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Activation of naive CD8 T-cells can lead to the generation of multiple effector and

memory subsets. Multiple parameters associated with activation conditions are involved

in generating this diversity that is associated with heterogeneous molecular contents

of activated cells. Although naive cell polarisation upon antigenic stimulation and the

resulting asymmetric division are known to be a major source of heterogeneity and

cell fate regulation, the consequences of stochastic uneven partitioning of molecular

content upon subsequent divisions remain unclear yet. Here we aim at studying the

impact of uneven partitioning on molecular-content heterogeneity and then on the

immune response dynamics at the cellular level. To do so, we introduce a multiscale

mathematical model of the CD8 T-cell immune response in the lymph node. In the

model, cells are described as agents evolving and interacting in a 2D environment

while a set of differential equations, embedded in each cell, models the regulation of

intra and extracellular proteins involved in cell differentiation. Based on the analysis of

in silico data at the single cell level, we show that immune response dynamics can be

explained by the molecular-content heterogeneity generated by uneven partitioning at

cell division. In particular, uneven partitioning acts as a regulator of cell differentiation and

induces the emergence of two coexisting sub-populations of cells exhibiting antagonistic

fates. We show that the degree of unevenness of molecular partitioning, along all

cell divisions, affects the outcome of the immune response and can promote the

generation of memory cells.
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1. INTRODUCTION

Following acute infection, the activation of naive CD8 T-cells
by antigen presenting cells (APCs) triggers the synthesis of
proteins controlling cell proliferation and differentiation up to
the memory state. While CD8 T-cell population dynamics have
been widely described, it is of great interest to better understand
the molecular mechanisms driving the CD8 T-cell response.
In particular, determining the effects of molecular events on

the generation of memory cells is necessary for vaccine design
improvement. In vivo and in vitro studies have demonstrated
that a single presentation of the antigen to naive CD8 T-cells

is sufficient to trigger a complete CD8 T-cell immune response
(1–5). Then, once initiated, antigen-independent molecular
pathways drive a program of CD8 T-cell proliferation and
differentiation (6, 7).

The CD8 T-cell immune response occurs through four main
phases. First the activation of naive CD8 T-cells in secondary
lymphoid organs such as lymph nodes (LN) or spleen by APCs
through MHC class I antigenic peptide/T-cell receptor (TCR)
binding, surface co-receptor/ligands interactions and soluble
cytokines secretion. Once activated, CD8 T-cells proliferate
quickly during the expansion phase, which expands the initial
population by a factor of 103 to 105 (6, 8). Concomitantly,

activated cells differentiate into effector cells, able to kill infected
cells through cytotoxicity. At the end of the expansion phase,
known as the peak of the response, the CD8 T-cell population
begins a contraction phase, where most of the responding cells
die yet leaving a quiescent population of cells with strong
re-activation potential: the memory cells. The memory cell
population survives the contraction phase and may remain for
years in the organism (memory phase) to ensure faster and
stronger host-protection against subsequent infection by the
same pathogen.

The responding effector population is composite and two
subsets with antagonistic fates have been described (9): memory
precursor effector cells (MPEC) and short-lived effector cells
(SLEC), characterised by the expression of two proteins KLRG1
and CD127 (IL-7 receptor). Both MPEC (KLRG1loCD127hi) and
SLEC (KLRG1hiCD127lo) express effector features (cytotoxicity,
proliferation) but MPEC are capable of differentiation into
memory cells while SLEC are destined to die during the
contraction phase (9). Thus, CD8 T-cell population dynamics
arise from cell phenotypic heterogeneity, itself resulting from
molecular-content heterogeneity.

Among the genes, transcription factors and proteins involved
in the CD8 T-cell response, some seem to play key roles in
the differentiation processes. Transcription factors Tbet and
Eomesodermin (Eomes) appear to play critical roles in the
acquisition of effector and memory phenotypes. It has been
shown that the expression of Tbet induces the development
of SLEC and represses the development of MPEC profiles (9–
11). Eomes is not involved in the SLEC vs. MPEC fate choice
(12, 13). However, Eomes is necessary for the development of
several properties of memory cells [survival, lymph node homing
capacities, responsiveness to second infection (11, 12, 14)]. Along
the differentiation from effector to memory, the concentration of

Tbet in a CD8 T-cell decreases, while the concentration of Eomes
increases (11, 15).

Since a unique initial antigenic signal can trigger a complete
response, additional mechanisms are necessary to generate the
observed molecular-content heterogeneity. Arsenio et al. (16),
Chang et al. (17, 18), and Ciocca et al. (19) showed that TCR
binding to MHC-class-I peptide-complex results in polarised
segregation of proteins in activated CD8 T-cell: some proteins
migrate on the TCR side of the T-cell, other migrate on the
opposite side. The subsequent division of the activated CD8 T-
cell splits the mother cell perpendicularly to the polarisation axis,
such that the daughter cell coming from the TCR side (proximal
cell) receives more proteins associated to effector lineage,
including Tbet, while the other one (distal cell) receives more
proteins associated to memory lineage. Asymmetric division of
polarised naive CD8 T-cells appears to be one of the major
mechanisms regulating CD8 T-cell fate decision.

Nevertheless, the role of asymmetric division of polarised
naive cells in the T-cell differentiation process appears to
be controversial (20). While there are several evidences for
asymmetric division of polarised naive CD8 T-cells (21), it
remains uncertain how this polarisation quantitatively depends
on the affinity of the TCR for the MHC-class-I peptide-
complex, the duration of the binding, external chemokines
and interactions with homotypic CD8 T-cells (21). Since the
asymmetric partitioning of Tbet has been evidenced in mice CD8
T-cells, it will be considered hereafter.

Less is known about the partitioning of molecular content
in the course of subsequent cell divisions. However, several
studies support the hypothesis that when a cell divides, a
random, uneven partitioning of the molecular content occurs
(22–29). Partitioning of CFSE dye, a cell staining dye used to
track cell proliferation through dye dilution, during lymphocyte
proliferation has been mathematically studied by Bocharov et al.
(23) and Luzyanina et al. (26). Based on comparison with
in vitro experimental data, these studies suggest that uneven
partitioning, which does not result from cell polarisation, occurs
at T-cell division.

We emphasize that the asymmetric first division of naive cells,
which goes through an active polarisation of the cell, has to be
distinguished from the random partitioning of the molecular
content during the subsequent divisions of non-polarised cells,
hereafter referred to as uneven partitioning (29).

In a recent work (30), we studied how stochastic uneven
molecular partitioning, repeated at each cell division, could
regulate the effector vs. memory cell-fate decision in a CD8
T-cell lineage. To do so, we analysed an impulsive differential
equation describing the concentration of the protein Tbet
in a CD8 T-cell subject to divisions, where impulses were
associated with uneven partitioning of Tbet. In this work, high
and low Tbet concentrations were associated with effector and
memory phenotypes, respectively. We concluded that, for a low
degree of unevenness of molecular partitioning, a CD8 T-cell
expressing a moderate concentration of Tbet can still generate
both memory and effector cells. If the concentration of Tbet
in this cell is high or low enough, the phenotype of the cell
and its progeny becomes irreversible, with low Tbet-expresser
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and high Tbet-expresser differentiating in memory or effector
cells, respectively. Moreover, our study indicates that the increase
in cell cycle length throughout the immune response (31, 32)
favours irreversible cell differentiation.

