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Model-based Big Data Analytics-as-a-Service:
Take Big Data to the Next Level

Claudio A. Ardagna, Valerio Bellandi, Michele Bezzi, Paolo Ceravolo, Ernesto Damiani, Cedric Hebert

Abstract—The Big Data revolution promises to build a data-driven ecosystem where better decisions are supported by enhanced
analytics and data management. However, major hurdles still need to be overcome on the road that leads to commoditization and wide
adoption of Big Data Analytics (BDA). Big Data complexity is the first factor hampering the full potential of BDA. The opacity and variety
of Big Data technologies and computations, in fact, make BDA a failure prone and resource-intensive process, which requires a
trial-and-error approach. This problem is even exacerbated by the fact that current solutions to Big Data application development take a
bottom-up approach, where the last technology release drives application development. Selection of the best Big Data platform, as well
as of the best pipeline to execute analytics, represents then a deal breaker. In this paper, we propose a return to roots by defining a
Model-Driven Engineering (MDE) methodology that supports automation of BDA based on model specification. Our approach lets
customers declare requirements to be achieved by an abstract Big Data platform and smart engines deploy the Big Data pipeline
carrying out the analytics on a specific instance of such platform. Driven by customers’ requirements, our methodology is based on an
OWL-S ontology of Big Data services and on a compiler transforming OWL-S service compositions in workflows that can be directly
executed on the selected platform. The proposal is experimentally evaluated in a real-world scenario focusing on the threat detection
system of SAP.
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1 INTRODUCTION

Big Data has become a major IT trend that involves
academia, research institutions, and industries. According
to IDC [1], “revenues for Big Data and business analytics will
grow from $150.8 billion in 2017 to more than $210 billion in
2020, at a CAGR of 11.9%”. Big Data does not only mean
huge amount of data, but points to scenarios where data
are diverse, come at high rates and must be proven to
be trustworthy, as clarified by the 5V storyline [2]. The
paradigm shift from traditional data mining approaches to
Big Data techniques has already been acknowledged by the
research community, which has introduced the concept of
Big Data often provided as a service. Many works on Big
Data techniques have focused on distilling the competences
of Big Data technologists offering Platform-as-a-service so-
lutions that support the automatic deployment of Big Data
services [3], while others are focusing on supporting semi-
automatic execution of analytics [4].

Today, however, we are nowhere near to Big Data com-
moditization. The approach to Big Data application devel-
opment is usually bottom-up and the latest Big Data tech-
nology release drives the entire application development.
This impairs the capacity of providing a solution that is
technology independent, and only later on compiled on a
specific technology (technology neutrality). Big Data toolkits
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do not provide a transparent design environment leading
many developers to use them as black-boxes, with little
or no insight on how analytics are actually executed. This
makes the verification of the correct behavior of an analytics
and its adherence to user’s requirements a difficult and
error-prone task (verifiability). Often, the execution workflow
of a Big Data application is hidden to Big Data developers
and architects, as well to final users. This impairs the ca-
pacity of providing accountable and reproducible solutions
(accountability and reproducibility), reducing the performance
of Big Data campaigns. Finally, the lack of an approach to
Big Data commoditization substantially reduces the usability
and productivity of Big Data processes, which are complex
and difficult to manage.

In this paper, we try to fill in the above gaps. To this aim,
we advocate a top-down approach where users’ require-
ments and developers’ models drive Big Data Analytics
(BDA) development [5]. This approach must clearly go
beyond the boundaries of traditional data modeling, which
focused on resolving the complexity of relationships among
data by means of schemata [6]. In fact, in addition to data
representation, Big Data models should provide a shared
specification of the process used to manage data resources,
including data protection procedures and business rules,
and of the computations to be done on them. They also
need to provide all the information to carry out BDA over
commodity execution platforms.

We propose a framework for Model-based Big Data
Analytics-as-a-Service (MBDAaaS) [7], which, on one side,
helps customers in deploying a full Big Data pipeline
that addresses their requirements and, on the other side,
provides full transparency on execution workflows and
computations. We believe that there are clear advantages
in adopting such a methodology in terms of shorting roll-
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out time and improving reuse. Our approach is based on a
declarative model (Section 3), specifying the requirements of a
given analytics in the form of goals describing the aim of the
analytics and/or features to be supported by the execution
environment. The customers navigate, select, and prioritize
requirements through an interface, which guides them in se-
lecting their preferences. Declarative requirements are then
used to select a platform-independent procedural model (Sec-
tion 4) specifying how analytics should be carried out and
composed in terms of abstract services. Procedural models
are finally compiled in a ready-to-be-executed deployment
model (Section 5) specifying Big Data platform-dependent
configurations and supporting automatic provisioning of
computational components and resources. Such transfor-
mations are implemented in a methodology specifying a
semi-automatic process for MBDAaaS (Sections 4 and 5).
We practically evaluated our methodology in a real-world
scenario that considers the threat detection system of SAP
(Section 6), one of the largest Software and Information
Technology services groups worldwide.

The contribution of this paper is threefold. First, we
define a declarative approach to the specification of BDA
requirements. Our approach includes a way to browse
multiple options and express requirements as a set of
computational-independent specifications. It also manages
conflicts and interferences between specifications, providing
a semi-automatic approach to their resolution. Second, we
map our declarative models to a catalog of Big Data services,
modeled in OWL-S [8], which represents the knowledge
base over which the Big Data campaign is built. Relevant
services are selected on the basis of the declarative specifi-
cations to produce a service composition driving the final
deployment of the BDA on the target platform. Third, we
implement a compiler that transforms the above platform-
independent service composition in a platform-dependent
workflow. The workflow is a ready-to-be-executed artifact
that can be run on the target platform.

2 MBDAAAS METHODOLOGY

The methodology proposed in this paper aims to provide a
MBDAaaS approach that decouples high-level specifications
of a Big Data campaign from low-level details of the Big
Data architecture. It is based on the following artifacts.

Declarative Specifications. They allow customers to shape
a BDA in terms of computational-independent requirements
and retrieve a set of services compatible with these models.

Service Catalog. It stores the set of abstract services (e.g.,
algorithms, mechanisms, components) that are available to
Big Data customers and consultants for building their BDA.
Each service defines an interface and a link to declarative
specifications.

Service Composition Repository. It stores the service com-
position templates defining how abstract services can be
composed to carry out the Big Data analytics. It supports
traditional composition patterns, such as sequence, alterna-
tive, parallel.

Deployment Configurations. They permit to define the
platform-dependent version of a service composition, as a
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Fig. 1. MBDAaaS Methodology: Execution steps

workflow that is ready to be executed on the target Big Data
platform.

A key aspect of our MBDAaaS methodology is the
provisioning of a semantic-aware representation of Big Data
service compositions.

Figure 1 presents the 5-step process supported by our
methodology. In the first step (Declarative Model Definition),
a Big Data customer defines a declarative model as a set
of Declarative Specifications shaping a Big Data campaign
(Section 3). To this aim, she uses a taxonomy of requirements
that can be included in our declarative model.

In the second step (Service selection), after proving that
declarative specifications are consistent, that is, they are not
leading to mutually exclusive or interfering solutions (Sec-
tion 3.2), concrete services compatible with the declarative
model specified by the user are retrieved from the Service
Catalog (Section 3.1).

In the third step (Procedural Model Definition), a Big Data
consultant defines a platform-independent Service Composi-
tion, called procedural model, that composes (a subset of)
compatible services selected at the previous step to form a
Big Data campaign. Procedural models exploit the expressive
power of OWL-S [8] to make an explicit representation
of service compositions (Section 4.1). This supports query
capabilities for retrieving services based on interface type [9],
as it is possible to define parameters, return types, and data
types using abstract classes (e.g., retrieve all services that
return an anonymized data_set). In addition, verification
procedures on interface compatibility [10] can be activated, as
the parameters of the interconnected services have to match,
and mismatches have to be reported to guide subsequent
integration. For example, if a data cleaning service return-
ing a data_set is interfaced with a k-mean service, requiring
parameters data_set, km, iterations, a verification procedure
has to prompt that km and iterations must be provided to
proceed with the execution.

