
-i S. MODEL-BASED BUILDING VO!FICATION IN EILA
(U) NRVAL POSTGRADUATE SCHOOL MONTEREY CA C LEE ET AL
SEP 87 NPS-82-87-Si KIPR-NMeeS5e-6-357

UNCLASSIFIED F/G 12 ML 

EohEEEEEEEohEE
EEEEEE-EEEIIIE
IIIIIIII



O .~j

lil

C,,

:-A.2

1

-p

-•. -

A;. .,

, A.

C-.* 00 .'.0 0 ,

m* . * * * * * * * * , *



C1i NAVAL POSTGRADUATE SCHOOL
LO Monterey, California

ELECTE
""" OCT 2 8 1J87

MODET'j-BASED BUILDING VERIFICATION
* IN AERIAL PHOTOGRAPHS

by

Chin-Hwa Lee

September 1987

':'

Approved for public release; distribution unlimited .

Prepared for:
~efense Mapping Agency Headquarters

..en -. ofl byC

p d-Cin.a e

, -4 4 . - -.



* 9=i -* -- Tx,. , ... . . -- -- - . -- . . -- • • • -= • -

NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943

Rear Admiral R. C. Austin D. A. Schrady
Superintendent Provost

The work reported herein was supported in part with funds

provided by the Joint Directors of Laboratories.

Reproduction of all or part of this report is authorized.

This report was prepared by:

//

Chin-H a Lee,

Associate Professor

Reviewed by: Released by:

a '\,P. Powers 'ordon E. Schacher
Chaii nan Dean of Science and
Electrical and Computer Engineering Engineering

"p.

5.€ ' ,'"..€ € . € -, _ _ . ."€ . 4 . - . - a - '2 .€ ''. . " * .. " .



SECURITY CLASSIFICATION 09 TWIS P&GE (rWhN
n 

D0., Enf.10d

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETNW FORM

I AIEPOR T humsEM 2. GOVT ACCESSION NO I REC-PIENT*S CATA.OG NUMBER

NPS-62--3-001 A
4 TIT.EC (Wd S3.bfloj S 1"PE CF REPORT & PEP,00 CO..ERE

Annual Peport for PeriodAeria -O uildn Vlrification i October 193-Seotember 1908
Ae aJ. ?htogauh PERFORMiNG ORG. RE-PRT NumSER

" AkJThO*(.. Z.NTRA::" - :;RAN, %N MBf .,

C'in-Hiwa ae

I PERFORMI~NG OPRaANIZATION NAME ANO AOOESS '- QAW EE -ASK
AA F a.( KN' %,MBEP S

;aval Postgraduate School PE63701B, 3208, 076
:ionterey, CA 93943-5100 P 10PR HHOOSO-6-357i "._[ IP -t- H[10050-6-357

II CONTNOLLING OFFICE NAME ANO ADRESS 12 REPORT ::AE

21 October 1986Naval Postgraduate School ,1 NUMSE O AGCES

Mknterey, CA 93943-5100 34% ' "I& m O N ITO RIN G A G E N C Y N AM E 
" 
& A C O R E SS(If df fteren t fom C OA .,,aill 

d  
O fttic e is SE C ,P_ IT Y C A $S .I ' ,A'. fo. ooI ,

.,rdr. Robert Booker Unclassified
Defense Mapping Agency Headquarter 15a C S:_SSVCATN inWN5RA.NG

Bldg 56c, U.S. Naval Observatory ScN-.L

IS ZlS 'RiULJ ;O'd-$itATEMENT (of thile Rpeoft)

Aporoved for public release; distribution unlimited.

