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Model-Based Clustering

Paul D. McNicholas

McMaster University, Canada

Abstract: The notion of defining a cluster as a component in a mixture model was

put forth by Tiedeman in 1955; since then, the use of mixture models for clustering

has grown into an important subfield of classification. Considering the volume of

work within this field over the past decade, which seems equal to all of that which

went before, a review of work to date is timely. First, the definition of a cluster is

discussed and some historical context for model-based clustering is provided. Then,

starting with Gaussian mixtures, the evolution of model-based clustering is traced,

from the famous paper by Wolfe in 1965 to work that is currently available only in

preprint form. This review ends with a look ahead to the next decade or so.
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1. Defining a Cluster

The best place to start is at the beginning, which consists in a ques-

tion: what is a cluster? Before positing an answer, some historical context is

helpful. The oldest citation given pertaining to mixture models and cluster-

ing is usually the thesis by Wolfe (1963). McNicholas (2016) explains that

while Wolfe (1963) uses the idea of a mixture model to define a cluster, he

does not use a mixture model to perform clustering. More specifically, the

clustering procedures developed byWolfe (1963) are not based on maximiz-
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ing the likelihood—or otherwise exploiting the likelihood—of a Gaussian

mixture model. Of this clustering methodology, Wolfe (1963, p. 76) writes:

The methods described in this thesis are not only bad, they

have been rendered obsolete by the author’s own subsequent

work.

The subsequent work referred to here is the paper by Wolfe (1965), which

seems to be the first published example of Gaussian model-based clustering.

Wolfe (1963) gives the following definition of a cluster, or type:

A type is a distribution which is one of the components of

[a] mixture of distributions.

McNicholas (2016) points out that Tiedeman (1955) uses a similar definition

in a prescient paper that builds on famous works by Pearson (1894) and Rao

(1952). As McNicholas (2016) explains, a driving force behind the work of

Tiedeman (1955) is to encourage work on what we now know as clustering.

Because the idea of defining a cluster in terms of a component in a mixture

model goes back to Tiedeman (1955), it is worth noting how he formulated

the problem:

Consider G observation matrices each of which generates a

density function of the form given by equation [1]. Throw away

the type identification of each observation set and you have a

mixed series of unknown density form.

Here, [1] is the density of a Gaussian random variable. The objective, as laid

down by Tiedeman (1955), is then

. . . to solve the problem of reconstructing theG density func-

tions of original types.

Over the subsequent two decades, much energy was invested in its solution,

led by Wolfe (1963;1965).

Wolfe (1963, Chapter I.D) discusses two alternative definitions of a

cluster. One defines a cluster as a mode in a distribution, while the other

focuses on similarity (cf. McNicholas 2016, Chapter 2). The principal prob-

lem with defining a cluster in terms of a mode can be seen by generating two

overlapping Gaussian components such that there are clearly three modes,

e.g., Figure 1.

Definitions based on similarity have long been popular and Wolfe

(1963) gives an example of such a definition:

A type is a set of objects which are more similar to each

other than they are to objects not members of the set.
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Figure 1. Scatter plots, with semi-transparent points, for data simulated from two overlapping

Gaussian components, where the density is illustrated on the right-hand plot.

Wolfe (1963) cites a host of other work that uses similar definitions, e.g.,

Tryon (1939, 1955), Catell (1949), Stephensen (1953), andMcQuitty (1956),

and such definitions remain popular today. Wolfe (1963) points out several

problems with definitions based on similarity. One of the issues that he

raises concerns the difficulty around quantifying similarity. Wolfe (1963)

writes, inter alia, that

. . .most definitions of similarity are arbitrary.

Beyond the issues he raises, the fact that definitions based on similarity are

often satisfied by a solution that sees each point assigned to its own cluster

is highly problematic.

McNicholas (2016) proffers a mixture model-based definition that is

a little more specific than those used by Tiedeman (1955) andWolfe (1963):

A cluster is a unimodal component within an appropriate

finite mixture model.

McNicholas (2016) explains that an “appropriate” mixture model here is

one that is appropriate in light of the data under consideration. What does

it mean for a mixture model to be “appropriate” in light of the data? It

means that the model has the necessary flexibility, or parameterization, to

fit the data; e.g., if the data contain skewed clusters, then the mixture model

should be able to accommodate skewed components. In many cases, being

appropriate in light of the data will also mean that each component has con-

vex contours so that each cluster is convex (cf. McNicholas 2016, Section

7.6). The unimodal requirement in the definition of McNicholas (2016) is

important because if the component is not unimodal, then one of two things

is almost certainly happening: the wrong mixture distribution is being fit-
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ted or not enough components are being used. An example of the former—

specifically, multiple Gaussian components being used to model one skewed

cluster—is given in Section 4.2. The position taken herein is that the defini-

tion given by McNicholas (2016) should be used.

That the definition of McNicholas (2016) ties the notion of a clus-

ter to the data under consideration is essential because a cluster really only

has meaning in the context of data. While this definition insists that clus-

ters are unimodal, it is not at all the same as asserting that a cluster is a

mode. Interestingly, Gordon (1981, Sec. 1.1) reports two desiderata, or de-

sired characteristics, of a cluster that are stated as “basic ideas” by Cormack

(1971):

Two possible desiderata for a cluster can thus be stated as

internal cohesion and external isolation.

Of course, complete external isolation will not be possible in many real anal-

yses; however, the idea of internal cohesion seems quite compatible with the

idea of a cluster corresponding to a unimodal component in an appropriate

finite mixture. Interestingly, when referring to a situation where external

isolation may not be possible, Gordon (1981, Sec. 1.1) highlights the fact

that

. . . the conclusion reached will in general depend on the na-

ture of the data.

This vital link with the data under consideration is along similar lines to

the requirement of an “appropriate” finite mixture model in the definition of

McNicholas (2016).

Everitt et al. (2011, Section 1.4) point out that dissection, as opposed

to clustering, might be necessary in some circumstances, and Gordon (1981,

Section 1.1) argues along similar lines. Everitt et al. (2011, Section 1.4)

define dissection as

. . . the process of dividing a homogenous data set into dif-

ferent parts.

Of course, it is true that there are situations where one might wish to carry

out dissection rather than clustering. In fact, there may even be cases where

a departure from the definition of a cluster offered by McNicholas (2016)

is desirable in light of the data under consideration. In general, however,

I do not feel comfortable reporting clustering results to scientists, or other

collaborators, unless the clusters can be framed in terms of the (unimodal)

components of an appropriate mixture model.

A reviewer pointed out that the definition of McNicholas (2016) may

be perceived as somewhat strident. While there might be situations where
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the data demand a departure from this definition, alternative definitions such

as those based on similarity, modes, or ideas such as internal cohesion and

external isolation necessarily require substantial refinement. Furthermore,

such refinement seems to almost inevitably lead back to a mixture model-

based definition such as that given by McNicholas (2016). For example,

to refine a definition based on modes, consideration should be given to

how data disperse from the modes, which begins the seemingly inescapable

march back to a mixture model-based definition.

2. Model-Based Clustering

“Model-based clustering” refers to the use of (finite) mixture models

to perform clustering and is the focus of the present review. A random vector

X arises from a parametric finite mixture distribution if, for all x ⊂ X, its

density can be written

f(x | ϑ) =
G
∑

g=1

πgfg(x | θg), (1)

where πg > 0, such that
∑G

g=1 πg = 1, are called mixing proportions,

fg(x | θg) is the gth component density, and ϑ = (π,θ1, . . . ,θG), with
π = (π1, . . . , πG), is the vector of parameters. Note that f(x | ϑ) in (1)

is called a G-component finite mixture density. In clustering applications,

the component densities f1(x | θ1), f2(x | θ2), . . . , fG(x | θG) are usually
taken to be of the same type, i.e., fg(x | θg) = f(x | θg) for all g. Extensive
details on finite mixture models and their applications are given in the well-

known texts by Everitt and Hand (1981), Titterington, Smith and Makov

(1985), McLachlan and Basford (1988), McLachlan and Peel (2000a), and

Frühwirth-Schnatter (2006).

Let zi = (zi1, . . . , ziG) denote the component membership of obser-

vation i, so that zig = 1 if observation i belongs to component g and zig = 0
otherwise. Suppose n p-dimensional data vectors x1, . . . ,xn are observed

and all n are unlabelled or treated as unlabelled. Continuing the notation

from (1), and using fg(x | θg) = f(x | θg) for all g, the likelihood is

L(ϑ | x) =
n
∏

i=1

G
∑

g=1

πgf(xi | θg).