In the fourth step (MBDAaaS Compiler), MBDAaaS com-
piler uses the Deployment Configurations to transform the
procedural model in a platform-dependent workflow called
deployment model. This step is crucial to build a semi-
automatic MBDAaaS and puts some strong constraints on
the generality of the compiler, which needs to adapt to and
configure the target Big Data platform.

Finally, in the fifth step (Deployment Model Execution), the
target platform executes the designed analytics.

All data sets, models, and specifications used to develop
our solution are available for interested readers at https://
tinyurl.com/ycvh9u39. For the sake of readability, in the rest
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of this paper, we illustrate our work using code excerpts that
highlight relevant aspects of our methodology.

3 DECLARATIVE MODEL DEFINITION

The first step of our MBDAaaS methodology defines a
declarative model. Declarative specifications include require-
ments that must undergo a consistency check to ensure a
sound definition of a BDA.

3.1 Declarative Models

Declarative models are computational- and vendor-
independent models allowing a customer to define a set
of requirements shaping a BDA. Requirements define goals
to be achieved by the BDA or features to be supported by
the environment where the BDA will be executed. A Goal
specifies an Indicator, which represents a way of measuring
or assessing the goal, and an Objective, which represents
the target to be achieved to consider the goal fulfilled. For
example, a user can specify a goal about the Analytics Aim
selecting the indicator Task and the objective Regression. A
Feature identifies a functionality to be supported and may
include Sub-features that can be mandatory/optional and
inclusively disjoined/exclusively disjoined. For example,
one can specify that a feature characterizing the data set
is the Data Model that is further specified by a feature
stating it as Document Oriented. Based on the systematisation
proposed by several authors [11], [12], [13], we organized
our declarative model in five main areas.

• Data preparation specifies all activities aimed to
prepare data for analytics. For instance, it describes
how to perform dimensionality reduction, or it de-
fines how to guarantee data owner privacy using
anonymization (e.g., hashing, k-anonymity).

• Data representation specifies how data are repre-
sented and expresses representation choices for each
analysis process. For instance, it defines the data
model (e.g., document-oriented, graph-based, key
value) and partitioning (e.g., clustering, sharding).

• Data analytics specifies the analytics to be computed.
For instance, it defines the expected outcome (e.g.,
descriptive, prescriptive, predictive) and the learn-
ing approach (e.g., supervised, unsupervised, semi-
supervised).

• Data processing specifies how data are routed and
parallelized. For instance, it defines the processing
type (e.g., real-time, near real-time, batch) and the
expected latency (e.g., low, medium, high).

• Data visualisation and reporting specifies an ab-
stract representation of how the results of analytics
are organised for display and reporting. For instance,
it defines data display type (e.g., composition, order).

Requirements are specified according to a common
vocabulary of goals and features available for interested
readers at https://tinyurl.com/ycvh9u39, which maps the
five conceptual areas above. It is represented in JSON-
LD [14] format, to guarantee common semantics, reasoning
capabilities, and interoperability among the different steps

of our methodology.1 Requirements can be prioritized and
further refined by constraints. Priorities give an order be-
tween requirements, to resolve conflicts and inconsistencies
at different stages of our methodology. Constraints support
users with different competences in the specification of low-
level settings, which will be applied to the parameters of the
services in execution. A constraint is defined as an object
data structure, that is, a collection of attributes including
other objects or expressions of the form op(attr,value), where
op is an operator in {=,6=,<,>,≤,≥,∈,/∈}, attr represents an
attribute referring to a procedural/deployment model, and
value is a value (or an array of values) for the given attribute.
A declarative model can then be defined as follows.

Definition 3.1 (Declarative model). A declarative model d
consists of five elements (ai , Φ), one for each conceptual area
ai∈A, where Φ is a set of specification φi={ri , Ci, pri }, with ri a
requirement, Ci={c1,. . .,cn } a set of constraints on ri driving the
configuration of procedural and deployment models, and pri the
priority of φi .

Specifications φi can be defined at two levels:

• requirement-level, where φi={ri ,−,pri }
• constraint-level, where φi={ri ,Ci,pri }.

Requirements model properties that are computational
and platform independent, while constraints model prop-
erties that can be evaluated by executing a service within
a specific platform. Requirements ri can be naturally or-
ganized in hierarchies according to their two main types:
i) Goals (G) that can be further specified by Indicators (I)
and Objectives (O), denoted as (G, I, O); ii) Features (F)
that can be further specified by sub features, denoted as (F,
. . .,F). This implies that requirements ri , and corresponding
specification φi , can be defined at different levels of abstrac-
tion based on the hierarchy depth. We limit the hierarchy
depth to three levels as follows:

• first-level requirement, where ri=G or ri=F;
• second-level requirement, where ri=(G,I) or

ri=(F,F);
• third-level requirement, where ri=(G,I,O) or

ri=(F,F,F).

For instance, φi={(Anonymization,
Anonymization_Technique, k-anonymity), {ka>10}, 1}
includes a third-level requirement restricting the required
anonymization technique to k-anonymity, setting a
constraint on the cardinality of parameter ka of k-
anonymity for ri (i.e., ka>10), and assigning to it the max
priority (i.e., pri=1).

Example 3.1. Figure 2 proposes an excerpt of a declarative
model for area Data Preparation and Data Analytics. Goal
Anonymization requires the input data set to undergo an
anonymization process driven by goals anonymization model
and anonymization techniques. It requires the adoption of a
hashing techniques with constraints on the type of algorithm
(i.e., SHA-256) and the target data field to be anonymized (i.e.,
UserID). Goal Analytics Aim requires a task implemented using

1. A web application allowing the user to specify declarative require-
ments can be accessed at http://alphaplus.dti.unimi.it/mytoreador
using credentials available at https://tinyurl.com/ycvh9u39.
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{
"@id": "http://www.toreador−project.eu/TDM/ps/mycustomid",

"@context": {
"s": "http://schema.org/",
"tdm": "http://www.toreador−project.eu/TDM/"

},
[...]

"tdm:preparation": {
"@id": "http://www.toreador−project.eu/TDM/ps/areaPreparation",
"@type": "tdm:Area",
"tdm:label": "Data Preparation",
"tdm:incorporates": [

{
"@type": "tdm:Goal",
"tdm:label": "Anonymization",
"tdm:incorporates": [

{
"@type": "tdm:Indicator",
"tdm:label": "Anonymization Techniques",
"tdm:incorporates": [

{
"@type": "tdm:Objective",
"tdm:constraint":
"{\"Algorithm\": \"SHA−256\",\"Target\": \"UserID\"}",
"tdm:label": "Hashing"

}
] }

] } ] },
[...]
"tdm:analytics": {

"@id": "http://www.toreador−project.eu/TDM/ps/area−analytics",
"@type": "tdm:Area",
"tdm:label": "Data Analytics",
"tdm:incorporates": [

{
"@type": "tdm:Goal",
"tdm:label": "Analytics Aim",
"tdm:incorporates": [

{
"@type": "tdm:Indicator",
"tdm:label": "Task",
"tdm:incorporates": [

{
"@type": "tdm:Objective",
"tdm:label": "Crisp Clustering"

}
] }

] } ] },
}

Fig. 2. A fragment of the declarative model in JSON-LD

Crisp Clustering, that is, each clustered data point must belong
to a single cluster.

3.2 Consistent Declarative Models
One of the key aims of MBDAaaS is guiding the user in
the definition of consistent specifications along different Big
Data conceptual areas. We then enrich declarative models
with Interference Declarations, associating goals and features
that are incompatible or interfere with each other.

