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Abstract: Inference using simulation has become a dominant theme in modern
statistics, whether using the bootstrap to simulate sampling distributions of statis-

tics, Markov chain Monte Carlo to simulate posterior distributions of parameters,
or multiple imputation to simulate the posterior predictive distribution of missing

values. Inference via simulations can, in some cases, be greatly facilitated by ac-
companying methods of analysis based on more traditional mathematical statistical

techniques. Here we illustrate this point using one example of such technology: the
analysis, based on a Markov-normal model of the stationary distribution underly-

ing an iterative simulation, of parallel simulations before their convergence, thereby
allowing a redesign of the simulation for better performance. The potential value
of this approach is documented using an example involving censored data.
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1. Introduction

There is little doubt that simulation methods have revolutionalized the field
of statistics in the last quarter century. The availability of high-speed computing
has not only made possible the analysis of complex models heretofore unapplied,
but it has also changed the way many statisticians and scientists attack prob-
lems. For example, as suggested in Rubin (1984, Section 2.5), the ability to apply
models that are scientifically appropriate for the data at hand, without investing
in the creation of tedious closed-form mathematical analysis, means that as indi-
viduals we are no longer wedded to the use of possibly inappropriate techniques
solely because of massive personal investment of time. The resulting scientific
freedom when using simulation arises from the frequentist perspective − for ex-
ample, via the use of the jackknife (e.g., Tukey (1993)) or the bootstrap (e.g.,
Efron and Tibshirani (1986)), from the Bayesian perspective − for example, via
the use of Markov chain Monte Carlo (e.g., Geman and Geman (1984)) or sam-
pling importance resampling (e.g., Rubin (1987a); called importance resampling
in Gelman, Carlin, Stern and Rubin (1995)), and from mixed perspectives − for
example, via multiple imputation (e.g., Rubin (1987b)).
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Of critical importance to the most efficient use of simulation methods, how-
ever, is the continuing development of better mathematical statistical methods
to analyze the output of simulations. Here we illustrate the use of relatively
traditional analytic tools, but in relatively novel ways, to improve MCMC runs.
Specifically, we show how a Markov-normal analysis of the output of short, par-
allel, iterative simulations before their convergence can lead to a redesigned sim-
ulation with better performance. The particular technique we describe will not
always work, but it does illustrate what we believe is a very important theme in
the future of applied statistics: the use of traditional statistical methodology to
improve inferences via simulation.

2. Markov-Normal Analysis of Iterative Simulations Before Their
Convergence: Redesign for Better Performance

Iterative simulation techniques such as Markov chain Monte Carlo (MCMC)
methods have become standard tools for Bayesian computation in the last decade.
The vast literature on this topic includes Metropolis and Ulam (1949), Metropo-
lis, Rosenbluth Rosenbluth and Teller (1953), Hastings (1970), Geman and Ge-
man (1984), Tanner and Wong (1987), Gelfand and Smith (1990), and Gelman
and Rubin (1992). Recent statistical textbooks describing applications of MCMC
techniques include Carlin and Louis (2000) and Gelman, Carlin, Stern, and Ru-
bin (1995). These methods are also popular in the fields of the physical, chem-
ical, and engineering sciences, for example, with reliability growth models (e.g.,
Erkanli, Mazzuchi and Soyer (1998)) and censored-data models (e.g., Hamada
and Wu (1995); Liu and Sun (2000)).

Although MCMC algorithms are typically easy to implement, care must be
taken when using them because they can have extremely slow rates of conver-
gence. This problem has been noticed and attacked by many authors, for exam-
ple, using auxiliary variable methods by Swendsen and Wang (1987), Goodman
and Sokal (1988), and Besag and Green (1993); using blocking and grouping by
Liu (1994), Liu, Wong and Kong (1994), and Robert and Sahu (1997); using
extensions of the ideas of the PX-EM algorithm (Liu, Rubin and Wu (1998))
by Meng and van Dyk (1999), Liu and Wu (1999), and Liu (2001); and using
restarted iterative simulations by Liu and Rubin (1996).

More specifically, Liu and Rubin (1996) proposed obtaining the maximum
likelihood (ML) estimates of the target distribution from multiple sequences be-
fore their convergence, under the assumption that the target distribution of the
simulated Markov chain is normal. They provided the needed technology and
suggested that the pre-convergence normal-based ML estimates of the target
distribution be used to define a restarting distribution for the simulation. They
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showed that the Markov-normal restarting procedure can be computationally ex-
tremely advantageous when the target distribution is nearly normal, especially in
massively parallel or distributed computing environments where many sequences
can be run for the same effective cost as one sequence.