Several works [see (33) and the references therein], focused
on modeling molecular mechanisms of the immune response
coupled to cell population dynamics. Most of these works involve
agent-based models.

Gong et al. (34, 35) developed a two-compartment model to
study how the number of dentritic cells and the level of MHC-
peptides on their membrane influence the size and composition
of T-cell populations. Since they did not model any dynamics at
the molecular level, they were limited in studying the molecular
origins of cell differentiation and heterogeneity.

Prokopiou et al. (36) and Gao et al. (37) designed a multi-scale
agent-based model of the early CD8 T-cell immune response
(Day 3–5.5 post-infection). At the population scale, a discrete
population of CD8 T-cells and APCs in a LN is modeled by
a cellular Potts model (CPM) (38). At the molecular scale,
the dynamics of a simplified molecular regulatory network
(MRN) containing some key molecular factors is modeled by
a system of differential equations, embedded in each cell of
the population, whose state determines cell phenotype and fate.
Cells communicate with each other through cell-cell contact and
secretion of the cytokine IL2 such that the environment of a
cell affects its molecular profile. Parameter calibration resulted
in good agreement with in vivo data of an immune response
in murine LN after influenza infection, at both cellular and
molecular levels.

The model presented in this article has been developed
from the multi-scale agent-based model previously introduced
in Prokopiou et al. (36) and Gao et al.(37). Since the authors in
Prokopiou et al. (36) and Gao et al. (37) focused on early events
following CD8 T-cell activation, they did not consider processes
leading to the generation of memory cells. We enriched their
model in order to study a complete response, from the activation
of naive cells to the generation of memory cells. In particular,
Eomes has been added to the MRN.

In this paper, we are interested in understanding how, from
the activation of naive CD8 T-cells, an antigen-independent
regulation of intra-cellular molecular content can drive a
complete CD8 T-cell response. We particularly focus on the
role of molecular-content heterogeneity among a CD8 T-cell
population in the generation of memory cells. We first verify
our model’s ability to reproduce in vivo data at both cellular
and molecular scales. Then we study, in an in silico CD8 T-
cell population, the impact of molecular-content heterogeneity
on the emergence of sub-populations, characterised by their
expression of proteins Tbet and Eomes. We discuss how uneven
distribution of molecular content at cell division affects the
cellular dynamics (population size, cell differentiation, and death)
and suggest that memory cell generation efficiency is maximal
for a moderate degree of unevenness. Finally, we show that
memory cells generated by our model are able to reproduce some
features of a secondary CD8 T-cell immune response. Indeed,
when restimulated by antigen in silico they generate more cells
at the peak of the response and in the memory phase.

2. MATERIALS, METHODS, AND MODELS

2.1. Data
4 × 105 naive CD8 T-cells from CD45.1+ F5 TCR transgenic
mice (B6.SJL-PtprcaPepcb/BoyCrl-Tg(CD2-TcraF5, CD2-
TcrbF5)1Kio/Jmar) recognizing the NP68 epitope were
transferred intravenously in congenic CD45.2+ C57BL/6
mice (C57BL6/J). The day after recipient mice were inoculated
intranasally with 2×105 PFU (plaque forming units) of a vaccinia
virus expressing the NP68 epitope (39). From day 4 to day 22
post-infection, the spleens of infected animals where harvested
and the number of F5 transgenic CD8 responder T-cells was
assessed by flow cytometry, based on CD8/CD45.1/CD45.2
expression, to distinguish F5 TCR-transgenic responder
(CD45.1+CD45.2−) from host (CD45.1−CD45.2+) CD8 T-
cells. Naive (CD44− Mki67− Bcl2+), effector (CD44+ Bcl2-)
and memory (CD44+ Mki67− Bcl2+) CD8 T-cells have been
identified (40). All experimental procedures were approved
by an animal experimentation ethics committee (CECCAPP;
Lyon, France), and accreditations have been obtained from
the French government.

OT1 CD8 T cells mRNA expression data time courses come
from the ImmGen project (http://www.immgen.org). According
to the information provided on ImmGen.org, the in vivo mRNA
data (Figure 4) were generated for OT1 T-cells stimulated in
similar experimental settings i.e., the response of transferred
OT1 TCR-transgenic CD8 T-cells following infection by vesicular
stomatitis virus expressing their cognate antigen.

2.2. Molecular Regulation and IL2 Diffusion
We aim at describing the molecular regulation within each
CD8 T-cell during a response to an acute infection, and
how the dynamical molecular state of a cell characterises its
differentiation stage. We present on Figure 1 the MRN that

FIGURE 1 | Simplified molecular regulatory network in a CD8 T-cell. Red

molecular factors dynamics are described by Equations (1–6); yellow

molecular factors dynamics are described by Equation (7); black arrows:

promotion or secretion; green arrows: transition between activated and

non-activated form of IL2R; red dashed arrows: inhibition. The meaning of the

numbered arrows is reported in Table 1.
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will be used throughout this manuscript and give a detailed
description in Table 1. It contains several key molecular factors
involved in CD8 T cell proliferation, differentiation, apoptosis,
and cell communication. This is an updated version of the MRN
developed in Prokopiou et al. (36) and Gao et al.(37) that was
limited to the description of differentiation up to the effector
stage. To account for differentiation into memory cells, we
introduced the protein Eomes and its interactions with the rest
of the network as documented in the literature. Indeed, Eomes is
involved in the development of essential properties of memory
cells such as survival, lymph node homing capacities or faster
response to antigenic stimulation (11, 12, 14).

2.2.1. Molecular Regulatory Network
This MRN is initiated upon antigen presentation to a naive
CD8 T-cell, through the engagement of the TCR. Antigenic
stimulation triggers the synthesis of interleukine-2 (IL2) by the
CD8 T-cell and the production of IL2 receptors (IL2R) on the
cell membrane (44). The synthesised IL2 is then released in the
environment and can bind its receptor (41) to form IL2-IL2R
complex, hereafter referred to as activated IL2R. Activated IL2
receptors enhance the expression of IL2 receptors (44) as well
as IL2 synthesis (44). In the meantime, activated IL2 receptors,
jointly with protein Tbet (see below), inhibit the activation
of the IL2 gene through the action of the mediator protein
Blimp1 (45, 46).

Antigenic stimulation independently stimulates Tbet
synthesis (43), a protein involved in the acquisition of cell
cytotoxicity. Indeed, Tbet is known to induce the expression of
Fas ligand (FasL) (52), a transmembrane protein that can bind to
the transmembrane protein Fas to induce cell apoptosis via the
activation of Caspases in the Fas-expressing cell (53). Caspases
are a family of proteins playing essential role in cell apoptosis
(60). There exist several types of Caspases involved in CD8 T-cell
apoptosis yet, for the sake of simplicity, we aggregated them in a
unique variable [Cas]. Moreover, Tbet induces its own synthesis
(via the gene Tbx21) (54, 55).