17, OISTRIBUTION STATEMENT (of the Oofef¢&Cf mite,. In Block 30, It 0fff.,mit Ifog. RePorI)

1S SUPPL EWMNTAPY NOTES

A Z Y ROROS (fCOnIfnWO an, @VOw I a ede if niocooM' inid fdonifh'V 1 boc& numoe,,

Parallel Architecture, Content -ddressable lemory, Object Detection,
Image Correlation

lO A11STRACT (Corntinue an pow.er** f1*t necessary and Idenqety Or block nhiribei')

Th~ merconcerns th,. dos : fo a c='! -or 'zo .- 'cs-ifrcnar'e i c
C.n. N:er, change detection :s defined as ;i:J=rL-g out -ie differences beti.eei

:4-n object rrcdel and the newly sensed image. The target objects are confined
to the cultural features, such as roads and buildings. We divide the task into,
t4o modules: model verification and image interpretation. In this report, the

1. verification stage will be discussed in detail.

DD , Pir ,, 1473 COITION Op, I NOV,, IS OSOLCC

S$'N 0102- LF. 014-6601 SECURITY CLASSIFICATiON OF TwIS PAGE tBhon Des 8-10-

.- NA

O0



Model-Based Building Verification

in Aerial Photographs

Hsi-Jian Lee

Chin-Hwa Lee

Department of Electrical and Computer Engineering

Na,,al Postgraduate School

Monterey, CA 93943

4, U. S.A.

May 1986

OTtr

•.-p

- q"

! P]

S,''. " v



-- --.-

I. INTRODUCTION

This paper concerns the design of a computer vision system for

change detection. Here, change detection is defined as figuring out the

differences between an object model and the newly sensed image. The

.. target objects are confined to the cultural features, such as roads and

buildings. Ve divide the task into two modules: model verification and

image interpretation. In this report, the verification stage will be dis-

: cussed in detail. In general there exists a lot of domain specific heuris-

tics to judge the status of changes. For example, to verify the existence

of a building, we can check its shape, size, height, surface direction.

and surface material, etc. The expert system approach is a natural ap-

proach which can code all information together. While different photo

" interpreters and field specialists may have different viewpoints about the

-< status of an object, expert systems can be modified easily to reflect a

particular one's viewpoint.

Verification of existent object, i.e., modeled objects, is the first mood-

,ile of our change detection system. Although it is simpler than full

interpolation, it has a lot of applications. The final goal will he the

interpretation of the objects which are concluded 'changed" in the first

stage. This, however, needs more heuristic interpretation rules. t ner

u(rrent (esign methodology, we need only append these heulristics to the

knowledge base and add new interpretation control rules. The verifica-

tion subsystemn structure will not nbe affected or, more conservativel. will

.
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Brooks [1.2] proposed a domain-independent inodel-based com)uter

vision system. ACRONYM. The system uses a volumetric primitive.

generalized cone. to describe generic objects. The parameters can be

expressed not only by a specific numeric value but also by a set of math-

einatic expressions. The modelled objects can thus have variations in

size and structure. The spatial relationship between two affixed parts

is represented by coordinate transformation, including a translation and

a rotation. By changing the transformation, variations in object spatial

relationship can be modelled. Through an algebraic manipulation svs-

tern and a geometric manipulation systeI, invariant and quasi-invariant

features can be predicted. Edge- based, goal-guided image segments are

then matched with the prediction, and image interpretations are then

given. Although the system is flexible enough, it does not give enough

examples to show the general applicability. We believe that a specific

vision system is usually applicable to a special case where, for exaii)le.

the objects may be restricte(d or the caInera model is precisely known.

Nazif and Levine [3] designed a rule-based system to segment an

iimage, a low-level ilage processing task. Traditionally. there are two

disciplines for image segmentation. One is a region apl)roach. based on

locating homogenous regions: another is an edge approach. based on

locating the gray scale discontinilties in the image. Each approach has

its rierits and shortcomings. Through an expert system. ifferelt is

(an be (o(led into rules for image segmentation. For example, an edge c',ie

c",an Ie 1 sel to split a region or to mierge two (or more) adjacent regi( ns.

Region ole Cnii also he ise(l to join two lines. In addition to these

knowledge riles, the svstein uised iietariles to control the )perations 4

4

a.



the knowledge rule. Focus of attention rules are also incorporated to

determine the path of processing within the images.