3.2.1 Interference Declarations
We introduce a formal notion of interference as a way to
detect inconsistent specifications and drive the declarative
model verification process. Specifically, we define an inter-
ference as a relationship in {φi , φj }∈IN , where φi and φj are
two specifications, possibly, at different abstraction levels.
We remark that different abstraction levels result in different
enforcement points. Interferences at requirement level are
enforced and solved at declarative level, while interferences
at constraint level can be enforced either at declarative
level, when constraints are defined as part of a declarative

model, or at procedural level, when constraints are defined
in the procedural model (see Definition 4.1). Moreover,
enforcement can be executed either i) prior to specification
(a priori) by automatically restricting the options available
to a user based on previous selections, or ii) posterior to
specification (a posteriori) by highlighting selections that are
incompatible. A priori enforcement is preferable to increase
system automation; a posteriori enforcement is preferable
to increase user involvement and awareness. Another or-
thogonal dimension distinguishes among interferences that
are enforced i) deductively, when the specifications included
in the declarative models have a general application or
ii) inductively, when specifications can be evaluated only by
referring to the specific data set they apply to.

For example, to verify that a specification
φi={(Analytics_Aim, Model, Predictive),−,−} is
incompatible with φj={(Visualisation_Operativity,
Goal, Composition),−,−}, we can simply refer to the
requirements included in the declarative model. Instead,
to verify that a specification φi={(Analytics_Quality,
True_Positive_Rate, medium),−,−} is incompatible with
φj={(Analytics Aim, Task, Crisp_clustering), {km: 5},−},
with km the number of clusters, we need to assess our data
or at least a sample of the full data set.

3.2.2 Interference Enforcement
The interference enforcement process is modeled as a func-
tion that takes as input an interference in∈IN and produces
as output a rule rl∈R that, applied to the specification with
lower priority, resolves the interference.

Definition 3.2 (Interference enforcement process). Interfer-
ence enforcement process is a function ξ:IN→R that takes
as input an interference in (φi ,φj )∈IN and returns as output
the rule rl∈R to be performed on φj to produce a consistent
declarative model. Interference enforcement can then be expressed
as ξ(φi ,φj )=rl(φi ,φj ), where φj is the specification with lower
priority and the inconsistency between φi and φj is resolved by
restricting the domain of φj according to rl.

Different rules can be defined to enforce interferences.
A first common rule can be expressed in terms of boolean
algebra, using the implication of a negation P→¬Q, which
is more plainly translated in ¬P∨¬Q. This rule models
simple scenarios where the specification of P forbids the
specification of Q.

The boolean approach is however simplistic in many
cases. To state a specification, we are required to express
the intensity to which an indicator, a feature, or a constraint
is required. In other words, we define a specific value in the
domain of the values expressing the possible configurations
of a specification φ. The specifications are then interpreted
as variables and the rule rl is a function rl:(φi ,φj )→D(φj )
binding the domain of the requirement or the constraint in
φi with the one in φj , denoted as D(φi ) and D(φj ), respec-
tively. In other words, D(φj ) of φj is restricted according to
D(φi ) of φi . Interpreting a rule as a function between two
variables imply that if x∈φi is a value selected by the user,
all the values y∈φ′j with rl−1(y)>x cannot be proposed as
an option to the user.

Our approach adopts a fuzzy definition of interference
rules, defining a fuzzy interpretation of the logical connec-
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Fig. 3. Membership Functions that can be adopted to model interfer-
ences: a) linear monotonic; b) quadratic monotonic; c) squared root
monotonic; d) triangular non-monotonic; e) trapezoidal non-monotonic;
f) gaussian non-monotonic

tors of the rule and calibrating its behavior by normalizing
the domains of the lower-level requirement or constraint
in φ using a fuzzy predicate. The values of each φ can be
mapped in [0, 1], which represents the intensity of realiza-
tion of φ. We are thus defining a membership function of
a fuzzy predicate. The adoption of a step for interpreting
the domain D(φ) in terms of a fuzzy predicate, using a
membership function, permits to decouple the enforcement
of interferences from the definition of φ. The enforcement
procedure is based on a single rule that interprets an inter-
ference as a logical implication of a negated. The behavior
of the interferences depends on the membership function
selected for fuzzifying requirement/constraint domain.

Figure 3 shows the different membership functions
that can be adopted for interpreting a specification φ:
linear monotonic (Figure 3(a)); quadratic monotonic (Fig-
ure 3(b)); squared root monotonic (Figure 3(c)); triangular
non-monotonic (Figure 3(d)); trapezoidal non-monotonic
(Figure 3(e)); gaussian non-monotonic (Figure 3(f)). All these
functions express direct relationships; it is easy to see that
inverse relationships can be represented as well.

Example 3.2. We want to model an interference at
constraint-level such as ina(φ1, φ2)=({(Accuracy,
False_Positive_Rate, medium), {fp=v1}, −},
{(Anonymization, Anonymization_Technique, k-
anonymity, {ka=v2},−)}). The rule rl is the fuzzy interpretation
of ¬P ∨ ¬Q. As illustrated in [15], different methods for
interpreting logical operators in the fuzzy theory drive different
composition methods. In this work we adopt a standard approach
by interpreting the negation as the complement: ¬x = 1 − x;
and the disjunction as the maximum: x ∨ y = max(x, y). We
have now to consider the domain of the possible configurations
of φ1 and φ2 expressed as the interval of values (either discrete
or continue) contained in a lower limit a and an upper limit b,
D : [a, b]. Let us assume the domain of parameter fp is in the
range [1, 6], the domain of parameter ka is in the range [1, 5],
and v1 and v2 are the values selected by the user for the two
parameters and triggering interference enforcement. We use a
linear and monotonic membership function µA(v∈D)=a−v

b−a
to bind these values in the interval [0, 1]. This implies that if
a user choose fp=3 and ka=3, their values are respectively
equivalent to 0.4 and 0.5 in the domain [0, 1]. Because we know
that ina applies to the first term fp, we can also infer important

information on ka, the second term of ina. If we adopt the a priori
approach, from the value v1 specified for fp, we can compute the
set of values v2 not allowed in ka by taking the complement of
µA(v1), as we have P → ¬Q,P :: ¬Q. This also implies that
the complement of the first term is also a maximum boundary
for the second term, that is, µA(v2) � 1 − µA(v1). Following
our example we have 1 − 0.4 = 0.6 and then we know that all
values ka≥0.6 cannot be chosen. If we adopt the a posteriori
approach, we consider the values specified for fp and ka, and
verify their consistency by taking the complement of µA(v1),
the complement of µA(v2), and connect them using operator ∨,
as P → ¬Q :: ¬P ∨ ¬Q. Assuming fp=0.4 and ka=0.5, we
have 1−0.4=0.6 and 1−0.5=0.5, max(0.6, 0.5)=0.6, that is,
the max value that can be achieved by the membership value of
the second argument of the interference. Since ka<1−fp (i.e.,
0.5<0.6), the proposition is true and we can accept the value of
ka.

4 PROCEDURAL DEFINITION OF A BIG DATA CAM-
PAIGN

The second step of our MBDAaaS methodology defines
a procedural model. First abstract services in the Services
Catalog, compatible with the specifications provided in the
declarative model, are selected. These services (or a subset
thereof) are then composed to provide a full description of
the procedure to be executed by the platform.

4.1 Procedural Models
Procedural models are platform-independent models that for-
mally and unambiguously describe how services must be
configured and composed. They provide an arbitrary com-
position of services falling in the areas presented in Sec-
tion 3.1, as formally defined below.

Definition 4.1 (Procedural Model). A procedural model m is
a direct acyclic graph G(V,E,λ), where a vertex vi∈V refers to a
service in a specific area, an edge (vi ,vj )∈E is annotated with
function call fi to the service represented by vj , and λ:V→C
is a labeling function that associates a set {c1,. . .,cn}∈C of
constraints with each vi∈V.