Eomes expression, involved in the acquisition of memory
phenotype (12), is first inhibited during the activation phase
due to engagement of the TCR (via activation of the Akt/mTOR
pathway and inhibition of FOXO1 and TCF7) (7, 13, 57). Eomes
is induced later (11, 61) and its expression is enhanced by the
activation of IL2 receptors (7, 13, 56). Eomes promotes the
development of new IL2 receptors on cell membrane (14).

The activation of IL2 receptors, of the TCR and the
protein Eomes prevents apoptosis by inhibiting the activation
of Caspases, in particular through the mediator protein
Bcl2 (12, 50, 51)

2.2.2. Intracellular Molecular Dynamics
Based on the above-described reactions, and from the equations
used in Prokopiou et al. (36) and Gao et al. (37), we describe the
dynamics of the concentrations of non-activated IL2 receptors
([R]), activated IL2 receptors ([L • R]), Tbet ([Tb]), activated Fas
([Fs∗]), Caspases ([Cas]) and Eomes ([E]) in a CD8 T-cell with
the following system of equations

d

dt
[R] = λR1fAPC + (µ−

IL2 + λR2)[L • R]+ λE1[E]

−
(

µ+
IL2[IL2

cm]+ kR
)

[R], (1)

d

dt
[L • R] = µ+

IL2[IL2
cm][R]− µ−

IL2[L • R]− ke[L • R], (2)

d

dt
[Tb] = λT1fAPC + λT2

[Tb]n

λnT3 + [Tb]n
− kT[Tb], (3)

d

dt
[Fs∗] = Hµ+

F [Tb
cm]

(
λF

kF
− [Fs∗]

)

−µ−
F [Fs

∗]− kF[Fs
∗], (4)

d

dt
[Cas] = Gλc1

1

1+ λc2[L • R]
·

1

1+ λc3fAPC
·

1

1+ λE2[E]

+λc4[Fs
∗]− kc[Cas], (5)

d

dt
[E] =

1

1+ λE5fAPC
·

(
λE3[L • R]

λE6 + [L • R]
+

GλE4

1+ λE7[Tb]

)

− kE[E]. (6)

All parameters are positive. Parameters λ are associated
to induction and inhibition effects, µ are associated to
activation and deactivation of transmembrane proteins and k are
degradation and dilution rates. The concentrations of System (1–
6) are assumed to be null in naive CD8 T-cells, and remain null
until TCR engagement.

The effects of the external environment on the intracellular
system (1–6) are taken into account through five variables. The
variable fAPC (Equations 1, 3, 5, 6) is equal to the number of
APCs bound to the considered CD8 T-cell and accounts for TCR
engagement. The variableG (Equations 5, 6) is equal to 0 in naive
CD8 T-cells and to 1 otherwise, i.e., in cells that have already
met with an APC. It accounts for the fact that up-regulation of
Caspases and Eomes described by parameters λc1 and λE4 is not
active in naive cells. The variable H (Equation 4) accounts for
the expression of FasL by effector and memory T-cells and for
the activation of Fas through cell contact. Hence, H is equal to 1
in a non-naive considered CD8 T-cell in contact with an effector
or a memory CD8 T-cell, and equal to 0 otherwise. The variable
[IL2cm] is equal to the concentration of IL2 at the cell membrane,
in the extracellular environment. Finally, [Tbcm] is defined as the
sum of Tbet concentrations in effector and memory CD8 T-cells
in contact with the considered CD8 T-cell and acts as a proxy for
the expression of Fas in those cells.

We introduced the variable [E] and the associated Equation
(6) to the system used in Gao et al. (37) in order to account
for the synthesis of protein Eomes and its interactions with
other molecular factors. The term λE1[E] in (1) accounts for
the up-regulation of IL2 receptors by Eomes. Eomes also limits
cell apoptosis by activating Bcl-2 gene, as do IL2 and activated
TCR. This communal target explains the multiplicative form of
the inhibition of Caspases by Eomes, IL2 and TCR in Equation
(5). We also introduced the function G in (5) to update the
dynamics of Caspases concentration from Prokopiou et al. (36)
and Gao et al. (37).
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TABLE 1 | Description of the molecular signalling pathways in Figure 1 and corresponding bibliographic references.

n◦ Description References

1 Activated TCR induces the development of IL2 receptors (41, 42)

2 Activated TCR induces the synthesis of Tbet (43)

3 Deactivation of activated IL2 receptors (41)

4 Activation of IL2 receptors (41)

5 Activated IL2 receptors induce the development of new IL2 receptors (44)

6 Activated IL2 receptors inhibit the expression of the IL2 gene (via Blimp1) (45)

7 Activated IL2 receptors induce the expression the IL2 gene (44)

8 Tbet enhances the inhibition of the IL2 gene by activated IL2 receptors (46)

9 Internal IL2 is secreted in extracellular environment (41)

10 External IL2 binds the non-activated IL2 receptors to activates them (44)

11 Tbet inhibits the secretion of IL2 (47–49)

12 TCR activation activates IL2 gene (via Erk) (44)

13 TCR activation inhibits the activation of Caspases (via Erk, Bim, Bax and Bcl2) (50)

14 Activated IL2 receptors inhibit the activation of Caspases (via Stat5, BAX et Bcl2) (51)

15 Tbet induces the expression of FasL (52)

16 FasL activates Fas through cell contact (53)

17 Activated Fas induces Caspases activation (53)

18 Tbet activates Tbx21 and induces the synthesis of Tbet (positive feedback loop) (54, 55)

19 Eomes induces the expression of IL2 receptors (14)

20 Activated IL2 receptors induce the expression of Eomes (via Runx3) (7, 13, 56)

21 Activated TCR inhibits Eomes gene expression (via Akt, mTOR, Tcf1, Foxo1) (7, 13, 57)

22 Eomes inhibits the activation of Caspases (via Bcl2) (12)

23 Tbet inhibits the expression of Eomes (via IFNγ , IL12R) (58, 59)

The positive feedback loop on Tbet is modeled with an order
n Hill function in order to allow bistable behaviour of Tbet. As
discussed in the introduction, the concentration of protein Tbet
can be associated to the level of differentiation of an effector CD8
T-cell, with high level of Tbet correlating with fully differentiated
effector cell, while low Tbet levels are associated to memory
precursor effector cells. Proposition 1 below, reproduced from
Girel and Crauste (30), gives necessary and sufficient conditions
to allow bistable behaviour of Tbet concentration.

Proposition 1 (30). Assume fAPC = 0, n > 1 and λT2(n−1)
n−1
n >

nkTλT3, then Equation (3) has exactly three non-negative steady
states: 0 < [Tb]u < [Tb]s, such that 0 and [Tb]s are locally
asymptotically stable and [Tb]u is unstable.

In the following, we will assume that the conditions n > 1 and

λT2(n− 1)
n−1
n > nkTλT3 are fulfilled (see section 3.2).

System (1–6) is embedded in every CD8 T-cell. Nevertheless,
cell-cell contacts, stochastic events (cell cycle length, protein
distribution at division) and external concentrations of IL2 affect
the evolution of the system such that each CD8 T-cell develops a
unique molecular profile based on its own history.