MicKeown et al. [4] designed a rule-based system, SPAM, for the

interpretation of airport imagery based on a world model. They used

region-based algorithm to segment images. Then region properties such

as shape, texture, spectral properties, etc., are extracted in order to de-

termine the classes of airport features of the region. Multiple fragments.

or say, classes, may be assigned as the interpretation result of a single

region. The fragments with close physical proximity and often related

function are organized into a functional area. After the functional areas

*are formed. tile mutually consistent ones are used to represent an airport

in the verification process.

Barrett et al. [5] proposes an automatic symbolic change detection

(ASCD) system. It is a knowledge based system which looks in the

reference data set for features of interest and then processes and attempts

to i(entify the corresponding features in tile mission data set. They spent

ia s10i1ificant amount of effort in developing the knowledge base and the

rules for the identification of tile features, including six topographic and

six hv(Iro- graphic features.

Tavakoli and Rosenfeld [6] describe a )roc(edure for the rec(ognition of

(ultural features such as buildings and roads on aerial ph)togral)his. They

•se an edge-based method to interpret the posssille features. Straight

line segments are fitted to a set of edge pixels. Based on gray level ail(

4(eoIetric infornation. segments are groul)ed into road-like andl l)uil(ding-

,
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like groups.

Price and Reddy [7] developed a system for symbolic registration and

change analysis, determining what changes in feature values occurred

between two views of the scene, finding the corresponding regions in

the two images. They apply these techniques to compare the pair of

images to generate descriptions of the changes in the scene. In order to

improve the system performance, all analyses are performed symbolically.

The changes they sought include the scale difference, the translation

difference. and the sun angle difference.

II. SYSTEM OVERVIEW

The proposed system structure for change detection is shown in

Fig. 2.1. This phase can be divided into four modules. Module A is

for image pre- processing. It includes optional smoothing, segmentation

and feature extraction. Module B is for knowledge retrieval. Given

the sensed image, we can extract part of the environment model as the

verification basis. That is, the range of the input images is given in

geodetic coordinate system, and we can use this value to select a block

from the input image. Module C is the knowledge-based verification

subsystem. This is the main topic of this paper. Inputs are the image and

the extracted models. They are checked in a depth-first tree traversal

manner. Output will be the status of the known objects in the input

image. The changed objects will be fitted into the next module. Module

D is the knowledge-based interpretation system.

Fig. 2.2 shows the control flow of the proposed interpretation sub

4%
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system. Input to the subsystem will be the unverified objects and un-

interpreted regions. From verified objects and the generic world model

the system will predict possible interpretations, and the interpretation

Ilmodule will gather evidences to verify them. The results, that is the

new identification of unverified objects and the uninterpreted regions.

are finally used to update the model.

In the system diagram of Fig. 2.2 we also propose a model-guided

correspondence solver. When a new interpretation is predicted evidences

are needed. We can collect this evidence from the stereo image. Using

this solver, we can obtain the 3-D information by using the same method

that we used to build the hierarchical environmental model. However.

the correspondence problem is nontrivial. This difficulty is experienced

iduring the finding the features. We feel that enough knowledge is re-

quired for a good correspondence solver. A knowledge-based disparity

analysis system is being developed.

2.1 Knowledge ,Model Creation

This section concerns the creation of an environmental model. Our

proposed verification subsystem depends heavily on the environmental

model. We have developed a simple, interactive method to create the

3-D object model. From the stereo principle, we know that if the corre-

spondence problem is solved, we can find the object coordinates. (X. Y,

Z). through the triangulation method.

The perspective projection of a 3-D object point (X, Y. Z) into a

7
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-,. 2-D image coordinate system, can be expressed as [Ref]

(Y-O\ 11111 It112 in11 3  X - X L

I! - qo 11 221  122. "23 * - (1)
"" -f /M.31 : I?13: Z - ZL

where

i) (x !I) and (,. I Z) are the 2-D and 3-D image point coordinate.

(xo. yo) are the principal point of the camera. +

. (2) k is a scaling factor.

