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Abstract

Background: A model-based analysis of oligonucleotide expression arrays we developed
previously uses a probe-sensitivity index to capture the response characteristic of a specific probe
pair and calculates model-based expression indexes (MBEI). MBEI has standard error attached to it
as a measure of accuracy. Here we investigate the stability of the probe-sensitivity index across
different tissue types, the reproducibility of results in replicate experiments, and the use of MBEI in
perfect match (PM)-only arrays.

Results: Probe-sensitivity indexes are stable across tissue types. The target gene’s presence in
many arrays of an array set allows the probe-sensitivity index to be estimated accurately. We
extended the model to obtain expression values for PM-only arrays, and found that the 20-probe
PM-only model is comparable to the 10-probe PM/MM difference model, in terms of the
expression correlations with the original 20-probe PM/MM difference model. MBEI method is able
to extend the reliable detection limit of expression to a lower mRNA concentration. The standard
errors of MBEI can be used to construct confidence intervals of fold changes, and the lower
confidence bound of fold change is a better ranking statistic for filtering genes. We can assign
reliability indexes for genes in a specific cluster of interest in hierarchical clustering by resampling
clustering trees. A software dChip implementing many of these analysis methods is made available.
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Conclusions: The model-based approach reduces the variability of low expression estimates, and
provides a natural method of calculating expression values for PM-only arrays. The standard errors
attached to expression values can be used to assess the reliability of downstream analysis.

Background model-based expression index (MBEI) in array i (6,) and

The statistical model proposed in [1] for one probe set in  probe-sensitivity index of probe j (¢;) plus random error.

multiple oligonucleotide arrays has the form Here J is the number of probe pairs in the probe set. Fitting

the model, we can identify cross-hybridizing probes (¢; with

Y = PMl-j - MMl-j = qubj + &, 2(;)]2 =J, &5~ N (0, o2?) (D large standard error (SE), which are excluded during itera-
J

tive fitting) and arrays with image contamination at this
It states that the perfect match (PM)/mismatch (MM) differ- probe set (6; with large SE), as well as single outliers (image
ence in array i, probe j of this probe set is the product of  spikes) which are replaced by the fitted values. In effect the
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estimated expression index 6; is a weighted average of
PM/MM differences:

J

with larger weights given to probes with larger ¢. The image
of outliers (array and single outliers) identified through
model-fitting can be used to assess the quality of an experi-
ment and to identify unexpected problems such as a mis-
aligned corner of a DAT file [1].

We have investigated several important properties of the
model, including the reliability and stability of the fitted
parameters MBEI (6) and probe sensitivity indexes (¢), the
performance of MBEI compared to the commonly used
average difference (AD), and how the availability of SE facili-
tates downstream comparative and clustering analysis.

Results and discussion

Probe-sensitivity indexes are stable across tissue types
In practice, in an array experiment, a researcher hybridizes
tissue or cell line samples, corresponding to different treat-
ments or conditions, to a batch of arrays. Ideally, the probe-
sensitivity index (¢) should be independent of the tissue
type. This condition, however, may not hold for those probes
that have cross-hybridization affinity to non-target genes.
Nevertheless, assuming that a non-target gene cross-
hybridizes only to a few probes of a probe set, and its
expression levels across arrays do not correlate with the
target gene, the iterative probe-excluding procedure in [1]
may be able to exclude cross-hybridizing probes, regardless
of the tissue type hybridized. In addition, the relative probe-
sensitivity indexes of the good probes called by the model
are likely to be similar across sets of arrays hybridizing to
different tissue samples.

The stability of the probe-sensitivity index is studied using
226 HU6800 arrays. We apply the model (equation 1)
independently to six sets of HU6800 arrays (21 leukemia,
lymphoma and mantle cell samples, 20 prostate cancer cell
lines, 17 brain tumor samples, 55 cancer cell lines, 58 brain
samples, and 55 lung tumor samples). Figure 1a shows the
¢ values fitted for probe set 6457 (used in Figure 1 and 2 of
[1]) in the six array sets. The ¢ patterns resemble each
other greatly, showing that the probe-sensitivity index is
an inherent property of these non-cross-hybridizing probes
and can be consistently identified from different sets of
arrays. Figure 1b shows the ¢ patterns for another probe
set. It is noteworthy that the probe 11 in array set 5 is likely
to be cross-hybridizing, making its relative strength (here
MM is consistently larger than PM and this leads to a nega-
tive ¢) dissimilar to the probe 11 in other array sets. The
model identifies this probe as a ‘probe-outlier’ only for
array set 5 and excludes it when calculating MBEI (6) for
array set 5.