After the parameters have been estimated, the predicted classification results

are given by the a posteriori probabilities

ẑig :=
π̂gf(xi | θ̂g)

∑G
h=1 π̂hf(xi | θ̂h)

,
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for i = 1, . . . , n. The fact that these a posteriori predicted classifications

are soft, i.e., ẑig ∈ [0, 1], under the fitted model is often considered an

advantage of the mixture model-based approach. However, in some ap-

plications it is desirable to harden the a posteriori classifications and the

most popular way to do this is via maximum a posteriori (MAP) classifi-

cations, i.e., MAP{ẑig}, where MAP{ẑig} = 1 if g = argmaxh{ẑih}, and
MAP{ẑig} = 0 otherwise.

Wolfe (1965) presents software for computing maximum likelihood

estimates for Gaussian model-based clustering. This software includes four

different parameter estimation techniques, including an iterative scheme,

and it is effective for up to five variables and six components. Day (1969)

introduces an iterative technique for finding maximum likelihood estimates

when the covariance matrices are held equal, and discusses clustering appli-

cations. Wolfe (1970) develops iterative approaches for finding maximum

likelihood estimates in the cases of common and differing covariance ma-

trices, respectively, and illustrates these approaches for clustering. Inter-

estingly, Wolfe (1970) draws an analogy between his approach for Gaus-

sian mixtures with common covariance matrices and one of the criteria

described by Friedman and Rubin (1967). This and other work on pa-

rameter estimation in Gaussian model-based clustering—e.g., Edwards and

Cavalli-Sforza (1965), Baum et al. (1970), Scott and Symons (1971), Or-

chard and Woodbury (1972), and Sundberg (1974)—effectively culminated

in the landmark paper by Dempster, Laird and Rubin (1977), wherein the

expectation-maximization (EM) algorithm is introduced; see Titterington

et al. (1985, Section 4.3.2) and McNicholas (2016, Chapter 2). The EM al-

gorithm is an iterative procedure for finding maximum likelihood estimates

when data are incomplete. Extensive details on the EM algorithm are given

by McLachlan and Krishnan (2008), and a discussion on stopping rules,

with some focus on criteria based on Aitken’s acceleration (Aitken 1926), is

given by McNicholas (2016, Section 2.2.5).

A family of mixture models arises when various constraints are im-

posed upon component densities, typically upon the covariance structure.

Consider a Gaussian mixture model so that the gth component density is

φ(x | µg,Σg), where µg is the mean and Σg is the covariance matrix.

Some straightforward, but not necessarily useful, constraints on Σg are

Σg = Ip, Σg = σgIp, Σg = σIp, and Σg = Σ (see Gordon 1981; Ban-

field and Raftery 1993, amongst others). The four corresponding mixture

models, together with the unconstrained model, could be viewed as a fam-

ily of five Gaussian mixture models. Banfield and Raftery (1993) consider

eigen-decompositions of the component covariance matrices and study sev-

eral resulting models. These models arise by first considering an eigen-

decomposition of the component covariance matrices, i.e.,
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Σg = λgΓg∆gΓ
′

g, (2)

where λg = |Σg|1/p, Γg is the matrix of eigenvectors of Σg, and ∆g is a

diagonal matrix, such that |∆g| = 1, containing the normalized eigenvalues

of Σg in decreasing order. Note that the columns of Γg are ordered to cor-

respond to the elements of ∆g. As Banfield and Raftery (1993) point out,

the constituent elements of (2) can be viewed in the context of the geometry

of the gth component, where λg represents the volume in p-space, ∆g the

shape, and Γg the orientation.

Celeux andGovaert (1995) build on the models of Banfield and Raftery

(1993), resulting in a family of 14 Gaussian parsimonious clustering mod-

els (GPCMs; Table 1). The fourteen GPCM models can be thought of as

belonging to one of three categories: spherical, diagonal, and general. Of

these three categories, only the eight general models have flexibility in their

orientation, i.e., do not assume that the variables are independent. The eight

general models haveO(p2) covariance parameters, limiting their applicabil-

ity to data with lower values of p. Near the end of the last century, a subset

of eight of the GPCMs was made available as the MCLUST family, with ac-

companying S-PLUS software (Fraley and Raftery 1999). The availability

of this software, together with the well-known review paper by Fraley and

Raftery (2002b), played an important role in popularizing model-based clus-

tering. In fact, such was the impact of these works that the term model-based

clustering became synonymous with MCLUST for several years. Another

key component to the popularity of the MCLUST family is the release of an

accompanying R (R Core Team 2015) package and, perhaps most notably,

the release of mclust version 2 (Fraley and Raftery 2002a).

Browne andMcNicholas (2014c) point out that the algorithms Celeux

and Govaert (1995) use for the EVE and VVE models are computation-

ally infeasible in higher dimensions. They develop alternative algorithms

for these models, based on an accelerated line search on the orthogonal

Stiefel manifold (see Browne and McNicholas 2014c, for details). Browne

and McNicholas (2014a) develop another approach, using fast majorization-

minimization algorithms, for the EVE and VVE models and it is this ap-

proach that is implemented in the mixture package (Browne andMcNich-

olas 2014b) for R. Details on this latter approach are given in Browne and

McNicholas (2014a).

In a typical application involving the GPCM or some other family of

mixture models, one would fit all models in a family and the best one would

be selected via some criterion. A typical application of the GPCM family

of models consists of running each of the models (Table 1) for a range of

values of G. Then, the best of these models is selected using some criterion

and the associated classifications are reported. The most popular criterion
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Table 1. The type, nomenclature, and covariance structure for each member of the GPCM

family.

Model Volume Shape Orientation Σg

Spherical EII Equal Spherical λI
VII Variable Spherical λgI

Diagonal EEI Equal Equal Axis-Aligned λ∆
VEI Variable Equal Axis-Aligned λg∆

EVI Equal Variable Axis-Aligned λ∆g

VVI Variable Variable Axis-Aligned λg∆g

General EEE Equal Equal Equal λΓ∆Γ
′

VEE Variable Equal Equal λgΓ∆Γ
′

EVE Equal Variable Equal λΓ∆gΓ
′

EEV Equal Equal Variable λΓg∆Γ
′

g

VVE Variable Variable Equal λgΓ∆gΓ
′

VEV Variable Equal Variable λgΓg∆Γ
′

g

EVV Equal Variable Variable λΓg∆gΓ
′

g

VVV Variable Variable Variable λgΓg∆gΓ
′

g

for this purpose is the Bayesian information criterion (BIC; Schwarz 1978),

i.e.,

BIC = 2l(ϑ̂)− ρ log n, (3)

where ϑ̂ is the maximum likelihood estimate of ϑ, l(ϑ̂) is the maximized

log-likelihood, and ρ is the number of free parameters. Leroux (1992) and

Keribin (2000) give theoretical results that, under certain regularity condi-

tions, support the use of the BIC for choosing the number of components in

a mixture model. Dasgupta and Raftery (1998) discuss the BIC in the con-

text of selecting the number of components in a Gaussian mixture model.

Its application to this problem, i.e., selection of G, is part of the reason

why the BIC has become so popular for mixture model selection in general.

Despite its popularity, the model selected by the BIC does not necessarily

give the best classification performance from among the candidate models.

To this end, alternatives such as the integrated completed likelihood (ICL;

Biernacki, Celeux, and Govaert 2000) are sometimes considered. Writing

the BIC as in (3), the ICL can be calculated via

ICL ≈ BIC+ 2

n
∑

i=1

G
∑

g=1

MAP{ẑig} log ẑig, (4)

where the term

2

n
∑

i=1

G
∑

g=1

MAP{ẑig} log ẑig
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is typically described as an entropy penalty that reflects the uncertainty in

the classification of observations into components. An interesting perspec-

tive on the ICL is presented by Baudry (2015), who also discusses the con-

ditional classification likelihood and related ideas.

3. Mixture of Factor Analyzers and Extensions

The most popular way to handle high-dimensional data in model-

based clustering applications is via the mixture of factor analyzers model

or some variation thereof. Consider independent p-dimensional random

variables X1, . . . ,Xn. First, consider the factor analysis model (Spearman

1904, 1927; Bartlett 1953; Lawley and Maxwell 1962), which can be writ-

ten Xi = µ + ΛUi + εi, for i = 1, . . . , n, where Λ is a p × q matrix

of factor loadings, the latent factor Ui ∼ N(0, Iq), and εi ∼ N(0,Ψ),
where Ψ = diag(ψ1, ψ2, . . . , ψp). Note that the Ui are independently dis-

tributed, and are independent of the εi, which are also independently dis-

tributed. Considering the joint distribution

[

Xi

Ui

]

∽ N

([

µ

0

]

,

[

ΛΛ
′ +Ψ Λ

Λ
′

Iq

])

,

it follows that E[Ui | xi] = β(xi−µ) and E[UiU
′

i | xi] = Iq−βΛ+β(xi−
µ)(xi − µ)′β′, where β = Λ

′(ΛΛ
′ +Ψ)−1. Given these expected values,

it is straightforward to use an EM algorithm for parameter estimation. The

choice of the number of factors q < p is an important consideration in factor

analysis. One approach is to choose the number of factors that captures a

certain proportion of the variance in the data. Lopes and West (2004) carry

out simulation studies to demonstrate that the BIC can be effective for selec-

tion of the number of factors. Another well-known approach for selecting

the number of factors is parallel analysis (Horn 1965; Humphreys and Ilgen

1969; Humphreys and Montanelli 1975; Montanelli and Humphreys 1976).

