)))+w(k). (10)

Merging D(ξ ,η) and g into one static nonlinear mapping f , we can further simplify the system
description as

y(k) ≈ f (x+u(k))+w(k). (11)

Equation (11) considers the aberration as a disturbance directly applied on the input u(k), which
allows to identify the model of the WFSless AO system only based on u(k) and y(k) but mean-
while accounting for the influence of the aberration.

To identify an accurate nonlinear model of the WFSless AO system from u(k) and y(k), the
nonlinearity in the system should be excited persistently by the input u(k). Random signals
can then be used to excite the system for data collection. Since f is identified only based on
u(k) and y(k), y(k) should be collected with x = 0. If x = x0 �= 0 (x0 is an unknown non-
zero constant vector) during the data collection, then there is an offset of x0 in the estimated
aberration, as will be seen in the next section. In practice, this aberration-free condition may be
achieved after the calibration of the WFSless AO system, when the aberration of the WFSless
AO system itself (system aberration, e.g., initial aberration in the DM, misalignment of the
optical components) has been corrected and the aberration induced by external sources (e.g.,
air turbulence, high power heating or specimen) is still absent. The system aberration can be
corrected by optimization algorithms like simplex algorithm, genetic algorithm, etc. Although
optimization algorithm is used here for system aberration correction, the system aberration only
needs to be corrected once during the operation of the WFSless AO system. Significant time
can still be saved in correcting the external aberrations.

With the input-output data u(k) and y(k), the model structure needs to be selected for the
nonlinear black-box model. There is a very rich spectrum of possible descriptions for nonlin-
ear black-box models, e.g., neural network [28, 29], fuzzy models [30], etc. Because a 2-layer
neural network is able to model a broad range nonlinearities and, from practical point of view,
it can be implemented and trained with the MATLAB Neural Network Toolbox [31] very con-
veniently, a 2-layer neural network is built in our work, which has NQ neurons in the first layer
and one in the second. The output ŷ(k) of the neural network is determined as

ŷ(k) = f̂ (u(k)) = W1tanh(W2u(k)+ s1)+ s2. (12)

W2 ∈ R
NQ×N and W1 ∈ R

1×NQ contain the input and output weights of the neural network,
respectively; s1 ∈ R

NQ×1 and s2 ∈ R are biases on the input and output neurons, respectively.
tanh is the hyperbolic tangent function.

The number of neurons NQ should be defined by the user when constructing the neural net-
work. Parameters W1, W2, s1 and s2 are then optimized by training the neural network with
sufficient data points u(k) and y(k).Details on training and validating the neural network can be
found, for instance, in [28, 29].
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3.2. Aberration estimation and correction

With the unknown aberration x present, if the WFSless AO system is excited by a certain
number of inputs u(k), k = 1, · · · ,K (K is the number of data points) and the intensity y(k),
k = 1, · · · ,K, are collected, then x can be estimated by solving a set of nonlinear equations as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y(1) = a f̂ (x+u(1))
y(2) = a f̂ (x+u(2))

...
...

...
y(K) = a f̂ (x+u(K))

(13)

Here f̂ is the model of the WFSless AO system identified in previous step. a is a scaling factor,
accounting for the possible variation in the incident light power between the modeling and
aberration estimation. For instance, in microscopes, the light power emitted or reflected by the
specimen may vary from point to point. The obstructing layers of the specimen may also scatter,
reflect or absorb the light passing through. Although we are only interested in x for aberration
correction, a should also be estimated because it is unknown in Eq. (13).

To obtain an analytical solution of Eq. (13) may be infeasible in practice, for instance, if the
nonlinearity f̂ has some high-degree components. Alternatively, a numerical solution can be
obtained by solving a nonlinear least squares (NLLS) problem as

(â, x̂) = argmin
â,x̂

∥∥Y[1,K]− Ŷ[1,K]
∥∥2

2︸ ︷︷ ︸
J(â,x̂)

, (14)

with Y[1,K] and Ŷ[1,K] constructed as

Y[1,K] =

⎡
⎢⎢⎢⎣

y(1)
y(2)

...
y(K)

⎤
⎥⎥⎥⎦ , Ŷ[1,K] =

⎡
⎢⎢⎢⎣

ŷ(1)
ŷ(2)

...
ŷ(K)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

â f̂ (x̂+u(1))
â f̂ (x̂+u(2))

...
â f̂ (x̂+u(K))

⎤
⎥⎥⎥⎦ . (15)

Here â and x̂ are the estimates of a and x, respectively. For given â and x̂, the intensity is
estimated by ŷ(k) = â f̂ (x̂+u(k)).