2.2.3. Extracellular IL2 Diffusion
The secretion of IL2 by CD8 T-cells and its isotropic
diffusion in the extracellular domain (with periodic boundary
conditions) are modeled by the following PDE, introduced by

Prokopiou et al. (36),

∂[IL2]

∂t
= D∇2[IL2]+

(

λR3
[L • R]

λR4 + [L • R]
+ λ1fAPC

)
1

1+ λT4[Tb]
− δ[IL2], (7)

where [IL2] is the IL2 concentration. CD8 T-cells react to
extracellular IL2 through their IL2 receptors by means of the
[IL2cm] term, in (1–2), defined as the sum of [IL2] at the
considered cell membrane.

2.3. Cell Differentiation and Division
Rules controlling cell division (including protein distribution
at the division), apoptosis and differentiation are summarised
in Table 2 and detailed hereafter. It must be noted that cells
properties result from their molecular profile. For example, the
properties observed in vivo in memory cells (survival, low IL2
secretion, low cytotoxicity) are not imposed by model rules
but acquired as a consequence of their molecular profile. One
exception is cell cycle duration (see 2.3.2).

2.3.1. Differentiation
We designed a set of rules based on the linear, irreversible
differentiation scheme from Prokopiou et al. (36) and Gao et al.
(37), allowing the description of a full CD8 T cell response, from
the activation of naive cells up to the generation of memory cells.
The differentiation pathway is illustrated in Figure 2.
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TABLE 2 | Main rules applying to APCs and CD8 T-cells in the model.

Cell type

Property Division Apoptosis IL2 FAS FasL

secretion expression expression

APC ❍ ✔ ❍ ❍ ❍

Naive ❍ ❍ ❍ ❍ ❍

Pre-activated ❍ ✔ ✔ ❍ ❍

Activated ✔ ✔ ✔ ✔ ❍

Effector ✔ ✔ ✔ ✔ ✔

Memory ❍ ✔ ✔ ✔ ✔

✔: able, ❍: unable.

FIGURE 2 | CD8 T-cell differentiation scheme. Red arrows: proliferation; black

arrows: differentiation; th =threshold.

A naive CD8 T-cell binding an APC becomes pre-activated
and maintains the contact with the APC thanks to good
adhesion properties (cf. Section 2.4 and Table S1). If the
concentration [L • R] of activated IL2 receptors in a pre-
activated CD8 T-cell reaches a given threshold IL2Rth, the pre-
activated CD8 T-cell becomes activated, leaves the APC, and
starts to proliferate. When an activated CD8 T-cell divides, it
gives birth to two CD8 T-cells whose states are determined by
their respective concentrations of protein Tbet by comparison
with a given threshold Tbetth: activated if [Tb] < Tbetth,
effector otherwise. Finally, if the concentration of protein
Eomes is greater than the threshold Eomesth, a dividing
activated or effector CD8 T-cell will differentiate into memory
cell and stop proliferating.

2.3.2. Cell Cycle Length
Division is considered only for activated and effector CD8 T-
cells. The cell cycle length (hours) of a cell preparing its k-th
division (k ≥ 0) is chosen, at cell birth, from uniform law
U[ck−4,ck+4] where ck = 6 + 28k2/(k2 + 100) such that the
mean duration of the cycle length increases with the number of
divisions and can range from 2 to 32 h (31, 32). At the outcome
of a division, activated and effector CD8 T-cells immediately
enter a new cycle.

2.3.3. Protein Distribution Between Daughter Cells
When a CD8 T-cell divides, the molecular content of the
mother cell is randomly divided between the two daughter
cells. To account for protein distribution between daughter

cells at each division and for each protein, let us introduce
the parameter m, defined as the degree of unevenness. We
say that divisions are m% uneven if at division one daughter
cell inherits up to (50 + m/2)% of the mother cell’s content,
while the second daughter cell receives the rest, that is at least
(50 − m/2)% of the mother cell’s content. Then, the molecular
content of each daughter cell evolves according to System (1–6)
until the next division.

For the sake of clarity, we emphasise that the degree of
unevenness m is not the percentage of proteins received by
daughters cells at each division but indicates to what extent
stochastic molecular partitioning can be uneven. Based on
estimation from Luzyanina et al. (26), we consider that divisions
are 10% uneven, so that the most uneven partitioning in this case
would split 45 and 55% of the mother cell’s proteins in the two
daughter cells respectively.

The exact value of each daughter cell molecular content
at birth is randomly chosen according to a probabilistic law,
as detailed hereafter. Each protein concentration [i] of the
six proteins in System (1)-(6) is unevenly distributed among
daughter cells: one cell inherits ki[i] and the other (2 − ki)[i].
Coefficients ki, i = 1, . . . , 6, are different for each protein, each
cell, and each division, and are chosen from the probability law
U[1−m/100,1]. Unless otherwise indicated, we consider 10% uneven
divisions (26), i.e., ki ∈ [0.9, 1] for i = 1, . . . , 6. One may note
that ki ∈ [0, 1] so the quantity of molecular material is preserved
at each division, given that the volume of each daughter cell is
half the volume of the mother. Different degrees of unevenness
will be considered in section 3.3.

One special case of division is the asymmetric division, and
its associated unequal repartition of Tbet between daughter
cells. To account for polarisation of naive cells by antigenic
signalling and the consecutive asymmetric divisions, the first
division of a CD8 T-cell following its activation by an APC is
characterised by a very specific uneven distribution of protein

Tbet only between the two daughter cells: a coefficient K is
randomly chosen from the uniform law U[0.5,1], one of the

daughter cells is arbitrarily designated as the proximal daughter

and receives a concentration (2 − K)[Tb] for protein Tbet while
the other one is designated as the distal one and receives a
concentration K[Tb] where [Tb] is the Tbet concentration in the
mother cell, so that Tbet accumulates in proximal cells (17, 18).
Other proteins concentrations are partitioned according to the
previously mentioned rule, see paragraphs above.
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2.3.4. Apoptosis
CD8 T-cell apoptosis occurs as soon as Caspases concentration
[Cas] reaches the threshold Caspasesth. APCs are present from
the beginning of the simulation and their lifetime is randomly
chosen from the uniform law U[48,96] (hours). APCs’ only role is
to activate naive CD8 T-cells, so we do not model any molecular
activity within APCs. Dead cells are removed from the domain.

2.4. Spatial Modeling and Cellular
Interactions
At the cell population scale, we use a cellular Potts model
(CPM), also known as Glazier-Graner-Hegeweg model (38), to
describe a population of CD8 T-cells and APCs evolving in a
two-dimensional domain. Basically, a CPM is a time-discrete
algorithm where cells, or agents, are defined as sets of nodes and
move on a lattice, one node at a time, according to probabilistic
rules based on the minimisation of the energy of the system,
known as the Hamiltonian.

In our model, based on that from Prokopiou et al. (36) and
Gao et al. (37), the domain is a square lattice of S = 150 ×
150 nodes with periodic boundary conditions. Each node Ex
bears an index σ (Ex). A set of nodes bearing the same index
σ defines a cell, also denoted by σ . Finally, each cell σ has a
type τ (σ ) defining its properties. In our case, the different types
are: extracellular medium, APC, naive, pre-activated, activated,
effector and memory CD8 T-cell. Note that, technically, the
extracellular medium is considered as a cell, denoted by σe.

