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Abstract In the framework of Bayesian model-based clus-

tering based on a finite mixture of Gaussian distributions, we

present a joint approach to estimate the number of mixture

components and identify cluster-relevant variables simulta-

neously as well as to obtain an identified model. Our approach

consists in specifying sparse hierarchical priors on the mix-

ture weights and component means. In a deliberately overfit-

ting mixture model the sparse prior on the weights empties

superfluous components during MCMC. A straightforward

estimator for the true number of components is given by

the most frequent number of non-empty components vis-

ited during MCMC sampling. Specifying a shrinkage prior,

namely the normal gamma prior, on the component means

leads to improved parameter estimates as well as identifica-

tion of cluster-relevant variables. After estimating the mix-

ture model using MCMC methods based on data augmen-

tation and Gibbs sampling, an identified model is obtained

by relabeling the MCMC output in the point process repre-

sentation of the draws. This is performed using K -centroids

cluster analysis based on the Mahalanobis distance. We eval-

uate our proposed strategy in a simulation setup with artificial

data and by applying it to benchmark data sets.
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1 Introduction

Finite mixture models provide a well-known probabilistic

approach to model-based clustering. They assume that the

data are generated by drawing from a finite set of exchange-

able mixture components where each mixture component

corresponds to one specific data cluster. More specifically,

N observations y = (y1, . . . , yN ), yi ∈ Rr , are assumed to

be drawn from the following mixture distribution:

f (yi |θ1, . . . , θ K , η) =

K
∑

k=1

ηk fk(yi |θk), (1)

where the mixture components are in general assumed to

belong to a well-known parametric distribution family with

density fk(yi |θk) and η = (η1, . . . , ηK ) are the component

weights, satisfying
∑K

k=1 ηk = 1 and ηk ≥ 0; see McLachlan

and Peel (2000) and Frühwirth-Schnatter (2006) for a review

of finite mixtures.

Since the pioneering papers by Banfield and Raftery

(1993), Bensmail et al. (1997) and Dasgupta and Raftery

(1998), model-based clustering based on finite mixtures has

been applied successfully in many areas of applied research,

such as genetics (McLachlan et al. 2002; Yeung et al.

2001), economics time series analysis (Frühwirth-Schnatter

and Kaufmann 2008; Juárez and Steel 2010), social sci-

ences (Handcock et al. 2007), and panel and longitudinal

data analysis (McNicholas and Murphy 2010; Frühwirth-

Schnatter 2011b), just to mention a few.
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Despite this success and popularity of model-based clus-

tering based on finite mixtures, several issues remain that

deserve further investigation and are addressed in the present

paper within a Bayesian framework. Above all, in applica-

tions typically little knowledge is available on the specific

number of data clusters we are looking for, and, as a conse-

quence, the unknown number K of mixture components cor-

responding to these data clusters needs to be estimated from

the data. Tremendous research effort has been devoted to this

question, however, no uniquely best method has been iden-

tified. Likelihood-based inference typically relies on model

choice criteria such as BIC, approximate weight of evidence,

or the integrated classification likelihood criterion to select

K , see e.g. Biernacki et al. (2000) for a comparison of differ-

ent criteria. Bayesian approaches sometimes pursue a similar

strategy, often adding the DIC to the list of model choice cri-

teria; see e.g. Celeux et al. (2006). However, methods that

treat K as an unknown parameter to be estimated jointly

with the component-specific parameters are preferable from

a Bayesian viewpoint.

Within finite mixtures, a fully Bayesian approach toward

selecting K is often based on reversible jump Markov chain

Monte Carlo (RJMCMC), as introduced by Richardson and

Green (1997). RJMCMC creates a Markov chain that moves

between finite mixtures with different number of compo-

nents, based on carefully selected degenerate proposal den-

sities which are difficult to design, in particular in higher

dimensional mixtures, see e.g. Dellaportas and Papageor-

giou (2006). Alternatively, the choice of K has been based on

the marginal likelihood p(y|K ), which has to be combined

with a suitable prior p(K ) to obtain a valid posterior distri-

bution p(K |y) over the number K of components (Nobile

2004). However, also the computation of the marginal likeli-

hood p(y|K ) turns out to be a challenging numerical problem

in a finite mixture model even for moderate K (Frühwirth-

Schnatter 2004).

A quite different approach of selecting the number K of

components exists outside the framework of finite mixture

models and relies on a nonparametric Bayesian approach

based on mixture models with countably infinite number of

components. To derive a partition of the data, Molitor et al.

(2010) and Liverani et al. (2013) define a Dirichlet process

prior on the mixture weights and cluster the pairwise associ-

ation matrix, which is obtained by aggregating over all parti-

tions obtained during Markov chain Monte Carlo (MCMC)

sampling, using partitioning around medoids (PAM; Kauf-

man and Rousseeuw 1990). The optimal number of clusters

is determined by maximizing an associated clustering score.

A second issue to be addressed concerns the selection of

cluster-relevant variables, as heterogeneity often is present

only in a subset of the available variables. Since the inclusion

of unnecessary variables might mask the cluster structure,

statistical interest lies in identifying these cluster-relevant

variables. Several papers have suggested to solve the selec-

tion of the number K of components and the identification

of cluster-relevant variables simultaneously. One way is to

recast the choice both of K and the cluster-relevant variables

as a model selection problem. For instance, in the context of

maximum likelihood estimation Raftery and Dean (2006),

Maugis et al. (2009) and Dean and Raftery (2010) use a

greedy search algorithm by comparing the various models

through BIC. Penalized clustering approaches using the L1

norm to shrink cluster means together for variable selection

are considered in Pan and Shen (2007), with adaptations of

the penalty term taking the group structure into account sug-

gested in Wang and Zhu (2008) and Xie et al. (2008). Based

on a model using mode association Lee and Li (2012) pro-

pose a variable selection algorithm using a forward search

for maximizing an aggregated index of pairwise cluster sep-

arability.

In the Bayesian framework, Tadesse et al. (2005) propose

RJMCMC techniques to move between mixture models with

different numbers of components while variable selection is

accomplished by stochastic search through the model space.

Stingo et al. (2012) extend their approach in combination

with Raftery and Dean (2006) to the discriminant analysis

framework. Frühwirth-Schnatter (2011a) pursues a slightly

different approach by specifying a normal gamma prior on

the component means to shrink the cluster means for homo-

geneous components, while model selection with respect to

K is performed by calculating marginal likelihoods under

these shrinkage priors.

Variable selection in the context of infinite mixture mod-

els has also been considered. Kim et al. (2006), for instance,

combine stochastic search for cluster-relevant variables with

a Dirichlet process prior on the mixture weights to estimate

the number of components. In a regression setting Chung

and Dunson (2009) and Kundu and Dunson (2014) also use

stochastic search variable selection methods in combination

with nonparametric Bayesian estimation based on a probit

stick-breaking process mixture or a Dirichlet process loca-

tion mixture. Similarily, Yau and Holmes (2011) define a

Dirichlet process prior on the weights, however, they iden-

tify cluster-relevant variables by using a double exponen-

tial distribution as shrinkage prior on the component means.

Lian (2010) uses Dirichlet process priors for simultaneous

clustering and variable selection employing a base measure

inducing shinkage on the cluster-specific covariate effects.

The main contribution of the present paper is to pro-

pose the use of sparse finite mixture models as an alter-

native to infinite mixtures in the context of model-based

clustering. While remaining within the framework of finite

mixtures, sparse finite mixture models provide a semi-

parametric Bayesian approach insofar as neither the num-

ber of mixture components nor the cluster-relevant vari-

ables are assumed to be known in advance. The basic
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idea of sparse finite mixture modeling is to deliberately

specify an overfitting finite mixture model with too many

components K and to assume heterogeneity for all avail-

able variables apriori. Sparse solutions with regard to the

number of mixture components and with regard to het-

erogeneity of component locations are induced by speci-

fying suitable shrinkage priors on, respectively, the mix-

ture weights and the component means. This proposal leads

to a simple Bayesian framework where a straightforward

MCMC sampling procedure is applied to jointly estimate

the unknown number of mixture components, to deter-

mine cluster-relevant variables, and to perform component-

specific inference.

To obtain sparse solutions with regard to the number of

mixture components, an appropriate prior on the weight dis-

tribution η = (η1, . . . , ηK ) has to be selected. We stay within

the common framework by choosing a Dirichlet prior on

η, however, the hyperparameters of this prior are selected

such that superfluous components are emptied automatically

during MCMC sampling. The choice of these hyperparame-

ters is governed by the asymptotic results of Rousseau and

Mengersen (2011), who show that, asymptotically, an over-

fitting mixture converges to the true mixture, if these hyper-

parameters are smaller than d/2, where d is the dimension

of the component-specific parameter θk .

Sparse finite mixtures are related to infinite mixtures based

on a Dirichlet process prior, if a symmetric Dirichlet prior is

employed for η and the hyperparameter e0 is selected such

that e0 K converges to the concentration parameter of the

Dirichlet process as K goes to infinity. For finite K , sparse

finite mixtures provide a two-parameter alternative to the

Dirichlet process prior where, for instance, e0 can be held

fixed while K increases.

Following Ishwaran et al. (2001) and Nobile (2004), we

derive the posterior distribution of the number of non-empty

mixture components from the MCMC output. To estimate

the number of mixture components, we derive a point esti-

mator from this distribution, typically, the posterior mode

which is equal to the most frequent number of non-empty

components visited during MCMC sampling. This approach

constitutes a simple and automatic strategy to estimate the

unknown number of mixture components, without making

use of model selection criteria, RJMCMC, or marginal like-

lihoods.