To have an efficient aberration correction, a compromise should be made in K concerning
the accuracy of the aberration estimation and the correction speed. From one hand, inadequate
data points can not give an accurate aberration estimation, for instance, more than one solutions
may exist in Eq. (13) and the cost function J(â, x̂) in Eq. (14) does not have a unique global
minimum (see Fig. 2 for an illustration). From the other hand, if more data points are collected
than necessary, then the correction speed will be slowed down. A theoretical analysis on this
is difficult because several factors should be considered, e.g., the nonlinearity f , the model
uncertainty in f̂ , the measurement noise in y(k) and the values of the K inputs. However, as
a practical solution, aberration estimation and correction can be implemented in an iterative
manner and the model-based aberration correction (MBAC) algorithm is described below.

(1) Before the aberration estimation, the WFSless AO system is initially excited by N + 2
control signals u(k) and the corresponding intensity measurements y(k) are collected.
Here N + 2 data points are collected for initialization concerning that N + 1 unknowns
need at least N + 1 equations in Eq. (13) to have a unique solution if f were a linear
function, and that nonlinear functions may need more equations in general. Since the
aberration estimation and correction will be refined iteratively later on, these N +2 data
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Fig. 2. Cost function J(x̂) depends on the number of data points for solving the NLLS
problem in Eq. (14). For clarity of explanation, the intensity variation a is not considered.

In (a), the nonlinearity is represented as y = f (x+u) =
(

2J1(x+u)
x+u

)2
to simulate the intensity

distribution in the Airy disk [32], with J1 the Bessel function of the first kind. The aberration
shift the original system y = f (u) horizontally by x = −1.25. The model uncertainty is
neglected, i.e., f̂ = f . With single data point P1, the cost function J(x̂) has two minima
at x̂ = −1.25 and x̂ = 3.25 as plotted in (b). With points P1 and P2, J(x̂) has one unique
global minimum at x̂ =−1.25 but there is a local minimum at x̂ = 2.5. This local minimum
vanishes when P3 is added and the domain of convex is increased.

points serves as an initial trial for the MBAC algorithm. A natural option for the first
control signal is u(1) = 0, i.e., no correction by the DM. The other N +1 control signals
should excite the aberrated system in such a way that rich information can be collected
on the aberration x. Selection of such N + 1 inputs has been investigated in [21]. The
optimum distribution of the N + 1 inputs can be geometrically interpreted as the N + 1
vertices of a regular simplex in the N-dimensional space (see Appendix B of [21]).

(2) From time k = N + 2 on, the aberration estimation (denoted as x̂(k − 1)) is given by
Eq. (14), based on previous K = k− 1 control inputs and intensity measurements. The
control input is then set as u(k) = −x̂(k− 1) to counter-react on the aberration and the
corresponding intensity y(k) is measured. The newly-collected y(k) and u(k) are added
into Y[1,K] and Ŷ[1,K] respectively in Eq. (15) and the aberration estimation can be refined
by solving Eq. (14) with the latest Y[1,K] and Ŷ[1,K]. This estimation-correction-collection
procedure can be repeated iteratively. The algorithm can be stopped when a certain crite-
rion is met, for instance, when the improvement over the previous intensity measurement
is less than a certain threshold value, or when the maximum number of intensity measure-
ments is exceeded.

