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Abstract— We report on our experiences regarding the acqui-
sition of hybrid Semantic 3D Object Maps for indoor household
environments, in particular kitchens, out of sensed 3D point
cloud data. Our proposed approach includes a processing
pipeline, including geometric mapping and learning, for pro-
cessing large input datasets and for extracting relevant objects
useful for a personal robotic assistant to perform complex
manipulation tasks. The type of objects modeled are objects
which perform utilitarian functions in the environment such
as kitchen appliances, cupboards, tables, and drawers. The
resulted model is accurate enough to use it in physics-based
simulations, where doors of 3D containers can be opened based
on their hinge position. The resulted map is represented as a
hybrid concept and is comprised of both the hierarchically
classified objects and triangular meshes used for collision
avoidance in manipulation routines.

I. INTRODUCTION

Autonomous personal robots performing everyday manip-

ulation tasks such as setting the table and cleaning up in

human living environments must know the objects in their

environments: the cupboards, tables, drawers, the fridge, the

dishwasher, the oven, and so on.

The knowledge about these objects must include de-

tailed information about the objects geometry, and structural

knowledge as: a cupboard consists of a container box, a door

with hinges and a handle. It even needs functional knowledge

that enables the robot to infer from the position of a handle

on a door the side to which the door opens.

Fig. 1. A snapshot of our kitchen lab: 16 registered scans shown in intensity
(grayscale), comprising roughly 15 millions of points. The world coordinate
system depicted on the bottom left shows X with the red color, Y with
green, and Z with blue.

We propose to extend the robot’s mechanisms for the

acquisition of environment models in order to acquire these

kinds of information automatically. To this end, we investi-

gate the following computational problem: given a 3D point

cloud model of an environment as depicted in Figure 1,

segment the point cloud into subsegments that correspond to

relevant objects and label the segments with the respective

category label (see Figure 2).

Fig. 2. Semantic 3D Object Map of an indoor kitchen environment.
The representative planar areas are shown in different colors (tables -
orange, floor - dark purple, walls - green and red, ceiling - cyan), and
3D cuboid containers are marked with their appropriated labels (cupboard,
drawer, oven, etc). The remaining unclassified points are shown in gray. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

The resultant labeled object model1 is meant to represent

the environment as best as possible given the geometry

present in the input data, but its accuracy does not have to be

absolute with respect to the true world model. Instead, the

object model is considered as an intermediate representation

that provides candidate objects which are to be validated

through subsequent processing steps. These steps include

vision based object recognition, active exploration like for

example opening the drawers and doors that were suggested,

and classifications based on the role that an object has in

a certain activity (i.e. activity recognition). For this reason,

the main objective of our mapping system is to compute the

model as quickly as possible using solely the geometric in-

formation contained in the point cloud, and have results that

1See attached video for details.



approximate the true world model. However our experience

as well as the illustration in Figure 2 suggests that most

objects can be segmented and labeled correctly.

These concepts constitute incremental work from our

previous work [1], and form the basis of our 3D mapping

system. The key contributions of the research reported in

this paper include the following ones: i) a multi-LoD (Level

of Detail) planar decomposition mechanism that exploits

the regularities typically found in human living environ-

ments; ii) efficient model-fitting techniques for the recog-

nition of fixtures (handles and knobs) on cupboards and

kitchen appliances; and iii) a learning scheme based on a

2-levels geometric features extraction for object classes in

the environment.

The remainder of this paper is organized as follows. The

next section briefly describes related work, followed by the

architecture of our mapping system in Section III. Section IV

present the planar decomposition, region growing, and level-

1 feature estimation, while in Section V we discuss the

fixture segmentation for furniture candidates and the level-2

feature estimation. Section VI presents the machine learning

model used to train the features, followed by a discussion

of the system’s overall performance in Section VII. We

conclude and give insight on our future work in Section VIII.

II. RELATED WORK

The concept of autonomously creating maps with mobile

robot platforms is not new, but so far it was mostly used

for the purpose of 2D robot localization and navigation,

with few exceptions in the area of cognitive mapping [2],

[3], but also including [4]–[9]. A workaround is represented

by maps built using multimodalities, such as [2], [10],

[11], where 2D laser sensors are used to create a map

used for navigation and additional semantics are acquired

through the use of vision. For example in [10] places are

semantically labelled into corridors, rooms and doorways.