Although sparse finite mixtures can be based on arbi-

trary mixture components, investigation will be confined in

the present paper to sparse Gaussian mixtures where the

mixture components fk(yi |θk) in (1) arise from multivari-

ate Gaussian densities with component-specific parameters

θk = (μk,�k) consisting of the component mean μk and the

variance-covariance matrix �k , i.e.

fk(yi |θk) = fN (yi |μk,�k). (2)

To identify cluster-relevant variables within the framework

of sparse Gaussian mixtures, we include all variables and

assess their cluster-relevance by formulating a sparsity prior

on the component means μk , rather than excluding vari-

ables explicitly from the model as it is done by stochastic

search. This strategy to identify cluster-relevant variables

has been applied previously by Yau and Holmes (2011) who

define a Laplace prior as a shrinkage prior on the mixture

component means. To achieve more flexibility and to allow

stronger shrinkage, we follow in the present paper Frühwirth-

Schnatter (2011a) by using instead the normal gamma prior

as a shrinkage prior on the mixture component means which

is a two-parameter generalization of the Laplace prior.

Specifying a sparse prior on the component means has in

addition the effect of allowing component means to be pulled

together in dimensions where the data are homogeneous,

yielding more precise estimates of the component means in

every dimension. Moreover, the dispersion of the estimated

component means in different variables can be compared.

In this way, a distinction between cluster-relevant variables,

which are characterized by a high dispersion of the cluster

locations, and homogeneous variables, where cluster loca-

tions are identical, is possible by visual inspection. For high-

dimensional data, however, this approach might be cumber-

some, as pointed out by a reviewer, and automatic tools for

identifying cluster-relevant variables using the posterior dis-

tributions of the shrinkage parameters might need to be con-

sidered.

Finally, in applied research it is often not only of interest to

derive a partition of the data, but also to characterize the clus-

ters by providing inference with respect to the cluster-specific

parameters θk appearing in (1). The framework of finite mix-

tures allows for identification of component-specific parame-

ters, as soon as the label switching problem in an overfitting

mixture model with empty components is solved. As sug-

gested by Frühwirth-Schnatter (2001), we ensure balanced

label switching during MCMC sampling by adding a ran-

dom permutation step to the MCMC scheme. For relabeling

the draws in a post-processing procedure, a range of different

methods has been proposed in the literature, see Sperrin et

al. (2010) and Jasra et al. (2005) for an overview. However,

most of these proposed relabeling methods become compu-

tationally prohibitive for multivariate data with increasing

dimensionality and a reasonable number of components.

To obtain a unique labeling we follow Frühwirth-Schnatter

(2011a), who suggests to cluster the draws in the point

process representation after having removed the draws where

the number of non-empty components does not correspond

to the estimated number of non-empty components and using

only component-specific draws from non-empty compo-

nents. Clustering the component-specific draws in the point

process representation reduces the dimensionality of the rela-

beling problem, making this method feasible also for mul-
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tivariate data. For clustering the draws we use K -centroids

cluster analysis (Leisch 2006) based on the Mahalanobis dis-

tance, which allows to fit also elliptical clusters and thereby

considerably improves the clustering performance. The clus-

ter assignments for the component-specific draws can be used

to obtain a unique labeling and an identified model, if in each

iteration each component-specific draw is assigned to a dif-

ferent cluster. We suggest to use this proportion of draws with

unique assignment as a qualitative indicator of the suitability

of the fitted mixture model for clustering.

The article is organized as follows. Section 2 describes

the proposed strategy for selecting the true number of mix-

ture components and introduces the normal gamma prior on

the mixture component means. Section 3 provides details

on MCMC estimation and sheds more light on the rela-

tion between shrinkage on the prior component means and

weights. In Sect. 4 the strategy for solving the label switch-

ing problem for an overfitting mixture model is presented.

In Sect. 5 the performance of the proposed strategy is eval-

uated in a simulation study and application of the proposed

method is illustrated on two benchmark data sets. Section 6

summarizes results and limitations of the proposed approach

and discusses issues to be considered in future research.

2 Model specification

In a Bayesian approach, the model specification given in

Eqs. (1) and (2) is completed by specifying priors for all

model parameters. As mentioned in the introduction, sparse

finite mixtures rely on specifying a prior on the mixture

weights η which helps in identifying the number of mix-

ture components (see Sect. 2.1). To achieve identification of

cluster-relevant variables, a shrinkage prior on the compo-

nent means μ1, . . . ,μK is chosen (see Sect. 2.2), while a

standard hierarchical prior is chosen for the component vari-

ances �1, . . . ,�K (see Sect. 2.3).

2.1 Identifying the number of mixture components

Following the usual approach, we assume that the prior on the

weight distribution is a symmetric Dirichlet prior, i.e. η ∼

Dir(e0, . . . , e0). However, since sparse finite mixtures are

based on choosing deliberately an overfitting mixture where

the number of components K exceeds the true number K true,

the hyperparameter e0 has to be selected carefully to enable

shrinkage of the number of non-empty mixture components

toward K true.

For an overfitting mixture model, it turns out that the

hyperparameter e0 considerably influences the way the pos-

terior distribution handles redundant mixture components.

As observed by Frühwirth-Schnatter (2006, 2011a) in an

exploratory manner, the posterior distribution of an overfit-

ting mixture model with K > K true might exhibit quite

an irregular shape, since the likelihood mixes two possible

strategies of handling superfluous components. For an over-

fitting mixture model, high likelihood is assigned either to

mixture components with weights close to 0 or to mixture

components with nearly identical component-specific para-

meters. In both cases, several mixture model parameters are

poorly identified, such as the component-specific parameters

of a nearly empty component in the first case, while only the

sum of the weights of nearly identical mixture components,

but not their individual values, is identified in the second

case.

Rousseau and Mengersen (2011) investigate the asymp-

totic behavior of the posterior distribution of an overfitting

mixture model in a rigorous mathematical manner. They

show that the shape of the posterior distribution is largely

determined by the size of the hyperparameter e0 of the Dirich-

let prior on the weights. In more detail, if the hyperparame-

ter e0 < d/2, where d is the dimension of the component-

specific parameter θk , then the posterior expectation of the

weights asymptotically converges to zero for superfluous

components. On the other hand, if e0 > d/2, then the poste-

rior density handles overfitting by defining at least two iden-

tical components, each with non-negligible weight. In the

second case, the posterior density is less stable than in the

first case since the selection of the components that split may

vary. Therefore, Rousseau and Mengersen (2011) suggest to

guide the posterior towards the first more stable case and to

“compute the posterior distribution in a mixture model with

a rather large number of components and a Dirichlet-type

prior on the weights with small parameters (...) and to check

for small weights in the posterior distribution.” (p. 694). Fol-

lowing these suggestions, our approach consists in purposely

specifying an overfitting mixture model with K > K true

being a reasonable upper bound for the number of mixture

components. Simultaneously, we favor apriori values of e0

small enough to allow emptying of superfluous components.

An important issue is how to select a specific value for e0 in

an empirical application. The asymptotic results of Rousseau

and Mengersen (2011) suggest that choosing e0 < d/2 has

the effect of emptying all superfluous components, regard-

less of the specific value, as the number of observations goes

to infinity. However, in the case of a finite number of obser-

vations, we found it necessary to select much smaller values

for e0.

We choose either a very small, but fixed Dirichlet para-

meter e0, in particular in combination with the sparsity prior

on the component means μk introduced in Sect. 2.2, as will

be discussed further in Sect. 3.2. Alternatively, to learn from

the data how much sparsity is needed, we consider e0 to be

an unknown parameter with a gamma hyperprior G(a, b).

To define the expectation of this prior, we follow Ishwaran

et al. (2001) who recommend to choose e0 = α/K . In this
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case, the Dirichlet prior approximates a Dirichlet process

prior with concentration parameter α as K becomes large,

as already noted in the introduction. Since simulation stud-

ies performed in Ishwaran et al. (2001) yield good approx-

imations for α = 1 and K reasonable large, we match the

expectation E(e0) = 1/K obtained in this way:

e0 ∼ G(a, a · K ). (3)

The parameter a has to be selected carefully since it controls

the variance 1/(aK 2) of e0. For our simulation studies and

applications, we set a = 10, as we noted in simulation studies

(not reported here) that values smaller than 10 allow large

values for e0, and, as a consequence, superfluous components

were not emptied during MCMC sampling.

For a sparse finite mixture, the posterior distribution will

handle redundant components by assigning to them vanish-

ing weights and, as will be discussed in Sect. 3, superfluous

components are emptied during MCMC sampling. Regard-

ing the selection of the number of components, we deviate

from Rousseau and Mengersen (2011), because the strategy

of separating between “true” and “superfluous” components

based on posterior size of the weights of the various com-

ponents might fail in cases where a threshold for separating

between “large” or “small” weights is difficult to identify.

Following, instead, Nobile (2004) and Ishwaran et al.

(2001) we derive the posterior distribution Pr(K0 =

h|y), h = 1, . . . , K , of the number K0 of non-empty compo-

nents from the MCMC output. I.e., for each iteration m of the

MCMC sampling to be discussed in Sect. 3, we consider the

number of non-empty components, i.e. components to which

observations have been assigned for this particular sweep of

the sampler,

K
(m)
0 = K −

K
∑

k=1

I {N
(m)
k = 0}, (4)

where N
(m)
k is the number of observations allocated to com-

ponent k and I denotes the indicator function, and estimate

the posterior Pr(K0 = h|y) for each value h = 1, . . . , K ,

by the corresponding relative frequency.

To estimate the number of mixture components, we derive

a point estimator from this distribution. We typically use

the posterior mode estimator K̂0 which maximizes the (esti-

mated) posterior distribution Pr(K0 = h|y) and is equal to

the most frequent number of non-empty components visited

during MCMC sampling. The posterior mode estimator is

optimal under a 0/1 loss function which is indifferent to the

degree of overfitting K0. This appears particularly sensible

in the present context where adding very small, non-empty

components hardly changes the marginal likelihood. This

makes the posterior distribution Pr(K0 = h|y) extremely

right-skewed and other point estimators such as the posterior

mean extremely sensitive to prior choices, see Nobile (2004).