In Figure 1a,b the target gene is present in most samples of
all array sets. For a probe set whose target gene is mostly
absent throughout samples (Figure 1c), many probes are
identified as probe-outliers because of their negative
indexes. Here, we cannot obtain correct probe-sensitivity
indexes because of the absence of the target gene. Neverthe-
less, the PM-MM values for these probes are random fluctu-
ations around zero, leading to a correct expression index close
to zero. If the target gene becomes available for a future array
set, the correct probe-sensitivity indexes will be recovered
and these probes will be used for expression calculation.

Occasionally, a responsive probe set may give rise to very
different ¢ estimates in two array sets. In Figure 1b, probes 8
and 13 have different relative responses in array set 1 and 4,
leading to different probe-response patterns. This might be
due to the possibility that the probes in this probe set are dif-
ferentially cross-hybridized in different array sets, or that
the same probe in different batches of arrays may systemati-
cally behave differently. Identification and flagging such
probe sets is desirable and essential if we want to compare
arrays hybridized to different tissue samples.

Figure 2 shows the boxplots of average pairwise correlations
of ¢ values between two array sets, stratified by average
lower presence proportion in the two sets. In general, when a
gene is present in many samples of two array sets, the ¢ pat-
terns estimated from the two sets are very similar. The target
gene’s presence in many arrays of an array set allows the
probe-sensitivity index to be estimated accurately.

Model-based analysis for PM-only arrays

From Figure 1 of [1], one can see that some MM probes may
respond poorly to the changes in the expression level of the
target gene. This phenomenon raised questions on the effi-
ciency of using MM probes, and led some investigators to
design custom arrays that use PM probes exclusively
(R. Abagyan and Yingyao Zhou, personal communication;
B.R. Conklin, personal communication), and others to calcu-
late fold changes using only PM probes (F. Naef, personal
communication). This design greatly increases the number
of genes that can be studied on one array. To investigate the
relative performance of PM/MM versus PM-only designs, we
exploited the model to estimate gene expression levels using
only PM probes, and compared it to the MBEI using both
PM and MM probes.

The full intensity model (equation 1 of [1]) specifies the rela-
tionship of PM probe responses and expression level 0:

PMj; = v, + 0,9/ (2)
where v; is the baseline response of probe pair j due to non-
specific hybridization, and ¢/ is the sensitivity of PM probe
of the probe pair j. The parameter estimates can be obtained
by iteratively fitting 6; and v;,¢;, regarding the other set as
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¢ values for probe sets. ¢ values estimated for probe sets (a) 6457, (b) 1248, and (c) 6571 in six array sets (shown in panels
1-6 from left to right for each probe set). ¢ values (constrained to have sum square equal to number of probes used in each
array set) are on the y-axis, and probe pairs are labeled | to 20 on the x-axis. The title of each panel (for example, p = 0)
indicates the proportion of arrays ‘present’ for the target gene in the array set. Large circles represent identified probe-

outliers by negativity or large SE of ¢.

known. The same outlier exclusion procedure in [1] is
applied. The MM probe responses have a similar form as
equation 2 except for different probe-sensitivity indexes. We
fit a PM-only and an MM-only model to obtain expression
values of all 20-probe probe sets using array set 1. For com-
parison, we also used half of the probe pairs (by alternatively
picking one out of every two probes) in a 20-probe probe set
to fit to the difference model (equation 1). For each probe
set, these three sets of expression values were compared
with the expression values of the original difference model
using 20 probes, in terms of correlation of 0s obtained by
two methods across the 21 arrays. We assumed the 20-probe
difference model provides the most accurate expression esti-
mates. If, for a probe set, a simplified model (PM-only,
MM-only or 10-probe difference model) performs reason-
ably well, we expect its 6 estimates to correlate with that
from the 20-probe difference model.

Figure 3 shows the histogram and Figure 4 the boxplot of
correlations of s estimated from the 20-probe difference

model and 6s estimated from the 10-probe difference model
(a), the 20-probe PM-only model (b) and the 20-probe
MM-only model (c). For probe sets with high presence pro-
portion, both the 10-probe difference model and the PM-only
model correlate well with the 20-probe difference model.
The MM-only model yields noticeably lower correlations,
however. We note that this comparison is intrinsically biased
in favor of the 10-probe difference model because the ‘truth’
is constructed from PM-MM differences.