Different approaches for selecting the number of factors are discussed, inter

alia, by Fabrigar et al. (1999).

Analogous to the factor analysis model, the mixture of factor analyz-

ers model assumes that

Xi = µg +ΛgUig + εig (5)

with probability πg, for i = 1, . . . , n and g = 1, . . . , G, where Λg is a

p× q matrix of factor loadings, theUig are independently N(0, Iq), and are
independent of the εig, which are independently N(0,Ψg), where Ψg is a

p × p diagonal matrix. It follows that the density of the mixture of factor

analyzers model is
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f(xi | ϑ) =
G
∑

g=1

πgφ(xi | µg,ΛgΛ
′

g +Ψg), (6)

where ϑ denotes the model parameters. Ghahramani and Hinton (1997)

were the first to introduce a mixture of factor analyzers model. In their

model, they constrainΨg = Ψ to facilitate an interpretation of Ψ as sensor

noise; however, they note that it is possible to relax this constraint. Tipping

and Bishop (1997, 1999) introduce the closely related mixture of probabilis-

tic principal component analyzers (MPPCA) model, where theΨg matrix in

each component is isotropic, i.e., Ψg = ψgIp, so that Σg = ΛgΛ
′

g + ψgIp.

McLachlan and Peel (2000b) use the unconstrained mixture of factor ana-

lyzers, i.e., with Σg = ΛgΛ
′

g +Ψg.

One can view the mixture of factor analyzers models and the prob-

abilistic principal component analyzers model, collectively, as a family of

three models, where two members arise from imposing constraints on the

most general model, i.e., the model with Σg = ΛgΛ
′

g + Ψg. This family

can easily be extended to a four-member family by considering the model

with component covariance Σg = ΛgΛ
′

g + ψIp. A greater level of parsi-

mony can be attained by constraining the component factor loading matrices

to be equal, i.e., Λg = Λ. McNicholas and Murphy (2005, 2008) develop a

family of eight parsimonious Gaussian mixture models (PGMMs) for clus-

tering by imposing, or not, each of the constraints Λg = Λ, Ψg = Ψ, and

Ψg = ψgIp upon the component covariance structure in the most general

mixture of factor analyzers model, i.e.,Σg = ΛgΛ
′

g +Ψg . Members of the

PGMM family have between pq−q(q−1)/2+1 andG[pq−q(q−1)/2]+Gp
free parameters in the component covariance matrices (cf. Table 2), i.e., all

members haveO(p) covariance parameters.

Note that McNicholas and Murphy (2010b) further parameterize the

mixture of factor analyzers component covariance structure by writingΨg =
ωg∆g, where ωg ∈ R

+ and ∆g is a diagonal matrix with |∆g| = 1. The
result is the addition of four more models to the PGMM family; again, all

haveO(p) covariance parameters. Parameter estimation for members of the

PGMM family can be carried out using alternating expectation-conditional

maximization (AECM) algorithms (Meng and van Dyk 1997). The

expectation-conditional maximization (ECM) algorithm (Meng and Rubin

1993) is a variant of the EM algorithm that replaces the M-step by a series

of conditional maximization steps. The AECM algorithm allows a different

specification of complete-data for each conditional maximization step. This

makes it a convenient approach for the PGMM models, where there are two

sources of missing data: the unknown component membership labels zig and
the latent factors uig. Details of fitting the AECM algorithm for the more

general mixture of factor analyzers model are given by McLachlan and Peel
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Table 2. The nomenclature, covariance structure, and number of free covariance parameters

for each member of the PGMM family, where “C” denotes “constrained”, i.e., the constraint

is imposed, and “U” denotes “unconstrained”, i.e., the constraint is not imposed.

Λg = Λ Ψg = Ψ Ψg = ψgIp Σg Free Cov. Paras.

C C C ΛΛ
′ + ψIp pq − q(q − 1)/2 + 1

C C U ΛΛ
′ +Ψ pq − q(q − 1)/2 + p

C U C ΛΛ
′ + ψgIp pq − q(q − 1)/2 +G

C U U ΛΛ
′ +Ψg pq − q(q − 1)/2 +Gp

U C C ΛgΛ
′

g + ψIp G[pq − q(q − 1)/2] + 1
U C U ΛgΛ

′

g +Ψ G[pq − q(q − 1)/2] + p
U U C ΛgΛ

′

g + ψgIp G[pq − q(q − 1)/2] +G
U U U ΛgΛ

′

g +Ψg G[pq − q(q − 1)/2] +Gp

(2000a), and parameter estimation for other members of the PGMM fam-

ily is discussed by McNicholas (2016). The pgmm package (McNicholas,

ElSherbiny, McDaid andMurphy 2015) for R implements all twelve PGMM

models for model-based clustering and classification.

Much other work has been carried out around, and building on, the

mixture of factor analyzers model (e.g., Galimberti, Montanari, and Viroli

2009; Viroli 2010; Montanari and Viroli 2010a, 2011). Baek, McLachlan,

and Flack (2010) argue that there may be situations where the mixture of

factor analyzers model is not sufficiently parsimonious. They postulate that

this might happen when p, G, or both are not small. The same concern

might also apply to other members of the PGMM family. To counter this

concern, Baek and McLachlan (2008) and Baek et al. (2010) build on the

work of Yoshida et al. (2004, 2006) to introduce a mixture of common factor

analyzers (MCFA) model. This model assumes thatXi can be modelled as

Xi = ΛUig + εig (7)

with probability πg, for i = 1, . . . , n and g = 1, . . . , G, where Λ is a p ×
q matrix of factor loadings, the Uig are independently N(ξg,Ωg) and are

independent of the εig, which are independently N(0,Ψ), where Ψ is a

p × p diagonal matrix. Note that ξg is a q-dimensional vector and Ωg is a

q × q covariance matrix. It follows that the density of the MCFA model is

given by

f(xi | ϑ) =
G
∑

g=1

πgφ(xi | Λξg,ΛΩgΛ
′ +Ψ), (8)

where ϑ denotes the model parameters. Noting that

[

Xi

Uig

]
∣

∣

∣

∣

zig = 1 ∽ N

([

Λξg
ξg

]

,

[

ΛΩgΛ
′ +Ψ ΛΩg

ΩgΛ
′

Ωg

])

,
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an EM algorithm can be developed for the MCFA model; see Baek et al.

(2010). The MCFA model places additional restrictions on the component

means and covariance matrices compared to the mixture of factor analyzers

model, thereby further reducing the number of parameters to be estimated.

Consequently, the model is quite restrictive and, notably, is much more re-

strictive than the mixture of factor analyzers model. In fact, the MCFA

model can be cast as a special case of the mixture of factor analyzers model

(cf. Baek et al. 2010). Other than situations in which the number of com-

ponents G, the number of variables p, or both are very large, the mixture

of factor analyzers model, or another member of the PGMM family, will

almost certainly be preferable to the MCFA model.

Bhattacharya and McNicholas (2014) observe that for even moder-

ately large values of p, the BIC can fail to select the number of compo-

nents and the number of latent factors for the members of the PGMM fam-

ily. Recognizing this problem, Bhattacharya and McNicholas (2014) con-

sider a LASSO-penalized likelihood approach and proceed to show that the

LASSO-penalized BIC (LPBIC) can be used to effectively select the num-

ber of components in high dimensions, where the BIC fails. Specifically,

they use the penalized log-likelihood

logLpen(ϑ) = log

⎧

⎨

⎩

n
∏

i=1

G
∑

g=1

πgφ(xi | µg,Σg)

⎫

⎬

⎭

− nλn

G
∑

g=1

πg

p
∑

j=1

|μgj|,

(9)
where μgj is the jth element in µg and λn is a tuning parameter that depends

on n. Following Heiser (1995) and others, Bhattacharya and McNicholas

(2014) locally approximate the penalty using a quadratic function. Details

on the derivation of the LPBIC and on parameter estimation from the associ-

ated penalized likelihood are given in Bhattacharya andMcNicholas (2014).