Cell (including extracellular medium) size variation and
displacement result from the succession of copies of index
from nodes to neighbour nodes, based on the minimisation of
the Hamiltonian � [see Equation (8)], thanks to a simulated
annealing algorithm. More precisely, at each iteration, known as
Monte Carlo Step (MCS), of the CPM, the following algorithm is
executed N = 3× S times:

Step 1 Randomly choose a source node xs and, among its first
order neighbours, a target node xg .

Step 2 Compute the Hamiltonian �, and the putative
Hamiltonian �′ that would be obtained if node xs would
copy its index on node xg , i.e., if cell σ (xs) incorporates the
node xg .

Step 3 Compute 1� = � − �′ + 1motility (see Equation
9 below) to evaluate the energy cost of such a copy. If
1� > 0, xs copies its index σ (xs) on xg , i.e., xg is
integrated by cell σ (xs). Else, the copy is accepted with
probability exp(−1�/T), known as Boltzman probability,
where parameter T characterises the propensity of the
system to evolve.

Note that it is conventional to considerN = S pixel copy attempts
per MCS. However, in that case the maximum speed cells can
reach is limited to approximatively 0.1 pixel per MCS (62),
which eventually defines a finer time resolution than expected
for the integration of differential equations. We emphasise that
this limitation can be removed by increasing this number (here
N = 3× S).

The Hamiltonian � is computed using the following formula:

� = λpm 6
σ 6=σe

(pσ − Pτ (σ ))
2

︸ ︷︷ ︸

perimeter

+ λarea 6
σ 6=σe

(aσ − Aτ (σ ))
2

︸ ︷︷ ︸

area

+ 6
neighbours (Ex, Ex∗)

Jτ (σ (Ex)),τ (σ ( Ex∗))(1− δσ (Ex),σ ( Ex∗))

︸ ︷︷ ︸

contact

, (8)

where Jτ1 ,τ2 accounts for the contact energy between two cells
of types τ1 and τ2. Thanks to the term 1 − δσ (Ex),σ ( Ex∗), two
neighbour nodes belonging to the same cell do not generate
contact energy. pσ and aσ are the actual perimeter and area of cell
σ , respectively, whereas Pτ (σ ) and Aτ (σ ) are the target perimeter
and area, respectively, for a cell of type τ (σ ) ; perimeter and area
constraints then penalize the configurations where the effective
perimeter and area are distant from the target ones. Parameters
λarea and λpm define the weights of those two constraints. The
perimeter constraint has been added to the definition used in
Prokopiou et al. (36) andGao et al. (37) in order to avoid potential
cell fragmentation.

The energy 1motility is defined by

1motility = v(σ (xs))
(

cos(θ(σ (xs), t)), sin(θ(σ (xs), t))
)

· (xg − xs),
(9)

where v(σ (xs)) is the weight associated to the motility energy
for the cell σ (xs) and θ(σ (xs), t) is the privileged angle of
direction for the cell σ (xs) at time t, randomly updated along the
simulation. The operator “·” stands for the dot product. Thus,
1motility is all the more high (and then the copy is all the more
probably accepted) that the copy direction (xg − xs) aligns with
(cos(θ(t)), sin(θ(t))).

2.5. Numerical Resolution
The initial cell population is composed of 30 naive CD8 T-
cells and 3 APCs. A simulation requires 30,000 iterations (MCS)
corresponding to 20 days and 20 h in the real time, that is,
1 MCS represents 1 min. When a simulation starts, APCs are
already present in the LN, ready to activate naive CD8 T-cells.
We consider the initial time to be day 4 post-infection (D4 p.i.)
since our in vivo data set starts D4 p.i..

We assume that a node of the lattice corresponds to 4× 4µm2

for biological interpretation. The target cell area is chosen to be 9
nodes (144µm2) for CD8 T-cells and 140 nodes (2, 240µm2) for
APCs. The target perimeter for CD8 T-cells is 48µm in order to
favour compact shapes ; there is no constraint on APC perimeter.
The simulations have been performed using CC-IN2P3 servers
on Compucell3D software (62) with, unless otherwise stated,
the parameter values from Tables S1–S4. Simulation files are
provided in Supplementary File 2.

In section 3.4, we study the ability of our model to simulate
a secondary response, also called memory response. Our model
has first been calibrated in order to reproduce an in vivo
primary response against Listeria monocytogenes (Lm) infection
from Badovinac et al. (63) (see Figure 8). Then, the same
parameter values have been used to simulated both a primary and
secondary responses. However, secondary response simulations
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are performed with initially 3 APCs and 30 memory CD8 T-
cells (instead of 30 naive CD8 T-cells for the primary response)
that are able to bind an APC to become pre-activated, then
the differentiation scheme presented in section 2.3.1 applies.
The molecular profile of the initial memory cells is set as the
asymptotic molecular profile developed by memory cells at the
end of a primary response, as discussed in section 3.2.

2.6. Model Calibration
Parameters of Equations (1–9) have been calibrated on in vivo
data using parameter values from Prokopiou et al. (36) and Gao
et al. (37). Since handling big cell populations with an agent-
based model implies expensive computation time, we focused on
fitting the proportion, rather than the number, of CD8 T-cells in
each state of differentiation among the whole cell population. In
order to compare in silico and in vivo data at both cellular and
molecular scales weminimised themetricD = Dcell+Dprot where

Dcell =
1

(#S)(#V)

∑

simulation S

·
∑

mouse V

·
∑

cellular type C

·

∑

time step t

|S(C, t)− V(C, t)| (10)

and

Dprot =
1

(#S)(#V)

∑

simulation S

·
∑

mouse V

·

∑

protein P

·
∑

time step t

|S(P , t)− V(P , t)|, (11)

with #S the number of simulations performed with a given
set of parameters and #V the number of mice from which
in vivo data have been collected. S(C, t) (resp. V(C, t)) is the
ratio between the number of cells of type C and the size of the
CD8 T-cell population at time t in the simulation S (resp. the
mouse V). S(P , t) (resp. V(P , t)) is the ratio between the mean
concentration of protein (resp. expression of mRNA) P among
the CD8 T-cell population at time t in the simulation S (resp.
the mouse V) and the maximal concentration (resp. expression)
observed among all the time steps.

Since pre-activated and activated cellular types are not
identified in in vivo data, we gathered pre-activated with naive
T-cells and activated with effector T-cells. Then cellular types C
in Equation (10) are: naive/pre-activated, activated/effector and
memory. In Equation (11), quantities P are the ones for which
we have relevant in vivo mRNA expression data at our disposal:
IL2 receptors, Tbet and Eomes.

Note that we did not perform a parameter estimation
procedure, but a calibration of our model based on experimental
data. Evaluation of accuracy and sensitivity of parameter values
have been investigated in previous studies (36, 37). Since we
modified the model to account for differentiation in memory
cells, a sensitivity analysis of our model to parameter Eomesth is
presented in section 2 (Figures S1, S2) of Supplementary File 1.

