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Abstract

This chapter describes a clustering procedure for microarray expression data

based on a well-defined statistical model, specifically, a conjugate Dirichlet

process mixture model. The clustering algorithm groups genes whose latent

variables governing expression are equal, that is, genes belonging to the same

mixture component. The model is fit with Markov chain Monte Carlo and the

computational burden is eased by exploiting conjugacy. This chapter introduces

a method to get a point estimate of the true clustering based on least-squares

distances from the posterior probability that two genes are clustered. Unlike ad

hoc clustering methods, the model provides measures of uncertainty about the

clustering. Further, the model automatically estimates the number of clusters

and quantifies uncertainty about this important parameter. The method is com-

pared to other clustering methods in a simulation study. Finally, the method is

demonstrated with actual microarray data.

10.1 Introduction

The main goal of clustering microarray data is to group genes that present

highly correlated data; this correlation may reflect underlying biological fac-

tors of interest, such as regulation by a common transcription factor. A

variety of heuristic clustering methods exist, including k-means clustering

(MacQueen 1967) and hierarchical agglomerative clustering. These methods

have had an enormous impact in genomics (Eisen et al. 1998) and are intuitively

appealing. Nevertheless, the statistical properties of these heuristic clustering

methods are generally not known. Model-based clustering procedures have

been proposed for microarray data, including (1) the MCLUST procedure

of Fraley and Raftery (2002) and Yeung et al. (2001), and (2) the Bayesian
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mixture model based clustering of Medvedovic and Sivaganesan (2002) and

Medvedovic et al. (2004). Model-based techniques offer advantages over

heuristic schemes, such as the ability to assess uncertainty about the result-

ing clustering and to formally estimate the number of clusters.

This chapter describes a model-based clustering procedure for microarray

expression data based on a well-defined statistical model, specifically, a conju-

gate Dirichlet process mixture (DPM) model. In the assumed model, two genes

come from the same mixture component if and only if their relevant latent

variables governing expression are equal. The model itself, known as BEMMA

for Bayesian Effects Model for Microarrays, was first introduced by Dahl and

Newton (submitted) as a means of exploiting the clustering structure of data

for increased sensitivity in a battery of correlated hypothesis tests (e.g., finding

differentially expressed genes). The focus of this chapter is not finding differ-

ential expression, but rather identifying the underlying clustering structure of

expression data.

Computations for Bayesian mixture models can be challenging. Unlike the

finite and infinite mixture models of Medvedovic and Sivaganesan (2002)

and Medvedovic et al. (2004), the proposed method is, however, conjugate.

This conjugacy permits the latent variables to be integrated away, thereby

simplifying to state space over which the Markov chain is run. The model is

fit using Markov chain Monte Carlo (MCMC), specifically using the conjugate

Gibbs sampler (MacEachern 1994; Neal 1992) and the merge–split algorithm

of Dahl (2003). Each iteration of the Markov chain yields a clustering of the

data.

Providing a single point estimate for clustering based on the thousands

of clusterings in the Markov chain has been proven to be challenging

(Medvedovic and Sivaganesan 2002). One approach is to select the observed

clustering with the highest posterior probability; this is called the maximum a

posteriori (MAP) clustering. Unfortunately, the MAP clustering may only be

slightly more probable than the next best alternative, yet represent a very dif-

ferent allocation of observations. Alternatively, Medvedovic and Sivaganesan

(2002) and Medvedovic et al. (2004) suggest using hierarchical agglomerative

clustering based on a distance matrix formed using the observed clusterings

in the Markov chain. It seems counterintuitive, however, to apply an ad hoc

clustering method on top of a model which itself produces clusterings.

This chapter proposes a method to form a clustering from the many cluster-

ings observed in the Markov chain. The method is called least-squares model-

based clustering (or, simply, least-squares clustering). It selects the observed

clustering from the Markov chain that minimizes the sum of squared deviations

from the pairwise probability matrix that genes are clustered. The least-squares
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clustering has the advantage that it uses information from all the clusterings (via

the pairwise probability matrix) and is intuitively appealing because it selects

the “average” clustering (instead of forming a clustering via an external, ad hoc

algorithm).

Section 10.2 presents the details of the proposed model, including the like-

lihood, prior, and how to set the hyperparameters. Section 10.2.3 describes the

model fitting approach and how the conjugate nature of the model aids in its fit-

ting. Section 10.3 details the new least-squares clustering estimator using draws

from the posterior clustering distribution. Section 10.4 presents a simulation

study showing that the method compares well with other clustering methods.