Due to the modeling uncertainty in f̂ and the measurement noise in y(k), the accuracy of
the aberration estimation may be limited and the intensity may not reach its maximum by the
MBAC algorithm. In this situation, other optimization algorithms like simplex algorithm, ge-
netic algorithm, etc., can be used to continue searching for the optimum. Under the assumption
that f̂ is a close approximation of f , the MBAC algorithm will steer the DM to a point close
to its optimum. This point can then be used as a new initial condition for desired nonlinear
optimization method, like the simplex algorithm described in [33]. The initial simplex of
the simplex algorithm is constructed around the control signal which gives the maximum
intensity measurement in the MBAC algorithm. The hybrid algorithm (MBAC+Simplex) is
described in pseudo code below. The MBAC algorithm stops after a fixed number of intensity
measurements P (P is a user-defined number), to distinguish the intensity improvements due to

#131637 - $15.00 USD Received 15 Jul 2010; accepted 23 Aug 2010; published 3 Nov 2010
(C) 2010 OSA 8 November 2010 / Vol. 18,  No. 23 / OPTICS EXPRESS  24077



the MBAC algorithm and due to the simplex algorithm. The simplex algorithm stops at time P̃
(P̃ is a user-defined number).

MBAC+Simplex algorithm (general description and pseudo code implementation ):

(1) Initialization of MBAC, i.e., collecting N +2 data points
Set u(1) = 0.
Set u(k) as in Appendix B of [21], with k = 2, · · · ,N +2.
Set â(k) = 1, with k = 1, · · · ,N +2.
for k = 1 : N +2

Excite the WFSless AO system with u(k) and collect y(k).
end

(2) Aberration estimation and correction by MBAC
for k = N +3 : P

p = argmaxp y(p);
âinit = â(p), x̂init = −u(p);
[â(k−1), x̂(k−1)] = argminâ,x̂ J(â, x̂) as in Eq.(14), with initial conditions âinit and

x̂init .
Set u(k) = −x̂(k−1), excite the system with u(k) and collect y(k).

end

(3) Aberration correction by the simplex algorithm
p = argmaxp y(p);
uc = u(p);
Construct simplex around uc as u(k) = u(k−P+1)+uc with k = P+1, · · · ,P+N +1 .
for k = P+1 : P̃

Run simplex algorithm as in [33].
end

4. Experimental setup

The closed-loop WFSless AO experimental setup is the same as in Fig. 1. The collimated laser
beam is generated by a He-Ne laser with a wavelength of 632 nm. Aberration is generated by
a circular glass plate. One side of the glass plate is polished in such a way that the resulting
wavefront aberration has a spatial Kolmogorov distribution [20]. The intensity transmission
of the disturbance generator is about 78% as measured by a power meter (PM100, Thorlabs,
Germany). During the modeling of the WFSless AO system, this aberration generator is re-
moved. The entrance pupil has a diameter of 6 mm. It is conjugated to the PDM by lenses
L1 and L2. The focal distances of L1 and L2 are 6 cm and 20 cm, respectively. The PDM
(37-actuator, OKOTech, The Netherlands) has a clear aperture of 30 mm and only the central
area with a radius of 20 mm is illuminated to generate Zernike modes efficiently [27]. Lens
L3 has a focal distance of 400 mm. The pin hole (NT56-282, Edmunds Optics, with a diam-
eter of 50 μm) is placed at the focal point of L3, followed by a photodiode (TSL250R-LF,
TAOS, Korea) measuring the light intensity inside the pin hole. The high voltage amplifier
(HVA, OKOTech, The Netherlands) has 40 channels, each with an output range of 0∼300 V,
a voltage amplification of 80 at low frequencies and a -3dB bandwidth of 1 kHz. The control
algorithm is implemented in MATLAB (Version 7.5.0.342, The MathWorks). Signal generation
and data acquisition is accomplished by a dSPACE system (DS1006, dSPACE, Germany) with
the digital-to-analog card (DS2103) output range of ±10 V, 14-bit and analog-to-digital card
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PDMĤ−1

Hysteresis
Compensator

Modal Control Signal

Control System

y(k)

Intensity

Modal
Transform

Ṽ (k)

Aberration
φx

Fig. 3. Block diagram of the closed-loop WFSless AO system. The physical WFSless AO
system has voltage V (k) as input, but conceptually u(k) can be considered as its input
because of the hysteresis compensator and the modal transform.

(DS2004) input range of ±10 V, 16-bit. Interfacing between MATLAB and the dSPACE system
is done via MLIB (dSPACE, Germany).