3. RESULTS

3.1. Modeling the CD8 T-Cell Immune
Response at Both Cellular and Molecular
Scales
We first briefly illustrate our model’s ability to reproduce in vivo
dynamics at both cellular and molecular scales. The evolution
of the composition of a CD8 T-cell population from D4 to D22
p.i. is presented on Figure 3A. In both in vivo and in silico
data, naive CD8 T-cells are negligible after D6 p.i.. At the peak
of the response, occurring D8 p.i. both in vivo and in silico,
more than 94% of the CD8 T-cells are in the activated or
effector state, while the memory population emerges during the
subsequent contraction phase. As a result of effector cell death
and differentiation, memory cells represent the major part of the
population on D22 p.i.. Figure 3B shows the size, in number
of cells, of the CD8 T-cell population. The qualitative in vivo
dynamics is quite well-reproduced: antigen presentation to naive
CD8 T-cells triggers clonal expansion, population size reaches a
peak D8 p.i. followed by a contraction phase where most cells (64
and 67% in vivo and in silico respectively) die.

On Figure 4, in silico predictions are compared to the mean
IL2 receptors, Tbet and Eomes mRNA expression levels of
CD8 T cells activated in vivo. The kinetics of IL2R and Tbet
are well-reproduced. Indeed, as a result of TCR engagement,
IL2R concentration sharply increases and reaches a peak D5
p.i., allowing cells to capture IL2 and get activated. Then IL2R
concentration decreases until D8 p.i. and slowly increases from
D8 to D15 p.i. Tbet concentration increases from D4 to D6
p.i. and remains stable until D8 p.i., then decreases until D15
p.i. Mean Tbet concentration consistently correlates with the
size of effector CD8 T-cell population (Figures 3A,B) and is in
agreement with its role in the control of cytotoxicity and cell
apoptosis. Regarding Eomes concentration, the in vivo increase
between D4 and D8 p.i. is well-reproduced by our model,
however the increase observed between D8 and D15 p.i. does
not match the in vivo data. As cells evolve toward a memory
phenotype, in silico Eomes concentration increases and up-
regulates the expression of IL2R (Figure 1) to exacerbate the
sensitivity of memory cells to IL2. It should be noted that various
works support that Eomes expression increases in effector cells
progressing toward a memory phenotype (11, 15, 43), contrary to
what is observed in the mRNA dataset from Immgen.

3.2. Cellular Dynamics Arise From Cellular
Heterogeneity
In our model, each cell develops its own molecular profile,
resulting in a heterogeneous cell population. Consequently,
studying the mean concentration of a given protein among the
population, as shown on Figure 4 for example, is not sufficient
to understand the molecular dynamics among the CD8 T-
cell population.

To study the molecular-content heterogeneity and its role
in cellular dynamics, we show in Figure 5 the in silico
concentrations of Tbet, Eomes, and Caspases in each CD8 T-
cell of the population at different times of the response. Cells
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A

B

FIGURE 3 | CD8 T-cell population dynamics. (A) Fraction of each cell type

among the CD8 T-cell population. Gray: naive+pre-activated cells; red:

activated+effector cells; blue: memory cells; full lines with crosses: in silico

(mean ± standard deviation over 10 simulations); transparent lines with

squares: in vivo (mean ± standard deviation over data from 5 mice). Error bars

are most of time very small and then not visible. (B) Size of the CD8 T-cell

population in silico (black crosses, right y-axis, mean ± standard deviation

over 10 simulations) and in vivo (blue squares, left y-axis, mean ± standard

deviation over data from 5 mice).

were ranked according to their Tbet content. D5 to D8 p.i.,
corresponding to the clonal expansion phase (see Figure 3),
concentrations are heterogeneous but uniformly distributed
around the mean value. Most of that heterogeneity comes from
the conditions of activation and from molecular partitioning at
cell division. Yet from D8 to D24 p.i., corresponding to the
contraction phase, two sub-populations of cells clearly emerge:
one with high concentration of Tbet (centred around [Tb]s ≈ 118
mol/L) and one with low concentration of Tbet (≈ 0 mol/L).
The unstable steady state of (3), defined in Proposition 1 and
separating the stable equilibria 0 and [Tb]s, is given by [Tb]u ≈ 21
mol/L. Moreover, cells expressing high levels of Tbet express high
levels of Caspases and low levels of Eomes, a molecular profile
associated with cell death and poor memory potential. On the
contrary, cells expressing low levels of Tbet have good survival
and memory differentiation properties since they express low
levels of Caspases and high levels of Eomes. Progressively, cells
with high concentrations of Tbet die (when their concentrations
of Caspases reach the threshold Caspasesth ≈ 19 mol/L) and
cells with low concentrations of Tbet differentiate into memory

A

B

C

FIGURE 4 | Molecular dynamics. Mean concentration of (A) both activated

and inactivated IL2 receptors, (B) Tbet and (C) Eomes among the CD8 T-cell

population normalised by the concentration value D8 p.i. Lines with crosses:

in silico (mean ± standard deviation over 10 simulations); squares: in vivo

mRNA data from ImmGen.

cells and stop proliferating (when the concentration of Eomes
reaches Eomesth = 16 mol/L). On D24 p.i. there is no cell
with intermediary profile, most of the cells have differentiated
into memory cells while a few effector cells with high Tbet
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concentrations still survive. One can observe that the molecular
profiles of memory cells converge to the same state where [Tb] =
0 mol/L, [E] ≈ 26 mol/L and [Cas] ≈ 9 mol/L.

The coexistence of two sub-populations characterised by
their concentrations of Tbet explains the population dynamics
observed on Figure 3. That is, the contraction of the cytotoxic
effector cell population simultaneously with the emergence of a
memory cell population with survival properties.

As discussed in the introduction, responding CD8 T-cells
can be distinguished between short-lived (SLEC) and memory
precursor (MPEC) effector cells based on the expression of
two proteins: KLRG1 and CD127 (7, 15). In this section,
we investigated how, in our model, the heterogeneity of
Tbet concentrations among a CD8 T-cell population explains
the emergence of two sub-populations of CD8 T-cells. The
first one, expressing high concentrations of Tbet, could be
comparable to SLEC that exhibit properties such as apoptosis
and cytotoxicity, a process regulated by Tbet. The second one
(memory potential, survival) would be similar to the MPEC
population. This is consistent with the litterature, since Tbet is
known to favour the development of SLEC, to the detriment
of MPEC (9–11).

3.3. Moderate Uneven Molecular
Partitioning Favours Efficient Generation
of Memory Cells
A major source of heterogeneity in our model is the uneven
molecular partitioning at cell division determined by the degree
of unevennessm (see section 2.3.3). We compare on Figure 6 the
sizes of the CD8 T-cell population at the peak of the response
as well as the sizes of the memory population on D25 p.i. for
different degrees of unevenness, that is the extent of unevenness
of the stochastic molecular partitioning. We do not however
modify the degree of unevenness of the asymmetric first division,
consecutive to the polarisation of the cell due to APC binding
(17, 18), see section 2.3.3.

First, Figure 6 shows that the size of the CD8 T-cell population
at the peak of the response decreases as the degree of unevenness
increases. Indeed, the more uneven the molecular partitioning,
the sooner CD8 T-cells expressing high levels of Caspases or
Eomes appear and then the sooner cells die by apoptosis or
differentiate in non-proliferating memory cells.

Second, the relation between the degree of unevenness and
the size of the memory population generated at the end of the
response is not monotonous: the biggest memory populations are
observed when considering a moderate unevenness (10–50%).