We remark that constraints are used to set up service
parameters with configuration values. For instance, ci can
specify the cardinality ka of a data anonymization based
on k-anonymity. We also remark that each function call
annotating an edge in G triggers the execution of the
corresponding mechanism in the deployment model, as
described in Section 5.1.

4.2 OWL-S Service Composition
We use OWL-S [8] as the representation format for defin-
ing procedural models. OWL-S is a standard ontology
providing a semantics to automatically discover, invoke,
compose, and monitor services. It is structured in three
interrelated sub-ontologies, known as Profile, Process Model,
and Grounding. Profile expresses what the service “does”;
Process Model describes “how it works”; and Grounding
maps the constructs of the process model onto detailed
specifications of message formats, protocols, and so forth.
The definition of an OWL-S service composition, which is



6

driven by the declarative model in Section 3, is built on the
OWL-S ontology. It is a three-step process as follows.

OWL-S Service Definition. The definition of an OWL-S
service composition includes the abstract description of
OWL-S services that are compatible with the choices
made in the declarative model. This phase is executed
according to the following procedure. First, abstract
services are defined using the OWL-S ontology. Each
service includes a reference to a WSDL file that specifies
the execution path of the service used at deployment time,
that is, it identifies the concrete service to be executed.
Second, each OWL-S service is manually connected to
specifications in the declarative model using an extension
to the OWL-S profile ontology and points to generic
taxonomies or classification systems. Our extension
provides two new elements profile : serviceCategory
and profile : categoryName, where
profile : categoryName defines a single specification
and profile : serviceCategory is a container of
elements profile : categoryName. These elements
permit to specify a Boolean formula of specifications
in a Disjunctive Normal Form (DNF), where different
elements profile : serviceCategory are ORed, while
different elements profile : categoryName in a single
profile : serviceCategory are ANDed. Figure 4 proposes
an excerpt where the OWL-S profile of an anonymization
service is mapped to declarative specification
Data_Preparation.Anonymization_Technique.Hashing, using a
single element profile : categoryName.

OWL-S Service Selection. Upon receiving a declara-
tive model, our methodology sequentially analyzes all
OWL-S services and retrieves those services linked to
Boolean formulas (of specifications) that are compatible
with the requirements and constraints specified in the
declarative model (step 2 in Figure 1). This is achieved
using the extended OWL-S service description. For ex-
ample, the anonymization service with OWL-S profile
in Figure 4 is selected when the goal (Anonymization,
Anonymization_Technique, Hashing) is specified in the
declarative model for area data preparation. It is important
to note that declarative models and their specifications are
partial and incomplete by nature. The users can specify
only a subset of available declarative requirements; also, the
users only define the service goals of the Big Data campaign
without specifying the execution flow. This scenario results
in the selection of a set of compatible OWL-S services
that: i) is a super-set of the services used in the Big Data
campaign, ii) does not carry any information about how
such services must be orchestrated.

OWL-S Service Composition. After retrieving the set of ser-
vices compatible with declarative specifications, our process
defines the OWL-S service composition (step 3 in Figure 1).
Composite services are built by composing (a subset of)
compatible services according to different operators such as
sequence, alternative, parallel (see Section 5.2), using
the control constructs provided by OWL-S. Given that, as
discussed above, the declarative specifications are partial
and incomplete by nature, a manual user intervention is
required to resolve the inherent ambiguity due to the selec-

<profile:serviceCategory>
<profile:categoryName>
Data_Preparation.Anonymization_Technique.Hashing
</profile:categoryName>

<profile:taxonomy>
http://www.example.com/toreador/BDMOntologies/TDM.json

</profile:taxonomy>
</profile:serviceCategory>

Fig. 4. Mapping of an OWL-S service for anonymization to a declarative
specification

tion of a super-set of services and to the lack of information
on the execution workflow. The user (or a consultant) is
then responsible for manually drawing the OWL-S service
composition. This is the only step where user intervention
is required beyond declarative model definition.

We note that OWL-S service composition carries all infor-
mation about the process, data management, and orchestra-
tion, bringing back control to the final users and increasing
the transparency of a Big Data computation.

Example 4.1. We present a concrete example of our pro-
cess for OWL-S service composition definition, starting from
the definition of an OWL-S abstract service and its map-
ping to declarative model specifications. We consider the
OWL-S modeling of the SHA-256 anonymization service
of Spark, which is mapped to declarative requirements/-
constraints according to the following Boolean formula in
DNF: [(Anonymization, Anonymization_Model, differen-
tial_privacy) ∧ Algorithm:SHA-256] ∨ [(Anonymization,
Anonymization_Technique, hashing) ∧ Algorithm:SHA-
256]. Again, an excerpt of this mapping is provided in Figure 4.

Figure 5 presents the OWL-S process model of the anonymiza-
tion service, where a data set (Dataset) and the parameter(s)
target of the anonymization algorithm (field) are taken as
input (elements process : hasInput), and the anonymized
data set (AnonymizedDataset) is returned as output (element
process : hasOutput).

Figure 6 presents an example of grounding, where the
function of the anonymization process is specified. In our
example, a reference to the WSDL file of the service
(HashingAnonymizationService.wsdl) is used as a placeholder
that points to the functionality/library provided by the target Big
Data platform and implementing the service itself. This reference
is fundamental to map the abstract OWL-S service to the real
service in the target platform, linking a central repository of
information needed to execute the real service (see Section 5).

Finally, Figure 7 presents a basic service composition that
composes in a sequence a data cleaning service, the anonymization
service we just introduced, and a clustering service aimed to
segment data based on a distance metric.

5 EXECUTABLE WORKFLOWS

The last step of our MBDAaaS methodology is based on a
compiler that automatically transforms a procedural model
(OWL-S service composition) in a deployment model (ex-
ecutable workflow) that is ready to be executed on the
target Big Data platform. We note that OWL-S service
composition is a technology-independent representation of
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<process:AtomicProcess rdf:about="#AnonymizationService:Process">
<process:hasOutput>

<process:Output rdf:ID="Dataset">
<process:parameterType rdf:datatype="http://www.w3.org/2001/

XMLSchema#anyURI">
&tdm;#AnonimyzedDataset

</process:parameterType>
</process:Output>

</process:hasOutput>
<service:describes rdf:resource="#AnonymizationService"/>
<process:hasInput>

<process:Input rdf:ID="Dataset">
<process:parameterType rdf:datatype="http://www.w3.org/2001/

XMLSchema#anyURI">
&tdm;#Dataset

</process:parameterType>
</process:Input>

</process:hasInput>
<process:hasInput>

<process:Input rdf:ID="Field">
<process:parameterType rdf:datatype="http://www.w3.org/2001/

XMLSchema#anyURI">
&tdm;#Field

</process:parameterType>
</process:Input>

</process:hasInput>
<rdfs:label>Process</rdfs:label>

</process:AtomicProcess>

Fig. 5. Anonymization Service: OWL-S process model

<grounding:WsdlGrounding rdf:about="#Grounding">
<service:supportedBy rdf:resource="#Service"/>
<grounding:hasAtomicProcessGrounding>

<grounding:WsdlAtomicProcessGrounding
rdf:ID="AtomicProcessGrounding"/>

</grounding:hasAtomicProcessGrounding>
</grounding:WsdlGrounding>
<grounding:WsdlAtomicProcessGrounding
rdf:about="#AtomicProcessGrounding">

<grounding:wsdlInput>
<grounding:WsdlInputMessageMap>

<grounding:owlsParameter rdf:resource="#Dataset"/>
<grounding:wsdlMessagePart rdf:datatype="http://...#anyURI">

file:HashingAnonymizationService.wsdl#Dataset
</grounding:wsdlMessagePart>

</grounding:WsdlInputMessageMap>
</grounding:wsdlInput>

<grounding:wsdlOutput>
<grounding:WsdlOutputMessageMap>

<grounding:owlsParameter
rdf:resource="#HashingAnonymizedDataset"/>
<grounding:wsdlMessagePart rdf:datatype="http://...#anyURI">

file:HashingAnonymizationService.wsdl#anonymizedDataset
</grounding:wsdlMessagePart>

</grounding:WsdlOutputMessageMap>
</grounding:wsdlOutput>

Fig. 6. Anonymization Service: OWL-S grounding.

the executable workflow, which models what the Big Data
campaign should achieve and how to achieve its objectives;
the executable workflow is the implementation of an OWL-S
service composition on a specific technology/platform.