Figure 3 depicts the block diagram of the closed-loop WFSless AO system. The physical
input of the WFSless AO system is the voltage V (k) ∈ R

37, which is applied to 37 actuators of
the PDM. The output of the WFSless AO system is the light intensity measurement y(k) ∈ R

from the photodiode. To reduce the uncertainty in the AO setup, a hysteresis compensator Ĥ−1

is implemented to compensate for the hysteresis in the PDM as described in [23]. To reduce the
dimension of the control signal u(k) ∈ R

N , the PDM is controlled in Zernike basis by N = 9
modes. This is accomplished by the matrix L ∈ R

37×N which transforms the modal control
signal u(k) to the pseudo voltage Ṽ (k). L is derived according to the Zernike polynomials de-
scription in [26] and the theoretical model of the PDM in [34]. The indexing of Zernike modes
is the same as in [26]. Only Zernike-Mode 2 to 10 are controlled (i.e., piston is neglected).
With the hysteresis compensator and the modal transformer, the WFSless AO system is con-
ceptually considered to have the modal control signal u(k) as input and intensity measurement
y(k) as output. The intensity measurement is fed into the controller and the control signal u(k)
is calculated.

5. Experiments and results

Experiments have been carried out in the setup described in Section 4 to validate the proposed
approach for aberration correction, which mainly consist of three steps as follows:

(1) With the aberration generator absent, the WFSless AO system is calibrated using a sim-
plex optimization algorithm. The system aberration is corrected by adapting the shape of
the PDM such that the intensity measurement is maximized.

(2) The WFSless AO system is excited by random control signals u(k) and the intensity
measurements y(k) are collected. Based on u(k) and y(k), the WFSless AO system is
modeled by a neural network as described in Section 3.1.

(3) Aberration is introduced in the WFSless AO system by the aberration generator and
corrected by the proposed MBAC+Simplex algorithm as described in Section 3.3. For a
comparison, the simplex algorithm alone is also used to correct the aberration. Intensity
improvements by these two algorithms are evaluated and compared.

5.1. System calibration

To allow for bi-directional operation of the PDM in later experiments, all the actuators in the
PDM are biased by 150 V initially. A simplex optimization algorithm is then used to correct the
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system aberration, which maximizes the intensity measurement y(k) by adapting the control
signal u(k) as in Eq. (1). The sampling rate of the system during the calibration is fs = 50 Hz,
which is much less than the resonance frequency of the PDM (about 1 kHz), so that the AO
system is considered static. The maximum intensity measurement is denoted as ymax, which
is used to normalize intensity measurement in Section 5.3. The control signal which results
in the maximal intensity measurement, denoted as u0, is used as a bias in all the following
experiments.

5.2. Modeling of the AO system

To collect enough input-output data for modeling the WFSless AO system, the system is excited
by 10000 control signals u(k) in open-loop with the aberration generator absent and the inten-
sity measurements y(k) are collected. The control signals u(k) distribute randomly within the
operational range of the PDM, to give a persistent excitation. The sampling rate of the system
is also 50 Hz.

Among the 10000 collected data points, 6000 are randomly selected for identification of
the AO model and the rest 4000 are for validation. The AO system is modeled as a 2-layer
feedforward neural network with NQ neurons in its first layer and one neuron in its second layer
as in Eq. (12). The neural network is implemented and trained by MATLAB Neural Network
Toolbox [31]. Parameters W1, W2, s1 and s2 in Eq. (12) are optimized by minimizing the mean
square of the fitting error, using Levenberg-Marquardt (LM) backpropagation algorithm, i.e.,

(W1,W2,s1,s2) = arg min
(W ∗

1 ,W ∗
2 ,s∗1,s∗2)

1
Nt

Nt

∑
k=1

(y(k)− ŷ(k))2. (16)

Nt is the number of data points for identification, in our case, Nt = 6000.
The accuracy of the model is evaluated by calculating the variance accounted for (VAF) of

the model, which is defined as

VAF(ŷ,y) =
(

1− var(ŷ− y)
var(y)

)
×100%. (17)

Here var(y) is the variance of y. Figure 4 shows the VAFs of the AO model with different
number of neurons in the first layer. From this plot, it can be seen that VAF already reaches as
high as 98.2% at NQ = 20 for the identification set and 97.8% for the validation set, indicating
that the neural network can model the AO system very accurately. The difference in VAF is
negligible for NQ > 20. Therefore 20 neurons are used in the first layer, to have a good balance
between the model accuracy and the model complexity. Experiments show that the the number
of neurons NQ needed to accurately model the system is about twice the number of modes in
the system, i.e., NQ ≈ 2N.