In section 3.2, the role of Tbet concentration in determining
the fate (death or memory differentiation) of an effector
CD8 T-cell has been discussed. Additionally, we showed
in Girel and Crauste (30) that the progression of a cell
lineage toward death or memory differentiation can be
slowed down or reversed by molecular partitioning depending
on cell cycle length, initial Tbet concentration and the
degree of unevenness. This stressed, on a simplified model,
the influence of the degree of unevenness on cell fate
choice regulation.

On the opposite, when molecular partitioning is symmetrical
(m = 0) and no further T-cell-APC interactions are assumed,
there is no more source of stochasticity and consequently all the
CD8 T-cells of the same lineage express the same concentration
of Tbet. As a consequence of Proposition 1, this concentration
irreversibly converges either to [Tb]s (high Tbet concentration)
or to 0 mol/L (low Tbet concentration). This irreversibly leads to
apoptosis (high Tbet concentration) or memory differentiation
(low Tbet concentration) of the whole cell lineage.

Thus, our result clearly stresses that uneven partitioning
allows the maintenance of a CD8 T-cell compartment with
undetermined fate for some time, through cell fate reversibility.
As long as it is maintained, this compartment is able to produce
both effector cells destined to die and memory cells.

We also showed in Girel and Crauste (30) that the higher
the degree of unevenness, the more reversible the cellular fate.
Surprisingly, strong unevenness (65 − 80%) results in smaller
memory cell populations (Figure 6). In fact, strong unevenness
favours the fast emergence of daughter cells with very high or low
concentrations of Tbet such that those cell lineages are likely to
die or to generate memory cells. In particular, effector cells with
high memory potential poorly expand before they differentiate
hence this leads to the generation of fewer memory cells.

To discuss the efficiency of memory cell generation, we
compare on Figure 6 the number of memory cells generated
at the end of the response to the number of cells at the peak
of the response, viewed as an indicator of the energetic cost of
the response for the organism (red crosses). Figure 6 suggests
that the degree of unevenness in molecular partitioning impacts
memory generation, with the better ratio (more than 30%)
obtained when considering 50% uneven molecular partitioning.

3.4. Memory Response
One of the characteristics of memory cells is their capacity to
mount more rapid effector response than naive cells and to
generate an increased fraction of memory cells (64). To test
whether the memory cells generated by our model exhibit some
of these features we compared the in silico primary response with
a secondary response of in silico generated memory cells.

Figure 7 shows the in silico memory response (or secondary
response), obtained with an initial population of 30 memory
T-cells, as described in section 2.5. This secondary response
is compared to the primary immune response starting with
30 naive CD8 T-cells (section 3.1). The in silico secondary
response is characterised by a bigger CD8 T-cell population, at
any time of the response. From the primary to the secondary
response, there is a small increase in the size of the sub-
population of activated and effector cells but the major change
is in the size of the memory population. Indeed, the number of
memory CD8 T-cells increases much faster during the secondary
response such that D29 p.i. the memory population is two
times bigger than during the primary response. This can be
explained by the fact that memory cells are activated faster
than naive cells, thanks to their molecular profile. Indeed,
memory cells express higher concentrations of IL2 receptors
than naive cells, since it is sustained by the expression of
Eomes. Consequently, the threshold IL2Rth (see section 2.3.1)
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FIGURE 5 | Concentrations (mol/L) of Tbet (red), Eomes (blue), and Caspases (brown) in all cells, sorted (left to right) according to their Tbet concentration. In silico

CD8 T-cell population on D5, D8, D13, D17, D21, and D24 post-infection are represented. To make it easier to read, Eomes and Caspases concentrations have been

multiplied by factor 5.

is reached sooner when starting with memory cells than
with naive cells. As a result, the concentration of Tbet, up-
regulated during APC binding, is lower after the activation of
a memory cell than after the activation of a naive cell, and
low Tbet level is associated to memory precursor fate and
low cytotoxicity.

On Figure 8, we compare in silico primary and secondary
responses from our model with in vivo primary and secondary
responses against Lm infection from Badovinac et al. (63). Since
our model has been calibrated to fit the primary response data,
we do not aspire to reproduce the quantitative dynamics of the
secondary response, but rather to study its qualitative properties.
Namely, the secondary response is characterised by a slower and
weaker contraction phase, from the peak of the response D7 p.i.
to the last time point D29 p.i.. This weaker contraction could
be explained by an early production of memory cells that leads
to a large population of memory cells, as it is the case in our
model (Figure 7).

4. DISCUSSION

Activation of naive CD8 T-cells triggers a primary immune
response, characterised by a well-orchestrated program of cell
proliferation, differentiation, death and migration. It is now
well-known that the responding CD8 T-cell population is
heterogeneous and that a single naive T-cell can generate
differently fated cells (65). However, evaluating how cellular and
molecular events contribute to that heterogeneity and identifying
its consequences on the outcomes of the immune response
remain fundamental questions.

With this in mind, we expanded a hybrid multi-scale model
of the CD8 T-cell immune response, where cell behaviour
is determined by intracellular molecular dynamics. Model
parameters have been calibrated using in vivo data at both
cellular and molecular scales. Because of expensive running
time, we were led to simulate small cell populations so that we
focused on semi-quantitative fitting criteria. After calibration,
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our model succeeded in reproducing the temporal dynamics of
the response regarding the size of the CD8 T-cell population and
the proportion of cells in each differentiation stage. Apart from
a discordance between in silico and in vivo mean concentration
of Eomes on day 15 p.i., our model captured the dynamics of
the mean concentration of IL2 receptors, Tbet and Eomes, which
play key roles in the differentiation processes.

In addition to reproduce primary responses, our model easily
produces secondary responses. Memory cells generated during
the in silico primary response succeeded in mounting a stronger
secondary response upon antigenic stimulation (Figures 7, 8). It
should be noted that the differences between outcomes of the
primary and secondary in silico immune responses only depend,
in this work, on the difference between the molecular profile of
memory and naive CD8 T-cells and do not take into account
a lot of characteristics of the secondary response described in
the literature such as: biggest initial CD8 T-cell population (8),
shorter cell cycle (66) or sensitivity to inflammatory cytokines,
such as IL12 (15).

FIGURE 6 | Size of the CD8 T-cell population at the peak of the response

(black squares, left axis) and size of the memory CD8 T-cell population at the

end of the response D25 p.i. (blue diamonds, left axis) as functions of the

degree unevenness of molecular partitioning (mean ± standard deviation over

5 simulations). Red crosses (right axis) show memory cell generation efficiency,

measured as the ratio between the size of the memory CD8 T-cell population

D25 p.i. and the size of the CD8 T-cell population at the peak of the response

(mean over 5 simulations).

We discussed how a deterministic description of molecular
concentration dynamics combined with stochastic events, such as
uneven partitioning ofmolecular content at division, can regulate
the emergence and the maintenance of two sub-populations
of CD8 T-cells. Those sub-populations, characterised by their
molecular profiles, coexist but express different properties
and antagonistic fates, comparable to those of SLEC and
MPEC described in the literature (9). From that observation,
we showed that the dynamics observed at the cellular scale
(cell differentiation, population size) could be explained by
molecular-content heterogeneity among the cell population,
which mostly originates from uneven partitioning of molecular
content. We did not however consider the effect of stochastic
fluctuations of gene expression, known to be an important
source of heterogeneity (67). Interestingly, Huh and Paulsson
(25) showed that both stochastic gene expression and stochastic
partitioning of molecular content are equally good to explain the
heterogeneity observed at cell division and suggested that much
of the heterogeneity usually attributed to the former actually
results from the latter.