This comparison corroborates the basic notion of the tech-
nology: the PM probes hybridize more strongly to the target
signals than MM probes and contain most of the informa-
tion. We stress that, whereas the above analysis illustrates
the applicability of model-based analysis to PM-only arrays,
the assessment presented here is only tentative because of
the limited information provided by the HU6800 arrays on
the comparisons. Definitive comparisons of the efficiency of
the designs must await the availability of data from
PM-only arrays.
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Figure 2

Boxplots of average pairwise correlations of ¢s between
two array sets. They are stratified by average lower
presence proportion in two array sets (the presence
proportion of a probe set is the proportion of arrays in an
array set where the target gene is called ‘present’ by
GeneChip’s algorithm). The average is taken over C(6, 2) = |5
pairwise comparison of two array sets for each probe set,
and the correlation is calculated using probes that are not
identified as an outlier in both array sets. The range of the
average lower presence proportion for the six boxplots are:
(0, 0.17), (0.17, 0.34), (0.34, 0.51), (0.51, 0.68), (0.68, 0.85),
(0.85, I). The title of each boxplot is the number of probe
sets classified into this boxplot. Eleven probe sets with too
few non-outlier probes to calculate ¢ correlations for all |5
comparisons are not included in the boxplots. The average
lower presence proportion and average pairwise correlation
for probe sets in Figure | are (a) |, 0.95; (b), 0.93, 0.94; and
(c) 0, 0.86.

MBEI reduces variability for low expression estimates
The array set 5 has 29 pairs of arrays [2]. Each pair consists
of two arrays hybridizing to samples replicated at total mRNA
level (the total mRNA sample is split and then amplified and
labeled separately, and hybridized to two different arrays).
The differences between the expression values of the two
replicate arrays in a pair are due to the variation introduced
in experimental steps after the split, the array manufacturing
difference and analytical methods such as normalization and
expression calculation. This difference provides a lower
bound of biological variation that can be detected between
two independently amplified samples, and serves as a good
statistic for comparing different analytical methods.

The agreement of MBEI between two replicate arrays is
shown in Figure 5a. For comparison, we also used the method
in [3] to calculate ADs for all probe sets and plot them in
Figure 5b (AD is based on normalized probe values, see
Methods and materials section for the normalization method.
Also note that GeneChip software excludes probes whose
PM/MM difference is outside three standard deviations
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Figure 3

Histogram of correlations between model-based expression
values estimated using the 20-probe difference model and
those estimated using different models. (a) 10-probe
difference model; (b) 20-probe PM-only model; (c) 20-probe
MM-only model. All comparisons are across the 21 arrays in
array set |.

(SDs) of all probe differences in either of the two arrays in the
comparison; here, as we are comparing multiple arrays at the
same time, when calculating ADs a probe is excluded if its dif-
ference is an outlier in the above sense in any of the arrays,
until a minimum of five probes is reached, where all five
probes will be used). Both the MBEI and the AD method
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Figure 4

Boxplot of correlations between 6 values estimated using the 20-probe difference model and 6s estimated using different
models, stratified by presence proportion. (a) |0-probe difference model; (b) 20-probe PM-only model; and (c) 20-probe
MM-only model. The number of presence calls for a probe set in the 21 arrays and the subpopulation size for the six boxplots
are: 0-3, 4,385; 4-7, 693; 8-11, 413; 12-15, 488; 16-19, 497; and 20-21, 323. Only 6,799 probe sets that have 20 probes are used.

yielded some expression values differing by more than a
factor of two, especially for genes at low expression level. This
might be explained by the relatively larger amplification vari-
ation for weakly expressed genes, given a constant success
rate of amplifying a sequence by a certain fold.

Researchers often use ‘log ratio’ between expression values
of a gene in two arrays as the criterion for identifying differ-
entially expressed genes. Between duplicate arrays, we
expect these log ratios of expression values based on a good
expression index (AD or MBEI) to be close to zero. Thus for
every probe set we calculated its average absolute log (base
10) ratio of 29 pairs of duplicates as a statistic to compare
the variation in expression levels between duplicates using

the AD or the MBEI method. Figure 6 presents the results of
the comparison. The average absolute log ratio distribution
of the MBEI method is significantly lower than that of the
AD method when expression level is low (and thus probe
sets have a low proportion of detections of the target gene
across arrays). As expression level becomes higher (when the
target gene of a probe set is detected in more arrays), the AD
method shows a rapid improvement in performance,
approaching the level of the MBEI method. The same box-
plots (Figure 7) for another set of 60 human UgsA arrays
consisting of 30 replicate pairs conveys similar information.
These results suggest that the MBEI method is able to
extend the reliable detection limit of expression to a lower
mRNA concentration.
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Figure 5

Log (base 10) expression indexes of a pair of replicate arrays
(array | and 2 of array set 5) for different statistical
methods. (a) MBEI method; (b) AD method. Only 6,695 (a)
and 4,696 (b) probe sets with positive values in both arrays
are used. The center line is y = x, and the flanking lines
indicate the difference of a factor of two.