5.1 Deployment Models
Deployment models are executable, platform-dependent
models that specify how procedural models are instantiated
and configured on a target platform, using components
relevant for the analytics to be performed. They define con-
figurations for architecture deployment and drive analytics
execution in real scenarios. A deployment model G is an
instance of a procedural model G in Definition 4.1 and is
generated according to an exogenous vertical transforma-
tion [16].

<process:CompositeProcess rdf:about="tdm:CompositeProcess00001">
<process:composedOf>

<process:Sequence>
<process:components>

<process:ControlConstructList>
<list:first> <process:Perform>

<process:process rdf:resource="tdm:DataCleaningService"/>
</process:Perform> </list:first>

<process:components>
<process:ControlConstructList>

<list:first> <process:Perform>
<process:process rdf:resource="tdm:AnonymizationService"/>

</process:Perform> </list:first>
<process:ControlConstructList>

<list:first> <process:Perform>
<process:process rdf:resource="tdm:ClusteringService"/>

</process:Perform> </list:first>
</process:ControlConstructList>

</process:components>
</process:Sequence>

</process:composedOf>
</process:CompositeProcess>

Fig. 7. OWL-S service composition

Definition 5.1 (Deployment model transformation ./). Let
m∈M be a procedural model and {c1,. . .,cn}∈C a set of con-
straints on deployment models in Definition 3.1. Model transfor-
mation ./:M×C→Md is a function that takes the procedural
model m=G(V,E,λ) and the constraints {c1,. . .,cn} as input,
and produces a deployment model md=G (V ,E ,λ) as output.
Deployment model md is such that the following conditions hold:

1) md is a super-model of m (denoted mvmmd), where
V⊆V , E⊆E ;

2) each vertex v j∈V of md instantiates and configures
corresponding vertex vi∈V ofm according to constraints
{c1,. . .,cn}; and

3) for each vertex vi∈V, corresponding vertex v j∈V must
be such that λ(v j ) is consistent with λ(vi ).

We remark that there is a clear isomorphism between
procedural model m and deployment model md. We also
note that each v j∈V is instantiated with a Big Data algo-
rithm, service, or component. We finally note that, during
the transformation, a single vertex vi∈V could be instan-
tiated in multiple vertices v j∈V . In this case, condition 1
checks the satisfaction of constraints {c1,. . .,cn } on a se-
quence of vertices v j∈V ; condition 2 checks consistency
between λ(vi ) and λ(v j ) for all v j . Applying to generic
direct acyclic graphs, our transformation can be used in
different scenarios. For instance, in case the analytics show
a true data dependency, the procedural and deployment
models can be represented as data flow models and the
transformation maps each vertex vi∈V in one or more
vertex v j∈V . Otherwise, in case there is not a strict data
dependency, the procedural and deployment models can
be represented in terms of features and modeled as feature
models, where the transformation extends leaf nodes in the
procedural model with a subtree rooted at such nodes in the
deployment model.

5.2 Compiler

The transformation in Definition 5.1 is implemented by a
compiler (step 4 in Figure 1) that takes as input the OWL-S
service composition returned in step 3, the OWL-S service
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TABLE 1
Control constructs considered by the compiler

Operators OWL-S Constructs BPEL Constructs Oozie Constructs
Sequence � 〈process:Sequence 〉 〈sequence . . .〉 −

. . . . . .
〈/process:Sequence〉 〈/sequence〉

Alternative ⊗ 〈process:Choice 〉 〈pick . . .〉 〈switch〉 〈switch〉
. . . . . . . . . . . .
〈/process:Choice〉 〈/pick〉 〈/switch〉 〈/switch〉

Parallel ⊕ 〈process:Split〉 〈flow . . .〉 〈fork name="forking"〉
. . . . . . . . .
〈/process:Split〉 〈/flow〉 〈/fork〉

Loop µ 〈process:Iterate〉 〈while . . .〉 〈action name="loop"〉
. . . . . . . . .
〈/process:Iterate〉 〈/while〉 〈/action〉

description of all services selected in step 2 (Figure 7) and
information on the target platform, and produces as output
a technology-dependent workflow that can be executed
by the workflow engine available on the target platform.
The compiler represents the cornerstone of our MBDAaaS
methodology. It consists of two main sub-processes, namely,
structure generation and service configuration, each focusing on
a specific part of the transformation as follows.

Structure generation. The compiler parses the OWL-S ser-
vice composition and identifies the process operators com-
posing it. Different operators can be managed including:

1) Sequence � implementing a sequence statement
where si is executed before sj (si�sj ).

2) Alternative ⊗ implementing a conditional statement
where either si or sj is executed (si⊗sj ).

3) Parallel ⊕ implementing a parallel statement where
both si and sj are executed at the same time (si⊕sj ).

4) Loop µ implementing a loop statement, which can
be either implemented as a separate statement (µsi )
or as a degeneration of the sequence.

Upon identifying the operators, the compiler loads the
driver of the language used for deployment model speci-
fication and generates an empty skeleton of the Big Data
pipeline to be executed, which corresponds to the struc-
ture of the procedural model. The structure, in addition
to operators, contains an empty service for each service
in the procedural model. It is important to remark that
our approach has been designed to be generic, meaning
that our compiler is independent of the selected workflow
language. The compiler, in fact, can translate an OWL-S
service composition in a workflow that is modeled both
using a workflow language specifically defined for Big Data,
such as Apache Oozie,2 and a workflow language originally
defined for web service composition, such as WS-BPEL.
Table 1 presents the mapping between OWL-S operators and
corresponding operators in Apache Oozie and WS-BPEL
workflow languages. In the following, for simplicity but
with no lack of generality, we focus on Oozie workflows.

Service configuration. After generating the workflow struc-
ture, for each empty service s ′i , i) the corresponding service
si in the procedural model is identified, ii) service si is
instantiated using the OWL-S service description, informa-
tion on the Big Data execution platform, and the language
selected for specifying the deployment model. We recall

2. Other workflow languages available in the market are
AirBnB Airflow (https://airflow.apache.org), LinkedIn Azkaban
(https://azkaban.github.io), or Spring Cloud Data Flow
(https://cloud.spring.io/spring-cloud-dataflow).

that the reference to a WSDL file in the OWL-S service
description is used to identify the real service instance to
be added in s ′i and to be executed on the target platform.

5.3 From OWL-S service compositions to Oozie work-
flows
Structure generation and service configuration in Section 5.2
are implemented using Oozie workflows.

5.3.1 Structure generation
We use a SAX parser to parse the OWL-S service com-
position by means of an event-driven online algorithm
and generate the corresponding Oozie workflow struc-
ture. An OWL-S service composition, modeled using the
process model sub-ontology and the operators in Ta-
ble 1, defines process : CompositeProcess as the root of
the composite process. It then defines the inputs of the
process with element process : hasInput and the corre-
sponding outputs with element process : hasOutput. It
finally describes the real service composition using ele-
ment process : composedOf. The latter element specifies
how services are composed and corresponding inputs/out-
puts are linked among them. In particular, it includes
the specific operator (e.g., element process : sequence),
which in turn contains the specific component services
(element process : components) to be composed. For in-
stance, Figure 7 shows an example of sequence (element
process : ControlConstructList), where three services
are composed in a sequence on a pair basis. The first
service, DataCleaningServices, is wrapped within an ele-
ment list : first and composed with a sequence of ser-
vices AnonymizationService and ClusteringService which are
wrapped within element list : rest.