5.3. Aberration correction

The aberration generator is inserted in the optical path as in Fig. 1. The MBAC+Simplex al-
gorithm is used to correct the aberration. To have a statistics of the performance, experiments
have been carried out for 20 static aberrations, which are generated by rotating the circular glass
plate such that the beam is disturbed by different regions of the glass plate.

Figure 5 shows the time line of the WFSless AO system. In each experiment, during the ini-
tialization, the aberrated system is excited by N +2 = 11 control signals u(k), k = 1, · · · ,N +2,
at a rate of 50 Hz. Inputs u(k) are initialized as in Section 3.3. The amplitude of the simplex is
selected as half of the operational range of the PDM. After the intensity y(k), k = 1, · · · ,N +2,
are collected, the aberration is estimated by solving a NLLS optimization problem as in
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Fig. 4. Accuracy of the neural network model for different number of neurons NQ. VAF
increases with NQ in both identification and validation sets for NQ ≤ 20. The difference in
VAF is negligible for NQ > 20. Hence 20 neurons are used.

Eq. (14), using the function fmincon in MATLAB Optimization Toolbox. fmincon is used in
our work because: (1) it is computationally very efficient and can be called in MATLAB very
conveniently; (2) the convexity of J(â, x̂) improves with more data points so that a local opti-
mization algorithm like fmincon may already be enough to get an accurate estimation â and x̂.
â is constrained to be within [0,1] during the estimation. As time keeps going, more data points
are available and the aberration is estimated and corrected iteratively as in the MBAC+Simplex
algorithm. After P = 19 data points, the simplex algorithm (named as Simplex 1) is switched
on. For a comparison, the intensity is also maximized by the simplex algorithm alone (Simplex
2). Simplex 1 and Simplex 2 are the same except that the initial guess for Simplex 1 comes
from the MBAC algorithm, but the initial guess for Simplex 2 is zero. Both simplex algorithms
stop after P̃ = 200 intensity measurements, when they have converged. The sampling intervals
between the 11th and the 19th samples vary because of the computational time of the NLLS
algorithm, as will be discussed later. After Simplex 1 is switched on, the sampling rate returns
to 50 Hz.

Figure 6 shows the convergence curve for one static aberration which gives the lowest initial
intensity. The intensity has been normalized as ỹ(k) = y(k)/(ymax ∗ 0.78), where ỹ(k) is the
normalized intensity and the intensity transmission ratio (78%) of the disturbance generator
is accounted for. The initial intensity without correction is 0.17. After N + 2 = 11 samples
are collected, the aberration is estimated and corrected by the MBAC algorithm. The intensity
increases to 0.38 (about 2.2 times of the initial value) at the 12th time sample. With one more
data sample acquired, the intensity jumps to 0.83 at the 13th time sample, which is almost 5
times of the initial value. At the 14th time sample, the intensity already converges to 0.86 and
the intensity keeps at about 0.86 from the 15th and 19th samples.

The MBAC algorithm stops after 19 time samples and Simplex 1 is switched on thereafter.
Simplex 1 is initialized from the 20th to the 29th time samples. The initial simplex of Simplex
1 is constructed around the input point which gave the highest intensity in the past 19 samples,
as described at the end of Section 3.2. Since the initialization of the simplex algorithm is only
for data collection, intensity fluctuation is observed from the 20th to the 29th time samples as
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time tc,2 afterwards takes about 20 ms because a better initial guess is provided for the
solving the NLLS problem.
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Fig. 6. Aberration correction with the MBAC+Simplex algorithm and with the simplex al-
gorithm alone, for one static aberration. The MBAC algorithm consists of the initialization
and the aberration correction. The initial intensity is 0.17. With the MBAC algorithm, the
intensity converges to 0.86 at the 14th time sample, which it takes 30 time samples for the
simplex algorithm alone to reach 0.8. The simplex algorithm after MBAC also shows faster
convergence than the simplex algorithm alone.

expected. However, after the initialization of Simplex 1 is completed, the intensity is further
improved by Simplex 1 as can be seen from the small plot in Fig. 6. This plot shows that
Simplex 1 converges faster than Simplex 2 because the MBAC algorithm provides a better
initial value for Simplex 1.