Confidence interval for fold change

After obtaining expression indexes using AD or MBEI, fold
changes can be calculated between two arrays for every
gene and used to identify differentially expressed genes.
Usually, low or negative expressions are truncated to a
small number before calculating fold changes, and
GeneChip also cautions against using fold changes when the
baseline expression is absent.

The availability of SEs for the model-based expression
indexes allows us to obtain confidence intervals for fold
changes. Suppose

A

61 ~ N(gv 612)’ é\2 ~ N(ez’ 622)

where 0, and 6, are the real expression levels in the sample,
and @1 and 52 are the model-based estimates of expression
levels. We substitute the model-based SEs for 8, and 3,.
Letting r = 6,/0, be the real fold change, then inference on r
can be based on the quantity

(91 - r@2)2

2 2 p2
82 +6,2r

It can be shown that Q has a y2 distribution with 1 degree of
freedom irrespective of the values of 6, and 6, [4]. Thus Q is
a pivotal quantity involving r. We can use Q to construct
fixed-level tests and to invert them to obtain confidence
intervals (CI) for fold changes [5].

Table 1 presents the estimated expression indexes (with SEs)
in two arrays and the 90% confidence intervals of the fold
changes for 14 genes. Although all genes have similar esti-
mated fold changes, the confidence intervals are very differ-
ent. For example, gene 1 has fold change 2.47 and a tight
confidence interval (2.06, 3.02). In contrast, gene 11 has a
similar fold change of 2.48 but a much wider confidence
interval (0.96, 18.18). Thus the fold change around 2.5 for
gene 11 is not as trustworthy as that for gene 1. Further
examination reveals that this is due to the large SEs relative
to the expression indexes for gene 11. This agrees with the
intuition that when one or both expression levels are close
to zero for one gene, the fold change cannot be estimated
with much accuracy. In addition, when image contamination
results in unreliable expression values with large SEs, the
fold changes calculated using these expression value are
attached with wide CIs. In this manner, the measurement
accuracy of expression values propagates to the estimation
of fold changes.

In practice, we find it useful to sort genes by the lower confi-
dence bound (‘Lower CB’ in Table 1), which is a conservative
estimate of the fold change. When an expression index is
negative (as a result of taking PM/MM differences), we do
not calculate the confidence intervals. In such a case, it is
more helpful to filter genes by presence calls.

Standard errors help to assess clustering results

Cluster analysis is a popular method for analyzing the data
of a series of microarrays [6,7]. If two genes are co-regulated
at the transcription level, their expression values across
samples are likely to be correlated. Clustering algorithms use
these correlations (or monotone transformation of correla-
tions) to cluster co-regulated genes together. The correlation
based on the estimated expression levels may, however, be
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Figure 6

Boxplots of average absolute log (base 10) ratios between replicate arrays stratified by presence proportion for different
statistical methods. (a) MBEI method; (b) AD method. The number of presence calls for a probe set in the 58 arrays for the
six boxplots are: 0-9, 10-19, 20-29, 30-39, 40-49, 50-58. The title of each boxplot is the number of probe sets used for the
boxplot. The average is taken over 29 replicate pairs. Log ratios are not calculated for negative expression values or
expression values identified as ‘array-outliers’ by the MBEI method in either array of a replicate pair, and are not used to
calculate the average. 744 probe sets are not included as their average absolute log ratios cannot be calculated for all the 29

pairs using either method.
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Figure 7

Similar plots as in Figure 6 for another set of 30 pairs of duplicated human U95A arrays. (a) MBEI method; (b) AD
method.The number of presence calls for a probe set in the 60 arrays for the six boxplots are: 0-9, 10-19, 20-29, 30-39, 40-
49, 50-60. The title of each boxplot is the number of probe sets used for the boxplot.

different from that based on the real but unobserved expres-
sion levels. Also, the commonly used hierarchical clustering
algorithm is an irreversible process: once two genes or nodes
are merged, they will stay together, even if later on there is
good reason to adjust previous clustering. Thus there is a
need to assess the reliability of clusters.