The advantages of these representations is straightforward:

it keeps computational costs low enough and base their

localization and pose estimation on the well known 2D

SLAM (Simultaneous Localization and Mapping) problem,

while the problem of place labeling is solved through the

usage of feature descriptors and machine learning. However,

by reducing the dimensionality of the mapping to 2D, most

of the world geometry is lost. Also, the label categories need

to be learned a priori through supervised learning and this

makes it unclear whether these representations scale well.

[8] classifies 3D sensed data from a laser sensor into walls,

floor, ceiling, and doors, but their segmentation scheme relies

on simple angular thresholds. In [9], the authors use a graph

representation to detect chairs, but the relation descriptions

are manually estimated, and thus it is unclear whether the

proposed method scales. The work in [12] is closer to our

approach as they use probabilistic graphical models such as

Markov Random Fields to label planar patches in outdoor

urban datasets. Their work is based on [13], [14], which

define point-based 3D descriptors and classify them with

respect to object classes such as: chairs, tables, screens, fans,

and trash cans [14], respectively: wires, poles, ground, and

scatter [13].

Our mapping concept falls into the category of semanti-

cally annotating 3D sensory data with class labels, obtained

via supervised learning or learned by the robot through expe-

rience, to improve the robot’s knowledge about its surround-

ings and the area in which it can operate and manipulate. The

resulting models do not only allow the robot to localize itself

and navigate, but are also resources that provide semantic

knowledge about the static objects in the environment, what

they are, and how they can be operated. Thus, static objects

in the environment such as cupboards, tables, drawers, and

kitchen appliances are structurally modeled and labeled, and

the object models have properties and states. For example, a

cupboard has a front door, handles and hinges, is a storage

place, and has the state of being either open or closed.

III. SYSTEM OVERVIEW

We approach the map learning problem by designing a 2-

levels geometric feature set for a machine learning classifier,

that is capable of generating labeled object hypotheses only

using the geometric data contained in the point clouds while

scanning the environment.

Figure 3 presents the overall architecture of our system.

The integration of individual point cloud scans into the

hybrid model follows the geometrical processing pipeline

described in [1], [15], and includes: statistical gross outlier

removal, feature estimation for each point in the dataset,

a 2-step registration [16], and finally a local resampling

of the overlapping areas between scans [1]. Their result is

an improved point data model, with uniformly resampled

3D coordinates, and partially noiseless. This constitutes the

input to the Semantic Mapping system. Since these general

geometric mapping topics have already been covered in our

previous work [1], [15], [16], they fall outside the scope of

this paper.

Fig. 3. The architecture of our mapping system, and the 2 different types of
maps produced. The input data is provided from the laser sensors installed
on the robot’s arms via the Point Cloud Data Acquisition module, and is
processed through a Geometric Mapping pipeline resulting in a PCD world

model [1]. This model constitutes the input for the separate components of
the Semantic Mapping module.



The term hybrid mapping refers to the combination of

different data structures in the map, such as: points, triangle

meshes, geometric shape coefficients, and 2D general poly-

gons. Different tasks require different data structures from

this map. For example, 3D collision detection usually re-

quires either a triangle mesh representation or a voxelization

of the underlying surface, while object classification might

use the geometric shape coefficients. The hybrid Semantic

Object Map in our implementation is comprised of 2 different

types of maps:

• a Static Semantic Map comprised of the relevant parts

of the environment including walls, floor, ceiling, and

all the objects which have utilitarian functions in the en-

vironment, such as fixed kitchen appliances, cupboards,

tables, and shelves, which have a very low probability

of having their position in the environment changed (see

Figure 2);

• a Triangulated Surface Map, used for 3D path planning,

and collision avoidance for navigation and manipula-

tion, using the techniques presented in [17].