*-"[ (3) tij, i - 1. 2. 3 and j = 1. 2 3 are the components of the rotation

*matrix.

(4) f denotes focal length, Eq. (1) can be rearranged ant put in

. the following form:

AX a + v s

. Y =b+ *t

Z =C + I.* u

Where.

a = XL

4 b = YL

c = ZL

= 1/k

s = -71 r O) + In')(, -Y Yo)- P3 1 f

2'-"t = + -. )+ m 2(y- Yo) - m32f

in& l.- Xo) + In:(Y - Yo) - m 3 3 f
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These values are known. However. (X. 1 Z) and i' are unknown vari-

ables, so we can use left and right images to obtain two set of a. 1). c. v.

s, t. and u. Put into matrix form, we get

1 0 0 -S 1  0 - al"
0 1 0 -ti 0 Y bl

0 0 1 - 0 z (
r, 1 0 0 0 -oa,)

.- ,-0 1 0 0 -- t.) b.2L i
L 0 0 1 0 -u2 " L C- J

Here, subscripts 1 and 2 denote left and right images, respectively. In

short form, we have

A . U = B (4)

It includes six equations and 5 unknowns, (X, Y, Z, u1 , u2 ). Solving by

pseudo-inverse method, the solution can be expressed as

U = (A TA)-1 - 4 T . B (5)

In geometry, the 3-D position of a point, (X, Y' Z). is the intersection

point of two straight lines, which are the lines passing through the left

and right image coordinate and the respective camera center. If the

. distance between two cameras is not large enough, both lines will be

nearly parallel. The solution (X, E Z) will be very sensitive with respect

to the noise perturbation of the point.

2.2 System Development Environment

The current system development is shown in Fig. 2.3. Basically, we

implement the whole system under a general purpose computer sytem.

- 10-
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\Ve use a general editor to create and modify the expert systemn. A

PROLOG interpreter written in PASCAL is used to control the rule

* instantiation and image routines execution. No consistency checking

module and no explanation capability are provided in current stage. The

characterstics of using PROLOG as an expert systein development tool

are discussed by Subrahmnanyann. However, the relationship between

PROLOG and other general-purpose language are not addressed. Hence

we will discuss how PROLOG interpreter is modified to incorporate the

capability of interfacing to the other image processing routines. usually

written in general-purpose programming languages. The vision expert

svstem includes knowledge base, rule base, and environment model.

Rule base is further divided into control rules and knowledge rules.

They will be discussed in Sec. 3.2 and Sec 3.3. Because of the extendabil-

ity and flexibility requirements, we adopt the rule-based approach. The

eIvironmental model is expressed by a set of hierarchical trees and imple-

ilente(l as facts in PROLOG details will be discussed in Sec. 3.1. Both

rule bases and enviornmental models constitute the long-term memory

(LTM) of our system: while feature descriptions of the segmented regions

constitute part of the short-term memory (STM).

2.3 Method of Verification

The procedure of verification is shown in Fig. 2.4. In general, this

is a combination of top-down block-selection and bottom-up evidence-

combination processes. Since the goal of this system is to verify the

existence of the objects in the given input image, we use the coordinate

12
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of the model to select candidate block or a part of a block for verifica-

tion. After the block tree discussed in Sec. 3.1. is selected, it is depth-

first traversal to the terminal nodes, which represent primitive planar

- surfaces. The vertices of the boundary were extracted and we project

thein into the 2-D image plane. Then the projected region is intersected

.- with the segmented image regions. If the area of the intersection area is

large enough. the regions are selected for advance checking. The l)rop -

erties being checked are based on the property list in the environmental

mnodel. After the certainty value for each property is evaluated, they are

, combined based on tile weighted average sum. The coinbined value is

then justified by a subjective rule. If the certainty value is too low to

0. get a satisfactory unchanged answer, the checked image regions will be

-. ~.refined. This work will be conducted by a model-based split and merge

- algorithm. Finally, the certainty value will be reevaluated, combined and

justified again. Tile status will be reported to the end-user and used to

update its father certainty value.