2.2 Identifying cluster-relevant variables

The usual prior on the mixture component means μk =

(μk1, . . . , μkr )
′ is the independence prior,

μk ∼ N (b0, B0), k = 1, . . . , K , (5)

where N (·) denotes the multivariate normal distribution. It is

common to assume that all component means μk are indepen-

dent a priori, given data-dependent hyperparameters b0 and

B0; see e.g. Richardson and Green (1997), Stephens (1997)

and Frühwirth-Schnatter (2006). Subsequently, we call this

prior the standard prior and choose the median to define

b0 = median(y) and the range R j of the data in each dimen-

sion j to define B0 = R0, where R0 = Diag(R2
1, . . . , R2

r ).

Previous investigations in Yau and Holmes (2011) and

Frühwirth-Schnatter (2011a) indicate that it is preferable to

replace the standard prior for the component means μk by a

shrinkage prior, if it is expected that in some dimensions no

cluster structure is present because all component means are

homogeneous. Shrinkage priors are well-known from vari-

able selection in regression analysis where they are used to

achieve sparse estimation of regression coefficients, see Pol-

son and Scott (2010) and Armagan et al. (2011) for a recent

review. Shrinkage priors are also very convenient from a com-

putational point of view, because they can be represented as

a scale mixture of normals which makes it easy to implement

MCMC sampling under these priors.

We apply in the following the normal gamma prior, for

which the mixing distribution for the scale is specified by a

gamma distribution. The normal gamma prior was introduced

by Griffin and Brown (2010) for variable selection in regres-

sion models and has been applied previously by Frühwirth-

Schnatter (2011a) in the context of finite mixture distribu-

tions. As opposed to the standard prior (5) which is based

on fixed hyperparameters b0 and B0, a hierarchical prior is

introduced, which places a normal prior on the prior mean

b0 and a shrinkage prior on the prior variance matrix B0:

μk |�, b0 ∼ N (b0, B0), (6)

where

B0 = �R0�,

� = Diag(
√

λ1, . . . ,
√

λr ),

λ j ∼ G(ν1, ν2), j = 1, . . . , r,

b0 ∼ N (m0, M0).

In (6), a multivariate version of the normal gamma prior is

employed, where it is assumed that in each dimension j all

component means μ1 j , . . . , μK j follow a normal distribu-

tion, where the variance depends on different scaling fac-

tors λ j drawn from a gamma distribution with parameters ν1

and ν2. The marginal prior for p(μ1 j , . . . , μK j |b0) can be

expressed in closed form as (see Frühwirth-Schnatter 2011a):
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Fig. 1 Normal gamma prior

with a variance of 1 for different

values of ν1, ν1 = 0.5 (black

dot-dashed line), ν1 = 1 (red

dotted line), ν1 = 2 (blue

long-dashed line), and the

standard normal density (green

solid line), at zero (left-hand

side) and the tails (right-hand

side). (Color figure online)
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where

a j = 2ν2,

pK = ν1 − K/2,

b j =

K
∑

k=1

(μk j − b0 j )
2/R2

j ,

and Kα(x) is the modified Bessel function of the second kind.

Furthermore, if the hyperparameters ν1 and ν2 are equal, then

in each dimension j the marginal variance of μk j is equal to

R2
j as for the standard prior.

Yau and Holmes (2011) considered a closely related, spe-

cial case of prior (6) where ν1 = 1, which corresponds to

the double exponential or Laplace prior, also known as the

Bayesian Lasso (Park and Casella 2008). However, in the

context of regression analysis, this specific prior has been

shown to be suboptimal in the sense that shrinkage to 0 is

too weak for insignificant coefficients, while a bias is intro-

duced for large coefficients, see e.g. Polson and Scott (2010)

and Armagan et al. (2011). The normal gamma prior intro-

duced by Griffin and Brown (2010) is more flexible in this

respect. Since the excess kurtosis is given by 3/ν1, the normal

gamma prior has heavier tails than the Laplace distribution

for ν1 < 1, reducing the bias for large coefficients. At the

same time, it is more peaked than the Laplace distribution

which leads to stronger shrinkage to 0 for insignificant coef-

ficients. This can be seen in Fig. 1 where the normal gamma

prior is plotted for ν1 = 0.5, 1, 2 and compared to the stan-

dard normal distribution.

In the context of finite mixtures, the normal gamma prior

introduces exactly the flexibility we are seeking to identify

cluster-relevant variables. To achieve this goal, the normal

gamma prior is employed in (6) with value ν1 < 1. This

implies that λ j can assume values considerable smaller than

1 in dimension j , which leads the prior distribution of μk j to

concentrate around the mean b0 j , pulling all the component

means μk j towards b0 j . This property becomes important in

dimensions where component densities are heavily overlap-

ping or in the case of homogeneous variables, where actually

no mixture structure is present and all observations are gen-

erated by a single component only. In these cases, allowing

the prior variance to pull component means together yields

more precise estimates of the actually closely adjacent or

even identical component means.

In this way implicit variable selection is performed and

variables which are uninformative for the cluster structure are

effectively fit by a single component avoiding overfitting het-

erogeneity and diminishing the masking effect of these vari-

ables. Thus the same benefits regarding the fitted model are

obtained as if the variables were excluded through a model

search procedure.

For cases where the variance of the prior for μk j , k =

1, . . . , K , is shrunk to a small value, the mean b0 j of the

prior becomes important. Thus, rather than assuming that b0

is a fixed parameter as for the standard prior, we treat b0 as

an unknown hyperparameter with its own prior distribution,

see (6).

While variable selection is performed only implicitly with

shrinkage priors in Bayesian estimation, explicit identifica-

tion of the relevant clustering variables is possible a posteri-

ori for the hierarchical shrinkage prior based on the normal

gamma distribution. In the context of multivariate finite mix-

tures, λ j can be interpreted as a local shrinkage factor in

dimension j which allows a priori that component means

(μ1 j , . . . , μK j ) are pulled together and, at the same time, is

flexible enough to be overruled by the data a posteriori, if

the component means are actually different in dimension j .

Hence, a visual inspection of the posterior distributions of the

scaling factors λ j , j = 1, . . . , r , e.g. through box plots as in

Yau and Holmes (2011), reveals in which dimension j a high
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dispersion of the component means is present and where, on

the contrary, all component means are pulled together.

It remains to discuss the choice of the hyperparameters

ν1, ν2, m0 and M0 in (6). In the following simulation studies

and applications, the hyperparameters ν1 and ν2 are set to

0.5 to allow considerable shrinkage of the prior variance of

the component means. Furthermore, we specify an improper

prior on b0, where m0 = median(y) and M−1
0 = 0.

2.3 Prior on the variance-covariance matrices

Finally, a prior on the variance-covariance matrices �k has

to be specified. Several papers, including Raftery and Dean

(2006) and McNicholas and Murphy (2008), impose con-

straints on the variance-covariance matrices to reduce the

number of parameters which, however, implies that the cor-

relation structure of the data needs to be modeled explicitly.

In contrast to these papers, we do not focus on model-

ing sparse variance-covariance matrices, we rather model

the matrices without constraints on their geometric shape.

Following Stephens (1997) and Frühwirth-Schnatter (2006,

p. 193), we assume the conjugate hierarchical prior �−1
k ∼

W(c0, C0), C0 ∼ W(g0, G0), where W(·) denotes the

Wishart distribution. Regularization of variance-covariance

matrices in order to avoid degenerate solutions is achieved

through specification of the prior hyperparameter c0 by

choosing

c0 = 2.5 +
r − 1

2
,

g0 = 0.5 +
r − 1

2
,

G0 =
100g0

c0
Diag(1/R2

1, . . . , 1/R2
r ),

see Frühwirth-Schnatter (2006, p. 192).

3 Bayesian estimation

To cluster N observations y = (y1, . . . , yN ), it is assumed

that the data are drawn from the mixture distribution defined

in (1) and (2), and that each observation yi is generated by

one specific component k.

The corresponding mixture likelihood derived from (1)

and (2) is combined with the prior distributions introduced,

respectively, for the weights η in Sect. 2.1, for the compo-

nent means μk in Sect. 2.2, and for �k in Sect. 2.3, assuming

independence between these components. The resulting pos-

terior distribution does not have a closed form and MCMC

sampling methods have to be employed, see Sect. 3.1.

The proposed strategy of estimating the number of compo-

nents relies on the correct identification of non-empty com-

ponents. In Sect. 3.2 we study in more detail that prior depen-

dence between μk and η might be necessary to achieve this

goal. In particular, we argue why stronger shrinkage of very

small component weights ηk toward 0 might be necessary for

the normal gamma prior (6) than for the standard prior (5),

by choosing a very small value of e0.

3.1 MCMC sampling

Estimation of the sparse finite mixture model is performed

through MCMC sampling based on data augmentation

and Gibbs sampling (Diebolt and Robert 1994; Frühwirth-

Schnatter 2006, chap. 3). To indicate the component from

which each observation stems, latent allocation variables

S = (S1, . . . , SN ) taking values in {1, . . . , K }N are intro-

duced such that

f (yi |θ1, . . . , θ K , Si = k) = fN (yi |μk,�k), (8)

and

Pr(Si = k|η) = ηk . (9)

As suggested by Frühwirth-Schnatter (2001), after each

iteration an additional random permutation step is added to

the MCMC scheme which randomly permutes the current

labeling of the components. Random permutation ensures

that the sampler explores all K ! modes of the full posterior

distribution and avoids that the sampler is trapped around

a single posterior mode, see also Geweke (2007). Without

the random permutation step, it has to be verified for each

functional of the parameters of interest, whether it is invariant

to relabeling of the components. Only in this case, it does not

matter whether the random permutation step is performed.