Here, we demonstrate and extend this proposal in the context of an example
involving censored lifetime data. First, as in Liu and Rubin (1996), the applica-
tion shows that the normal-based ML estimate of the target distribution can be
used to define a restarting distribution for the simulation. Second, it shows how
this normal-based ML estimate of the target distribution can be used to provide
simple but practical guidance for assessing rates of slowly-converging sequences.
Third, the example shows how this estimate provides information on which com-
ponents or functions of the components are converging slowly, thereby guiding
the choice of methods for speeding the underlying MCMC algorithm.

3. Normal-based ML Estimation of the Target Distribution − Review
and Extension

3.1. Normal-based ML estimation

We consider the situation with a d-dimensional parameter being simulated
by m independent MCMC runs, all starting from common starting distribution
P (0)(X) with common target distribution P (X). Formally, suppose that the m

independent d-dimensional sequences {X(t)
j : t = 0, . . . , nj}, indexed by j with

possibly different length nj, are simulated, with X
(0)
j iid P (0)(X), which has the

same support as the target distribution P (X), for j = 1, . . . ,m and with the
common transition distribution

X
(t)
j |(X(t−1)

j , . . . ,X
(0)
j ) ∼ Nd(βX

(t−1)
j + γ,∆), t = 1, 2, . . . , (1)

where the (d × d) matrix β, d-dimensional vector γ, and (d × d) non-negative
matrix ∆ are unknown parameters. Assuming that the Markov chain converges
to the target distribution, we have, first, that the target distribution is normal,
because (1) is the AR(1) multivariate normal time-series model, and, second,
that the mean vector and covariance matrix of this normal distribution Nd(µ,Ψ)
are given by

µ = βµ + γ and Ψ = βΨβ′ + ∆, (2)

respectively.
Liu and Rubin (1996) considered the case of nj = n for j = 1, . . . ,m and

provided closed-form expressions for the ML estimates of β, γ, and ∆. The
above simple extension allowing for m sequences of various lengths provides cer-
tain flexibilities so that ML estimation can be applied in a sequential fashion to
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incorporate restarted multiple sequences. This simple extension also allows mas-
sively parallel or distributed computer processes to generate multiple sequences
with different lengths. The ML estimates of the parameters from m sequences of
various lengths can also be obtained from (1) in closed form as follows:

β̂ =
[ m∑
j=1

nj∑
t=1

(
X

(t)
j − 1

N

m∑
j=1

nj∑
t=1

X
(t)
j

)(
X

(t−1)
j − 1

N

m∑
j=1

nj∑
t=1

X
(t−1)
j

)′]

[ m∑
j=1

nj∑
t=1

(
X

(t−1)
j − 1

N

m∑
j=1

nj∑
t=1

X
(t−1)
j

)(
X

(t−1)
j − 1

N

m∑
j=1

nj∑
t=1

X
(t−1)
j

)′]−1

, (3)

γ̂ =
1
N

m∑
j=1

nj∑
t=1

X
(t)
j − 1

N
β̂

m∑
j=1

nj∑
t=1

X
(t−1)
j , (4)

∆̂ =
1
N

m∑
j=1

nj∑
t=1

(
X

(t)
j − β̂X

(t−1)
j − γ̂

) (
X

(t)
j − β̂X

(t−1)
j − γ̂

)′
, (5)

N =
∑m

j=1 nj, the total sample size for estimating the parameters. With the ML
estimates of the parameters β, γ, and ∆ given in (3)−(5), the ML estimates of
the mean vector and covariance matrix of the normal-based target normal dis-
tribution can be computed from (2) using standard methods, including simple
iterative methods. As a result, the parameters of the target distribution of X

(t)
j

following the AR(1) model can be well estimated before the convergence of the
sequences X

(t)
j . The consistency of the ML estimate of the transition parame-

ters β, γ and ∆ of the Markov chain AR(1) as m goes to the infinity (see, for
example, Liu and Rubin (1996)) provides a relevant theoretical justification for
the procedure.

3.2. Applications of the normal-based ML estimates

First, as was suggested by Liu and Rubin (1996), the normal-based ML
estimate of the target distribution can be used to restart the Markov chains. For
example, by inflating the covariance matrix we create an over-dispersed starting
distribution for running multiple sequences that allows for easy assessment of the
convergence of the simulated sequences using the method of Gelman and Rubin
(1992).