4. Departure from Gaussian Mixtures

4.1 Mixtures of Components with Varying Tailweight

The first, and perhaps most natural, departure from the Gaussian mix-

ture model is the mixture of multivariate t-distributions. McLachlan and

Peel (1998) and Peel and McLachlan (2000) motivate the t-distribution as a

heavy-tailed alternative to the Gaussian distribution. The component density

for the mixture of t-distributions is

ft(x | µg,Σg, νg) =
Γ ([νg + p]/2) |Σg|−1/2

(πνg)p/2Γ (νg/2)
[

1 + δ(x,µg | Σg)/νg
](νg+p)/2

,

(10)

with mean µg, scale matrix Σg, and degrees of freedom νg, and where

δ(x,µg |Σg) = (x−µg)
′
Σ

−1
g (x−µg) is the squaredMahalanobis distance
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between x and µg. The mixture of t-distributions model has only G more

free parameters than the mixture of Gaussian distributions. Andrews and

McNicholas (2011a) consider the option to constrain degrees of freedom

to be equal across components, i.e., νg = ν, which can lead to improved

classification performance by effectively allowing the borrowing of infor-

mation across components to estimate the degrees of freedom. Andrews and

McNicholas (2012) introduce a t-analogue of 12 members of the GPCM

family of models by imposing the constraints in Table 1 on the component

scale matrices Σg, while also allowing the constraint νg = ν. Analogues of
all 14 GPCMs, with the option to constrain νg = ν, are implemented in the

teigen package (Andrews et al. 2015) for R.

While mixtures of t-distributions have been the most popular ap-

proach for clustering with heavier tail weight, mixtures of multivariate power

exponential (MPE) distributions have emerged as an alternative and are used

for clustering by Dang, Browne, and McNicholas (2015). In addition to al-

lowing heavier tails, theMPE distribution also permits lighter tails compared

to the Gaussian distribution. Dang et al. (2015) use the parametrization of

the MPE distribution given by Gómez, Gómez-Viilegas, and Marin (1998),

so that the component density for the mixture of MPEs is given by

f(x | µg,Σg, βg) = k|Σg|−1/2 exp

{

−1

2

[

(x− µg)
′
Σ

−1
g (x− µg)

]βg

}

,

(11)

where

k = pΓ
(p

2

)

[

πp/2Γ

(

1 +
p

2βg

)

21+p/2βg

]

−1

,

µg is the mean, Σg is the scale matrix, and βg determines the kurtosis. De-

pending on the value of βg, two kinds of distributions can be obtained. For

0 < βg < 1, a leptokurtic distribution is obtained, which is characterized

by a thinner peak and heavy tails compared to the Gaussian distribution. In

this case, i.e., βg ∈ (0, 1), the MPE distribution is a scale mixture of Gaus-

sian distributions (Gómez-Sánchez-Manzano, Gómez-Viilegas, and Marin

2008). For βg > 1, a platykurtic distribution is obtained, which is charac-

terized by a flatter peak and thin tails compared to the Gaussian distribution.

Some well-known distributions arise as special or limiting cases of the MPE

distribution, e.g., a double-exponential distribution (βg = 0.5), a Gaussian
distribution (βg = 1), or a multivariate uniform distribution (βg → ∞).

Dang et al. (2015) use analogues of some members of the GPCM family,

which, along with the option to constrain βg = β, leads to a family of six-

teen mixture models.

Contour plots for the bivariate power exponential distribution illus-

trate some of the flexibility available for different values of β (Figure 2).

343



P.D. McNicholas

−4

−2

0

2

4 −4

−2

0

2

4

P
ro

b
a
b
ility

3e−04

4e−04

5e−04

6e−04

β = 0.25

−4

−2

0

2

4 −4

−2

0

2

4

P
ro

b
a
b
ility

0.05

0.10

0.15

β = 1

−4

−2

0

2

4 −4

−2

0

2

4

P
ro

b
a
b
ility

0.00

0.05

0.10

0.15

0.20

0.25

β = 2.5

Figure 2. Density plots for the bivariate power exponential distribution for different values

of β.
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Figure 3. Density plots for the bivariate t-distribution for different values of ν (left and

centre) as well as a contour plot reflecting both of these densities (right), where the broken

contours represent the density for ν = 30.

Less flexibility is engendered by changing the degrees of freedom param-

eter ν in the t-distribution, as illustrated by the bivariate density plots in

Figure 3. Because the difference in the density plots in Figure 3—which

have v = 3 and ν = 30 degrees of freedom, respectively—is difficult to

discern, a contour plot is also given in Figure 3 to illustrate the heavier tails

for ν = 3 degrees of freedom.

4.2 Mixtures of Asymmetric Components

Before the turn of the century, almost all work on clustering and clas-

sification using mixture models had been based on Gaussian mixture mod-

els. A little beyond the turn of the century, work on t-mixtures burgeoned

into a substantial subfield of mixture model-based classification (e.g., Mc-

Lachan, Bean, and Jones 2007; Greselin and Ingrassia 2010; Andrews,

McNicholas, and Subedi 2011; Andrews and McNicholas 2011a,b, 2012;

Baek andMcLachlan 2011; McNicholas and Subedi 2012; Steane, McNicho-
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las, and Yada 2012; McNicholas 2013; Lin, McNicholas, and Hsin 2014).

Around the same time, work on mixtures of skewed distributions took off,

including work on multivariate normal-inverse gamma mixtures (Karlis and

Santourian 2009; Subedi and McNicholas 2014; O’Hagen et al. 2016),

skew-normal mixtures (e.g., Lin 2009; Montanari and Viroli 2010b; Vrbik

and McNicholas 2014), skew-t mixtures (e.g., Lin 2010; Lee and McLach-

lan 2011; Vrbik and McNicholas 2012, 2014; Murray, McNicholas, and

Browne 2014a), shifted asymmetric Laplacemixtures (e.g., Franczak, Browne,

andMcNicholas 2014), variance-gammamixtures (McNicholas, McNicholas,

and Browne 2014), and generalized hyperbolic mixtures (Browne and

McNicholas 2015).

The decision about which mixtures of skewed distributions to focus

on herein was partly influenced by the review paper of Lee and McLach-

lan (2014), who focus on certain formulations of skew-normal and skew-t
distributions. A little about these will be said at the end of this section; how-

ever, the focus here will be on mixtures of distributions that arise as special

or limiting cases of the generalized hyperbolic distribution. Franczak et al.

(2014) use a mixture of shifted asymmetric Laplace (SAL) distributions for

clustering. The density of a random variable X from a p-dimensional SAL

distribution is given by

fSAL (x | µ,Σ,α) =
2 exp{(x− µ)′Σ−1α}

(2π)p/2|Σ|1/2
(

δ (x,µ | Σ)

2 +α′Σ−1α

)λ/2

Kλ (u) ,

(12)

where λ = (2 − p)/2, Σ is a scale matrix, µ ∈ R
p is a location parameter,

α ∈ R
p is a skewness parameter, u =

√

(2 +α′Σ−1α)δ (x,µ | Σ), Kλ is

the modified Bessel function of the third kind with index λ, and δ (x,µ | Σ)
is as defined before. Crucially, the random variableX can be generated via

X = µ+Wα+
√
WV, (13)

where W ∽ Exp(1) and V ∽ N(0,Σ) is independent of W (Kotz, Kozu-

bowski, and Podgorski 2001; Franczak et al. 2014). It follows that W | x
has a generalized inverse Gaussian distribution (Barndorff-Nielsen 1997);

accordingly, the E-steps in the associated EM algorithm are highly tractable

(see Franczak et al. 2014, for details). Note that Exp(1) signifies an expo-

nential distribution with rate 1.
Before proceeding to mixtures of more flexible asymmetric distribu-

tions, it is useful to consider the relative performance of SAL mixtures and

Gaussian mixtures when clusters are asymmetric. First, consider one com-

ponent from a SAL distribution (Figure 4). Fitting a Gaussian mixture to

this component, a mechanism emerges by which a Gaussian mixture can

be used to capture an asymmetric cluster, via multiple components
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Figure 4. Scatter plots of data from a SAL distribution, with contours from a fitted SAL

distribution (left) and contours from a fitted G = 3 component Gaussian mixture model,

where plotting symbols represent component memberships (right).
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Figure 5. Scatter plots of a two-component mixture of SAL distributions, with contours

from a fitted G = 2 component SAL mixture (left) and contours from a G = 5 component

Gaussian mixture (right), where plotting symbols represent predicted classifications in each

case.

(Figure 4). As McNicholas (2016) points out, situations such as this are

reminiscent of the flame on a candle. Whether this mechanism will work

for multiple asymmetric clusters will depend, inter alia, on how well the

clusters are separated.

Consider the data in Figure 5, where there are two asymmetric clus-

ters that can be separated by a straight line. These data are generated from a

G = 2 component SAL mixture and so it is not surprising that fitting SAL

mixtures to these data leads to the selection of a G = 2 component SAL

mixture with perfect class agreement (Figure 5). Gaussian mixtures are fit-

ted to these data for G = 1, . . . , 6 components and the BIC selects a G = 5
component model; here, the Gaussian components cannot be merged to re-

turn the correct clusters because one Gaussian component has been used to
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capture all points that do not better fit within one of the other four compo-

nents (Figure 5). While this is obvious by inspection in two dimensions, it

would be difficult to detect in higher dimensions. The unsuitability of Gaus-

sian mixtures for capturing asymmetric clusters via a posteriori merging has

been noted previously (e.g., Franczak et al. 2014; Murray et al. 2014a). This

is one reason why it has been said that merging Gaussian components is not

a “get out of jail free” card (McNicholas and Browne 2013).