The detailed sampling scheme is provided in Appendix 1

and most of the sampling steps are standard in finite mixture

modeling, with two exceptions.

The first non-standard step is the full conditional distri-

bution p(λ j |μ1 j , . . . , μK j , b0) of the shrinkage factor λ j .

The combination of a gamma prior for λ j with the prod-

uct of K normal likelihoods p(μk j |λ j , b0 j ), where the vari-

ance depends on λ j , yields a generalized inverted Gaussian

distribution (GIG) as posterior distribution, see Frühwirth-

Schnatter (2011a). Hence,

p(λ j |μ1 j , . . . , μK j , b0) ∼ GIG(a j , b j , pK ),

where the parameters a j , b j , and pK are defined in (7).

Furthermore, if the hyperparameter e0 of the Dirichlet

prior is random, a random walk Metropolis-Hastings step

is implemented to sample e0 from p(e0|η), where

p(e0|η) ∝ p(e0)
Ŵ(K e0)

Ŵ(e0)K

(

K
∏

k=1

ηk

)e0−1

, (10)

and p(e0) is equal to the hyperprior introduced in (3).
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3.2 On the relation between shrinkage in the weights and in

the component means

As common for finite mixtures, MCMC sampling alter-

nates between a classification and a parameter simula-

tion step, see Appendix 1. During classification, obser-

vations are allocated to component k according to the

(non-normalized) conditional probability ηk fN (yi |μk,�k),

whereas the component-specific parameters μk,�k and the

weight ηk are simulated conditional on the current classifi-

cation S during parameter simulation. If no observation is

allocated to component k during classification, then, sub-

sequently, all component-specific parameters of this empty

component are sampled from the prior. In particular, the loca-

tion μk of an empty component heavily depends on the prior

location b0 and prior covariance matrix B0.

Under the standard prior (5), where

B0 = Diag(R2
1, . . . , R2

r ),

the location μk of an empty component is likely to be far

away from the data center b0, since in each dimension j with

5 % probability the μk j will be further away from b0 j than

2 · R j . As a consequence, fN (yi |μk,�k) is very small for

any observation yi in the subsequent classification step and

an empty component is likely to remain empty under the

standard prior.

In contrast, under the normal gamma prior (6), where

B0 = Diag(R2
1 ·λ1, . . . , R2

r ·λr ), the scaling factor λ j shrinks

the prior variance of μk j considerably, in particular in dimen-

sions, where the component means are homogeneous. How-

ever, the scaling factor λ j adjusts the prior variance also

in cluster-relevant dimensions, since R2
j is generally much

larger than the spread of the non-empty component means

which are typically allocated within the data range R j . As

a consequence, the location μk j of an empty component is

either close to the data center b0 j (in the case of homogeneous

variables) or close to the range spanned by the locations of

the non-empty components (in the case of cluster-relevant

variables). In both cases, evaluating fN (yi |μk,�k) in the

subsequent classification step yields a non-negligible prob-

ability and, as a consequence, observations are more likely

to be allocated to an empty component than in the standard

prior case.

To illustrate the different allocation behavior of the stan-

dard and the normal gamma prior in the presence of a super-

fluous component more explicitly, we simulate N = 1,000

observations from a bivariate two-component mixture model

where μ1 = (−2, 0)′, μ2 = (2, 0)′, �1 = �2 = I2, and

η = (0.5, 0.5). We fit an overfitting mixture distribution

with K = 3 components, assuming that e0 ∼ G(10, 30).

We skip the random permutation step, since the modes of

the posterior distribution are well separated and the sampler

is trapped in the neighborhood of a single mode, yielding

implicit identification.

In the top row of Fig. 2, posterior draws of all three

component means are displayed in a scatter plot both for

the standard (left-hand side) and the normal gamma prior

(right-hand side). Under both priors, the posterior draws of

the first two component means, displayed by triangle and

cross points respectively, are concentrated around the true

means μ1 = (−2, 0)′ and μ2 = (2, 0)′. However, the poste-

rior draws of the mean of the third (superfluous) component,

shown as circle points, are quite different, displaying a large

dispersion over the plane under the standard prior and being

located either close to the two true component means or the

data center under the normal gamma prior. To illustrate the

ensuing effect on classification, we select a specific observa-

tion yi , which location is marked by a (blue) star in the scatter

plots of the top, and determine for each MCMC sweep the

probability for yi to be allocated, respectively, to component

1, 2 or 3. The corresponding box plots in the bottom row of

Fig. 2 clearly indicate that the allocation probability for the

third (superfluous) component is considerably higher under

the normal gamma prior (plot on the right-hand side) than

under the standard prior (plot on the left-hand side).

Since our strategy to estimate the number of mixture com-

ponents relies on the number of non-empty components dur-

ing MCMC sampling, we conclude from this investigation

that stronger shrinkage in η might be necessary for the normal

gamma prior (6) than for the standard prior (5). We compen-

sate the tendency of the normal gamma prior to overestimate

the number of non-empty components, by encouraging very

small prior weights ηk for empty components in order to keep

the conditional probability of an observation to be allocated

to an empty component during classification small. This is

achieved by specifying a very small fixed hyperparameter e0

in the Dirichlet prior, which is proportional to η
e0−1
k . Thus,

the smaller e0, the smaller the weight of an empty component

k will be.

4 Identifying sparse finite mixtures

Identification of the finite mixture model requires handling

the label switching problem caused by invariance of the rep-

resentation (1) with respect to reordering the components:

f (yi |θ1, . . . , θ K , η) =

K
∑

k=1

ηk fk(yi |θk)

=

K
∑

k=1

ηρ(k) fρ(k)(yi |θρ(k)),

where ρ is an arbitrary permutation of {1, . . . , K }. The

resulting multimodality and perfect symmetry of the pos-

123



Stat Comput (2016) 26:303–324 311

Fig. 2 Fitting a 3-component

normal mixture to data

generated by a 2-component

normal mixture. Top row Scatter

plots of the draws of the

posterior component means μk

under the standard prior

(left-hand side) and the normal

gamma prior (right-hand side).

Draws from component 1, 2,

and 3 are displayed as green

triangles, red crosses, and grey

circles, respectively. Bottom row

For a single observation which

location is marked with a (blue)

star in the scatter plots in the

top row, box plots of the

conditional probabilities during

MCMC sampling to be assigned

to component 1, 2 or 3 are

displayed, under the standard

prior (left-hand side) and normal

gamma prior (right-hand side).

MCMC is run for 1,000

iterations, after discarding the

first 1,000 draws. (Color figure

online)
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terior distribution p(θ1, . . . , θ K , η|y) for symmetric priors

makes it difficult to perform component-specific inference.

To solve the label switching problem arising in Bayesian

mixture model estimation, it is necessary to post-process

the MCMC output to obtain a unique labeling. Many use-

ful methods have been developed to force a unique labeling

on draws from this posterior distribution when the number

of components is known (Celeux 1998; Celeux et al. 2000;

Frühwirth-Schnatter 2001; Stephens 2000; Jasra et al. 2005;

Yao and Lindsay 2009; Grün and Leisch 2009; Sperrin et

al. 2010). However, most of these proposed relabeling meth-

ods become computationally prohibitive for multivariate data

with increasing dimensionality. For instance, as explained in

(Frühwirth-Schnatter, 2006, p. 96), Celeux (1998) proposes

to use a K -means cluster algorithm to allocate the draws of

one iteration to one of K ! clusters, which initial centers are

determined by the first 100 draws. The distance of the draws

to each of the K ! reference centers is used to determine the

labeling of the draws for this iteration. In general, most of

the relabeling methods use the complete vector of parameters

which grows as a multiple of K even if they do not require

all K ! modes to be considered (see, for example Yao and

Lindsay 2009).

Following Frühwirth-Schnatter (2011a), we apply

K -means clustering to the point process representation of

the MCMC draws to identify a sparse finite mixture model,

see Sect. 4.1. This allows to reduce the dimension of the prob-

lem to the dimension of the component-specific parameters.

As described in Sect. 4.2, we generalize this approach by

replacing K -means clustering based on the squared Euclid-

ean distance by K -centroids cluster analysis based on the

Mahalanobis distance (Leisch 2006).

4.1 Clustering the MCMC output in the point process

representation

The point process representation of the MCMC draws intro-

duced in Frühwirth-Schnatter (2006, Sect. 3.7.1) allows to

study the posterior distribution of the component-specific

parameters regardless of potential label switching, which

makes it very useful for model identification. If the number

of mixture components matches the true number of com-

ponents, then the posterior draws of the component-specific

parameters θ
(m)
1 , . . . , θ

(m)
K cluster around the “true” points

θ true
1 , . . . , θ true

K . To visualize the point process representa-

tion of the posterior mixture distribution, projections of the
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Fig. 3 Crabs data, K true = 4,

K = 15, standard prior. Point

process representation of

posterior mean draws, μ
(m)
k1

plotted against μ
(m)
k2 , across

k = 1, . . . , K . Left-hand side

draws of all K = 15

components. Right-hand side

only draws from those M0

iterations where K
(m)
0 = 4 and

the components which were

non-empty

point process representation onto two-dimensional planes

can be considered. These correspond to scatter plots of the

MCMC draws (θ
(m)
k j , θ

(m)

k j ′
), for two dimensions j and j ′ and

across k = 1, . . . , K .

After clustering the draws in the point process representa-

tion, a unique labeling is achieved for all those draws where

the resulting classification is a permutation. By reordering

each of these draws according to its classification, a (sub-

set) of identified draws is obtained which can be used for

component-specific parameter inference.