FIGURE 8 | Number of CD8 T-cells, normalised by CD8 T-cell population size

D7 p.i., during in silico primary (black full line) and secondary (blue dashed line)

responses (mean over 10 simulations) compared with in vivo primary (black

squares) and secondary (blue triangles) responses against Listeria

monocytogenes from Badovinac et al. (63).

A B

FIGURE 7 | Number of (A) activated/effector and (B) memory CD8 T-cells during in silico primary (dashed line) and secondary (full line) responses. Mean ± standard

deviation over 10 simulations.
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In our model, cell phenotypic heterogeneity, associated with
molecular-content heterogeneity, first arises upon asymmetric
division of polarised naive cells. This heterogeneity is thereafter
continuously regulated throughout the whole response by means
of uneven partitioning of molecular-content at each division.
This is in agreement with the observations of Lemaître et al.
(68) who state that T-cell diversification is a continuous process,
spread over the whole response, including the asymmetric
first division and late events occurring throughout subsequent
divisions. Besides, Lemaître et al. (68) pointed out that cellular
heterogeneity, that could result from variations in naive T-cell
responsiveness to cytokines or TCR signalling, pre-exists prior
to the first division. In this article we did not consider preexisting
heterogeneity among the naive T-cell pool, that could be achieved
by varying the parameter values of System (1–6) associated to
each naive T-cell. We can expect that it would confer to each
naive T-cell a predisposition to engender a cell lineage oriented
toward either apoptosis or memory differentiation. Moreover,
the initial heterogeneity among naive T-cells could be conserved
through the response, then leading to a heterogeneous pool of
memory cells, a feature that is not reproduced by our model (69).
Note that the in vivo responses presented in this article also result
from transgenic CD8 T-cells bearing the same TCR.

Polarisation of naive cells upon antigenic stimulation has
been observed in CD4 T-cells (21, 70) and B-cells (21,
71, 72). This polarisation results in asymmetric division of
naive cells and may induce heterogeneous cell fates (70–72).
Regarding the subsequent divisions, it can be thought that they
are subject to uneven and random partitioning of molecular
content since this phenomenon has been reported in many
types of cells, including yeast, bacteria and T-cells (22–27).
However, the contribution of uneven and random partitioning
of non-polarised cells in the development of heterogeneous
cell fate has not been studied yet. To that end, it would be
interesting to extend the approach developed in our study to
the differentiation of other lymphocytes, such as B-cells or
CD4 T-cells.

In our study, increasing the degree of unevenness of molecular
partitioning reduces the expansion size of the whole CD8 T-cell
population whereas the size of the sub-population of memory
cells is maximal for intermediate degrees of unevenness. As a
consequence, the ratio between the number of memory cells
generated and the magnitude of the response at its peak, viewed
as a measure of memory generation efficiency, is maximised
when considering a 50% degree of unevenness. As discussed
above, molecular partitioning is not the only regulator of
heterogeneity. In this regard, we can believe that our evaluation
overestimates the value of this optimal degree of unevenness
and rather indicates that generating a moderate heterogeneity all
along the immune response leads to efficient memory generation.

In our manuscript, when the degree of unevenness is
m = 10%, each daughter cell inherit from 45 to 55% of the
mother cell’s molecular content, with uniform probability
distribution. The unevenness of molecular partitioning
remains difficult to measure experimentally. Based on in vitro
experimental data of CFSE dye expression, Luzyanina et al.
(26) estimated that the two daughter cells inherit of 42,3%

and 57,7% of the mother cell’s molecular content, respectively.
Rather than considering a uniform probability distribution
and a degree of unevenness, we could consider that the
molecular partitioning is a binomial phenomenon (24), i.e.,
each protein has the same probability to be attributed to each
daughter cell. Such a discrete distribution can be approximate
by a continuous and truncated (to avoid negative values)
normal distribution whose variance would characterise the
level of unevenness.

Note that, in works dealing with the CD8 T-cell immune
response, it is usual to consider that 5 to 10% of the cells present
at the peak of the response survive the contraction phase and
differentiate into memory cells (8). This is consistent with our
results only for symmetric divisions or for divisions with high
(65–80%) degrees of unevenness. However, this hypothesis can
be challenged, as pointed out in (40), as for the actual in vivo
data presented in Figure 3, D22 p.i. the memory population size
is 19.5% of the whole population at the peak of the response, D8
p.i. This suggests that the amplitude, and possibly the kinetics, of
the cellular contraction is not only an inherent feature of the CD8
immune response but also depends on external factors such as
inflammatory factors.

In many mathematical models of the CD8 T-cell immune
response, as those referenced in (6), cell proliferation and
differentiation depend on the amount of pathogen, in the
manner of prey-predator models used in ecology. In our model
a brief initial antigenic stimulation of naive CD8 T-cells is
sufficient to trigger an autonomous program of proliferation
and differentiation, as stated in the literature (1–3). However,
while dispensable, in vivo inflammatory signals can affect the
immune response outcome (73). A motivating perspective is to
evaluate the respective contributions of both the autonomous
program and extrinsic inflammatory factors to the immune
response, so that the latter could be tuned by mastering the
inflammatory environment. For example, extending our model
by incorporating the inflammatory cytokine IL12, secreted by
APCs, could markedly affect the effector/memory cell balance
since IL12 is known to respectively promote and repress Tbet and
Eomes synthesis (9, 47, 74).

Cell cycle length depends in our model on the number of
divisions the cell has undergone. It would be instructive to
introduce a molecular control of cell proliferation, since the
putative existence of coexisting sub-populations with disparate
cycle lengths could considerably impact the cellular dynamics.
One could for instance consider the transcription factor Foxo1,
known to induce Eomes expression while repressing that of
Tbet and inhibiting cell cycle progression (75), suggesting
that the TbetloEomeshi memory precursor cells discussed in
section 3.2 might adopt a longer cycle than the Tbethi

Eomeslo cells.
In conclusion, our agent-based multiscale model successfully

reproduced several aspects of the CD8 T-cell immune response
at both molecular and cellular scales. Even though we cannot
infer quantitative conclusions from this study, it suggests that
uneven partitioning of molecular content at cell division, as
a source of heterogeneity, can modulate cell fate decision
and act as a regulator of the magnitude of the response and
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of the size of the memory cell pool. Actually, we did not
consider intermediaries, namely DNA transcription and mRNA
translation, between gene activation and protein synthesis.
Consequently, our molecular model is an amalgam between
gene activity and protein synthesis. Therefore, while our
argumentation is based on uneven partitioning of the molecular
content, it could also stand for the situation where, when a cell
divides, the two daughter cells inherit different gene activity
levels for each gene. All in all, our study focuses on molecular
heterogeneity generation upon cell division in general, rather
than the specific case of molecular partitioning. It stresses that
dynamics observed at the cellular scale—including the initiation
of the contraction phase and the origin of memory cells—can
be explained by structural molecular-content heterogeneity,
that is continuously regulated along the response, as
CD8 T-cells divide.
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