The SAL distribution is a special case of the generalized hyperbolic

distribution. McNeil, Frey, and Embrechts (2005) note that a random vari-

ableX following the generalized hyperbolic distribution can be represented

via the relationship in (13) withW following a generalized inverse Gaussian

distribution. Because of an identifiability issue (cf. Hu 2005), Browne and

McNicholas (2015) use a re-parameterization (see Browne and McNicholas

2015, for details), under which the density of the generalized hyperbolic

distribution is

fH(x | θ) =
[

ω + δ (x,µ | Σ)

ω + β′
Σ−1β

](λ−p/2)/2

×
Kλ−p/2

(
√

[

ω + β′
Σ−1β

][

ω + δ (x,µ | Σ)
]

)

(2π)p/2 |Σ|1/2 Kλ (ω) exp
{

− (x− µ)′Σ−1β
}
,

(14)

where λ is an index parameter, ω is a concentration parameter, Σ is a scale

matrix, µ is a location parameter, β is a skewness parameter, and Kλ is

the modified Bessel function of the third kind with index λ. Similar to the

SAL distribution,W | x follows a generalized inverse Gaussian distribution,

which facilitates the calculation of expected values in the E-step.

The mixture of factor analyzers model can be extended to the gen-

eralized hyperbolic distribution, or any of its special or limiting cases. For

the mixture of generalized hyperbolic distributions, the first step is to con-

sider that V in (13) can be decomposed using a factor analysis model, i.e.,

V = ΛU+ ε, whereU ∼ N(0, Iq) and ε ∼ N(0,Ψ) in the usual way. The
resulting model can be represented as

X = µ+Wα+
√
W (ΛU+ ε), (15)

where W follows a generalized inverse Gaussian distribution. Following

this approach, Tortora, McNicholas, and Browne (2015) arrive at a mixture

of generalized hyperbolic factor analyzers model. In doing so, they follow

the same approach used by Murray et al. (2014a), who develop a mixture

of skew-t factor analyzers; the principal difference is the distribution of W ,

which is inverse gamma in the case of the skew-t distribution. Note that

there is no skew-normal distribution nested within this formulation of the
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skew-t distribution because the skewness parameter goes to zero as the de-

grees of freedom parameter goes to infinity. Interestingly, Murray et al.

(2014b) develop a mixture of common skew-t factor analyzers in a similar

fashion.

There has been a plethora of work on clustering using non-elliptical

distributions beyond the mixture of generalized hyperbolic distributions and

special and/or limiting cases thereof. SAL mixtures are attractive as a first

departure from symmetric components because they are quite simple mod-

els, i.e., only location, scale, and skewness are parameterized in each com-

ponent. The mixture of generalized hyperbolic distribution, also parame-

terizing concentration (as well as having an index parameter), is a natural

extension. Of course, skew-normal mixtures are just as simple as SAL mix-

tures; however, as mentioned earlier in this section, Lee and McLachlan

(2014) focus on certain formulations of the skew-t and skew-normal distri-

butions in their review of mixtures of non-elliptical distributions. One of

these skew-normal formulations is given by Azzalini and Valle (1996) and

examined further by Azzalini and Capitanio (1999) and others. Branco and

Dey (2001) and Azzalini and Capitanio (2003) introduce an analogous skew-

t distribution. The other formulation is given by Sahu, Dey, and Branco

(2003), for both skew-normal and skew-t distributions. Extensive details

on skew-normal and skew-t distributions are given by Azzalini and Capi-

tanio (2014). Mixtures of these formulations have been used for clustering

and classification in several contexts, including work by Lin (2009, 2010),

Vrbik and McNicholas (2012, 2014), and Lee and McLachlan (2013a,b,

2014). Vrbik and McNicholas (2014) introduce skew-normal and skew-t
analogues of the GPCM family and show that they can give superior clus-

tering and classification performance when compared with their Gaussian

counterparts. Azzalini et al. (2016) discuss nomenclature and some other

considerations for the formulations used by Lee and McLachlan (2013a,b).

Lin, McLachlan, and Lee (2016) discuss a mixture of skew-normal factor

analyzers model using the formulation of Azzalini and Valle (1996).

5. Dimension Reduction

Suppose p-dimensional x1, . . . ,xn are observed and p is large enough
that dimension reduction is required. Note that the vagueness around how

large p needs to be before it is considered “large” is intentional and necessary
because the answer will depend on several factors including the modelling

process and the number of observations. Note also that dimension reduction

is often required, or at least helpful, even when p is not large because the

presence of variables that are not helpful in discriminating groups can have

a deleterious effect on clustering, or classification, performance.
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Broadly, there are two ways to carry out dimension reduction: a sub-

set of the p variables can be selected or the data can be mapped to a (much)

lower dimensional space. For reasons that will be apparent, the former ap-

proach can be referred to as explicit dimension reduction whereas the latter

is implicit (McNicholas 2016). The mixture of factor analyzers model, the

other members of the PGMM family, and the MCFA model are examples

of implicit dimension reduction. However, as mentioned in Section 3, the

MCFA approach is not recommended for general use and the PGMM family

can be ineffective for larger values of p. The latter problem can be (partly)

addressed by using a LASSO-penalized likelihood approach and model se-

lection criterion, as discussed in Section 3. There are at least two other

implicit dimension reduction techniques that deserve mention (GMMDR

and HD-GMM, which will be discussed herein) and, similar to the latent

factor-based approach, these methods carry out simultaneous clustering and

dimension reduction. As Bouveyron and Brunet-Saumard (2014) point out

in their excellent review, carrying out these two elements—clustering and

dimension reduction—sequentially does not typically work; they give the

particular example of clustering after principal component analysis.

There are a number of explicit approaches by which variables can be

selected. Raftery and Dean (2006) propose a variable selection method that

utilizes a greedy search of the model space. Their approach is based on

Bayes factors. Given data x, the Bayes factor B12 for model M1 versus

modelM2 is

B12 =
p(x | M1)

p(x | M2)
,

where

p(x | Mk) =

∫

p(x | θk,Mk)p(θk | Mk)dθk,

θk is the vector of parameters for modelMk, and p(θk | Mk) is the prior dis-
tribution ofMk (Kass and Raftery 1995). The approach of Raftery and Dean

(2006) simultaneously selects a variable subset, the number of components,

and the model, i.e., the GPCM covariance structure (Table 1). This ap-

proach is implemented within the clustvarsel package (Dean, Raftery,

and Scrucca 2012) for R, and it can work well in some situations. However,

because the number of free model parameters for some of the GPCMmodels

is quadratic in data-dimensionality, clustvarsel is largely ineffective

in high dimensions. A related approach is described by Maugis, Celeux,

and Martin-Magniette (2009a,b) and implemented as the selvarclust

software (Maugis 2009), which is a command-line addition to the MIX-

MOD software (Biernacki et al. 2006). This approach relaxes the assump-

tions on the role of variables with the potential benefit of avoiding the over-

penalization of independent variables.
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More recently, the VSCC (variable selection for clustering and classi-

fication) approach (Andrews andMcNicholas 2014) has been developed and

used in the same situation. The VSCC technique finds a subset of variables

that simultaneously minimizes the within-group variance and maximizes the

between-group variance, thereby resulting in variables that show separation

between the desired groups. The within-group variance for variable j can be
written

Wj =

∑G
g=1

∑n
i=1 zig(xij − μgj)

2

n
,

where xij is the value of variable j for observation i, μgj is the mean of

variable j in component g, and n and zig have the usual meanings. The

variance within variable j that is not accounted for by Wj , i.e., σ
2
j − Wj,

provides an indication of the variance between groups. In general, calcu-

lation of this residual variance is needed; however, if the data have been

standardized to have equal variance across variables, then any variable min-

imizing the within-group variance is also maximizing the leftover variance.

Accordingly, Andrews and McNicholas (2014) describe the VSCC method

in terms of data where the variables have been standardized to have zero

mean and unit variance. The VSCC approach also uses the correlation be-

tween variables, which is denoted ρjk for variables j and k. If V repre-

sents the space of currently selected variables, then variable j is selected if

|ρjr| < 1 − Wm
j for all r ∈ V , where m ∈ {1, . . . , 5} is fixed. When

VSCC is used for clustering, it is necessary to choose between these sub-

sets without specific knowledge of which subset produces the best classifier.

Andrews and McNicholas (2014) choose the subset that minimizes

n
∑

i=1

G
∑

g=1

ẑig −
n
∑

i=1

max
g

{ẑig} = n−
n
∑

i=1

max
g

{ẑig},

which is equivalent to maximizing
∑n

i=1 maxg{ẑig}. When VSCC is used

for clustering, the first step is to carry out an initial clustering using a model-

based or other method. VSCC is a step-wise approach and further details are

given by Andrews andMcNicholas (2014). An implementation of the VSCC

approach is given in the vscc package (Andrews andMcNicholas 2013) for

R.