The result is an OWL-S document that gets translated
into an Oozie workflow according to the control constructs
in Table 1. First of all, element workflow− app is added
as the root of the Oozie workflow. Then, for each service
in the OWL-S service composition, an element action is
added within the root. Each of the generated elements has
an attribute name, and two elements ok and error modeling
the execution flow. Figure 8 presents an Oozie workflow that
corresponds to the OWL-S composition in Figure 7. In our
example, three elements action have been added at the root
level. The first action has name DataCleaningService and is
connected to AnonymizationService using element ok, which,
in turn, is connected to ClusteringService using element ok.
Action ClusteringService is then connected to the end of
the workflow. A default service (kill_job) is modeled using
element kill and represents an unexpected end of the
workflow due to faults/errors.

5.3.2 Service configuration
Service configuration acts on each element action and
configures it according to the information included in
the OWL-S sub-ontologies Profile and Grounding. The
first element specifies, for each action, the language used
to implement the service itself (e.g., Java or Spark).
Then, different elements specify how to execute the
job including: i) job− tracker, to trace and manage
the job, ii) name− node, where the job is executed,
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<workflow−app name=’Process1’ xmlns=’uri:oozie:workflow:0.1’>
<start to=’DataCleaningProcess’ />
<action name=’DataCleaningProcess’>

<java>
<job−tracker>${jobTracker}</job−tracker>
<name−node>${nameNode}</name−node>
<prepare><delete path=’${outputDir}’/></prepare>
<configuration>

<property>
<name>mapred.reduce.tasks</name>
<value>300</value>

</property>
</configuration>
<main−class>${MainClass}</main−class>
<arg>${normalization}</arg>
<arg>${datasetURI}</arg>

</java>
<ok to=’AnonymizationProcess’ />
<error to=’kill’ />

</action>
<action name=’AnonymizationProcess’>

<java>
<job−tracker>${jobTracker}</job−tracker>
<name−node>${nameNode}</name−node>
<prepare><delete path=’${outputDir}’/></prepare>
<configuration>

<property>
<name>mapred.reduce.tasks</name>
<value>300</value>

</property>
</configuration>
<main−class>${MainClass}</main−class>
<arg>${normalizedDatasetURI}</arg>
<arg>${hashing}</arg>
<arg>${IPAddress}</arg>

</java>
<ok to=’ClusteringProcess’ />
<error to=’kill’ />

</action>
<action name=’ClusteringProcess’>

<java>
<job−tracker>${jobTracker}</job−tracker>
<name−node>${nameNode}</name−node>
<prepare><delete path=’${outputDir}’/></prepare>
<configuration>

<property>
<name>mapred.reduce.tasks</name>
<value>300</value>

</property>
</configuration>
<main−class>${MainClass}</main−class>
<arg>${anonDatasetURI}</arg>
<arg>${K}</arg>
<arg>${maxIterations}</arg>

</java>
<ok to=’end’ />
<error to=’kill’ />

</action>
<kill name="kill">

<message>Task failed, error message[${wf:errorMessage()}]</message>
</kill>
<end name=’end’/>

</workflow−app>

Fig. 8. Example of an Oozie workflow

iii) prepare, to cleanup the directory for job execution,
iv) configuration, the configurations of the job to be
executed, v) main− class, the class to be executed, vi) a
set of arg, arguments to be given as input to the job.

Example 5.1. Figure 8 shows an example of an Oozie workflow
corresponding to the OWL-S workflow in Figure 7 and compatible
with the Oozie workflow engine. The workflow in Figure 8 is
composed of three activities (elements action) in a sequence that
execute i) data cleaning, ii) anonymization, and iii) clustering.
As indicated by the element start, the workflow begins by
executing DataCleaningProcess, which receives as input two
parameters (elements arg), the first with the type of normalization
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Workflow
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Services
Catalog
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Description

OWL-S Service
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OWL-S Service
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Visualization
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Fig. 9. Extended Big Data platform architecture implementing MBDAaaS
in Figure 1

to be executed (${normalization}) and the second with the target
data set (${datasetURI}). Upon a successful execution of Data-
CleaningProcess, AnonymizationProcess is executed (second
element action). It receives as input the output of DataClean-
ingProcess (${normalizedDatasetURI}), the anonymization oper-
ation (${hashing}) and the field(s) over which the anonymization
must be performed (${IPAddress}). Upon a successful execution
of AnonymizationProcess, ClusteringProcess is finally exe-
cuted (third element action). It receives as input the results of
AnonymizationProcess (${anonDataset}), and parameter(s) for
clustering (${K}, ${maxIterations}).

There is, however, a subtlety to consider: the workflow in
Figure 8 is not completely specified. In fact, the activities in the
workflow refers to templates that need to be instantiated with
parameters in the OWL-S workflow.3 For instance, let us con-
sider the reference to AnonymizationProcess in Figure 8. The
corresponding activity is completely specified unless the variables
associated with the parameters anonymization operation ($hash-
ing) and target ($IPAddress). When $hashing and $IPAddress are
filled in with real values, the workflow is completely specified and
ready to be executed.4

6 EXPERIMENTAL EVALUATION

We present the application of our methodology in a real-
world industrial scenario. To this aim, we integrated our
methodology, presented in Figure 1, within traditional Big
Data platforms, by changing the architectural flow between
their components. Figure 9 shows the architectural exten-
sion to a “standard” Big Data platform, where gray boxes
refer to components implementing our methodology; white
boxes refer to traditional components of a Big Data platform
used to execute the services selected in the first stage of our
methodology; boxes with dashed lines refer to steps of the
methodology that require a manual configuration.

According to Figure 9, the users first specify the declara-
tive model using the web-app form provided by the Declar-
ative GUI. The JSON-LD file (Figure 2) returned as output is

3. In case a parameter value is missing, it is prompted to the user that
can provide it.

4. In case no workflow engine is available on the target platform,
these parameters are directly added in the call to the corresponding
library (through a command line interface).
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given as input to the Service Selection Component, and used to
configure traditional Big Data platform components: Analyt-
ics Engines, Data Warehouse, Visualization Tools. Upon receiv-
ing the declarative specifications, Service Selection Component
automatically retrieves the compatible services, which are
manually composed by the users to build an OWL-S service
composition using the Service Composition Engine. The OWL-
S service composition is given as input to the Workflow
Compiler, which automatically transforms it into a workflow
that can be managed by the selected Workflow Engine. The
workflow is used to finalize the configuration of traditional
Big Data components and is executed by the Workflow Engine
on the selected platform. Retrieved results can be used
to tune the declarative model specification and restart the
process from scratch.

In our experimental evaluation, we adopted the Hadoop
stack that is based on the YARN programming model and
the Hadoop Distributed File System (HDFS). We then used
Apache HBase as our Data Warehouse, a database engine
built using Hadoop and modeled after Google’s Big Table.
We further integrated Apache Spark as our Analytics En-
gine, a general purpose, fast, and reliable cluster computing
engine. We then used Zeppelin as the visualization tool
for data sets and results. We finally adopted Oozie as our
workflow engine and integrated it with the rest of the
Hadoop stack.

All artifacts used to run this experiment, as well as
the results obtained, are available at https://tinyurl.com/
ycvh9u39.