Finally, the model is demonstrated in Section 10.5, using a microarray data set

with 10,043 probe sets, 10 treatments conditions, and 3 replicates per treatment

condition. This section also introduces the effects intensity plot which displays

the clustering of all genes simultaneously. The chapter ends with a discussion

in Section 10.6.

10.2 Model

The model-based clustering procedure presented here is based on the Bayesian

Effects Model for Microarrays (BEMMA) of Dahl and Newton (submitted).

The model was originally proposed as a means to gain increased sensitivity in

a battery of correlated hypothesis tests by exploiting the underlying clustering

structure of data. In their application, Dahl and Newton (submitted) were in-

terested in identifying differentially expressed genes. In this chapter, we apply

their model to the task of clustering highly correlated genes that may reveal

underlying biological factors of interest.

10.2.1 Likelihood Specification

The model assumes the following sampling distribution:

ygtr |µg, τgt , λg ∼ N (ygtr |µg + τgt , λg), (10.1)

where ygtr is a suitably transformed expression of replicate r (r = 1, . . . , Rt )

of gene g (g = 1, . . . , G) at treatment condition t (t = 1, . . . , T ) and N (z|a, b)

denotes the univariate normal distribution with mean a and variance 1/b for

the random variable z. The parameter µg represents a gene-specific mean,

the gene-specific treatment effects are τg1, . . . , τgT , and λg is a gene-specific

sampling precision.

The model assumes that coregulated genes have the same treatment ef-

fects and precision. That is, genes g and g′ are in the same cluster if
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(τg1, . . . , τgT , λg) = (τg′1, . . . , τg′T , λg′ ). The clustering can be encoded with

cluster labels c1, . . . , cG, where cg = cg′ if and only if genes g and g′ are in the

same cluster.

The gene-specific means µ1, . . . , µG are nuisance parameters; they are not

related to differential expression across treatments and they are not used to

define clusters. Indeed, there can exist constant differences in expression

from probe sets known to be coregulated. These constant differences may

be due to the biology (e.g., mRNA degradation) or the microarray technol-

ogy (e.g., hybridization differences between probes or labeling efficiency).

Whatever the reason, constant differences between probe sets may natu-

rally exist in microarray experiments, yet they are not of interest. Indeed,

two genes having a constant difference across treatments is the essence of

coregulation.

The nuisance parameters µ1, . . . , µG could be handled by specifying a prior

over them and integrating the likelihood implied by (10.1) over this prior. The

resulting model would be nonconjugate since the prior specification (detailed

in the next subsection) induces mixing with respect to both the treatment

effects τg1, . . . , τgT and the sampling precision λg . (If the mixing were only

with respect to the treatment effects, conjugacy would remain intact when

integrating over the nuisance parameters µ1, . . . , µG.) Fitting this nonconjugate

model would be computationally challenging in the presence of thousands of

genes.

The following pragmatic approach is used to address the nuisance param-

eters µ1, . . . , µG. Select a reference treatment (taken here to be the first

treatment for notational convenience). Let dg be a vector whose elements

are ygtr − yg1 for t ≥ 2, where yg1 is the mean of the reference treatment.

Further, let τg = (τg2, . . . , τgT ) be a treatment effect vector and N =
∑T

t=2 Rt

be the dimension of dg . Simple calculations reveal that dg is independent of the

nuisance parameters µ1, . . . , µG and distributed:

dg |τg, λg ∼ NN (dg |Xτg, λgM), (10.2)

where Nc(z|a, b) is a c-dimensional multivariate normal distribution with mean

vector a and covariance matrix b−1 for the random vector z. Also, M is an

N × N matrix equal to ( I + 1
R1

J )−1, where I is the identify matrix and J is a

matrix of ones. Finally, X is an N × (T − 1) design matrix whose rows contain

all zeros except where the number 1 is needed to pick off the appropriate

element of τg . If one prefers, the model could equivalently be written in terms

of sample averages from each treatment. This would, for example, reduce the

dimension of dg from N to T .
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10.2.2 Prior Specification

Clustering based on equality of τ ’s and λ’s across genes is achieved by using

a Dirichlet process prior for these model parameters, resulting in a Dirichlet

process mixture (DPM) model. See Müller and Quintana (2004) and references

therein for a review of the DPM model literature. The model assumes the

following prior:

τg, λg |F (τg, λg) ∼ F (τg, λg)

F (τ, λ) ∼ DP (η0F0(τ, λ)), (10.3)

where DP (η0F0(τ, λ)) is the Dirichlet process having centering distribution

F0(τ, λ) for the random variables τ and λ and mass parameter η0. The centering

distribution F0(τ, λ) is a joint distribution for τ and λ having the following

conjugate density:

p(τ, λ) = p(τ |λ)p(λ)

= NT −1(τ |0, λ�0)Ga(λ |α0, β0), (10.4)

where Ga(z |a, b) is the gamma distribution with mean a/b for the random

variable z and α0, β0, and �0 are fixed hyperparameters set based on either

prior experience or current data.