Note that to reduce dimensionality, it is possible to clus-

ter only a subset of parameters of the component-specific

parameter vector and to apply the obtained classification

sequences to the entire parameter vector. In the present con-

text of multivariate Gaussian mixtures, we only clustered the

posterior component means and the obtained classification

sequence was then used to reorder and identify the other

component-specific parameters, namely covariance matrices

and weights. This is also based on the assumption that the

obtained clusters differ in the component means allowing

clusters to be characterized by their means.

In the case of a sparse finite mixture model, where the

prior on the weights favors small weights, many of the com-

ponents will have small weights and no observation will

be assigned to these components in the classification step.

Component means of all empty components are sampled

from the prior and tend to confuse the cluster fit. There-

fore, Frühwirth-Schnatter (2011a) suggests to remove all

draws from empty components before clustering. Addition-

ally, after having estimated the number of non-empty com-

ponents K̂0, all draws where the number of non-empty com-

ponents is different from K̂0 are sampled conditional on a

“wrong” model and are removed as well. The remaining

draws can be seen as samples from a mixture model with

exactly K̂0 components. In Fig. 3 an example of the point

process representation of the MCMC draws is given. After

having fitted a sparse finite mixture with K = 15 components

to the Crabs data set described in Sect. 5.2, the left-hand side

shows the scatter plot of the MCMC draws (μ
(m)
k1 , μ

(m)
k2 ),

k = 1, . . . , K , from all components (including draws from

empty components). On the right-hand side, only draws from

those M0 iterations are plotted where K̂0 = 4 and which

were non-empty. In this case, the posterior distributions of

the means of the four non-empty components can be clearly

distinguished. These draws are now clustered into K̂0 groups.

The clusters naturally can be assumed to be of equal size

and to have an approximate Gaussian distribution, thus sug-

gesting the choice of K -means for clustering or, in order

to capture also non-spherical shapes or different volumes of

the posterior distributions, the choice of K -centroids cluster

analysis where the distance is defined by a cluster-specific

Mahalanobis distance. The algorithm is explained in the fol-

lowing subsection. The detailed scheme to identify a sparse

finite mixture model can be found in Appendix 2.

4.2 K -centroids clustering based on the Mahalanobis

distance

Defining the distance between a point and a centroid using the

Mahalanobis distance may considerably improve the cluster

fit in the point process representation. As can be seen in

Fig. 4, where the clustering results for the Crabs data are

displayed, if the posterior distributions have elliptical shape,

clustering based on the Mahalanobis distance is able to catch

the elongated, elliptical clusters whereas K -means based on

the squared Euclidean distance splits a single cluster into

several parts and at the same time combines these parts to

one new artificial cluster.

For posterior draws of the component-specific parameter

vector x1, . . . , xN ∈ Rn and a fixed number of clusters K ,

the K -centroids cluster problem based on the Mahalanobis

distance consists of finding a “good” set of centroids and

dispersion matrices

C SK = {c1, . . . , cK , S1, . . . , SK }, (11)

123



Stat Comput (2016) 26:303–324 313

Fig. 4 Crabs data: Clustering

of the posterior mean draws of

the plot on the right-hand side in

Fig. 3, through K -means

(left-hand side) and K -centroids

cluster analysis based on the

Mahalanobis distance

(right-hand side)

where c1, . . . , cK are points in Rn and S1, . . . , SK are

instances of the set of all positive definite matrices. “Good”

means that using the assigned dispersion matrices S(xi ), the

sum of all distances between objects xi and their assigned

centroids c(xi ) is minimized:

N
∑

i=1

dS(xi )(xi , c(xi )) → min
c1,...,cK ,S1,...,SK

, (12)

where {c(xi ), S(xi )} = argmin
{ck ,Sk }∈C SK

dSk
(xi , ck),

and the distance between an object xi and a centroid and

a dispersion matrix (ck, Sk) is defined by the Mahalanobis

distance:

dSk
(xi , ck) =

√

(xi − ck)′S
−1
k (xi − ck). (13)

Since no closed form solution exists for the K -centroids clus-

ter problem, an iterative estimation procedure is used. A pop-

ular choice is the well-known K -means algorithm, its general

form can be found in Leisch (2006). For the Mahalanobis dis-

tance (13), the K -centroids cluster algorithm is given by:

1. Start with a random set of initial centroids and variance-

covariance matrices {ck, Sk}k=1,...,K .

2. Assign to each xi the nearest centroid ck where the dis-

tance dSk
(xi , ck) is defined by the Mahalanobis distance

(13):

{c(xi ), S(xi )} = argmin
{ck ,Sk }∈C SK

dSk
(xi , ck)

3. Update the set of centroids and dispersion matrices

{ck, Sk}k=1,...,K holding the cluster membership fixed:

c
(new)
k = mean

i :c(xi )=ck ,S(xi )=Sk

({xi }),

S
(new)
k = var

i :c(xi )=ck ,S(xi )=Sk

({xi })

4. Repeat steps 2 and 3 until convergence.

The algorithm is guaranteed to converge in a finite num-

ber of iterations to a local optimum of the objective func-

tion (12) (Leisch 2006). As starting values of the algo-

rithm in step 1, the MAP estimates of the hyperparame-

ters b1, . . . , bK , B1, . . . , BK of the prior of the component-

specific means are used.

5 Simulations and applications

5.1 Simulation study

In the following simulation study, the performance of the

proposed strategy for selecting the unknown number of mix-

ture components and identifying cluster-relevant variables

is illustrated for the case where the component densities

are truly multivariate Gaussian. We use a mixture of four

multivariate Gaussian distributions with component means

μ1 = (2,−2, 0, 0)′, μ2 = −μ1, μ3 = (2, 2, 0, 0)′, and

μ4 = −μ3 and isotropic covariance matrices �k = I4,

k = 1, . . . , 4, as data generating mechanism. Hence, this

simulation setup consists of two cluster-generating variables

in dimension 1 and 2 and two homogeneous variables in

dimension 3 and 4 and is chosen in order to study, whether

cluster-relevant variables and homogeneous variables can

be distinguished. In Fig. 5, a randomly selected data set is

shown, which was samples with equal weights. This figure

indicates that, while in the scatter plot of the first two vari-

ables four clusters are still visually discernible, the clusters

are slightly overlapping in these dimensions indicating that

the cluster membership of some observations is difficult to

estimate. The other two variables are homogenous variables

and do not contain any cluster information, but render the

clustering task more difficult.

As described in Sect. 2.1, we deliberately choose an over-

fitting mixture with K components and base our estimate of

the true number of mixture components on the frequency of

non-empty components during MCMC sampling. We select

strongly overfitting mixtures with K = 15 and K = 30,
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Fig. 5 Simulation setup with

equal weights. Scatter plots of

different variables for one

randomly selected data set

to assess robustness of the proposed strategy to choosing

K , and investigate, if the number of non-empty components

increases as K increases. We simulate relatively large sam-

ples of 1,000 observations to make it more difficult to really

empty all superfluous components.

In addition, we consider two different weight distrib-

utions, namely a mixture with equal weights, i.e. η =

(0.25, 0.25, 0.25, 0.25), and a mixture with a very small

component, where η = (0.02, 0.33, 0.33, 0.32), in order to

study how sensitive our method is to different cluster sizes.

For the second mixture, we investigate whether the small

component survives or is emptied during MCMC sampling

together with all superfluous components.

Prior distributions and the corresponding hyperparame-

ters are specified as described in Sect. 2. The prior on the

weight distribution defines a sparse finite mixture distribu-

tion. We either use the gamma prior on e0 defined in (3) or

choose a very small, but fixed value for e0 as motivated by

Sect. 3.2. In addition, we compare the standard prior (5) for

the component means with the hierarchical shrinkage prior

(6) based on the normal gamma distribution.

For each setting, ten data sets are generated, each con-

sisting of 1,000 data points yi , and MCMC sampling is run

for each data set for M = 10,000 iterations after a burn-in of

2,000 draws. The starting classification of the observations is

obtained by K -means. Estimation results are averaged over

the ten data sets and are reported in Tables 1 and 2 where

ê0 provides the posterior median of e0 under the prior (3),

whereas “e0 fixed” indicates that e0 was fixed at the reported

value. K̂0 is the posterior mode estimator of the true number

of non-empty components which is equal to 4. If the esti-

mator K̂0 did not yield the same value for all data sets, then

the number of data sets where K̂0 was the estimated number

of non-empty components is given in parentheses. M0 is the

average number of iterations where exactly K̂0 components

were non-empty.

For each data set, these draws are identified as described

in Sect. 4 using clustering in the point process representation.

M0,ρ is the (average) rate among the M0 iterations where the

corresponding classifications assigned to the draws by the

clustering procedure fail to be a permutation. Since in these

cases the labels 1, . . . , K̂0 cannot be assigned uniquely to the

K̂0 components, these draws are discarded. For illustration,

see the example in the Appendix 2. The non-permutation rate

M0,ρ is a measure for how well-separated the posterior distri-

butions of the component-specific parameters are in the point

process representation, with a value of 0 indicating perfect

separation, see Appendix 2 and Frühwirth-Schnatter (2011a)

123



Stat Comput (2016) 26:303–324 315

Table 1 Simulation setup with equal weights: results for different K under the standard prior (Sta), the normal gamma Prior (Ng), and when fitting

an infinite mixture using the R package PReMiuM. Results are averaged over ten data sets

Prior K ê0 e0 fixed K̂0 M0 M0,ρ MC R M SEμ

Sta 4 0.28 4 10000 0 0.049 0.167

15 0.05 4 9802 0 0.049 0.167

30 0.03 4 9742 0 0.048 0.168

Ng 4 0.28 4 10000 0 0.049 0.137

15 0.06 5(6) 2845 0.85 0.050 −

30 0.03 5(5) 2541 0.93 0.050 −

Ng 4 0.01 4 10000 0 0.047 0.136

15 0.01 4 7465 0 0.048 0.137

30 0.01 4(8) 4971 0 0.048 0.136

30 0.001 4 9368 0 0.048 0.136

30 0.00001 4 9998 0 0.047 0.136

PReMiuM α̂ K est MC R M SEμ

0.66 4 0.047 0.231

Table 2 Simulation setup with unequal weights: results for different K under the standard prior (Sta), the normal gamma prior (Ng), and when

fitting an infinite mixture using the R package PReMiuM. Results are averaged over ten data sets

Prior K ê0 e0 fixed K̂0 M0 M0,ρ MC R M SEμ

Sta 4 0.27 4 10000 0.00 0.038 1.670

15 0.05 4 9780 0.00 0.037 1.668

30 0.03 4 9728 0.00 0.038 1.663

Ng 4 0.01 4 10000 0.02 0.037 1.385

15 0.01 4 7517 0.02 0.038 1.314

30 0.01 4(9) 5221 0.00 0.037 1.279

30 0.001 4 9297 0.01 0.037 1.325

30 0.00001 4 9997 0.02 0.038 1.336

PReMiuM α̂ K est MC R M SEμ

0.65 4(9) 0.038 2.841

for more details. In the following component-specific infer-

ence is based on the remaining draws where a unique labeling

was achieved.