2.4 Relationship Between Control System and Image Processing Routines

In this section, we will discuss the relationship between the control

system and image processing routines. The control system, a set of con-

trol rules, written in PROLOG, can initiate image processing routines.

written in general purpose language. directly. The relationship between

them is shown in Fig. 2.5. The format of control rules which initiates

the image processing routine is as follows:

$iinage'(i_o_routine, out-list. in-vari):

14
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e-

where

(1) '$image' is a build-in PROLOG )redicate, that is. a functor.

2) i-o-rontine is the name of the image-processing rotine.
(3) outlist is the list of argumIents which are trans1itted to iA-orolitiiBs.

(4) invari is a variable which will rnaify with a list of argulliets

received from io_routine.

The PROLOG interpreter parses this predicate. builds the nleces-

sarv data structures and then activates the coiniand dispatcher. The

dispatcher, which is an independent process. looks i) the iiaine of the

image processing routine in a command name table. If the name is

found, the corresponding image routine will be activated. Adopting

this approach, the system developer can easily incorporate new image

processing routines. Once the image processing routine is tested suc-

cessfully. ie need only modify the routine slightly to accept the inlput

parameters from the dispatcher and transmit the output parameters to

the dispatcher. Additionally, the name of the new procedure must be

lladded to the command name table in the dispatcher.

In order to svnchronize the communication between control rules

and image processing routines, we use a mail-box to transmit and receive

data. A mail-box is a file-like data structure. It is one of the methods for

data communication between different processes. Through a mail-box.

i/o operations can be automatically synchronized.

For large quantitative data. the conventional file structure is used

to transfer the information. However, the frequently referred data are

.4. 16
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V,)put ii the blackboard. The details will he shown ill S '. -1.1.

1II. KNOWLEDGE BASE

In this section, we shall discuss the structure of the kowledgle base.

It consists of two parts: an environmental io el anid a rule base,. The,

rule base can be divided into two subparts which are (lescrilte(t ill detail

below

3.1 Environmental 'Model

One of the important features in our system is that we assuiie an

exact 3D environmental model is known. \We can use every i)ossi)le
0

method. e.g., measuring directly. getting from documents or inal)s. to

create this model. Here we use stereo images to estimate the 3D in-

formation. The related mathematics already has been treated in Sec.

- 2.1.

An environmental model is a set of block-trees. which consists of a

ground area surrounded by .everal roads. Each block in the svsten is

represented as a hierarchy tree. It is the static data base of our change

detection system. Each node has a unique name and a set of attributes.

They are represented as a set of facts in PROLOG. The format is 'at-

tribute (node-name, value)'. This is a simple representation schein.

However. the structure is not organized well enough.

The root of a block tree is the block indentification node. It con-

tains the miinimal bounding rectangular (m.b.r) of the block. During

the varification process. m.b.r. is used to select the target blocks of the

17
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ModIel from ain aerial pihotogralph.

Property inheritance is. for example. one of the systein features.

With this feature, the representation will become more compact. But.

the pro(essing will becoxme iore comllicatedI. If property "background-

Smm" for io(le "buildingl" is the samie ats its parent node ant it is wante(d.

the svstein will backtrack in the block tree to find the required property

ill its ancestor.

The hierarchical relationship of the niodel is predefined. For ex-

ample. the liilding-fainilv is a predefined path in the tree from top to

o)ttoml which is shown in Fig. 3.1.

3.2 Control Rules

In this section. we shall describe how the verification procedure is

im)lemented in PROLOG. Because the areas being verified are modelled

bv a block-tree and the verification process is a dei)th-first tree traver-

sal. we need an inherently recursive language for good implementation.

, PROLOG is just the answer. Furthermore, the judgement of the verifi-

cation result also strongly suggests that we us the logic programming.

/* Control Rule 1 /

If the process is intialization, then

(1) rea(d iiiiage-(iependlent data, including region map. image file name.

(1debu1 gging flag. iniage-i(Ientification. and region description file name.