Figure 7 shows the convergence curve averaged over 20 experiments and the standard devi-
ation of ỹ(k) for k ≥ 12. The initial intensity is 0.49 in average. With the MBAC algorithm, the
intensity increases to 0.82 (an improvement of 67%) and 0.87 (an improvement of 78%) at the
12th and 13th time sample, respectively. The intensity converges to 0.89 at the 15th time sam-
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Fig. 7. Correction of 20 static aberrations. The initial intensity is 0.49 in average. With the
MBAC algorithm, the intensity increases to 0.82 at the 12th time sample and to 0.87 at the
13th time sample. The intensity converges to 0.89 by the MBAC at the 15th time sample,
while Simplex 2 needs 45 time samples to reach the same level. The standard deviation
of ỹ(k) is also reduced with the MBAC algorithm, indicating that MBAC can give a more
deterministic intensity improvement than simplex.

ple, while it takes Simplex 2 about 45 time samples to reach the same level. Because Simplex 1
starts at a better initial condition provide by MBAC, the intensity reaches 0.95 at the 60th time
sample, while Simplex 2 takes 90 time samples to reach the same level. A significant improve-
ment has been achieved in correction speed. The standard deviation of ỹ(k) with MBAC is also
smaller than with the simplex algorithm. For instance, at the 15th time sample, the standard
deviation of ỹ(k) with the MBAC algorithm is about 0.02 while that with Simplex 2 is 0.08,
about 3 times larger. This indicates that the MBAC algorithm can improve the intensity in a
more deterministic manner than simplex.

5.4. Computational complexity

Referring to Fig. 5, the computational time varies from each time when the aberration is
estimated. In the first aberration estimation after 11 data samples, the cost function J(â, x̂)
is evaluated for about 578 times by the function fmincon and tc,1 is about 40 ms in av-
erage. The sampling interval between the 11th and the 12th time sample is then equal to
Ts,1 = tc,1 + ts = 40 + 20 = 60 ms. In the aberration estimations afterwards, because a better
initial guess is provided for â and x̂, the number of cost function evaluations is reduced to
251 in average and the computational time tc,2 reduces to about 20 ms. The sampling interval
becomes Ts,2 = 20+20 = 40 ms.

In applications where the correction speed is the most important, the MBAC algorithm alone
can be used and the correction may stop, e.g., after 15 time samples in our experiments where
the intensity reaches 0.89. This leads to a total correction time of ts × 11 + Ts,1 + Ts,2 × 3 =
400 ms, while the simplex algorithm alone needs 45 time samples (i.e., ts × 45 = 900 ms) to
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reach the same intensity level. A reduction of 56% has been achieved in the correction time. If a
higher intensity end value is desired, e.g., 0.95, simplex alone needs 90 time samples in average
(i.e., ts ×90 = 1.80 s). The hybrid MBAC+Simplex algorithm needs 60 time samples (19 time
samples by MBAC and 41 by Simplex 1), which takes ts×11+Ts,1 +Ts,2×7+ ts×41 = 1.24 s
in average. The time needed by the MBAC+Simplex algorithm is only 70% of that by the
simplex algorithm alone.

6. Conclusion

A new approach has been proposed for aberration estimation and correction in WFSless AO
systems. The wavefront aberration is estimated by solving a NLLS problem online, based on
the model of the WFSless AO system and a minimum number of N +2 intensity measurements.
Experimental results show that in average 82% of the maximum intensity can be achieved at the
N +3 = 12th time sample by the MBAC algorithm and intensity converges to 89% at the 15th
time sample. With the better initial condition provided by the MBAC algorithm, the simplex
algorithm also shows faster convergence than used alone.

Future work will further improve the correction speed by increasing the sampling rate of the
control system and considering the dynamics of the DM.
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