10.2.3 Sampling from the Posterior Distribution

Quintana and Newton (2000) and Neal (2000) have good reviews and compar-

isons of methods for fitting DPM models. We suggest fitting the proposed model

using MCMC. The centering distribution F0(τ, λ) in (10.4) is conjugate to the

likelihood for τg and λg in (10.2). Thus, the model parameters may be integrated

away, leaving only the clustering of the G genes. As a result, the stationary dis-

tribution of a Markov chain for the model is p(c1, . . . , cG|d1, . . . , dg), the pos-

terior distribution of the clustering configurations. This technique was shown

by MacEachern (1994) and MacEachern et al. (1999) to greatly improve the

efficiency of Gibbs sampling and sequential importance sampling, respectively.

Efficiency is very important if the model is to be useful in practice.

It should be noted that the technique of integrating away the model parame-

ters is merely a device used for model fitting. Inference on the model parameters

τ1, . . . , τG and λ1, . . . , λG can still be made by sampling from posterior dis-

tribution of the model parameters (i.e., (10.6) in next subsection) after having

obtained samples from the posterior clustering distribution.

The Gibbs sampler can be used to sample from the posterior clustering dis-

tribution of conjugate DPM models (MacEachern 1994; Neal 1992). The Gibbs
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sampler repeatedly takes a gene out of the clustering and draws a new cluster

label from the full conditional distribution. Because the Gibbs sampler only

moves one gene at a time, it may explore the posterior clustering distribution

rather slowly. Jain and Neal (2004) and Dahl (2003) present merge–split algo-

rithms that attempt to update more than one cluster label at a time. The Gibbs

sampler and both of these merge–split samplers require the evaluation of the

posterior predictive distribution. The next subsection gives the full conditional

distribution and the posterior predictive distribution for the proposed model.

10.2.4 Full Conditional and Posterior Predictive Distributions

The full conditional distribution is essential for fitting the model using the

Gibbs sampler. Let c−i denote the collection of all cluster labels except that

corresponding to gene i. For notational convenience, let the cluster labels in

c−i be numbered from 1 to k and let k + 1 be the label of an empty cluster.

Finally, let nc be the number of cluster labels equal to c (not counting ci), unless

cluster c is empty, in which case, nc is set to the mass parameter η0. The full

conditional distribution is a multinomial distribution given by

p(ci = c | c−i, d1, . . . , dG) ∝ nc

∫
B(di |τ, λ)p(τ, λ|Dc) dτ dφ, (10.5)

for c = 1, . . . , k + 1, where B(di |τ, λ) is the normal distribution in (10.2), and

p(τ, λ|Dc) is the density of the posterior distribution of τ and λ based on the

prior F0(τ, λ) in (10.4) and all differences dj for which j �= i and cj = c. In

the case of an empty cluster, p(τ, λ|Dc) is just the density of the prior F0(τ, λ)

and nc is set to the mass parameter η0 instead of 0; otherwise, it is rather

straightforward to show that

p(τ, λ |Dc) ∝ p(τ |λ,Dc)p(λ |Dc)

= NT −1(τ |�−1
nc

S1, λ�nc
)Ga(λ |αnc

, β1), (10.6)

where

�nc
= �0 + ncX′MX,

αnc
= α0 +

ncN

2
,

β1 = β0 +
1

2
S2 −

1

2
S ′

1�
−1
nc

S1, (10.7)

S1 =
∑

d∈Dc

X′Md, and

S2 =
∑

d∈Dc

d ′Md.
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The integral in (10.5) refers to the posterior predictive distribution of d be-

longing to cluster c. For conjugate DPM models, this distribution can usually be

found in closed form. In the present model, the posterior predictive distribution

for a new difference vector d∗ evaluated at d (when its cluster label c∗ is c and

given the data Dc having cluster label c) has the following density:

p(d∗ = d |c∗ = c,Dc) = cn

β
αnc

1

β
αnc+1

2

, (10.8)

where

β2 = β0 +
1

2
S2 +

1

2
d ′Md −

1

2
(X′Md + S1)′�−1

nc+1(X′Md + S1)

cn =
Ŵ(αnc+1)

Ŵ(αnc
)

√
| �n || M |

| �nc+1 | (2π )N
. (10.9)

It is interesting to note that (10.8) is not the usual multivariate Student t-

distribution.