Similar to clustvarsel andselvarclust, the Gaussianmixture

modelling and dimension reduction (GMMDR) approach (Scrucca 2010) is

based on the GPCM family of models, and builds on the sliced inverse re-

gression work of Li (1991, 2000). The idea behind GMMDR is to find the

smallest subspace that captures the clustering information contained within
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the data. To do this, GMMDR seeks those directions where the cluster

means µg and the cluster covariancesΣg vary the most, provided that each

direction is Σ-orthogonal to the others. These directions can be found via

the generalized eigen-decomposition of the kernel matrix Mvi = liΣvi,
where l1 ≥ l2 ≥ · · · ≥ ld > 0, and v

′

iΣvj = 1 if i = j and v
′

iΣvj = 0
otherwise (Scrucca 2010). Note that there are d ≤ p directions that span the
subspace. The kernel matrix contains the variations in cluster means

MI =

G
∑

g=1

πg(µg − µ)(µg − µ)′

and the variations in cluster covariances

MII =

G
∑

g=1

πg(Σg − Σ̄)Σ−1(Σg − Σ̄)′,

such thatM = MIΣ
−1

MI +MII. Note that

µ =

G
∑

g=1

πgµg and Σ =
1

n

n
∑

i=1

(xi − µ)(xi − µ)′

are the global mean and global covariance matrix, respectively, and Σ̄ =
∑G

g=1 πgΣg is the pooled within-cluster covariance matrix.

The GMMDR directions are the eigenvectors (v1, . . . ,vd) ≡ β.

These eigenvectors, ordered according to the eigenvalues, form the basis of

the dimension reduction subspace S(β). The projections of the mean and

covariance onto S(β) are given by β′µg and β
′
Σgβ, respectively. The GM-

MDR variables are the projections of the p-dimensional data (x′

1, . . . ,x
′

n)
′

onto the subspace S(β) and can be computed as (x′

1, . . . ,x
′

n)
′β. This esti-

mation of GMMDR variables is a sort of feature extraction. Moreover, some

of the estimated GMMDR variables may provide no clustering information

and need to be removed. Scrucca (2010) removes them via a modified ver-

sion of the variable selection method of Raftery and Dean (2006). Scrucca

(2014) extends the GMMDR approach to model-based discriminant anal-

ysis, and Morris and McNicholas (2016) apply GMMDR for model-based

classification and model-based discriminant analysis. Morris, McNicholas,

and Scrucca (2013) and Morris and McNicholas (2013, 2016) extend the

GMMDR to mixtures of non-Gaussian distributions.

Bouveyron, Girard, and Schmid (2007a,b) introduce a family of 28

parsimonious, flexible Gaussian models specifically designed for high-

dimensional data. This family, called HD-GMM, can be applied for
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Table 3. Nomenclature and the number of free covariance parameters for 16 members of the

HD-GMM family.

Model Number of Free Covariance Parameters

[agjbgΓgdg]
∑G

g=1
dg[p− (dg + 1)/2] +

∑G

g=1
dg + 2G

[agjbΓgdg]
∑G

g=1
dg[p− (dg + 1)/2] +

∑G

g=1
dg + 1 +G

[agbgΓgdg]
∑G

g=1
dg[p− (dg + 1)/2] + 3G

[abgΓgdg]
∑G

g=1
dg[p− (dg + 1)/2] + 1 + 2G

[agbΓgdg]
∑G

g=1
dg[p− (dg + 1)/2] + 1 + 2G

[abΓgdg]
∑G

g=1
dg[p− (dg + 1)/2] + 2 +G

[agjbgΓgd] Gd[p− (d+ 1)/2] +Gd+G+ 1
[ajbgΓgd] Gd[p− (d+ 1)/2] + d+G+ 1
[agjbΓgd] Gd[p− (d+ 1)/2] +Gd+ 2
[ajbΓgd] Gd[p− (d+ 1)/2] + d+ 2
[agbgΓgd] Gd[p− (d+ 1)/2] + 2G+ 1
[abgΓgd] Gd[p− (d+ 1)/2] +G+ 2
[agbΓgd] Gd[p− (d+ 1)/2] +G+ 2
[abΓgd] Gd[p− (d+ 1)/2] + 3
[ajbΓd] d[p− (d+ 1)/2] + d+ 2
[abΓd] d[p− (d+ 1)/2] + 3

clustering or classification. The HD-GMM family is based on an eigen-

decomposition of the component covariance matrices Σg, which can be

written

Σg = Γg∆gΓ
′

g,

where Γg is a p×p orthogonal matrix of eigenvectors ofΣg and∆g is a p×
p diagonal matrix containing the corresponding eigenvalues, in decreasing

order. The idea behind the HD-GMM family is to re-parametrize ∆g such

thatΣg has only dg + 1 distinct eigenvalues. This is achieved via

∆g = diag{ag1, . . . , agdg
, bg, . . . , bg},

where the first dg < p values ag1, . . . , agdg
represent the variance in the

component-specific subspace and the other p− dg values bg are the variance
of the noise. The key assumption is that, conditional on the components,

the noise variance for component g is isotropic and is within a subspace

that is orthogonal to the subspace of the gth component. Although there are

28 HD-GMM models, the 16 with closed form estimators are often focused

upon (Table 3).

As Bouveyron and Brunet-Saumard (2014) point out, the HD-GMM

family can be regarded as a generalization of the GPCM family or as a gen-

eralization of the MPPCA model. For instance, if dg = p − 1 then the

HD-GMM model [agjbgΓgdg] is the same as the GPCM model VVV. Fur-

ther, the HD-GMM model [agjbgΓgd] is equivalent to the MPPCA model.
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For the HD-GMMmodel [agbgΓgdg], Bouveyron et al. (2011) show that the

maximum likelihood estimate of the dg is asymptotically consistent, a fact

that has consequences for inference for isotropic PPCA (cf. Bouveyron et

al. 2011).

6. Robust Clustering

In real applications, one may encounter data that are contaminated

by outliers, noise, or generally spurious points. Borrowing the terminol-

ogy used by Aitkin and Wilson (1980), these types of observations shall

be collectively referred to as “bad” while all others will be called “good”.

When bad points are present, they can have a deleterious effect on mixture

model parameter estimation. Accordingly, it is generally desirable to ac-

count for bad points when present. One way to do this is to use a mixture

of distributions with component concentration parameters. Some such mix-

tures have already been considered herein and include t-mixtures and power

exponential mixtures; however, Hennig (2004) points out that t-mixtures

are vulnerable to “very extreme outliers” and the same is probably true for

robustness-via-component concentration parameter approaches in general.

Within the Gaussian mixture paradigm, Campbell (1984), McLach-

lan and Basford (1988), Kharin (1996), and De Veaux and Krieger (1990)

achieve a similar effect by using M-estimators (Huber 1964, 1981) of the

means and covariance matrices of the Gaussian components of the mixture

model. In a similar vein, Markatou (2000) utilizes a weighted likelihood

approach to obtain robust parameter estimates. Banfield and Raftery (1993)

add a uniform component on the convex hull of the data to accommodate

outliers in a Gaussian mixture model, and Fraley and Raftery (1998) and

Schroeter et al. (1998) further consider approaches in this direction. Hennig

(2004) suggests adding an improper uniform distribution as an additional

mixture component. Browne, McNicholas, and Sparling (2012) also make

use of uniform distributions but they do so by making each component a

mixture of a Gaussian and a uniform distribution. Rather than specifically

accommodating bad points, this approach allows for what they call “bursts”

of probability as well as locally heavier tails—this might have the effect

of dealing with bad points for some data sets. Coretto and Hennig (2015)

use an optimally tuned improper maximum likelihood estimator for robust

clustering.

Garcı́a-Escudero et al. (2008) outline a trimmed clustering approach

that gives robust parameter estimates by allowing for a pre-specified propor-

tion of bad points. They achieve this by imposing restrictions on the ratio be-

tween the maximum andminimum eigenvalues of the component covariance

matrices. These constraints can be viewed as a multivariate extension of the
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univariate work of Hathaway (1985). The trimmed clustering approach of

Garcı́a-Escudero et al. (2008) has been applied for Gaussian mixtures and

is implemented as such in the R package tclust (Fritz, Garcı́a-Escudero,

andMayo-Iscar 2012). The approach can be very effective when the number

of variables p is sufficiently small so that the proportion of bad points can

be accurately pre-specified. Although work to date has focused somewhat

on Gaussian mixtures, a similar approach could be taken to mixtures with

non-elliptical components.