Accuracy of the estimated mixture model is measured

by two additional criteria. Firstly, we consider the mis-

classification rate (MC R) of the estimated classification.

The estimated classification of the observations is obtained

by assigning each observation to the component where it

has been assigned to most often during MCMC sampling

among the draws where K̂0 components were non-empty

and which could be uniquely relabeled. The misclassifi-

cation rate is measured by the number of misclassified

observations divided by all observations and should be as

small as possible. The labeling of the estimated classifi-

cation is calculated by “optimally” matching true compo-

nents to the estimated mixture components obtaining in this

way the minimum misclassification rate over all possible

matches.

Secondly, whenever the true number of mixture compo-

nents is selected for a data set, the mean squared error of the

estimated mixture component means (M SEμ) based on the

Mahalanobis distance is determined as

M SEμ =

K̂0
∑

k=1

1

M̃0

M̃0
∑

m=1

(μ
(m)
k −μtrue

k )′(�true
k )−1(μ

(m)
k −μtrue

k ),

(14)

where M̃0 = M0(1− M0,ρ) is the number of identified draws

with exactly K̂0 non-empty components. In Sects. 5.2 and

5.3, where the true parameters μk and �k are unknown, the

123



316 Stat Comput (2016) 26:303–324

Fig. 6 Simulation setup with

equal weights: MCMC run of a

single data set, K = 15,

standard prior. Trace plot of the

number of observations

allocated to the different

components, burn-in included

(left-hand side) and point

process representation of the

posterior component mean

draws where K
(m)
0 = 4 and

which were non-empty, μ
(m)
k1 is

plotted against μ
(m)
k2 (right-hand

side)
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Bayes estimates of the parameters are taken instead. They are

calculated by running the MCMC sampler with known allo-

cations and taking the mean of the corresponding posterior

draws. Evidently, M SEμ should be as small as possible.

For comparison, results are also reported for a finite mix-

ture, where K = 4 is known to be equal to the true value.

Finally, to compare our results to the clustering results

obtained by fitting infinite mixtures, the R package PRe-

MiuM (Liverani et al. 2013) is used to compute a Dirichlet

process mixture model DP(α) with concentration parameter

α. The number of initial clusters is set to 30, the number

of burn-in draws and number of iterations are set to 2,000

and 10,000, respectively. All other settings, such as hyper-

parameter specifications, calculation of the similarity matrix

and the derivation of the best partition, are left at the default

values of the package. After having obtained the estimated

number of groups K est and the best partition vector zbest ,

in a post-processing way identification and summarization

methods are applied on the MCMC output as proposed in

Molitor et al. (2010). To obtain the posterior distributions of

the component means of each group, for each iteration m the

average value μ̄
(m)
k of group k is computed by:

μ̄
(m)
k =

1

Nk

∑

i :zbest
i =k

μ
(m)

S
(m)
i

, (15)

where Nk denotes the number of individuals in group k of

zbest and S
(m)
i is the component to which observation i was

assigned in iteration m. By averaging over all associated clus-

ter means in each iteration, the posterior distribution of the

component means is reconstructed in a post-processing way

and represents the uncertainty associated with the final clas-

sification of the observations. Therefore, a larger MSE is

expected than for our approach where the assumed model, a

finite mixture of Gaussian distributions, corresponds to the

true underlying model and the posterior component mean

distribution is directly estimated during MCMC sampling.

The M SEμ is then computed using Eq. (14). In the tables,

the posterior mean α̂ of the concentration parameter α is

reported. Following Ishwaran et al. (2001), the estimated α

can be compared to e0 using that a sparse finite mixture model

with prior on the weights Dir(e0, . . . , eK ) approximates an

infinite mixture model with Dirichlet process prior DP(α) if

e0 = α/K , see Sect. 2.1.

5.1.1 Simulation setup with equal weights

Table 1 reports the results for the simulation setup with equal

weights. Under the standard prior, the estimated number of

non-empty mixture components K̂0 matches the true num-

ber of components for both overfitting mixtures for all data

sets, regardless whether K = 15 or K = 30 components

have been used. Furthermore, exactly four components are

non-empty for most of the draws, since M0 ≈ M . The non-

permutation rate M0,ρ is zero for all overfitting mixtures,

indicating that the posterior distributions of all K̂0 non-empty

components are well-separated in the point process represen-

tation.

MCMC estimation for an overfitting mixture with K = 15

components is explored in more detail in Fig. 6 for a ran-

domly selected data set. The trace plot of allocations dis-

plays the number of observations allocated to the different

components during MCMC sampling, also the burn-in draws

are considered. Due to the starting classification through K -

means, the observations are assigned to all components at

the beginning, however, rather quickly all but four compo-

nents are emptied. In the scatter plot of the point process

representation of the component mean draws of non-empty

components (μ
(m)
k1 , μ

(m)
k2 ), k = 1, . . . , K , sampled from

exactly K̂0 = 4 non-empty components, it can be seen very

clearly that the draws cluster around the true parameter val-

ues (2, 2), (2,−2), (−2, 2) and (−2,−2).

If e0 is considered to be random with prior (3), the esti-

mated Dirichlet parameter ê0 has a very small value, much

123



Stat Comput (2016) 26:303–324 317

smaller than the (asymptotic) upper bound given by Rousseau

and Mengersen (2011), and decreases, as the number of

redundant components increases. This is true both for the

standard prior and the normal gamma prior. However, under

the normal gamma prior, the estimated number of non-empty

components K̂0 overfits the true number of mixture compo-

nents for most of the data sets and increases with K . For

example, if K = 15, the number of non-empty components

is overestimated with K̂0 = 5 for 6 data sets. Also the high

average non-permutation rate M0,ρ = 0.85 indicates that

the selected model is overfitting. However, the MC R is not

higher than for K = 4, indicating that the fifth non-empty

component is a very small one.

Given the considerations in Sect. 3.2, we combine the

normal gamma prior with a sparse prior on the weight dis-

tribution where e0 is set to a fixed very small value, e.g. to

0.01 which is smaller than the 1 % quantile of the posterior of

e0. For this combination of priors, superfluous components

are emptied also under the normal gamma prior and the esti-

mated number of non-empty components matches the true

number of mixture components in most cases. For K = 30,

e0 has to be chosen even smaller, namely equal to 0.001, to

empty all superfluous components for all data sets. To inves-

tigate the effect of an even smaller value of e0, we also set

e0 = 10−5. Again, four groups are estimated. Thus evidently

as long as the cluster information is strong small values of

e0 do not lead to underestimating the number of clusters in

a data set. As a consequence, for the following simulations,

we generally combine the normal gamma distribution with

a sparse prior on the weight distribution where e0 is always

set to fixed, very small values.

Both for the standard prior (with e0 random) and the nor-

mal gamma prior (with e0 fixed), the misclassification rate

MC R and the mean-squared error M SEμ of the estimated

models have the same size, as if we had known the number of

mixture components in advance to be equal to K = 4. This

oracle property of the sparse finite mixture approach is very

encouraging.

While the misclassification rate MC R is about the same

for both priors, interestingly, the M SEμ is considerably

smaller under the normal gamma prior (≈0.136) than under

the standard prior (≈0.167) for all K . This gain in efficiency

illustrates the merit of choosing a shrinkage prior on the

component-specific means.

As noted in Sect. 2.2, a further advantage of specifying a

normal gamma prior for the component means, is the pos-

sibility to explore the posterior distribution of the scaling

factor λ j . Therefore, visual inspection of the box plots of the

posterior draws of λ j helps to distinguish between variables,

where component distributions are well separated, and vari-

ables, where component densities are strongly overlapping

or even identical. The box plots of the posterior draws of

λ j displayed in Fig. 8 clearly indicate that only the first two

variables show a high dispersion of the component means,

whereas for the two other dimensions the posterior distri-

bution of λ j is strongly pulled toward zero indicating that

component means are located close to each other and con-

centrate at the same point.

If the data sets are clustered by fitting an infinite mix-

ture model with the R package PReMiuM, similar clustering

results are obtained. For all ten data sets four groups are esti-

mated. The averaged estimated concentration parameter α̂ is

0.66. This indicates, that a sparse finite mixture model with

K = 30 components and e0 ≈ 0.02 is a good approximation

to a Dirichlet process DP(α) as α/K = 0.66/30 = 0.022.

As expected, the M SEμ of the cluster means is considerable

larger (0.231) than for sparse finite mixtures, whereas the

misclassification rate (0.047) is as for finite mixtures.