A global way of using SE in hierarchical clustering is to
resample or bootstrap [8] the whole ‘gene by sample’ data
matrix and redo the clustering, then investigate the overall
properties emerging from this repertoire of clustering trees.
In Bittner et al. [9], the data matrix coming from cDNA
microarray experiments is resampled using the estimated
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Table |

Using expression levels and associated SEs to determine confidence intervals of fold changes

Expression | Std Error | Expression 2 Std Error 2 Fold Change Lower CB Upper CB

Gene | 859.635 41.7808 347.57 36.0887 247327 2.06844 3.02672
Gene 2 405.72 31.2305 164.014 44.2505 2.47369 1.66938 4.49127
Gene 3 283.931 28.5281 114.705 18.4661 2.47531 1.83926 3.48466
Gene 4 45.9821 64.2419 18.5727 84.5308 2.47579 0 Infinity
Gene 5 225.178 57.489 90.9045 36.1766 2.47709 1.18104 7.48749
Gene 6 247.002 50.6518 99.6642 19.5384 247834 1.51079 4.0211

Gene 7 49.9739 21.5345 20.1514 23.5651 2.47992 0.487603 Infinity
Gene 8 276.491 18.6883 111.373 36.1004 2.48256 1.59069 5.34635
Gene 9 436.071 32,9779 175.384 21.0669 2.48638 1.98665 3.18811
Gene 10 75.6914 17.7215 30.4395 17.9707 2.48662 1.07209 86.1656
Gene | | 80.673 25.3085 324314 16.9626 2.4875 0.960787 18.1833
Gene 12 181.528 42.4837 72.8751 28.1787 2.49094 1.24668 7.11945
Gene 13 1122.28 99.2835 449.889 63.2821 2.49456 1.92075 3.35055
Gene 14 168.234 40.629 67.4387 30.2982 2.49462 1.17639 9.81547

variation derived from the median SD of log ratios for a gene
across samples. As we now have SEs for all data points, we
can resample each expression value from a normal distribu-
tion with mean equal to the estimated expression value and
SD equal to the attached SE.

Figure 8a shows a hierarchical clustering tree of 225 selected
genes with presence proportion > 0.5 and coefficient of vari-
ation (SD/mean) > 0.7 across the 20 samples in array set 2.
In trying to interpret this tree, we may be interested in the
gene cluster colored in blue and the reliability of the gene
members belonging to this cluster. The whole data matrix is
resampled, and the clustering is performed again
(Figure 8b). We notice that some blue genes (genes in the
original cluster are colored blue) are clustered with other
non-blue genes, and some non-blue genes are mixed into the
main body of the blue genes. After each resampling, we iden-
tify a cluster that contains more than 80% of all the blue
genes, but as few non-blue genes as possible (measured as a
percentage of all genes in this cluster). This cluster is consid-
ered to be the cluster that corresponds to the original one in
Figure 8a. In Figure 8b the root node of the ‘corresponding
cluster’ is marked with small horizontal line intersecting the
vertical line (representing the range of the cluster) on the
right of the clustering picture. Then, for each of all the 225
genes, if it belongs to this ‘corresponding cluster’, we
increase its ‘in-cluster’ count by 1. After resampling 30
times, the in-cluster counts are indicated in gray-scale on the
left side of the original clustering (Figure 8c), with black rep-
resenting 30 and white representing zero. A high ‘in-cluster’

count indicates a gene ‘remains’ in the original cluster in
most of the resampled clustering trees.

We can see from Figure 8c that most genes in the original
cluster are reliable members, whereas a few genes at the
bottom of the cluster are not (in fact they are merged into
the original cluster last). Interestingly, some genes originally
not in the original cluster group with the ‘corresponding
clusters’ during resampling many times and have gray ‘in-
cluster’ marks. These genes may be related to the original
cluster in some way. In summary, this method can help us to
distinguish reliable and unreliable gene members of a
cluster, as well as draw our attention to related genes origi-
nally clustered somewhere else because of the accidental
nature of hierarchical clustering.

Methods and materials

Software

We have developed a software package DNA-Chip Analyzer
(dChip [10]) to perform invariant-set normalization (see
below), calculation of MBEI [1], computation of confidence
intervals of fold changes, and hierarchical clustering with
resampling.