; -'.. . . .. . ..,..-. .. '.- . - .- . - -" -'-...-...... .. .-. ..- - . -. ... " . -.- ,--,
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(2) call external FORTRAN routine crbkbd to create a blackboard.

/* Control Rule 2 */

If the process is find-the-reference-ratio, then

(1) get the coordinates and S.MC of the reference point.

(2) activate an external routine to calculate reference gray value of the

reference point, tref.

(3) get the standard gray value of the reference point's SMIC. rref. and

* (4) set the ratio tref / rref.

/* Control Rule 3*/

If the intersection area of a -block' and a segmented image is large

enough, then add the block to the checking list.

If the intersection area is too small, then try the next block-tree.

If the intersection area is medium, then check the descendant.

/*Control Rule 4*/

If the select-block process is over, then activate the first node in the

*.' checking list.

20-
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/* Control Rule 5 */

If Node N is a nonternminal node, then add its children to the check-

ing list.

/* Control Rule 6 */

If Node N is a terminal node, then calculate its certainty value by

combining the certainty factor of each property in the property list.

/* Control Rule 7

If the certainty factors of all children of a specific node are coin-

4 pletely decided, then decide its certainty factor by combining the cer-

*taintv factor from its own property list and that from its children.

(Note: The combined certainty is the average of the certainty factors

of the properties in the property list and that of the children.)

/* Control Rule 8 */

If the certainty factor of a node is decided, then report its status.

/* Control Rule 9 */

If the certainty of a node can not be decided after all properties are

evaluated, then try to 'split and merge' the pictures associated with the

~node.

S.
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3.3 Knowledge Rules

The rules used to compute the certainty factor of each property are

called knowledge rules. These rules are sulbjective in nature. End users

('all improve the system performance by tuning these rules to reflect their

own viewpoints. A domain expert can adl new knowledge rules to the

system without interfering with other rules.

-There are several reasons why there are not many rules listed here.

First, the authors are not lomnain experts and the current system is only

a prototype system. Secondly, the objects modeled now have only a pla-

nar surface and can be ap)roxminated by polygons. If complex objects.

,., such as. gasoline tanks, are taken into consideration, then the modelling

method must be modified and additional knowledge rules must be cre-

Y- ated. Thirdly, we consider onhl verification in the current state. It is

- rather simpler than the interpretation process. Mcheown [4] has shown

that most of the knowledge rules used for image interpretation are con-

sistent rules.

3.3 Size Rule

/* Rule 1 certainty of size */ There are two different rules for size

comparison. The first one is based on the area and the second one is

1ased on the polygons. Since we assume that an exact 3D model is

given, we perforn the judgement just by mapping the 3D o)jects into

.7.- 2D image sipa'e and then conlparing them (ire('tlv.
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The 'certainty of size' is easier to find than the 'certainty of polygon'.

However. in the case of verifying the status of a building, the certainty

value of the polygon is more reliable than the certainty value of the size.

We coipe with this situation by putting a higher weight in the property

polygon.

The procedure of finding the certainty value of property size Can

be explained briefly below. First, the regions correspon(ling to a node

is found by an external routine. Secondly, the size of the node. X. is

calculated by counting the number of pixels of the projected image of

the 3D object. The size of the corresponding regions. Y. are summed

together. A certaintv value is assigned according to the ratio of X to Y.

The real rule in PROLOG is shown below:

/* Rule 2 certainty of polygon */

The procedure to find the certainty of property J)olygon is similar

to that al)ove. except that the area of the intersection region b)etween

the pro jecte(d node and the corresponding regions is used instead of the

total summation size of the corresponding regions.

g :3.3.2 Gray Level Rule

The average gray value of a specific surface (depends oI the surface

material. the light source, the surface (irection. the imaging sensor, and

the sensing environment. (,tc. Iii mst computer vision sXstens. tOle

alsollte gray level is seldom regardlel as a useful feature. Instead, people
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usually use the region uniformity as an important knowledge source. But.

in most situations we know that the gray intensity is strongly correlated

to the surface material category. For example, the intensity of a lawn

-. area is darker than the intensity of a gravel area. Ve can deploy this

.-'.'. property and avoid problems by using a relative gray scale.