6.1 Reference Scenario: Threat Detection Systems

Threat detection and prevention in software ecosystems [17]
have evolved from the network level and start encompass-
ing the application layer. Threat Detection Systems (TDS)
detect potential attacks on the application landscape by
gathering and analyzing log data, such as user change
logs, security audit logs, remote function call gateway logs,
and transaction logs. Logs are pre-processed, anonymized,
translated into a common format, and analyzed by pattern
or anomaly detection algorithms, which can highlight sus-
picious events. On top of the generated events and alerts,
a detailed investigation is performed by a human expert
to decide if a real attack was detected or was a false
positive. However, with the increasing size and complexity
of software systems, the volume and diversity of log data
are becoming major issues. Customers have in place a
large spectrum of different systems and a wide range of
data security policies. As a result, including and managing
these heterogeneous log files currently need a significant
customization effort, especially when they contain sensitive
and personal information (e.g., user IDs, IP addresses), come
from logs of multiple customers, or are accessed via a
third party (e.g., cloud provider) running the TDS. Similarly,
customers often need different security analysis, depending
on the security context, industrial sector, risk management
policies, and the analytics functionality need to be often
customized too. Accordingly, major challenges for data
analysis by TDS systems are related to devising a flexible
framework supporting: i) the provisioning of customized
analytics and reporting approaches for stakeholders; ii) data

anonymization (at different levels, for different customers,
for different purposes); iii) a scaling approach for variable
data loads; iv) a limited effort (i.e., semi-automatic) for the
integration of new and diverse log files, which also adapts
corresponding analytics.

We present how MBDAaaS approach can be used in
the real in-production TDS of SAP, one of the largest IT
enterprises worldwide, and its extension to include novel
analytics. The major challenge of TDS, when searching for
security incidents, lies in the ability to detect either a devi-
ation from a standard behavior (unplanned anomalous ac-
tivity), during or outside of an exceptional process (planned
anomalous activity), or regular malicious activities merged
into the normal state of operations (unplanned ordinary
activities such as advanced persistent threats or repeated
frauds).

6.2 Experimental Evaluation
We extended the preliminary evaluation conducted in [18]
by executing a complete process from declarative model
specification to deployment model generation and execu-
tion. Our starting point was devising an anomaly detec-
tion functionality through clustering detected anomalies.
In particular, we aimed to detect usage of certain types
of programs (called transactions) outside of a user’s peer
group (possibly a case of privilege escalation) and to cluster
anomalies pertaining to a planned abnormal activity in a
single stage (instead of assessing them one by one, for
example anomalies due to a system upgrade or due to an
internal reorganization). We used a log data set containing
around six weeks of activity collected from SAP systems
deployed in a test environment. We considered three fea-
tures, namely Executed Transaction, Data Sent, and Data
Received, extracted from the log files and aggregated per
user. For testing purpose, we artificially generated a data set
with multi-variate Gaussian distribution having the same
average and covariance matrix as the original data points.

In the following, we describe a step-by-step application
of our methodology to this scenario.

Declarative model specification and interferences. The
declarative model for our TDS scenario mainly defines three
requirements: i) log data set must address data minimization
privacy requirement by k-anonymizing the UserID field
with ka=5, while guaranteeing full analytics quality; ii) data
must be analyzed using a clustering algorithm; iii) data
visualization must provide scatter-plots, supporting visual
inspection of data by expert users, to select valid alerts.

Interference rules are then checked to evaluate
declarative model consistency. In our example, a rule
is triggered between specification φ1={(Anonymization,
Anonimization_Technique, k-anonymity), {ka:5,
Target: UserID}, 0.8} and φ2={(Analytics_Quality,
False_Positive_Rate, low), {fp: 1}, 1}. Since Analytics Quality
has higher priority, the fuzzy rule in Figure 3(b) is applied
and the domain of ka of k-anonymity is restricted to ka:1.
In this case, since anonymity is not preserved anymore,
the final user is prompted and a new specification for goal
Anonymization Technique is provided: φ1=(Anonymization,
Anonimization_Technique, hashing), {Algorithm: SHA-256,
Target: UserID}, −}.
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Fig. 10. OWL-S service compositions using anonymization (A), k-means
(K), elbow (E), and visualization (V) services. Fork (F), Join (J), and do-
while represent operator nodes

Service selection. Declarative model specification is used to
select the set of compatible services that can be composed
to build the Big Data campaign. According to the three
requirements above, our MBDAaaS methodology selects all
SHA-256 services, different instances of clustering services,
and all visualization services, including the ones provided
by Zeppelin, for scatter-plot visualization, available in the
target platform. The specification of declarative constraints
can further affect the list of selected services. In our ex-
ample, the definition of constraint km, that is, the number
of clusters, affects service selection results. When km is
not defined or is defined as a range (Figure 2), the list of
compatible services also includes optimization services such
as elbow method and silhouette score. This means that either
the final user can select a value for km when specifying the
procedural model or an optimization algorithm can be used
to infer it.

Service composition. Upon service selection, the final user
manually composes a subset of the selected services to build
her Big Data campaign. In our scenario, the user selects
a SHA-256 anonymization service, a k-means clustering
service, and a scatter-plot visualization service. There is,
however, a subtlety to consider when services are com-
posed: selections made at declarative level could also pose
restrictions on the way in which services can be composed.
Let us consider the case for the selection of constraint km
(i.e., number of clusters) of k-means.

• Single value. When the value of km is a single value,
no optimization services will be retrieved and com-
posed. This case is supported by our service selection
step (Figure 10(a)).

• No value. When km is not defined, optimization algo-
rithms are retrieved in the service selection step. In
this case, a do-while loop must be used to build our
OWL-S services selection, where at each step a k-
means execution is followed by an optimization step
(e.g., elbow method) that also considers the result of
the previous step. The loop ends according to the
optimization function (Figure 10(b)).

• Range. When km is defined as a range, optimization
algorithms are retrieved in the service selection step.
Similarly to the previous case, a do-while loop can

Fig. 11. Two-dimensional projections of analytics results

be used, though it could be not effective. In fact,
knowing the different km, a parallel structure can
be used to execute km times the k-means algorithm
with incremental km, evaluating the optimization
function at the join node of the parallel structure
(Figure 10(c)).

Figure 10 shows the flows of the three possible OWL-S
service compositions. We remark that service compositions
are manually defined by the user according to the retrieved
compatible services. In particular, in our experimental eval-
uation we selected the composition in Figure 10(b). This
is because the declarative model provided as input (as an
extension of the excerpt in Figure 2) does not specify the
number of clusters km, meaning that the user does not know
the optimal parameter and optimization services, such as
elbow method, are beneficial.

Workflow execution. The composition in Figure 10(b) is
finally given as input to our compiler that automatically
generates the Oozie workflow. The workflow is then stored
in our platform, following the appropriate path and instan-
tiated according to the information available in the files
job.xml and properties.xml. These files are associated with
each service component, so that the Oozie engine can refer
to them when executing.

Initial analysis. Figure 11 presents the results retrieved
through our MBDAaaS using the Big Data platform in this
section. Our experiments returned 8 clusters, according to
the optimum km returned by elbow method, represent-
ing similar events. The clustering was able to group all
planned anomalous activities (peaks in data transfer, ob-
served regularly for all users) into a single cluster (scale data
transfer>4), filtering out a large number of events which
would otherwise have triggered false-positive alerts.

Refinement. One of the strengths of the MBDAaaS lies in the
ability to quickly redeploy alternative analytics. Leveraging
this capability, we analyzed our data set with a Gaus-
sian Mixture Model (GMM) instead of k-means. Since our
GMM implementation does not require an elbow method
for finding an optimal value for km, the resulting OWL-
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Fig. 12. Two-dimensional projections of analytics results after refinement

S composition was simplified as an Anonymization step,
followed by a GMM step and by a Visualization step, akin
to Figure 10(a). This second experiment returned 5 clusters
presented in Figure 12. GMM clustering permitted to group
regular transactions in a limited number of clusters and
highlighted new small clusters, corresponding to a trans-
action seldom used by one of our users, which was not
visible via k-means clustering. This cluster corresponds to
a second type of anomaly: a transaction run by a user but
by no other users having a similar role. We then considered
the segmentation produced by GMM more significant.