The Semantic Mapping pipeline includes:

• a highly optimized major planar decomposition step,

using multiple levels of detail (LOD) and localized

sampling with octrees (see Section IV-A);

• a region growing step for splitting the planar compo-

nents into separate regions (see Section IV-B);

• a model fitting step for fixture decomposition (see

Section V-A);

• finally a 2-levels feature extraction and classification

step (see Sections IV-C and V-B).

Figure 4 describes the 2-levels feature extraction and

classification framework employed in our Semantic Mapping

system. Instead of learning a single global model, we make

use of proven geometrical techniques for splitting the data

into clusters first, and compute separate features and a

separate model for each of these clusters. The two defined

level-1 clusters are composed of the horizontal planes, and

the vertical planes respectively. By treating them separately,

we simplify the features that need to be computed, remove

false positives, and in general improve the classification

results. Additionally, once we obtain a set of furniture

faces labels from the classifier for vertical planes, we pro-

ceed at extracting object fixtures (e.g. handles and knobs)

and estimate a level-2 set of features which will help at

separating furniture object types into drawers, cupboards,

kitchen appliances, and vertical side faces respectively. A

final advantage of this scheme is that we do not need to

estimate all possible features for all planar candidates, but

rather proceed at segmenting and computing features as

needed, starting with simple ones (i.e. horizontal planes).

Therefore, the overall system will benefit from a reduced

computational complexity.

IV. PLANAR DECOMPOSITION AND LEVEL-1 FEATURE

ESTIMATION

The Semantic Object Map includes semantically annotated

parts of the environment, which provide useful information
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Fig. 4. The 2-levels feature extraction and object classification framework
used in our mapping system.

for our mobile personal assistant robot in fulfilling its tasks.

These parts are thought of as being unmovable or static,

that is with a very low probability of having their position

changed in the environment, though this is not a hard

constraint for our system, in the sense that model updates

are possible. To separate the objects functions, we devised

three categories:

• structural components of the environment: walls, floor,

ceiling;

• box-like containers which can contain other objects

and have states such as open and closed: cupboards,

drawers, and kitchen appliances;

• supporting planar areas: tables, tops of sideboards,

shelves, counters, etc.

After the Geometric Mapping processing steps are applied

on the raw scanned data, as shown in in Figure 3, the

resultant point data model is transformed into the world

coordinate frame, with the Z-axis pointing upwards. Figure 1

presents a 360◦ view, comprised of 16 registered scans of

our kitchen lab. The world coordinate frame is presented on

the left side of the figure, and depicts the general XY Z

directions (X - red, Y - green, Z - blue).

A subsequent processing step is to segment the pointcloud

into planar areas. Once all the major planar areas are found,

and split into regions, we employ a 2-levels feature extraction

and classification scheme (see Figure 4).

A. Planar Segmentation

The assumption that our kitchen environment is mostly

planar and can thus be decomposed into areas of interest

using plane fitting techniques can be verified by looking at

the Extended Gaussian Image (EGI) of the point cloud. As

presented in the left part of Figure 5, most of the estimated

point normals are found as being parallel with the principal

XY Z directions, accounting for approximately 85% of the

entire dataset. These exact numbers are not important as they

will vary for other datasets, but in general they will prove

the planarity tendency in indoor environments.

The planar model decomposition in the pointcloud data

with near realtime performance, is achieved using a hier-

archical multi-LoD (Level of Detail) scheme. Instead of

using the entire data, we decompose the cloud using an

octree scheme, and perform a RMSAC [18] (Randomized M-

Estimator SAmple Consensus) based search for planar areas,



Fig. 5. Left: the Extended Gaussian Image (EGI) of the point cloud dataset.
As seen, most of the estimated point normals are found around the principal
XY Z directions, accounting for approximately 85% of the entire dataset.
Right: the remaining points after major planar area segmentation in our
kitchen dataset.

using the centroid of the leaves at the highest levels of detail

in the tree (see Figure 6). To optimize the search even further,

we make use of the estimated point normals while rejecting

planar candidates.

Fig. 6. Two different levels of detail representing approximately 1% (level
8), respectively 0.2% (level 7) of the total number of points from the original
dataset, created using an octree.

The multi-LoD scheme uses a localized sampling strategy.