Secondly, the estimate of β can be used to assess the rate of convergence
of the underlying MCMC scheme. Liu, Wong and Kong (1994) proved that the
rate of convergence of the Data Augmentation (DA) algorithm is determined
by the auto-correlation of the sequences created by the algorithm. In current
practice, this auto-correlation can only be well estimated using moment-based
methods from converged sequences with satisfactory rates of convergence. Our
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normal-based ML estimate β̂, obtained by conditioning on the starting points,
however, can provide useful information about the rate of convergence even be-
fore the convergence of the simulated sequences, so that we can assess, before
starting a full run, whether the underlying MCMC scheme will have problemati-
cally slow convergence. When the underlying MCMC scheme has a severely slow
rate of convergence, it generally does not help to restart the iterative simulations.
Rather, it may be necessary to modify (i.e., redesign) the MCMC scheme.

Thirdly, the normal-based ML estimates β̂ and ∆̂ also allow the identification
of components, or functions of the components of X, that have the slowest rates
of convergence. This information helps find methods to accelerate the MCMC
algorithm.

3.3. Needed technology

From (1) we have

(X(t) − µ) = β(X(t−1) − µ) + ε(t), (6)

where ε(t) ∼ Nd(0,∆) is independent of the sequence {X(t) : t = 0, . . . , t−1}. The
covariance matrix between X(t) and X(t−1), for the converged sequence {X(t)},
is Cov (X(t),X(t−1))=βΨ, and hence the correlation matrix between normalized
Ψ−1/2X(t) and Ψ−1/2X(t−1) is Cor(Ψ−1/2X(t),Ψ−1/2X(t−1)) = Ψ−1/2βΨ1/2.

Let P (t)(X) be the distribution of X(t). Results on the rate of convergence
of P (t)(X) to the target distribution P (X) have appeared in various places. For
example, Roberts and Sahu (1997) showed that the rate of convergence is the
spectral radius of the matrix β, that is, the greatest of the absolute eigenvalues
of β. Although this result is theoretically useful in terms of comparing differ-
ent algorithms, it is difficult to use the result to design faster algorithms. For
example, the eigenvalue corresponding to the spectral radius can be a complex
number and thereby the corresponding eigenvector can be a vector of complex
numbers.

Alternatively, we consider the square-root, denoted by ρ, of the spectral
radius of the non-negative definite matrix

M ≡
[
Cor(Ψ−1/2X(t),Ψ−1/2X(t−1))

] [
Cor(Ψ−1/2X(t),Ψ−1/2X(t−1))

]′
= Ψ−1/2βΨβ′Ψ−1/2.

Because ρ can be viewed as the rate of convergence of P (t)(X) to P (X), we
call the matrix M the “squared convergence rate” matrix. Similarly, we call the
matrix

S ≡ I − M = I − Ψ−1/2βΨβ′Ψ−1/2 = Ψ−1/2∆Ψ−1/2 (7)
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the squared speed matrix of the underlying MCMC scheme.
From a Bayesian perspective, S in (7) is related to the fraction of observed

information or fraction of missing information (Rubin (1987)), that is, the vari-
ance of X relative to the variance of X given the observed data. Intuitively, the
bigger the within-iteration variance-covariance matrix ∆ with respective to the
target variance-covariance matrix, Ψ, the faster the algorithm converges because
the fraction of missing information is less.

More specifically, let Z(t) = Ψ−1/2(X(t) − µ). Then Z(t)|Z(t−1) ∼ Nd (0, S) .

All the eigenvalues of S are in the interval [0, 1]. When all the eigenvalues of
S are one, the MCMC sequence converges approximately in one step, and when
all the eigenvalues of S are zero, the MCMC sequence will never converge. In
general, the MCMC sequence converges faster in the subspaces determined by
the eigenvectors corresponding to large eigenvalues of S than those corresponding
to small eigenvalues. Thus, by computing the eigenvalues and the corresponding
eigenvectors of ∆ with respect to Ψ, that is, of S = Ψ−1/2∆Ψ−1/2, we can
identify the slowly-converging subspace. More formally, let λ1 ≤ . . . ≤ λd be
the d eigenvalues of S = Ψ−1/2∆Ψ−1/2, and let s1, . . . , sd be the corresponding
eigenvectors. Then the slowest-converging k-dimensional (1 ≤ k ≤ d) subspace
is L(s1, . . . , sk), the subspace spanned by the k eigenvectors s1, . . . , sk.