Performance evaluation. We evaluated the overhead intro-
duced by our solution with respect to standard Big Data
architectures, that is, the overhead introduced by the service
composition engine and the workflow compiler. The perfor-
mance of the service composition engine and compiler have
been measured in the three scenarios in Figure 10, using
a laptop with a CPU Intel i7 and 8GB of RAM, retriev-
ing the following results. The service composition engine
generated the OWL-S of the composition in Figure 10(a) in
300ms, the composition in Figure 10(b) in 310ms, and the
composition in Figure 10(c) in 380ms. Then, the workflow
compiler generated the Oozie workflow of the composition
in Figure 10(a) in 420ms, the composition in Figure 10(b)
in 520ms, and the composition in Figure 10(c) in 780ms.
These results show the marginal overhead introduced by
our approach when developing a Big Data campaign.

6.3 Discussion

We presented a complete walkthrough of our MBDAaaS
methodology, from declarative model specification to de-
ployment model execution and refinement, to show its
feasibility and usefulness. The entire process was triggered
by the definition of the declarative model that permitted
to carry out the expected Big Data campaign. In partic-
ular, we would like to stress the following points. First,
the requirements specified by the user, though partial and
incomplete (with only ~2% of the requirements specified in
our experiments), can be sufficient to select a set of services

that, appropriately composed, produce a significant result.
The interference enforcement on declarative specifications
reduces the number of scenarios where declarative specifica-
tions bring to Big Data campaigns producing wrong or use-
less results. The details about the process, data management,
and orchestration of the specific procedural implementation
permit to compare different alternative solutions before
their deployment (see Figure 10), paving the way to the a
priori assessment of the impact that alternative specifica-
tions have on performance or quality of analytics. Also, such
details provide all information needed to define privacy-
by-design Big Data campaigns, by verifying OWL-S service
compositions against existing standards (e.g., General Data
Protection Regulation – GDPR).

In conclusion, our methodology supports users in the
management of Big Data campaigns that require tuning,
adaptation, and continuous analytics. More specifically, It
contributes to fill in the gaps identified in Section 1.

• Usability and productivity: it supports users lacking
Big Data expertise in managing Big Data analytics
deploying a full Big Data pipeline. It supports fast
roll-out with fine-tuning of the declarative model,
implementing an efficient link between R&D and
production.

• Accountability and reproducibility: it supports the
comparison of multiple solutions, with a clear spec-
ification of services. It supports the reuse of models
across domains and technologies, or their refinement
on the basis of collected results by applying MB-
DAaaS iteratively.

• Verifiability: It supports a straightforward integra-
tion with assurance techniques, assessing precondi-
tions and checking consistency with requirements in
the declarative model.

• Technology neutrality: It supports platform-
independent design and development.

Our MBDAaaS methodology has some room for im-
provement mainly in terms of flexibility and validation
capability, which we leave for our future work. First, while
our proposal provides a highly-usable approach for users
with low competences, it falls short to satisfy requirements
of skilled users that need also to control the low-level pa-
rameters of the computation before moving to production.
Second, our approach does not permit to select services at
infrastructure layer hosting the computation on the basis
of declarative specifications. Our approach should then
include execution-side use of declarative model informa-
tion for generating deployment recipes supporting service
distribution across virtualized containers like Dockers. This
perspective, fully compatible with our methodology, will
introduce a degree of automation in execution. Finally,
a throughout benchmarking of our methodology will be
targeted to evaluate the quality of the retrieved results on
the basis of the selected technologies, the level of details in
the declarative model, and the type of data and analytics
selected.

7 RELATED WORK

Research on Big Data-as-a-Service (BDaaS) [11], [19], [20]
has been tackled from four main perspectives, which vary
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on the degree of automation supporting the execution of a
Big Data campaign.

Big Data Platform-as-a-Service considers those approaches
offering support for deploying the core platform (e.g.,
Hadoop and Spark with interactive query services) as a
service [21]. Azure and Amazon are probably the most
prominent representatives of this perspective.

Performance-Oriented BDaaS considers approaches where
the deployment of a Big Data campaign is guided by opti-
mization criteria aimed to take the computational workload
under control [22], [23].

Application-Oriented BDaaS considers those approaches
where the deployment of a Big Data campaign is guided
by specific business cases, including requirements on data
management or analytics to be executed. Although this
perspective shaped the mission of several startups created
in the last years, such as Qubole, just to mention one, the
idea of monitoring and assessing analytics based on BDaaS
was previously discussed by researchers and scholars [19],
[24].

Finally, Model-based BDaaS is the closest line of research
to the work in this paper. It considers approaches aimed
to provide models for representing the different stages of a
Big Data pipeline and improving the capability of verifying
solutions against requirements. The high complexity and
side-costs of designing, developing, and deploying Big Data
infrastructures suggest the adoption of model-driven ap-
proaches that foster modularity, reusability, and automation
of design and implementation tasks. MBDAaaS [7] aims to
address the above needs. Recent contributions have been de-
veloped on top of platform-specific configuration libraries.
KeystoneML [25], for example, introduced an approach
for large-scale pipeline optimization extending Spark ML
libraries [26]. The authors focus on capturing end-to-end
pipeline application characteristics that are used to automat-
ically optimize execution at both the operator and pipeline
application levels. Other works, such as [27], have focused
on testing and monitoring Machine Learning going beyond
error rate but focusing on system reliability, that is, reducing
technical debt and lowering long-term maintenance cost.

A high-level data-flow abstraction for modeling complex
pipelines is also proposed in [28]. The data flows proposed
in this work are direct acyclic graphs that specify some
aspects of a pipeline delegating data inspections and op-
timization to the execution stage. Baylor et al. [29] propose
an adaptation of TensorFlow for supporting data analysis,
transformation and validation. The aim is boosting automa-
tion in the deployment of machine learning models. The
main limitations of the current proposals are that they are
closely tied to specific frameworks, such as Spark in [25],
[28] or TensorFlow in [29], and lack of a formal definition
supporting verification procedures for BDA pipelines.

Although the above perspectives have been considered
in the literature, there is a lack of a comprehensive approach
addressing the whole lifecycle of MBDAaaS. This paper
considerably extends the work in [18] to provide a general
and enhanced MBDAaaS methodology that includes: i) an
extended declarative model formalizing requirements and
constraints definition, including a verification procedure
based on the concept of interference for the definition of con-
sistent declarative models, ii) an extended procedural model

defining an OWL-S service composition linked to speci-
fication in the declarative model. Furthermore, it defines
a compiler that semi-automatically transforms an OWL-S
Service Composition in a generic deployment model, then
focusing on Oozie-based workflows. Finally, it proposes
an extended architecture and its evaluation in a complex
scenario.

8 CONCLUSIONS

Today, development of Big Data applications often takes a
bottom-up, technology-driven approach, where the latest
release of some technology drives the development of Big
Data applications. In addition, the execution workflow of a
Big Data application and corresponding computations are
often hidden to Big Data developers and architects, as well
as to the final users. In this paper, we proposed a com-
plete methodology for MBDAaaS. Our approach proposes
a return to roots, advocating a top-down approach to Big
Data application development. Our approach is based on
the specification of models supporting a semi-automatic
definition and deployment of Big Data campaigns, followed
by the definition of technology-independent scripts, and
finally by the execution of a deployment process on avail-
able technologies. Also, the semantic modeling supported
by our methodology formally represents all the details of
a Big Data campaign, providing to developers and final
users a direct understanding of Big Data computations and
their behavior. The application of the methodology to a real-
world scenario on SAP premises demonstrated its feasibility
and the absence of obstacles to its deployment.
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