The first sample point p1 is chosen randomly from the

complete point cloud. Then a octree level l is picked, which

determines C, the octree cell at level l that contains p1. The

other two samples points p2,p3 are then drawn from this

cell. The probability of finding a planar model M of size n

can be expressed as follows:

Plocal(n) =
n

N
· P(p2,p3 ∈ M|p2,p3 ∈ C), (1)

where the fraction denotes the probability for picking the

first sample point from M. The second term depends on the

choice of C, the properties of the point cloud and its octree.

Assuming that there exists a cell C at some level l0 such that

half of the points contained therein belong to M, the second

term in Equation 1 can be rewritten as:

P(p2,p3 ∈ M|p2,p3 ∈ C) =

(

|C|/2
2

)

(

|C|
2

)
≈

(

1

2

)2

. (2)

since the probability of selecting the correct level l0 is 1
d
,

where d denotes the cell of the octree, equation 1 transforms

into:

Plocal(n) =
n

4Nd
(3)

If we were sampling all three points uniformly from the

point cloud, the corresponding probability could be estimated

as follows: ( n
N )3, so the described sampling strategy im-

proves that probability by a factor of 1
4d (N

n )2.

Once a plane model is computed at a certain level of

detail, we refine its equation by including points from a

higher octree level, and refit the model. Once all the levels

have been exhausted we refine the resultant equation by

including the original points in the scan. This scheme has

the advantage that it constraints the rough planar equation

from the beginning and computes an initial solution very

early, while keeping the overall computational costs low.

Since the world coordinate frame is defined with the Z

axis pointing upwards, in general we are always interested

in dividing the planar models into two categories:

• horizontal planes, i.e. those whose normal is parallel

with the Z axis;

• vertical planes, i.e. those whose normal is perpendicular

to the Z axis.

The first category will include structural components of

the environment such as the floor and the ceiling, as well

as planar areas which can support movable objects, such as

tables, shelves, or counters (see Figure 7 left). The second

category will devise the walls of the room, and all the faces of

the furniture and kitchen appliances in the room (see Figure 7

right).

Fig. 7. Left: all horizontal planes found in the scene; right: all vertical
planes found in the scene.

B. Region Growing

After all the planar areas have been found, our pipeline

proceeds at breaking the resultant regions into smaller parts

using a region growing method. The algorithm is based

on two factors, namely: i) the Euclidean distance between

neighboring points, and ii) the changes in estimated surface

curvature between neighboring points. The second factor

is enforced by the use of boundary points, which will be

considered as having an infinite curvature, and thus act as

stoppers for the region growing algorithm.

To do this, first the boundary points of each region are

computed as explained in [1]. The left part of Figure 8

presents the resultant boundary points for the vertical planar

areas presented in the right part of Figure 7. Then, a random

non-boundary point p is chosen and added to a list of

seed points, and a search for its k closest 3D neighbors is

performed. Each neighboring point pk is individually verified

whether it could belong to the same region as the seed point

and whether it should be considered as a seed point itself

at a future iteration of the algorithm. A region is said to be

complete when the list of seed points for the current region

is empty and thus all point checks have been exhausted.

In contrast to our previous implementation in [1], the new

region growing algorithm expands the regions until boundary



Fig. 8. Left: vertical planar areas shown with their estimated boundary
points (marked with red); right: the resultant filtered regions after segmen-
tation. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

points are hit instead of looking at the estimated surface

curvature at each point. This has the advantage that we do not

need any additional computations or curvature thresholds. A

second optimization uses an octree decomposition to speed

up the region growing, that is, if no boundary points are

found within an octree leaf, all points are automatically

added to the current region. A final filtering step is applied

to remove bad regions, such as the ones where the number

of boundary points is larger than the number of points inside

the region. The segmentation results are shown in the right

part of Figure 8.

C. Extracting Level-1 features

As presented in Figure 4, our mapping scheme implements

two sets of geometric features at level-1, one for horizontal

planes and one for vertical planes. Their description is given

in Tables I and II. Throughout their definitions we use the

notations |p − q| and |p − q|z , which denote the Euclidean

distance between the points p and q over XY Z, respectively

the length of the segment formed between p and q over Z.