The use of the rate of convergence ρ = (1 − λ1)1/2 as practical guidance is
based on the following result. It follows easily from routine algebraic operations.

Result 1. Suppose the (posterior) mean of a function of X, y = f(X), is of
interest. Suppose also that the moment estimator ȳn0,n = 1

n

∑n
t=1 yn0+t is to be

used, where yn0+t = f(X(n0+t)) for t = 1, . . . , n and X(n0+t) ∼ P (X), and that
the sequence yn0+1, . . . , yn0+n is an AR(1) process with the variance σ2 and first-
order autocorrelation r > 0. Then (i) the rate of convergence of the sequence
yn0+1, . . . , yn0+n is ρ = r, and (ii) the variance of the moment estimate ȳn0,n of
the mean of y is

var(ȳn0,n) =
σ2

n

[
1 + r

1 − r
− 2r(1 − rn)

n(1 − r)2

]
≈ 1 + r

1 − r

σ2

n
,

when n is sufficiently large.

Thus, as was noted by Tierney (1994), we have the following result.

Corollary 1. The asymptotic standard deviation of the sample mean ȳn0,n is
σ

n1/2 (1+r
1−r )1/2, and thus, for the sample mean, the equivalent effectively-indepen-

dent-sample-size in a run of length n is asymptotically n(1 − r)/(1 + r).

For convenience, we call

F =
1 + r

1 − r
(8)
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the equivalent sample size factor. In general, for a multivariate AR(1) process
(6), the equivalent sample size factor in (8) can be adjusted based on the follow-
ing results for the covariance matrix of X̄n0,n = 1

n

∑n
t=1 X(n0+t) after effective

convergence of X(n0). Routine algebraic operations lead to the following result.

Result 2. Let B = Ψ−1/2βΨ1/2. Then S = I − BB′ and, for large n,

Cov (Ψ−1/2X̄n0,n,Ψ−1/2X̄n0,n)

=
1
n

(I−B)−1(I−BB′)(I−B′)−1 − 1
n2

[
(I − B)−2(I − Bn)B

+B′(I − (B′)n)(I − B′)−2
]

≈ 1
n

(I − B)−1(I − BB′)(I − B′)−1. (9)

Corollary 2. Let λ be the maximum eigenvalue of (9). To obtain the same
precision for the moment estimate X̄n0,n from an independent sample of size n,
the length of the sequence of a run after reaching equilibrium needs to be larger
than n roughly by the factor λ.

Thus, before the convergence of the MC simulation, we can use the results
from the Markov-normal analysis and the conclusion of Corollary 2 to obtain a
rough estimate of the ultimate length of sequence, after effective convergence,
needed for estimation via MCMC methods. This result also provides guidance
on the choice of many independent runs versus a few long runs.

4. Example

4.1. The data and model

The data in Table 1 came from a router bit experiment reported originally
by Phadke (1986). Hamada and Wu (1995) considered fitting a normal regres-
sion model with 23 effects to the log-lifetime data consisting of 14 left-censored,
10 interval-censored, and 8 right-censored values. The 23 effects consist of the
intercept, the seven two-level factor main effects A, B, C, F, G, H and I, three
two-level pseudo-factors D1, D2 and D3 for the main effect of the factor D, and
twelve interactions AF, AH, AI, BF, BG, BI, CG, CH, CI, FI, GI and HI. Let-
ting X and Y be the (32 × 23) design matrix and the 32-dimensional vector of
the log-lifetime in the underlying complete dataset, respectively, letting β be the
regression coefficients, and letting σ2 be the variance of the errors, we write the
complete-data model as Y |(β, σ2) ∼ N32(Xβ, σ2I23). Hamada and Wu (1995)
used a prior distribution for (β, σ2) of the form: σ−2 ∼ Gamma(ν0/2, ν0s

2
0/2)

and β|σ2 ∼ N23(β0, σ
2A−1

0 ), with ν0 = 1, s2
0 = 0.01, β0 = (1.5, 0, . . . , 0)′, and

A0 = 0.0001I23 . They also considered alternative choices of A0, A0 = 0.01I23 and



758 CHUANHAI LIU AND DONALD B. RUBIN

I23, for checking the sensitivity of the posterior distributions to the specification
of the prior distributions.

Table 1. Design and lifetime data for the router bit experiment.