Punzo and McNicholas (2016) use a mixture of contaminated Gaus-

sian distributions, with density of the form

f (x | ϑ) =
G
∑

g=1

πg
[

αgφ
(

x | µg,Σg

)

+ (1− αg)φ
(

x | µg, ηgΣg

)]

,

(16)

where αg ∈ (0, 1) is the proportion of good points in the gth component

and ηg > 1 is the degree of contamination. Because ηg > 1 is an infla-

tion parameter, it can be interpreted as the increase in variability due to the

bad observations. This contaminated Gaussian mixture approach, i.e., (16),

can be viewed as a special case of the multi-layer mixture of Gaussian dis-

tributions of Li (2005), where each of the G components at the top layer

is itself a mixture of two components, with equal means and proportional

covariance matrices at the secondary layer. One advantage of the mixture

of contaminated Gaussian distributions approach is that the proportion of

bad points does not need to be specified a priori (cf. Punzo and McNicholas

2016). As a result, it is possible to apply this approach to higher dimensional

data and even to high-dimensional data, e.g., via a mixtures of contaminated

Gaussian factor analyzers model (Punzo and McNicholas 2014b).

7. Clustering Longitudinal Data

McNicholas and Murphy (2010a) use a Gaussian mixture model with

a modified Cholesky-decomposed covariance structure to cluster longitudi-

nal data. The Cholesky decomposition is a well-known method for decom-

posing a matrix into the product of a lower triangular matrix and its trans-

pose. Let A be a real, positive definite matrix, then the Cholesky decom-

position of A is given by A = LL′, where L is a unique lower triangular

matrix. This decomposition is popular in numerical analysis applications,

where it can be used to simplify the solution to a linear system of equations.

A modified Cholesky decomposition can be applied to a covariance

matrix, and Pourahmadi (1999, 2000) exploits the fact that covariance ma-

trix Σ of a random variable can be decomposed using the relation TΣT
′ =

D, where T is a unique unit lower triangular matrix and D is a unique
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diagonal matrix with positive diagonal entries. This relationship can also

be written Σ
−1 = T

′
D

−1
T. The values of T and D have interpretations

as generalized autoregressive parameters and innovation variances, respec-

tively (Pourahmadi 1999), such that the linear least-squares predictor ofXt,

based onXt−1, . . . ,X1, can be written

X̂t = μt +

t−1
∑

s=1

(−φts)(Xs − μs) +
√

dtǫt, (17)

where ǫt ∼ N(0, 1), the φts are the sub-diagonal elements of T, and the dt
are the diagonal elements ofD. Pan andMacKenzie (2003) use the modified

Cholesky decomposition to jointly model the mean and covariance in lon-

gitudinal studies. Pourahmadi, Daniels, and Park (2007) develop a method

of simultaneously modelling several covariance matrices based on this de-

composition, thereby giving an alternative to common principal components

analysis (Flury 1988) for longitudinal data.

McNicholas and Murphy (2010a) consider a Gaussian mixture model

with a modified Cholesky-decomposed covariance structure for each mix-

ture component, so that the gth component density is

φ(xi | µg, (T
′

gD
−1
g Tg)

−1) =

1
√

(2π)p|Dg|
exp

{

−1

2
(xi − µg)

′
T

′

gD
−1
g Tg(xi − µg)

}

,

whereTg andDg are the p×p lower triangular matrix and the p×p diagonal
matrix, respectively, that follow from the modified Cholesky decomposition

ofΣg.

A family of eight Gaussian mixture models arises from the option to

constrain Tg and/or Dg to be equal across components together with the

option to impose the isotropic constraint Dg = δgIp. This family is known

as the Cholesky-decomposed Gaussian mixture model (CDGMM) family.

Each member of the CDGMM family (Table 4) has a natural interpretation

for longitudinal data. Constraining Tg = T suggests that the autoregres-

sive relationship between time points, cf. (17), is the same across compo-

nents. The constraintDg = D means that the variability at each time point

is taken to be the same for each component, and the isotropic constraint

Dg = δgIp suggests that the variability is the same at each time point in

component g. From a clustering point of view, two of the CDGMMs have

equivalent GPCM models; however, even though this equivalence exists,

the GPCM models in question (EEE and VVV) do not explicitly account

for the longitudinal correlation structure. McNicholas and Murphy (2010a)

also consider cases where elements below a given sub-diagonal of Tg are

355



P.D. McNicholas

Table 4. The nomenclature, covariance structure, and number of free covariance parameters

for each member of the CDGMM family.

Model Tg Dg Dg Free Cov. Parameters

EEA Equal Equal Anisotropic p(p− 1)/2 + p
VVA Variable Variable Anisotropic G[p(p− 1)/2] +Gp
VEA Variable Equal Anisotropic G[p(p− 1)/2] + p
EVA Equal Variable Anisotropic p(p− 1)/2 +Gp
VVI Variable Variable Isotropic G[p(p− 1)/2] +G
VEI Variable Equal Isotropic G[p(p− 1)/2] + 1
EVI Equal Variable Isotropic p(p− 1)/2 +G
EEI Equal Equal Isotropic p(p− 1)/2 + 1

set to zero. This constrained correlation structure can be used to remove

autocorrelation over large time lags.

The CDGMM models have been used effectively in real data analy-

ses (e.g., Humbert et al. 2013) and they have been extended in a number

of directions. McNicholas and Subedi (2012) consider a t-analogue of the
CDGMM family. They also consider a linear model for the mean but an-

other model could be implemented in a similar framework; these models,

together with the CDGMM family, are available in the longclust pack-

age (McNicholas, Jampani, and Subedi 2015) for R. Anderlucci and Viroli

(2015) extend the methodology of McNicholas and Murphy (2010a) to the

situation where there are multiple responses for each individual at each time

point. Their approach is nicely illustrated with data from a health and retire-

ment study. The notion of constraining sub-diagonals of Tg deserves some

further attention, both within the single- and multiple-response paradigms.

It will also be interesting to explore the use of mixtures of MPEs as an alter-

native to t-mixtures; whereas t-mixtures essentially allow more dispersion

about the mean when compared with Gaussian mixtures, mixtures of MPEs

would allow both more and less dispersion.

8. Clustering Categorical and Mixed Type Data

Latent class analysis has been widely used for clustering of categor-

ical data and data of mixed type (e.g. Goodman 1974; Celeux and Govaert

1991; Biernacki, Celeux, and Govaert 2010). Much work on refinement

and extension has been carried out. For example, Vermunt (2003, 2007) de-

velop a multilevel latent class models to account for conditional dependency

between the response variables, and Marbac, Biernacki, and Vanderwalle

(2014) propose a conditional modes model that assigns response variables

into conditionally independent blocks. Besides latent class analysis, mix-

ture model-based approaches for categorical data have received relatively

little attention within the literature. Browne and McNicholas (2012) de-
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velop a mixture of latent variables model for clustering of data with mixed

type, and a data set comprising only categorical (including binary) vari-

ables fits within their modelling framework as a special case. Browne and

McNicholas (2012) draw on the deterministic annealing approach of Zhou

and Lange (2010) in their parameter estimation scheme. This approach

can increase the chance of finding the global maximum but Gauss-Hermite

quadrature is required to approximate the likelihood. Gollini and Murphy

(2014) use a mixture of latent trait analyzers (MLTA) model to cluster cate-

gorical data. They also apply their approach to binary data, where a categor-

ical latent variable identifies clusters of observations and a latent trait is used

to accommodate within-cluster dependency. A lower bound approximation

to the log-likelihood is used, which is straightforward to implement and con-

verges relatively quickly compared with other numerical approximations to

the likelihood.

A mixture of item response models (Muthen and Asparouhov 2006;

Vermunt 2007) has very similar structure to the MLTA model; however, it

is highly parameterized, uses a probit structure, and numerical integration

is required to compute the likelihood. A similar approach has also been

discussed by Cagnone and Viroli (2012), who use Gauss-Hermite quadra-

ture to approximate the likelihood; they also assume a semi-parametric dis-

tributional form for the latent variables by adding extra parameters to the

model. Repeatedly sampled binary data can be clustered using multilevel

mixture item response models (Vermunt 2007). McParland et al. (2014) use

a mixture model approach for mixed categorical data (binary, ordinal, and

nominal), where each component is effectively a hybrid of an item response

model and a factor analysis model.

Tang, Browne, and McNicholas (2015) propose two mixtures of la-

tent traits models with common slope parameters for model-based cluster-

ing of binary data. One is a general model that supposes that the dependence

among the response variables within each observation is wholly explained

by a low-dimensional continuous latent variable in each component. The

other is specifically designed for repeatedly sampled data and supposes that

the response function in each component is composed of two continuous

latent variables by adding a blocking latent variable. Their proposed mix-

ture of latent trait models with common slope parameters (MCLT) model

is a categorical analogue of the MCFA model of Baek et al. (2010). The

MCLT model allows for significant reduction in the number of free param-

eters when estimating the slope. Moreover, it facilitates a low-dimensional

visual representation of the clusters, where posterior means of the continu-

ous latent variables correspond to the manifest data.