The first set of features will be computed for horizontal

planes. Once a model that can separate horizontal planes

into the object classes mentioned in Figure 4 is learned,

the resultant ceiling and floor object models will be used

to generate the level-1 features for vertical planes.

TABLE I

LEVEL-1 FEATURES FOR HORIZONTAL PLANES.

Feature Notation Description

Height Hh the height of the planar model on Z with respect
to the world coordinate frame

Length Lh the length along the first principal component

Width Wh the length along the second principal component

The vertical planar classification separates walls from

furniture candidates. Since we already know the planar

equations of the ceiling and the floor from the horizontal

planar classification, we use these to determine the height

of the vertical region with respect to them. The goal is

to differentiate between walls and other types of vertical

planes which will be considered unanimously as possible

furniture candidates. Therefore, the vertical regions which

contain points close to the ceiling might be classified as

walls. In our case, it is not extremely important if these are

actual walls or not – what matters is that those regions are

high enough that they are unreachable by the robot anyway.

Notice that the regions do not have to be continuous, as

all the points which have the same plane equation will be

marked as walls.

TABLE II

LEVEL-1 FEATURES FOR VERTICAL PLANES.

Feature Notation Description

Height Hv the actual length along the Z axis (i.e.
|Mz − mz | where Mz and mz are
the points with the maximum respec-
tively minimum Z values)

Floor distance Df
v the distance to the floor model (i.e.

|mz − pf |z where mz is the point
with the minimum Z value, and pf is
a point on the floor)

Ceiling distance Dc
v the distance to the ceiling model (i.e.

|mz−pc|z where mz is the point with
the maximum Z value, and pc is a point
on the ceiling)

Width Wv the length along the biggest principal
component, excluding Z

Since the feature spaces are relatively simple, the choice

of using the right machine learning classifier is greatly

simplified. In our implementation, we decided to use a

probabilistic undirected graphical method for training the

models, namely Conditional Random Fields (see Section VI).

V. FIXTURE SEGMENTATION AND LEVEL-2 FEATURE

ESTIMATION

The classifiers constructed using the level-1 features pre-

sented in the previous section separate the planar regions into

object classes such as tables and shelves (on horizontal) or

walls and furniture faces (on vertical).

Following the architectural framework depicted in Fig-

ure 4, our mapping pipeline employs a segmentation of

fixtures (e.g. handles and knobs) on vertical planar regions

classified as possible furniture faces.

A. Fixture Segmentation

For each of the classified furniture faces candidates, we

perform a search for points lying in their vicinity, which

could contain fixtures such as handles and knobs. The

algorithm for extracting fixtures consists in the following

steps:

• compute the boundary points of each furniture face

candidate;

• obtain the 2 directions perpendicular to the normal of

the planar area, and find the best (i.e. highest numbers

of inliers) 4 oriented lines, 2 in one direction and 2 in

the other direction using RMSAC;

• get the 4 points which form the 3D rectangle approxi-

mating the planar region;

• get all points which are lying on this rectangle but are

not inliers of the planar face and compute their boundary

points;

• finally, fit 3D lines and 3D circles to these boundary

points using RMSAC, score the candidates, and select

the ones which minimize the Euclidean distance error

metric. To refine the final shape parameters, we apply

a non-linear optimization using Levenberg-Marquardt.



Figure 9 presents the segmentation and classification of

all handles and knobs found on candidate furniture faces in

the kitchen dataset presented in Figure 1.

Fig. 9. Segmentation and classification of fixtures (handles and knobs) on
furniture faces (see Figure 12). Handles are drawn with blue lines over their
inlier points (in magenta), knobs with orange circles, and each planar area
is bounded by 4 corners (in black) and 4 perpendicular lines (in cyan). The
red dotted-lines represent the convex boundaries of each point region. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

B. Extracting Level-2 features

To differentiate between various possible furniture types,

our mapping scheme implements a secondary type of features

which are to be computed only for the vertical planar regions

classified as furniture candidates. This set of features (see

Table III) take into considerations constraints such as the

number of handles and knobs present as lying on the planar

region, as well as the distance between the center of the

fixture and the center of the region.