However. we find that surface direction is an important factor af-

-: fe't ing the reflectivitv: and unfortunately, our model data is not accurate

eo1ili for is to use this knowledge. This inprecision may be improved

if we caii ,d(Iii t h,'tter correslondence solver with subpixel precision.

3.3.3 ShIa, w Rule

liShadow is an important feature for the object with enough height

value. One can use this feature to distinguish two objects with almost

the same size and shape, for example, a parking lot and a building. Fig.

3.2 shows the shadow areas formed by a planar surface, ABCDEFGH.

SUnder an overhead camera the shadow areas depend on the location of

the light source and the height of the object. In most cases, they are

formed as thin regions, the width is only a few pixels. This phenomenon

-' will introduce some extent of difficulty for the detection of the shadow

area. We solve this problem by expanding the projected shadow area.

For any planar surface, we need to decide whether a side will form a

shadow area or not. For example, side BC in Fig. 3.2 does not produce

a shadow area. To determine whether a shadow area is formed, one

needs to decide whether the shadow area and the planar surface lie on

the same side of the edge. If the answer is positive, that edge can not

24-
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form a shadow area. However, if the answer is negative, further checking

needs to be performed. Examining AH in Fig. 3.2, we know that the

shadow area must exclude the portion under the planar surface.

As explained before, an object is usually decomposed into several planar

subregions and a property list is accompanied with the subregion. For

two connected Regions A and B, the shadow area of Region A may be

occluded, by Region B: and vice versa. So the shadow feature cannot be

the property of Region A. it must be the property of a node which covers

- .bth Regions A and B. The algorithm is shown below:

Algorithm: Find the certainty value of the shadow feature of a spe-

cific node N. Step 1: Find the terminal nodes originated from

Node N. Step 2: Find the vertices of the polygon of each termi-

nal node. Step 3: Project the polygon to the image space. Find

the intersect regions and their areas. Step 4: Find the sum of

the area and the weighted sum of the gray value. Step 5: Assign

certainty value to the node according to the difference of gray

value between the selected regions and the background.

In our system they are independent to the control system. WNe will

briefly discuss the model-guided split-and-merge algorithm in Sec. 4.

3.4 Certainty Value Combination

There are several methods to combine the evidence. This topic has

gained very much attention recently. The methods include Subjective
Bayesian theory, uncertainty theory, theory of evidence, possibility the

--26-

0*1

-p . . - .- . .p• 2 . . .. . . , " -



orv. and fuzzy set theory [8]. In the field of computer vision, especially

image interpretation, there is still no consensus. Here, we feel that the

weighted average of certainty values is a reasonable choice for our appli-

cation. Furthermore, research will be conducted in the near future by

the authors.

The property list is represented by a fact in PROLOG. Take one

example

property(eastwing. [tone, S, size, 8, polygon. 10])

Here, tone, size, polygon are the properties associated with the node
east wing'. The numbers 8, 8, and 10 are their respective weights. The

last is supplied by the knowledge engineers or domain expert. Another

"" approach is also applicable. That is, we can associate a property list and

their weights with a specific item type.

IV. IMAGE PROCESSING UNITS

In a computer vision systems, there must be many image processing

tasks. These tasks generally contain a lot of computations.

In the verification subsvstem, we segment the image into homoge-

nous regions using the split-and-merge algorithm [ 9 ]. For the purpose of

verification only, image segmentation is not required. We can project 3D

objects into the 2D image space and then compare the features between

:- .- the projected model and the aerial photograph. However, for the follow-

:: ing reasons, we still perform the segmentation process: First, in the near

future, we need to gather symbolic measurement for the interpretation

-27-
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process. Second, we want to speed up tile processing through symbolic

representation. The segmentation and feature extraction process can be

performed before th. change detection procedure is executed. Third. we

can tolerate more errors by considering the features from blocks of pixels

instead of pixels.