Design Data
D E Censoring Interval

Run A B C D1 D2 D3 E1 E2 E3 F G H I Left Right
1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 4
2 -1 -1 -1 -1 1 1 -1 1 1 1 1 -1 -1 0 1
3 -1 -1 -1 1 -1 1 1 1 -1 -1 1 1 -1 0 1
4 -1 -1 -1 1 1 -1 1 -1 1 1 -1 1 -1 17 ∞
5 -1 1 1 1 -1 1 -1 -1 -1 1 1 -1 -1 0 1
6 -1 1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 2 3
7 -1 1 1 -1 -1 -1 1 1 -1 1 -1 1 -1 0 1
8 -1 1 1 -1 1 1 1 -1 1 -1 1 1 -1 0 1
9 1 -1 1 1 1 -1 -1 -1 -1 -1 1 1 -1 17 ∞

10 1 -1 1 1 -1 1 -1 1 1 1 -1 1 -1 2 3
11 1 -1 1 -1 1 1 1 1 -1 -1 -1 -1 -1 0 1
12 1 -1 1 -1 -1 -1 1 -1 1 1 1 -1 -1 3 4
13 1 1 -1 -1 1 1 -1 -1 -1 1 -1 1 -1 0 1
14 1 1 -1 -1 -1 -1 -1 1 1 -1 1 1 -1 2 3
15 1 1 -1 1 1 -1 1 1 -1 1 1 -1 -1 0 1
16 1 1 -1 1 -1 1 1 -1 1 -1 -1 -1 -1 3 4
17 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 17 ∞
18 -1 -1 -1 -1 1 1 -1 1 1 1 1 -1 1 0 1
19 -1 -1 -1 1 -1 1 1 1 -1 -1 1 1 1 0 1
20 -1 -1 -1 1 1 -1 1 -1 1 1 -1 1 1 17 ∞
21 -1 1 1 1 -1 1 -1 -1 -1 1 1 -1 1 0 1
22 -1 1 1 1 1 -1 -1 1 1 -1 -1 -1 1 17 ∞
23 -1 1 1 -1 -1 -1 1 1 -1 1 -1 1 1 14 15
24 -1 1 1 -1 1 1 1 -1 1 -1 1 1 1 0 1
25 1 -1 1 1 1 -1 -1 -1 -1 -1 1 1 1 17 ∞
26 1 -1 1 1 -1 1 -1 1 1 1 -1 1 1 3 4
27 1 -1 1 -1 1 1 1 1 -1 -1 -1 -1 1 17 ∞
28 1 -1 1 -1 -1 -1 1 -1 1 1 1 -1 1 3 4
29 1 1 -1 -1 1 1 -1 -1 -1 1 -1 1 1 0 1
30 1 1 -1 -1 -1 -1 -1 1 1 -1 1 1 1 3 4
31 1 1 -1 1 1 -1 1 1 -1 1 1 -1 1 0 1
32 1 1 -1 1 -1 1 1 -1 1 -1 -1 -1 1 17 ∞

4.2. The DA algorithm and Markov-normal analysis

We consider fitting this model with the Data Augmentation (DA) algorithm
(Tanner and Wong (1987)). Each iteration of DA consists of two steps: an
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I-step that imputes the complete-data lifetime of the router bit for each run
from its predictive distribution given the current draw of the parameter vector
(β, σ2), and a P-step that takes a draw of the parameter vector (β, σ2) from
its posterior distribution given the currently imputed complete data. Detailed
implementation is a special case of the DA algorithm for the analysis of censored
data using covariance adjustments discussed by Liu and Sun (2000). Because the
DA algorithm has two steps, rather than three or more as with a general Gibbs
sampler, the simulated sequence of the parameter vector (β(t), σ(t)) is a Markov
chain, a condition theoretically needed for our Markov-normal analysis.

We started the DA algorithm from its P-step with a simply imputed com-
plete dataset: the missing lifetime is imputed with its left-censoring value, the
averages of the two censoring values, and its right-censoring value for each of the
left-, interval- and right-censored data, respectively. Although better starting
values can be obtained using the EM algorithm (Dempster, Laird and Rubin
(1977); Liu and Sun (2000)), we used these simple starting values to illustrate
that our method does not require accurate starting values. A single chain was
run up to 20,000 iterations. The last half-sequences of the parameters obtained
from the single chain are displayed in Figure 1, which indicate a slow rate of
convergence of the algorithm and the uselessness of the sequence of length 20,000
iterations for computing posterior distributions accurate enough for reliable sta-
tistical inference.