TABLE III

LEVEL-2 FEATURES FOR FURNITURE CANDIDATES.

Feature Notation Description

Height Hf the height of the furniture candidate

Width Wf the width of the furniture candidate

Nr. handles Nh the number of handles present on the fur-
niture candidate

Nr. knobs Nk the number of knobs present on the furni-
ture candidate

Min distance Dm the minimum distance between the center
of the planar face and the closest fixture
(handle or knob)

Following the classification results for object types which

employ fixtures towards one of the edges of the planar face

supporting them (e.g. cupboards), our system will estimate

the door opening hinge as being on the opposite edge.

VI. LEARNING OBJECT CLASSES

We use Conditional Random Fields for the classification of

our models. CRFs have mostly been used for segmenting and

labeling sequence data [19] but have lately shown excellent

results in other research areas as well. A Conditional Random

Field is an undirected graphical model with vertices and

edges. In contrast to generative graphical models, like Naive

Bayes or Hidden Markov Models, a Conditional Random

Field is a so called discriminative graphical model which

doesn’t represent a joint probability distribution p(x, y).
Instead it uses a conditional probability distribution p(y|x) to

provide a method to reason about the observations x and the

classification label y. The performance outcome of generative

models often suffer from potentially erroneous independence

assumptions made during modeling the observations x in

connection to the labels y. By using a discriminative graph-

ical model like Conditional Random Fields, there is no need

in modeling the features of y at all, which results in a

superior classification speed and performance compared to

generative models.

Applying the product rule and the sum rule on the condi-

tional probability p(y|x), we get:

p(y|x) =
p(y, x)

p(x)
=

p(y, x)
∑

y′ p(y′, x)
=

∏

c∈C ψc(xc, yc)
∑

y′

∏

c∈C ψc(xc, y′c)
(4)

where the factors ψc are the potential functions of the random

variables vC within a clique c ∈ C.

Finally we can derive a general model formulation for

Conditional Random Fields [20]:

p(y|x) =
1

Z(x)

∏

c∈C

ψc(xc, yc), Z(x) =
∑

y′

∏

c∈C

ψc(xc, y
′)

(5)

By defining the factors ψ(y) = p(y) and ψ(x, y) = p(x|y)
we can derive an undirected graph with state and transition

probabilities. The potential functions ψc can be split into

edge potentials ψij and node potentials ψi as follows:

p(y|x) =
1

Z(x)

∏

(i,j)∈C

ψij(yi, yj , xi, xj)
N
∏

i=1

ψi(yi, xi) (6)

where the node potentials are

ψi(yi, xi) = exp

(

∑

L

(λL
i xi)y

L
i

)

(7)

and the edge potentials are

ψij(yi, yj , xi, xj) = exp

(

∑

L

(λijxixj)y
L
i y

L
j

)

(8)

where λi represents the node weights and λij the edge

weights. Learning in a Conditional Random Field is per-

formed by estimating these weights λi = {λ1
i , . . . , λ

L
i } and

λij = {λ1
ij , . . . , λ

L
ij}. Conditional Random Fields are trained

using supervised learning, that means during the learning

step the data input and output is known and used to maximize

the log-likelihood of P (y|x) [21].
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Fig. 10. From left to right: CRF for model 1 (Horizontal L-1 Features), 2
(Vertical L-1 Features), and 3 (L-2 Features).



Figure 10 shows the Conditional Random Fields for our

three different models. Each of the models’ features is used

as an input variable. The variable nodes are named after the

corresponding notations in Tables I, II, and III.

VII. DISCUSSIONS AND EXPERIMENTAL RESULTS

An important factor in the classification accuracy of the

CRF model, is the amount and type of training data used for

learning. Due to physical constraints in moving our mobile

robot to a different kitchen environment, or changing the

kitchen furniture to obtain multiple datasets, the amount of

training data available was small. To circumvent this prob-

lem, we proceeded as follows: we created realistic kitchen

models in our Gazebo 2 3D simulator, and used virtual

scanning techniques, followed by synthetic data noisifica-

tion to acquire additional point clouds representing kitchen

environments (see Figure 11). After acquiring a few of

these datasets, we processed them through our pipeline and

extracted the 2-levels features for training the CRF model.