Our experience is that more than 10 arrays are appropriate for
model training, outlier detection and MBEI calculation.
Researchers with fewer than 10 arrays may seek arrays of the
same chip type and hybridizing to similar tissue samples, and
combine them in a single dChip analysis session. We are
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Figure 8

Gene clustering. (a) 225 filtered genes are clustered based on their expression profiles across 20 samples. Each gene’s
expression values are standardized to have mean 0 and SD | across 20 samples. Dark blue represents low expression level
and dark red high expression level. We might be particularly interested in the cluster colored in blue. (b) The clustering tree
after a particular resampling. Although the original ‘blue’ genes are scattered to various places, we can still determine where
the original cluster is, using the criteria described in the text. (c) After resampling 30 times, the reliability of the genes
belonging to the original cluster is indicated by the vertical gray-scale bar on the left of the blue-red picture.

exploring model-based meta-analysis of many arrays of the
same chip type but hybridizing to a heterogeneous set of
tissues samples, and will present such analysis in future work.

Normalization of arrays based on an ‘invariant set’
As array images usually have different overall image brightness
(Figure 9a), especially when they are generated at different

times and places, proper normalization is required before com-
paring the expression levels of genes between arrays. Model-
based expression computation requires normalized probe-level
data (from Affymetrix’s DAT or CEL files). For a group of
arrays, we normalize all arrays (except the baseline array) to a
common baseline array having the median overall brightness
(as measured by the median CEL intensity in an array).
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Figure 9

Normalization of gene expression levels between arrays. (a) The CEL intensities (see text) of a pair of replicate arrays
(array Il and 12 in array set 5) are plotted against each other. The baseline array || (shown on the y-axis) is not as
bright as array 12 (shown on the x-axis). The smoothing spline (green curve) deviates from the diagonal line y = x (blue
curve), indicating the need for normalization. (b) The same plot as (a) with superimposed circles representing the
invariant set, on the basis of which a piecewise linear normalization relationship is determined (black dotted line, whose
y-coordinate is the normalized value of array 12). The normalization curve is close to the smoothing spline curve in (a) as
the two arrays are replicated arrays and all probes should be invariant. (c) After normalization (y-axis is the baseline
array |1, and x-axis the normalized value of array 12), the scatterplot centers around the diagonal line and the array 12 is
adjusted to have the similar overall brightness as array | |. The smoothing spline curve is also close to the diagonal line.
(d) The Q-Q plot of probe intensities of array || and normalized array |2 shows the probes in the two sets have almost

the same distribution.

A normalization relation can be understood as a curve in the
scatterplot of two arrays with the baseline array drawn on
the y-axis and the array to be normalized on the x-axis. A
straight line running through the origin is a multiplicative
normalization method (GeneChip’s scaling method), and a
smoothing spline through the scatterplot can also be used
(Figure 9a, also see [11]).

We should base the normalization only on probe values that
belong to non-differentially expressed genes, but generally we
do not know which genes are non-differentially expressed
(control or housekeeping genes may also be variable across
arrays). Nevertheless, we expect that a probe of a non-differ-
entially expressed gene in two arrays to have similar intensity
ranks (ranks are calculated in two arrays separately). We use
an iterative procedure to identify a set of probes (called the
invariant set), which presumably consists of points from non-
differentially expressed genes (Figure 9b). Specifically, we

start with points of all PM probes (about 140,000 for
HU6800 array). If a point’s proportion rank difference (PRD,
absolute rank difference in two arrays divided by n =
140,000) is small enough, it is kept for the new set. Here the
threshold of being small is PRD < 0.003 when a points’s
average intensity ranks in the two arrays is small and PRD
<0.007 when it is large, accounting for fewer points at high-
intensity range; and the threshold is interpolated in between.
We chose these parameters empirically to make the selected
points in the invariant set thin enough to naturally determine
a normalization relation. In this way we may obtain a new set
of 10,000 points, and the same procedure is applied to the
new set iteratively, until the number of points in the new set
does not decrease anymore. A piecewise linear running
median line is then calculated and used as the normalization
curve. After normalization, the two arrays have similar
overall brightness. (Figure 9c). Figure 10 shows another pair
of arrays where the normalization relationship is non-linear.
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Figure 10

Similar plots as in Figure 9 for arrays hybridized to two different samples (array 24 and 36 of array set 5). (a) CEL intensities;
(b) same plot as in (a) with superimposed circles representing the invariant set; (c) after renormalization; (d) Q-Q plot of
normalized probe intensities. Note that the smoothing spline in (a) is affected by several points at the lower-right corner,
which might belong to differentially expressed genes. The invariant set, on the other hand, does not include these points
when determining the normalization curve, leading to a different normalization relationship at the high end.
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