To investigate the DA scheme in terms of the normal-based transition dis-
tribution, we ran m = 20 parallel MCMC sequences of common length, with
common starting values but different seeds for the underlying random number
generator. We replicated the process three times, once with ni = 1000, ni = 5000,
and ni = 10, 000, respectively. The components considered consist of the 23 re-
gression coefficients and ln(σ2), the logarithm of the variance of the residuals.
The nine smallest eigenvalues are less than 10−3, with the smallest one below
10−4. Although they do not appear to have converged, the estimated eigenvalues
appear to be consistent in the sense that they indicate the convergence rate of
the DA scheme is extremely slow.

Because the results with ni = 10, 000 are the most precise, we focus on
them (although results from longer runs did show that the smallest eigenvalue
is much smaller than 0.0001). The corresponding eigenvectors indicated that
(i) ln(σ2) is the fastest converging component, with a fully satisfactory speed of
convergence close to 0.86; and (ii) the rate of convergence in the remaining 23
dimensional space is not fully satisfactory, except for a one-dimensional subspace
that corresponds to the second largest eigenvalue 0.58. According to Corollary 2,
the simulation requires at least another 1,000,000,000 iterations if an equivalent
effectively-independent sample size of 10, 000 is desired! Applying the method
of Gelman and Rubin ((1992), henceforth GR) to assess the convergence of 20
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parallel restarted sequences (not reported) also indicates that the DA algorithm
converges too slowly to be useful. Thus, in order to obtain a reliable estimate of
the posterior distribution via iterative simulation, a faster converging version of
the DA algorithm is needed: it is hopeless to run the current version and simply
wait, at least using current computing resources.
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Figure 1. The last half sequences of the 24 parameters in the model for
the router lifetime experiment. The sequences, 20,000 iteration long, are
simulated using the standard DA algorithm.

4.3. Speeding up the DA algorithm

The Markov-normal analysis provides useful guidance for speeding up the
DA algorithm: the speeding-up needs to take place in the space of the regression
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coefficients. The reason for the slow rate of convergence is due to the highly
censored sufficient statistics for the regression coefficients. To accelerate the DA
algorithm, we make use of the idea of covariance adjustment for speeding up
MCMC algorithms (Liu (2001)), which builds on the idea of covariance adjust-
ment (CA) for EM (PX-EM: Liu, Rubin and Wu (1998)).

In general the full, and hence ideal, CA step is difficult to implement, because
it is not easy to take a joint draw of the parameters and sufficient statistics.
However, it is easy to take a joint draw of the parameters and sufficient statistics
when the corresponding design matrix is for a saturated design. Suppose that
the set of parameters for the actual design matrix can be obtained as the union
of the sets of parameters for K saturated designs, that is, the union of the K sets
of parameters for the saturated designs spans the same space as spanned by the
parameters of the original design. Then cycling through the K CA steps for the
K saturated designs (i.e., cycling through the K joint drawings of parameters
and sufficient statistics), implements a partial CA adjustment. This idea of
contructing saturated design matrices to span the same space as the original
design matrix is closely related to the “space-filling” parameterizations used in
iterative maximization rountines (ECM: Meng and Rubin (1993); ECME: Liu and
Rubin (1994)), and implicit even in Iterative Proportional Fitting (e.g., Bishop,
Fienberg and Holland (1975)).

For our example, we used the following collection of space-filling design ma-
trices, constructed in such a way that the 23 factorial effects correspond to the
parameters of the over-lapping saturated models for the subsets of the original
factors.

• {Intercept, A, B, C, D1, D2, D3, F, G, H, AF, AH, BF, BG, CG, CH};
• {I, AI, BI, CI, D1, CH, H, AH};
• {I, AI, BI, CI, D3, G, CG, BG};
• {I, AI, BI, CI, D2, BF, AF, F};
• {I, FI, GI, HI, A, AF, D3, AH};
• {I, FI, GI, HI, D2, C, CH, CG};
• {I, FI, GI, HI, D1, BG, BF, B}.