4.1 Blackboard

In the verification system. some data, as examples, image file, region-

map and model-mapped file, are referred to frequently by different image

processing routines. Using blackboard I/O, operations are performed ef-

e* ficiently. In the first stage, i.e.. the blackboard creation stage. these

data are read from secondary storage: in addition, some global variables

are initiated. Then all image processing routines can access and modify

+'i -these data. When the verification process is completed, the blackboard

will be copied back to the disk and be deleted from the main storage.

This idea sounds good; however, since the space of the blackboard is very

big, and the available main storage is very limited, a lot of page faults

have occurred during the verification process. In future implementation.

we think that those image processing routines should have their own

dedicated processing element (processor and memory).

We implement the blackboard in FORTRAN by a global common

area. The common block is shown below:

Common/board/model, label,

*-.lr, sunang, plncoef, fileseq,

* coef, pregs, area,

28-



peri, compact, irtone, v-tone.

* image, mon.

4.2 Nlodel-Guided Split-and-Merge

For any existent modeled node, a model-guided split-and-merge op-

eration will be performed if the certainty value calculation is not conclu-

sive.

The basic idea is to split the regions which are intersected with the

projected node region at the intersection boundary. In general, there area

large number of small regions generated after the intersection portion is

removed. They will be merged with the neighboring regions except the

region they are coming from if the average gray values are very similar.

The detail algorithm is shown below.

Step 1: Find the intersection region of a segmented region R and

the region M, projected from a node of Environmental model.

Step 2: Extract the properties of the intersection region, INTS(R.M).

Step 3: If the area of the intersection region is large enough. then

select next region and go to step 1.

Step 4: Assign new region label to the regions formed by extracting

a portion of the region from the old segmented region. Measure

the properties of the new regions.

Step 5: If the size of the new region is too small, then merge it

- 29--
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with one of the neighboring regions which has the most similar

average gray value.

The control program which will initiate the model-guided split and

merge is shown below

/* Control Rule 11 */
If the certainty value of a node cannot be decided after all properties

are evaluated, then try to 'split and merge' the regions associated with

the node.

V. EXPERIMENTAL RESULTS

The goal of this paper is to propose an experimental expert system

for change detection. We have already completed the design and testing

of the verification subsystem for buildings. The input are 128 x 128 aerial

images. Each pixel is represented by an S-bit gray value.

Fig. 5.1 shows the interpretation process. DEM002 shows, the pic-

ture of a building. It is complicated enough. If we can solve the problems

related to the building, we should be able to solve all other problems.

DEM001 in Fig. 5 shows the region miap which is the result of perform-

ing Pavlidis split-and-merge algorithm [9]. The regions are relabeled by

the model-guided split-and-merge algorithm DENI006 in Fig. 5.1 shows

the partial results produced by the control systems. Evidence of each

property of each node is shown. From the final results, we know that the

ibuilding is unchanged.
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-I. DISCUSSION AND CONCLUSIONS

In this paper, we have proposed an ex)erimental knowledge-based

" verification syste, te organization for change (letection is oitliinet.

, Kowledge rules and control strategy are described in detail. Designing

of the prediction and interpretation subsystems, including a knowledge-

based correspondence solving system, is in )rogress. Currently, we are

not satisfied with the performance. However, for the application of

change detection. time inay not be an important consideration. To i-

prove the system's efficiency, we need to redesign the whole system. A

tmulti-processor system is more suitable. We can use a distribluted pro-

cessing system to perform image processing tasks simultaneously with

the control system. If we have a parallel machine, for the computation

- i ~bound image processing task, we can pursue data parallelism and al-

*gorithnic parallelism. In a rule-based system. there are rule-parallelisim

and evidence paralellisi. However, these need a total new expert system

designing environment. New tools and new languages are all demanded.

The combination of different evidences is also an interesting prob-

lem. Here we use the simplest approach, weighted average value, to Cope

with this i)roblem. Some computational theories research was conducted

in other institutions. What is the most natural one for the application

in computer vision system is still a unanswered question.
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