In the mixture of latent traits model, the likelihood function involves

an integral that is intractable. Tang et al. (2015) propose using a variational
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approximation to the likelihood, as proposed by Jaakkola and Jordan (2000),

Tipping (1999), and Attias (2000). For a fixed set of values for the varia-

tional parameters, the transformed problem has a closed-form solution, pro-

viding a lower bound approximation to the log-likelihood. The variational

parameters are optimized in a separate step.

Ranalli and Rocci (2016) develop an approach for clustering ordinal

data. They use an underlying response variable approach, which treats ordi-

nal variables as categorical realizations of underlying continuous variables

(cf. Jöreskog 1990).

9. Cluster-Weighted Models

Consider data of the form (x1, y1), . . . , (xn, yn) so that each obser-

vation is a realization of the pair (X, Y ) defined on some space Ω, where
Y ∈ R is a response variable andX ∈ R

p is a vector of covariates. Suppose

that Ω can be partitioned into G groups, say Ω1, . . . ,ΩG, and let p (x, y)
be the joint density of (X, Y ). In general, the density of a cluster-weighted

model (CWM) can be written

p(x, y | ϑ) =
G
∑

g=1

πgp(y | x,θg)p(x | Φg),

where ϑ = (π,θ1, . . . ,θG,Φ1, . . . ,ΦG) denotes the model parameters.

More specifically, the density of a linear Gaussian cluster-weighted model

(CWM) is

p(x, y | ϑ) =
G
∑

g=1

πgφ1

(

y | β0g + β′

1gx, σ
2
g

)

φp

(

x | µg,Σg

)

, (18)

where β0g ∈ R, β1g ∈ R
p, and φj() is the density of a j-dimensional ran-

dom variable from a Gaussian distribution. The linear Gaussian CWM in

(18) has been studied by Gershenfeld (1997) and Schöner (2000). CWMs

are burgeoning into a vibrant subfield of model-based clustering and classifi-

cation. For example, Ingrassia, Minotti, and Vittadini (2012) consider an ex-

tension to t-distribution that leads to the linear t-CWM. Ingrassia, Minotti,

and Punzo (2014) introduce a family of 12 parsimonious linear t-CWMs,

Punzo (2014) introduces the polynomial Gaussian CWM, Punzo and In-

grassia (2015a) propose CWMs for bivariate data of mixed type, and Punzo

and Ingrassia (2015b) propose a family of 14 parsimonious linear Gaussian

CWMs. Punzo and McNicholas (2014a) use a contamination approach for

linear Gaussian CWMs. Ingrassia et al. (2015) consider CWMs with cate-

gorical responses and also consider identifiability under the assumption of

Gaussian covariates.
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In the mosaic of work around the use of mixture models for clustering

and classification, CWMs have their place in applications with random co-

variates. Indeed, as distinct from finite mixtures of regressions (e.g., Leisch

2004; Früwirth-Schnatter 2006), which are examples of mixture models

with fixed covariates, CWMs allow for assignment dependence, i.e., the co-

variate in each component can also be distinct. From a clustering and classi-

fication perspective, this implies that the covariatesX can directly affect the

clustering results—for most applications, this represents an advantage over

the fixed covariates approach (Hennig 2000). A comparison of the fixed and

random covariate approaches is given by Ingrassia and Punzo (2015).

Applying model (18) in high dimensions is infeasible for the same

reason that using the Gaussianmixture model with unconstrainedΣg in high

dimensions is infeasible, i.e., the number of free covariance parameters is

O(p2). To overcome this issue, a latent Gaussian factor structure for X

could be assumed within each mixture component—this is closely related to

the factor regression model (FRM) of Y on X (cf. West 2003; Wang et al.

2007; Carvalho 2008). Subedi et al. (2013) introduce the linear Gaussian

cluster-weighted factor analyzers (CWFA) model, which has density

p(x, y | ϑ) =
G
∑

g=1

πgφ1

(

y | β0g + β′

1gx, σ
2
g

)

φp

(

x | µg,ΛgΛ
′

g +Ψg

)

.

where Λg is a p × q matrix of factor loadings, with q < p, and Ψg is a

p × p diagonal matrix with strictly positive diagonal entries. A family of

16 CWFA models follows by applying the PGMM covariance constraints

in Table 2 as well as allowing the constraint σ2
g = σ2. As was the case for

members of the PGMM family, each CWFA model has a number of free

covariance parameters that is linear in p. Note that Subedi et al. (2015)

extend the CWFA model to t-mixtures.

10. Discussion

Debate around how to define a cluster is sure to continue into the fu-

ture. In addition to the discussion in Section 1 and in McNicholas (2016),

and within the papers cited therein, there has been other relevant work. The

paper by Hennig (2015) covers some of this other work and also raises

interesting points about “true clusters”. As a field of endeavour, mixture

model-based approaches to clustering, classification, and discriminant anal-

ysis have made tremendous strides forward in the past decade or so. How-

ever, some important challenges and open questions remain. For one, the

matter of model selection is still not resolved to a satisfactory extent. Al-

though it is much maligned, the BIC remains the model selection criterion

of choice. This point is reinforced by many applications within the litera-
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ture as well as some dedicated comparative studies (e.g. Steele and Raftery

2010). The model averaging approach used by Wei and McNicholas (2015)

provides an alternative to the ‘single best model’ paradigm; however, it too

depends on the BIC. Furthermore, as the field moves away from Gaussian

mixture models, questions around the efficacy of the BIC for mixture model

selection will only grow in their frequency and intensity—although there is

theoretical justification for using the BIC to compare non-nested models (cf.

Raftery 1995), more work is needed to determine its efficacy for choosing

between different mixture distributions, e.g., between a mixture of multivari-

ate t-distributions and a mixture of MPEs. The search for a more effective

criterion, perhaps one dedicated to clustering and classification, is perhaps

the single greatest challenge within the field. As is the case for model selec-

tion, the choice of starting values is not a new problem (several strategies are

discussed by Biernacki, Celeux and Govaert 2003; Shireman, Steinley and

Brusco 2015, among others) but it is persistent, and efforts in this direction

are sure to continue. It is quite likely that the increasing ease of access to

high-performance computing equipment will help dictate the direction this

work takes. The increasing dimensionality and complexity of modern data

sets raise issues that demand answers. For instance, there has been a paucity

of work on clustering mixed type data, ordinal data, and binary data (cf. Sec-

tion 8). Another example is clickstream, and similar, data for which there

has also been relatively little work (e.g., Melnykov 2016).

There has also been some interesting work on alternatives to the EM

algorithm, and its variants, for parameter estimation. Of the alternatives tried

to date, variational Bayes approximations, which are iterative Bayesian al-

ternatives to the EM algorithm, perhaps hold the most promise. Their fast

and deterministic nature has made the variational Bayes approach increas-

ingly popular over the past decade or two (e.g., Waterhouse, MacKay and

Robinson 1996; Jordan et al. 1999; Corduneanu and Bishop 2001). The

tractability of the variational approach allows for simultaneous model se-

lection and parameter estimation, thus removing the need for a criterion to

select the number of components G and potentially reducing the associ-

ated computational overhead. The variational Bayes algorithm has already

been applied to Gaussian mixture models (e.g., Teschendorff et al. 2005;

McGrory and Titterington 2007; Subedi and McNicholas 2016) as well as

non-Gaussian mixtures (e.g., Subedi and McNicholas 2014). Interestingly,

Bensmail et al. (1997) discuss exact Bayesian inference for some members

of the GPCM family. Although beyond the scope of this review, there has

been much work on Dirichlet process mixtures (e.g., Jain and Neal 2004;

Bdiri, Bougouli, and Ziou 2016) and this is sure to continue.

The pursuit of more flexible models will continue and has the po-

tential to provide more useful tools; however, it is very important that such
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methods are accompanied by effective software. This reflects a general prob-

lem: there are far more promising methods for model-based clustering than

there are effective software packages. Beyond what is mentioned in Sec-

tion 7, only minimal work has been done on model-based approaches to

longitudinal data (e.g., De la Cruz-Mesá, Quintana, and Marshall 2008, use

a mixture of non-linear hierarchical models) and this area also merits further

investigation. Some recent work on fractionally-supervised classification

(Vrbik and McNicholas 2015) is sure to spawn further work in similar di-

rections. The use of copulas in mixture model-based approaches has already

received some attention (e.g., Jajuga and Papla 2006; Di Lascio and Gian-

nerini 2012; Vrac et al. 2012; Kosmidis and Karlis 2015; Marbac, Biernacki

and Vandewalle 2015) and this sure to continue. Finally, there are some

specific data types—both recently emerged and yet to emerge—that deserve

their own special attention. One such type is next-generation sequencing

data, which have already driven some interesting work within the field (e.g.

Rau et al. 2015) and will surely continue to do so for some time.
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