Details of the implementation are omitted, they appear in Liu (2001).
With such a partial covariance adjustment, dramatically improved compu-

tational efficiency is obtained, as can be seen by comparing Figure 2 to Figure
1 (note the ranges over which the corresponding sequences wandered during the
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same number of iterations in both Figure 1 and Figure 2). The three smallest
eigenvalues of the normal-based estimate of the improved transition distribution,
0.5944, 0.0048 and 0.0023, confirm the improved efficiency, but also indicate that
there is a two-dimensional subspace corresponding to the two smallest eigen-
values that might need further consideration. In the following section, we use
this version of the covariance-adjusted DA (CA-DA) algorithm to show how the
Markov-normal analysis can be used to create an over-dispersed starting distri-
bution for running multiple chains, a process that leads to a reliable estimate of
the posterior distribution for inference.
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Figure 2. The last half sequences of the 24 parameters in the model for
the router lifetime experiment. The sequences, 20,000 iteration long, are
simulated using the covariance-adjusted DA algorithm.
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4.4. Computing the posterior distribution

Using the normal-based maximum likelihood estimates of the parameters
from the 20 parallel runs of CA-DA for 10,000 iterations, we obtained a mul-
tivariate normal approximation to the target distribution of the 24 parameters.
We then created a 24-dimensional multivariate t-distribution on 5 degrees of free-
dom, with center and scatter matrix given by the mean vector and the covariance
matrix (inflated by a factor of 1.5) of the normal approximation, respectively.
We made 20 parallel runs of CA-DA using this t-distribution as the presumably
overdispersed starting distribution. The plots of all the sequences in the first
1000 iterations for the 24 parameters, not included, support the view that this
distribution is overdispersed, in the sense that it has longer tails than the target
distribution. We then ran m = 20 parallel runs of length of 20, 000 each.

To assess the convergence of the sequence numerically in terms of the poste-
rior mean of the parameters, we computed the GR scale reduction coefficients for
the 24 parameters. The results from the m = 20 parallel runs of length of 20, 000
each (not reported) showed that the GR scale reduction coefficients for the ef-
fects of FI, GI and HI on the router bit lifetime indicate that a faster converging
MC algorithm than the current version CA-DA might still be helpful. This is
consistent with the results from the Markov-normal analysis given in the pre-
vious section. Comparing the histograms for the parameters in the model with
A0 = 0.0001I with a restarting distribution (not reported) also show that the
Markov-normal analysis provides a restarting distribution that is slightly more
overdispersed than the target distribution. Table 2 gives the GR estimates of the
quantiles of the posterior distributions of the 24 parameters.

4.5. Investigating sensitivity of the posterior distribution to the spec-
ification of the prior distribution

To check the sensitivity of the posterior distribution to the specification of
the prior distribution, Hamada and Wu (1995) also considered A0 = 0.01I23 and
A0 = I23. For these two cases, we repeated the above procedure and obtained
the posterior distributions of the parameters. The GR results for the parameters
in the case of A0 = I23 are displayed in Table 2. From our computations, it
appears that the posterior distribution is quite sensitive to the specification of
the prior distribution, a somewhat different conclusion from that of Hamada
and Wu (1995), who essentially ran a single chain MCMC with 14 iterations in
analogy with the method of using DA described in Wei and Tanner (1990). For
the cases of A0 = 0.01I23 and A0 = I23, the DA algorithm does not appear to be
as problematic as it was for the case of A0 = 0.0001I23.
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Table 2. The GR estimates of of the quatiles of the posterior distributions
of the 24 parameters in the model with A0 = 0.0001I and ln(lifetime)-1.5 for
the router bit lifetime example based on 20 parallel runs of length of 20,000
each. The GR results are obtained using a S-plus function provided by Prof.
Andrew Gelman.