Table V presents a few examples of virtually scanned kitchen

environments (left) and their respective fixture on furniture

candidate faces segmentation (right).

Fig. 11. An illustration of the simulated 3D environments and the process
of acquiring training datasets, using the Gazebo 3D simulator.

The classification results of the trained CRF model for the

kitchen dataset presented in Figure 1 are shown in Table IV.

The table shows the recall, precision and F1-measure values

of all labels and the macro-averaged statistic of each model.

The item accuracy is based on the overall correct classified

items against the wrong classified items in the test data set.

TABLE IV

PERFORMANCE OF THE CRF MODELS

Horizontal planes Vertical planes Furniture candidates

Label Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

1 1.00 0.50 0.67 1.00 0.91 0.95 0.94 1.00 0.97
2 1.00 1.00 1.00 0.97 1.00 0.98 0.97 0.89 0.93
3 0.96 1.00 0.98 0.50 0.75 0.60

Macro
accuracy 0.99 0.83 0.88 0.99 0.95 0.97 0.80 0.88 0.83

Item
accuracy 0.97 0.98 0.91

The labels for the models given in the above table

represent (in order): floor, tables, and ceiling (horizontal

planes); walls, and furniture candidates (vertical planes);

respectively cupboards, drawers, and kitchen appliances (fur-

niture candidates). As it can be seen, the lowest accuracy

2Gazebo is a 3D simulator - http://playerstage.sourceforge.net

of the classification results is represented by the kitchen

appliances. The variety in the models we trained our model

with is simply too large, and our proposed level-2 features

cannot capture the modeling process correctly. We plan to

investigate this further by redesigning our features as well

as using more training datasets.

Figure 12 presents the classification of vertical planar areas

into walls (left) and furniture candidates (right) using the

aforementioned CRF model.

Fig. 12. Vertical planar regions classified as: walls (left); furniture
candidates (right); for the dataset presented in Figure 1.

After classification, the resulted objects are incorporated

into the map and using a XML-based representation, we

can import them back in the Gazebo simulator, where it

is possible to perform a validation of the estimated door

hinges and object classes. Figure 13 presents the automatic

environment reconstruction of the real world dataset.

Fig. 13. Left: automatic environment reconstruction of the real world
dataset from Figure 2 in the Gazebo 3D simulator; right: the estimation and
evaluation of door hinges from geometry data.

To support mobile manipulation and 3D collision avoid-

ance, our mapping pipeline creates a second type of map

comprised of triangular meshes: the Triangulated Surface

Map. By using the acquired object classes, the surface recon-

struction methods can be applied in parallel on each object

separately, leading to the creation of a decoupled triangle

map. The straightforward advantages of such a representation

(see Figure 14 for an example) are that: a) changes in the

world can be now be modelled separately on a subset of

objects without loading or working with the rest; and b) it

supports environment dynamics natively, as picking up an

object from a table simply means moving the triangular mesh

representing the object from the table into space, without the

need to recreate it.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented a comprehensive system for the ac-

quisition of hybrid Semantic 3D Object Maps for kitchen

environments. Our hybrid mapping system includes 2 com-

ponents, namely: i) a Semantic 3D Object Map which

contains those parts of the environment with fixed positions



Fig. 14. Surface reconstruction example with mesh decoupling for all
furniture candidates and objects supported by planar areas.

TABLE V

VIRTUALLY SCANNED TRAINING DATASETS.

Virtually scanned environment Segmentation and model fitting

and utilitarian functions (walls, floor, kitchen appliances,

cupboards, tables, etc); and ii) a Triangulated Surface Map

updated continuously. The Semantic Object Map is built

by classifying a set of planar regions with estimated 3D

geometrical features, and serves as a semantic resource for an

assistant mobile personal robot, while the Triangulated Sur-

face Map supports 3D collision detection and path planning

routines for a safe navigation and manipulation.

As pure geometrical reasoning has certain limits, we plan

to switch to a multimodality sensing approach, in which

fast stereo cameras are combined with accurate laser mea-

surements, and texture and color based reasoning will help

disambiguate situations which geometry alone cannot solve.
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