5.1.2 Simulation setup with unequal weights

To study if small non-empty components can be identified

under a sparse prior on the weights, the second simulation

setup uses the weight distribution η = (0.02, 0.33, 0.33,

0.32) for data generation, where the first component gener-

ates only 2 % of the data.

The simulation results are reported in Table 2. Regardless

of the number of specified components K , K̂0 = 4 non-

empty components are identified under both priors. Again,

for the normal gamma prior, the hyperparameter e0 of the

Dirichlet distribution has to be set to a very small value (0.001

or even smaller) to empty all superfluous components in all

data sets.

While our estimator K̂0 is robust to the presence of a

very small component, selecting the number of components

by identifying ”large” weights, as has been suggested by

Rousseau and Mengersen (2011), is likely to miss the fourth

small component. In the left-hand side plot of Fig. 7, the

(unidentified) posterior weights sorted by size in each iter-

ation are displayed for a single data set. The forth largest

weight in each iteration is very small and there might be

uncertainty whether the forth component belongs to either the

superfluous components or constitutes a non-empty compo-

nent. However, by looking for non-empty components during

MCMC sampling as our approach does, the small component

can be clearly identified since it is never emptied during the

whole MCMC run, as can be seen in the trace plot of alloca-

tions in Fig. 7.

Again, both for the standard prior and the normal gamma

prior, the misclassification rate MC R and the mean-squared

error M SEμ of the estimated models have the same size, as if

we had known the number of mixture components in advance

to be equal to K = 4. Again, the normal gamma prior domi-

nates the standard prior, with the M SEμ being considerably

smaller under the normal gamma prior (≈ 1.385) than under

the standard prior (≈ 1.670) for all K . This illustrates once
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Fig. 7 Simulation setup with

unequal weights, diagnostic

plots of a single MCMC run,

K = 30, standard prior: Box

plots of the (unidentified)

posterior weight draws, sorted

by size in each iteration

(left-hand side) and trace plot of

the number of observations

allocated to the different

mixture components, burn-in

included (right-hand side)
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Fig. 8 K = 15, normal gamma

prior: Box plots of shrinkage

factors λ j , for the simulation

setup with equal weights

(left-hand side) and unequal

weights (right-hand side).

Posterior draws of all data sets

are plotted

more the efficiency gain of choosing a shrinkage prior on the

component-specific means.

Also for this simulation setting, the posterior distribution

of scaling factors λ j , sampled for K = 15 under the normal

gamma prior and displayed in Fig. 8 on the right-hand side,

clearly indicates that only the first two variables are cluster-

generating, regardless of the small cluster size of the first

component.

Again similar clustering results are obtained when fitting

infinite mixtures. For almost all data sets (9 out of 10) the true

number of groups is estimated. Again the M SEμ is larger for

infinite mixtures (2.841) than for sparse finite mixtures.

5.2 Crabs data

The Crabs data set, first published by Campbell and Mahon

(1974) and included in the R package MASS (Venables and

Ripley 2002), consists of 200 observations of a crabs popu-

lation. It describes five morphological measurements on 200

crabs which have one of two color forms and differ in sex.

Thus, four different groups are “pre-defined” and in the fol-

lowing we aim at recovering these four groups using the

sparse finite mixture approach. Thus we would expect to find

four data clusters. However, the correct number of clusters

may be more than four (if some of the “pre-defined” groups

are heterogeneous themselves) or less than four (if some of

the “pre-defined” groups are not distinguishable), see con-

siderations made by Hennig (2010). Among others, the data

set was analyzed by Raftery and Dean (2006), Hennig (2010)

and Yau and Holmes (2011). We used the original data with-

out transformations.

For selecting the number of mixture components, sparse

finite mixture models with K = 15 and K = 30 mixture

components are specified. As can be seen in Table 3, under

both the standard and the normal gamma prior the expected

number of components K̂0 = 4 is selected. The posterior

distribution converges rather fast to four non-empty compo-

nents, as can be seen in the trace plot on the left-hand side in

Fig. 9, where the number of observations allocated to the 15

components are displayed.

The misclassification rate MC R of the identified model

is 0.08 for the standard prior and 0.07 for the normal gamma

prior. In Raftery and Dean (2006) the misclassification rate

was 0.40 when using all variables as we do, and 0.075 when
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Table 3 Crabs data: results for different K under the standard prior

(Sta) and the normal gamma prior (Ng), and when fitting an infinite

mixture using the R package PReMiuM. The M SEμ is calculated using

the Mahalanobis distance based on Bayes estimates. M ′
0,ρ , MC R′, and

M SE ′
μ are the results based on the clustering of the draws in the point

process representation through K -means instead of the K -centroids

cluster analysis based on the Mahalanobis distance

Prior K ê0 e0 fixed K̂0 M0 M0,ρ MC R M SEμ M ′
0,ρ MC R′ M SE ′

μ

Sta 4 0.27 4 10, 000 0 0.08 0.80 0.27 0.08 3.67

15 0.05 4 10, 000 0 0.08 0.81 0.28 0.08 3.82

30 0.03 4 10, 000 0 0.08 0.80 0.29 0.08 3.42

Ng 4 0.01 4 10, 000 0 0.07 0.68 0.44 0.08 6.72

15 0.01 4 9, 938 0 0.07 0.67 0.46 0.08 8.19

30 0.01 4 9, 628 0 0.07 0.68 0.46 0.08 8.10

PReMiuM α̂ K est MC R M SEμ

0.67 3 0.28

Fig. 9 Crabs data, normal

gamma prior, K = 15: Trace

plot of the number of

observations allocated to the

different components, burn-in

included (left-hand side). Box

plots of the shrinkage factors λ j

for all five variables (right-hand

side)
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excluding one variable. Again, there is a considerable reduc-

tion in M SEμ under the normal gamma prior compared to

the standard prior. Box plots of the posterior draws of the

shrinkage factor λ j in Fig. 9 reveal that all five variables are

cluster-relevant which might be due to the high correlation

between variables.

This specific case study also demonstrates the importance

of the refined procedure introduced in Sect. 4.2 to identify a

mixture by clustering the MCMC draws of the component-

specific means in the point process representation. Cluster-

ing using the squared Euclidean distance fails to capture

the geometry of the posterior mean distribution and leads

to a high non-permutation rate, denoted by M ′
0,ρ in Table 3.

Clustering using K -centroids cluster analysis based on the

Mahalanobis distance, however, allows to capture the ellip-

tical shapes of the posterior mean distribution properly, see

Fig. 4, which in turn reduces the non-permutation rate M0,ρ

to 0. In this way, inference with respect to the component-

specific parameters is considerably improved, as is evident

from comparing M SEμ and M SE ′
μ for both clustering meth-

ods in Table 3.

By clustering the Crabs data using an infinite mixture

model with initial settings as explained in Sect. 5.1, three

groups are estimated.

5.3 Iris data

The Iris data set (Anderson 1935; Fisher 1936) consists of

50 samples from each of three species of Iris, namely Iris

setosa, Iris virginica and Iris versicolor. Four features are

measured for each sample, the length and width of the sepals

and petals, respectively. We aim at recovering the three under-

lying classes using the sparse finite mixture approach and

thus expect to find three data clusters, although, as mentioned

already for the Crabs data in Sect. 5.2, the true number of

clusters for a finite mixture of Gaussian distributions may be

more or less than three.

The results are reported in Table 4 by fitting sparse finite

mixture models with 15 and 30 components, respectively.

Values given in parentheses refer to the draws associated with

the number of non-empty components given in parenthesis in

column K̂0. Under both priors, the expected number of com-
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Table 4 Iris data: results for different K , under the standard prior (Sta)

and the normal gamma prior (Ng), and when fitting an infinite mix-

ture using the R package PReMiuM. The M SEμ is calculated using

the Mahalanobis distance based on Bayes estimates. Values given in

parentheses refer to the draws associated with the number of non-empty

components given in parenthesis in column K̂0

Prior K ê0 e0 fixed K̂0 M0 M0,ρ MC R M SEμ

Sta 3 0.34 3 10,000 0 0.027 0.338

15 0.05 3 (4) 5,900 (4086) 0 (0.004) 0.027 (0.093) 0.336

30 0.03 3 (4) 6889 (3111) 0 (0.002) 0.027 (0.093) 0.338

Ng 3 0.01 3 10,000 0 0.027 0.350

15 0.01 3 (4) 7469 (2496) 0 (0.043) 0.033 (0.093) 0.343

30 0.01 3 (4) 6157 (3730) 0 (0.147) 0.033 (0.093) 0.349

PReMiuM α̂ K est MC R M SEμ

0.52 2 0.33

Fig. 10 Iris data, K = 15: Top

row Trace plot of number of

observations allocated to the

different components under the

standard prior (left-hand side),

box plots of posterior shrinkage

factors λ j , for all four variables,

under the normal gamma prior

(right-hand side). Bottom row

estimated classification for

K0 = 4 under the standard prior

(left-hande side) and true

classification (right-hande side)
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ponents is selected, as the majority of the draws is sampled

from a mixture model with exactly three non-empty compo-

nents. Under the standard prior, the misclassification rate of

the identified model is 0.027, which outperforms the rate of

0.04 given in Raftery and Dean (2006).

However, there is strong evidence for a fourth, non-empty

component, actually not present in the true classification.

Under both priors, a considerable number of draws is sam-

pled from a mixture model with four non-empty components

for all overfitting mixtures. We study the MCMC draws for

K = 15 under the standard prior in more detail. On the top

row, in the left-hand side plot of Fig. 10, the number of obser-

vations allocated to the different components during MCMC

sampling is displayed, indicating frequent switches between

3 and 4 non-empty components. This indicates that the poste-

rior distribution does not converge clearly to a solution with
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three non-empty components and that a mixture model with

K0 = 4 non-empty components has also considerable pos-

terior probability. Moreover, the non-permutation rate M0,ρ

is small for K0 = 4 (0.004), indicating that the component

means are well separated. If further inference is based on the

draws with K0 = 4 non-empty components, the obtained

four-cluster solution seems to be a reasonable solution. This

can be seen in Fig. 10 where scatter plots of 2 variables (petal

length and petal width) under both the resulting classification

for K0 = 4 and the true classification are displayed. Obser-

vations of the fourth estimated component, displayed in dark

grey diamonds, constitute a rather isolated group.