A0 = 0.0001I A0 = I

Parameter 2.5% 25.0% 50.0% 75.0% 97.5% 2.5% 25.0% 50.0% 75.0% 97.5%

βIntercept -5.7 -3.2 -2.2 -1.2 0.7 -1.5 -0.9 -0.7 -0.5 -0.1

βA -1.4 0.4 1.3 2.2 4.6 -0.2 0.1 0.3 0.5 1.0

βB -6.4 -3.8 -2.7 -1.8 -0.1 -1.6 -1.0 -0.8 -0.6 -0.2

βC -1.6 0.2 1.1 2.0 4.3 -0.3 0.1 0.3 0.5 1.0

βD1 -0.2 1.5 2.4 3.4 6.1 0.1 0.5 0.6 0.9 1.4

βD2 -2.9 -0.9 0.1 0.9 2.9 -0.6 -0.2 0.0 0.2 0.6

βD3 -10.4 -6.8 -5.4 -4.3 -2.7 -2.5 -1.7 -1.4 -1.2 -0.9

βF -7.4 -4.3 -3.1 -2.1 -0.4 -1.7 -1.1 -0.8 -0.6 -0.3

βG -9.7 -6.0 -4.7 -3.6 -2.0 -2.3 -1.5 -1.3 -1.0 -0.7

βH -3.4 -1.0 -0.1 0.9 3.0 -0.6 -0.2 -0.0 0.2 0.6

βI 1.0 1.8 2.5 3.4 6.0 0.4 0.6 0.8 1.0 1.5

βAF -6.1 -3.5 -2.4 -1.5 0.1 -1.5 -0.9 -0.7 -0.5 -0.2

βAH -2.1 -0.2 0.8 1.7 4.0 -0.4 -0.1 0.1 0.3 0.8

βAI -3.2 -1.5 -0.8 -0.2 1.2 -0.7 -0.3 -0.2 0.0 0.4

βBF -6.1 -3.4 -2.3 -1.4 0.3 -1.4 -0.8 -0.6 -0.4 -0.0

βBG -3.6 -1.5 -0.6 0.3 2.3 -0.8 -0.4 -0.2 0.0 0.4

βBI -1.1 0.3 0.9 1.6 3.4 -0.3 0.1 0.3 0.4 0.9

βCG -0.7 0.9 1.9 2.9 5.5 0.0 0.4 0.5 0.8 1.3

βCH -3.0 -0.9 0.0 1.0 3.0 -0.6 -0.1 0.1 0.2 0.7

βCI -1.2 0.3 1.0 1.8 3.5 -0.3 0.1 0.3 0.5 0.9

βFI -4.8 -2.4 -1.7 -1.2 0.0 -1.1 -0.6 -0.5 -0.3 0.0

βGI -4.5 -2.2 -1.5 -1.1 -0.4 -1.3 -0.8 -0.6 -0.5 -0.2

βHI -4.5 -2.1 -1.4 -1.1 -0.3 -1.0 -0.6 -0.4 -0.2 0.1

ln σ2 -7.6 -7.1 -6.8 -6.5 -5.8 -1.7 -1.1 -0.8 -0.4 0.4

For comparison with the case of A0 = 0.0001I23, we compared the histograms
for the parameters in the model with A0 = I23 to the corresponding density
functions of the starting distribution obtained from the Markov-normal analysis
with the initial 20 parallel runs of length 1,000 each with simple starting values.
Again, these starting distributions appear to be appropriately overdispersed.

5. Discussion

We expect that simulation will continue its growth as a critical tool in mod-
ern inferential statistics. We also expect, however, a parallel growth of the ap-
plication of more traditional mathematical statistical methods of analysis to im-
prove the design of such simulations. We have discussed and illustrated the use
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of Markov-normal analysis of iterative simulations before their convergence, a
method proposed originally in Liu and Rubin (1996). The potential benefits
of the method reported in this paper can be summarized as: (i) to create over-
dispersed restarting distributions for running multiple chain iterative simulations
(as in Gelman and Rubin (1992)); (ii) to estimate the efficiency of MCMC algo-
rithms in terms of their rate of convergence and thereby be warned of problems
of convergence early in the simulation; and (iii) to provide information useful for
modifying the underlying iterative simulation scheme by identifying components
that appear to generate very slowly converging sequences with potentially unreli-
able results. Liu and Rubin (1996) discuss other relevant aspects of the method,
such as its efficiency in massively parallel or distributed computing environments,
where many sequences can be run for the same effective cost as one sequence.

It is, however, difficult to apply this Markov-Normal analysis when the num-
ber of variables is large. In the context of Bayesian estimation, it is useful to con-
sider the model parameters because (i) the dimensionality of the parameters can
be substantially smaller than the dimensionality of the missing data; and (ii) the
normality assumption can be practically appropriate, at least when the sample
size of the observed data used for estimating the parameters is large. Although
it is simple to apply the method to marginals of a MCMC, care must be taken
because the Markov property generally does not hold for the marginals although
it does for DA (a two-step Gibbs sampler). In particular, Liu and Rubin (1996)
noticed that the method can be misleading when applied to the non-Markovian
marginals of a MCMC (e.g., a Gibbs sampler with more than two steps). Further
investigation of the use of preliminary Markov-normal analysis for models with
many variables and parameters should be pursued, especially in the context of
massively parallel or distributed computing environments. Thus, we view work
presented here as only a simple illustration of the kinds of techniques that should
be developed in the coming years to help scientists and statisticians design and
analyze inferential simulations.
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