Regarding the identification of cluster-relevant variables,

box plots of the shrinkage factors λ j displayed in Fig. 10 indi-

cate that variable 2 (sepal width) is the most homogeneous

variable which coincides with results in Yau and Holmes

(2011).

If the number of groups is estimated by specifying an infi-

nite mixture model, only the two data clusters are identified

indicating that the infinite mixture approach implemented in

package PReMiuM with the default settings aims at identi-

fying clearly separated clusters with minimum overlap.

6 Discussion

In the framework of Bayesian model-based clustering, we

propose a straightforward and simple strategy for simulta-

neous estimation of the unknown number of mixture com-

ponents, component-specific parameters, classification of

observations, and identification of cluster-relevant variables

for multivariate Gaussian mixtures. Our approach relies

on specifying sparse priors on the mixture parameters and

involves only standard MCMC methods.

Estimation of the unknown number of mixture compo-

nents is based on sparse finite mixtures where a sparse

prior on the weights empties superfluous components during

MCMC sampling and the number of true components can

be estimated from the number of non-empty components.

An advantage of this strategy is that model selection can be

performed without computer-intensive calculations of mar-

ginal likelihoods or designing sophisticated proposals within

RJMCMC. This approach works astonishingly well if the

number of observations and the number of variables is not

too large.

However, there are also limitations to the proposed strat-

egy. First of all, we investigated our strategy under the

assumption that the mixture components truly arise from

multivariate Gaussian distributions. In order to catch non-

symmetrical cluster shapes or handle outliers it would also be

interesting to extend the approach to non-Gaussian compo-

nent distributions, e.g. the t-distribution and the skew-normal

distribution (see Frühwirth-Schnatter and Pyne 2010; Lee

and McLachlan 2014).

We may apply sparse finite Gaussian mixtures to data from

such skew or fat-tailed mixture distributions, however, in this

case the posterior mixture distribution tends to fit more than

one Gaussian component to represent a single non-Gaussian

cluster, in particular for an increasing number of observa-

tions. As a consequence, the method is fitting Gaussian mix-

tures in the sense of density estimation, where the number

of components is of no specific interest, and the estimated

number of non-empty components no longer represents the

number of distinct clusters. An important issue for further

investigation is therefore how to combine mixture compo-

nents, i.e. how to identify adjacent located components and

merge them into one larger cluster. Several recent papers have

considered the problem of merging Gaussian mixture com-

ponents, see e.g. Li (2005), Baudry et al. (2010), and Hennig

(2010).

To identify cluster-relevant variables, the standard prior

for the component means commonly applied for multivari-

ate Gaussian mixtures is substituted by a hierarchical shrink-

age prior based on the normal gamma prior. This prior tends

to fill superfluous components, since it becomes informa-

tive during MCMC sampling and superfluous components

are placed in reasonable locations. We found that the nor-

mal gamma prior requires specification of a very sparse

prior on the mixture weights, which is achieved by set-

ting the hyperparameter e0 of the Dirichlet prior to a very

small fixed value. Under this shrinkage prior, the true num-

ber of components is recovered from overfitting finite mix-

tures for simulated data. Additionally, under the normal

gamma prior box plots of shrinkage factors allow visual

identification of cluster-relevant and homogeneous variables.

Furthermore, component locations are estimated more pre-

cisely under the normal gamma than under the standard

prior.

A limitation of this strategy is that explicit identifica-

tion of cluster-relevant variables is based on visual detec-

tion in a post-processing step. In the presence of a huge

number of variables, this strategy might be too cumber-

some and an automatic approach might possibly be prefer-

able. This could be developed similar to the automatic

approaches which are for example used for explicit variable

selection in a regression setting when using the Bayesian

Lasso.

Finally, we note a further limitation of the proposed strat-

egy for high-dimensional data sets. When applying sparse

finite mixtures to high-dimensional data sets, Gibbs sampling

with data augmentation tends to get stuck in local modes, so

that superfluous components do not become empty during

sampling. An issue for further studies is therefore how to

improve mixing, i.e. to design well-mixing samplers, a prob-

lem also mentioned in Yau and Holmes (2011).
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Appendix 1: Scheme for estimating using MCMC sam-

pling

The sampling scheme iterates the following steps:

1. Parameter simulation conditional on the classification

S = (S1, . . . , SN ):

(a) Sample

η ∼ Dir(e1, . . . , eK ),

where

ek = e0 + Nk,

and Nk = #{i : Si = k} is the number of observations

assigned to component k.

(b) For k = 1, . . . , K : sample

�−1
k ∼ W(ck, Ck),

where

ck = c0 + Nk/2,

Ck = C0 +
1

2

∑

i :Si =k

(yi − μk)(yi − μk)
′.

(c) For k = 1, . . . , K : sample

μk ∼ N (bk, Bk),

where

Bk = (B−1
0 + Nk�

−1
k )−1,

bk = Bk(B
−1
0 b0 + �−1

k Nk ȳk),

and ȳk is the mean of the observations assigned by S

to component k.

2. Classification of each observation yi conditional on

knowing μ,�, η:

(a) For i = 1, . . . , N : sample Si from

Pr(Si = k|yi ;μ,�, η) ∝ ηk fN (yi |μk,�k).

3. Sample hyperparameters:

(a) Sample

C0 ∼ W(g0 + K c0, G0 +

K
∑

k=1

�−1
k ).

(b) For a Dirichlet prior with random hyperparameter e0,

sample e0 via a Metropolis-Hastings step from

p(e0|η) ∝ p(η|e0)p(e0),

see Eq. (10).

Additionally, for the normal gamma prior:

(c) For j = 1, . . . , r , sample

λ j ∼ GIG(pK , a j , b j ),

where

pK = ν1 − K/2,

a j = 2ν2,

b j =

K
∑

k=1

(μk j − b0 j )
2/R2

j .

(d) Sample

b0 ∼ N

(

1

K

K
∑

k=1

μk;
1

K
B0

)

,

where

B0 = Diag(R2
1λ1, . . . , R2

r λr ).

4. Random permutation of the labeling: select randomly one

permutation ρ of K ! possible permutations of {1, . . . , K }

and substitute:

η = ηρ(1,...,K ),

(μ1, . . . ,μK ) = (μρ(1), . . . ,μρ(K )),

(�1, . . . ,�K ) = (�ρ(1), . . . ,�ρ(K )),

S = ρ(S).

Appendix 2: Scheme for clustering in the point process

representation

After the MCMC run, a sparse finite mixture is identified

by post-processing the MCMC draws through the following

steps:

1. For each iteration m = 1, . . . , M of the MCMC run,

determine the number of non-empty components K
(m)
0

according to Eq. (4).

2. Estimate the true number of mixture components by

K̂0 = mode(K
(m)
0 ), the value of the number of non-

empty components occurring most often during MCMC

sampling. Consider only the subsequence M0 of all

MCMC iterations where the number of non-empty com-

ponents is exactly equal to K̂0.
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3. For all M0 iterations, remove the draws from empty com-

ponents.

4. Arrange the remaining draws of the different compo-

nent means in a matrix with K̂0 · M0 rows and r

columns. Cluster all K̂0 · M0 draws into K̂0 clusters using

K -centroids cluster analysis (Leisch 2006) where the dis-

tance between a point and a cluster centroid is determined

by the Mahalanobis distance. Details on the cluster algo-

rithm are given in Sect. 4.2. The K -centroids clustering

algorithm results in a classification indicating to which

clusters the component-specific parameters of each sin-

gle draw belong.

5. For each iteration m, m = 1, . . . , M0, construct a classi-

fication sequence ρ(m) of size K̂0 containing the classi-

fications of each draw of iteration m.

For m = 1, . . . , M0, check whether ρ(m) is a permutation

of (1, . . . , K̂0). If not, remove the corresponding draws

from the MCMC subsample of size M0.

The proportion of classification sequences of M0 not

being a permutation is denoted by M0,ρ .

6. For the remaining M0(1−M0,ρ) draws, a unique labeling

is achieved by resorting the draws according to the clas-

sification sequences ρ(m). The resorted, identified draws

can be used for further component-specific parameter

inference.

To illustrate step 5, consider for instance, that for K̂0 = 4,

for iteration m a classification sequence ρ(m) = (1, 3, 4, 2)

is obtained through the clustering procedure. That means

that the draw of the first component was assigned to clus-

ter one, the draw of the second component was assigned

to cluster three and so on. In this case, the draws of this

iteration are assigned to different clusters, which allows to

relabel these draws. However, if a classification sequence

ρ(m) = (3, 1, 2, 1) is obtained, then draws sampled from

two different components are assigned to the same cluster

and no relabeling can be performed. Thus these draws are

removed from further inference because no unique labeling

can be defined for this iteration.

As already observed by Frühwirth-Schnatter (2011a), all

classification sequences ρ(m), m = 1, . . . , M obtained in

step 5 are expected to be permutations, if the point process

representation of the MCMC draws contains well-separated

simulation clusters. If a small fraction of non-permutations

M0,ρ is present, the posterior draws corresponding to the

non-permutation sequences are removed from the M0 itera-

tions. Only the subsequence of identified draws is used for

further component-specific inference. However, a high frac-

tion M0,ρ indicates that in the point process representation

clusters are highly overlapping. This typically happens if the

selected mixture model with K̂0 components is overfitting,

see Frühwirth-Schnatter (2011a).
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