10.2.5 Setting the Hyperparameters

Lacking strong prior belief about the hyperparameters η0, α0, β0, and �0, an

empirical Bayes procedure can be used. Notice that (10.7) implies that �n+1 =
�n + X′MX and αn+1 = αn + N

2
. That is, for each additional observation, �n

and αn are incremented by X′MX and N
2

, respectively. It is natural, therefore, to

set the hyperparameter �0 to n0X′MX and the hyperparameter α0 to n0
N
2

, for

n0 > 0 representing the number of observations that prior experience is worth.

By default, we recommend n0 = 1.

As shown in (10.1) and (10.4), the hyperparameters α0 and β0 are, respec-

tively, the shape and rate parameters of the gamma prior distribution for the

precision of an observation in a given cluster. We recommend setting α0 and β0

such that the mean of this distribution, α0/β0, matches a data-driven estimate

of the expected precision for a cluster. Equivalently, in terms of the standard

deviation, choose α0 and β0 so that
√

β0/α0 matches the estimated standard

deviation for a cluster. The software implementation of BEMMA uses the me-

dian standard deviation across all probe sets if no value is specified by the

user. Since α0 = n0
N
2

(from the previous paragraph), specifying the expected

standard deviation implies a value for β0.

The final hyperparameter to consider is the mass parameter η0, which affects

the distribution on the number of clusters. The mass parameter in DPM models

has been well studied (Escobar 1994; Escobar and West 1995; Liu 1996;



208 Dahl

Medvedovic and Sivaganesan 2002). From Antoniak (1974), the prior expected

number of clusters is

K(G) =
G∑

g=1

η0

η0 + g − 1
.

In some DPM model applications, the mass parameter is set to 1.0. This seems

overly optimistic for microarray experiments since, for example, it implies a

prior belief that there are less than 12 clusters in data set with 50,000 genes. We

use an empirical Bayes approach which sets η0 such that the posterior expected

number of clusters equals the prior expected number of clusters. The software

implementation of BEMMA provides this option.

10.3 Inference

Draws c1, . . . , cB from the posterior clustering distribution can be obtained

using MCMC, where B is a number of sampled clusterings. Several methods

have been used to arrive at a point estimate of the clustering using draws from

the posterior clustering distribution. Perhaps the simplest method is to select

the observed clustering that maximizes the density of the posterior clustering

distribution. This is known as the maximum a posteriori (MAP) clustering.

Unfortunately, the MAP clustering may only be slightly more probable than the

next best alternative, yet represent a very different allocation of observations.

For each clustering c in c1, . . . , cB , an association matrix δ(c) of dimension

G × G can be formed whose (i, j ) element is δi,j (c), an indicator of whether

gene i is clustered with gene j . Element-wise averaging of these associa-

tion matrices yields the pairwise probability matrix of clustering, denoted π̂ .

Medvedovic and Sivaganesan (2002) and Medvedovic et al. (2004) suggest

forming a clustering estimate by using the pairwise probability matrix π̂ as a

distance matrix in hierarchical agglomerative clustering. It seems counterintu-

itive, however, to apply an ad hoc clustering method on top of a model which

itself produces clusterings.

We introduce the least-squares model-based clustering (or, simply, least-

squares clustering), a new method for estimating the clustering of observations

using draws from a posterior clustering distribution. As with the method of

Medvedovic and Sivaganesan (2002), the method is based on the pairwise

probability matrix π̂ that genes are clustered together. The method differs,

however, in that it selects one of the observed clusterings in the Markov chain as

the point estimate. Specifically, the least-squares clustering cLS is the observed
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clustering c which minimizes the sum of squared deviations of its association

matrix δ(c) from the pairwise probability matrix π̂ :

cLS = arg min
c∈{c1,...,cB }

G∑

i=1

G∑

j=1

(δi,j (c) − π̂i,j )2. (10.10)

The least-squares clustering has the advantage that it uses information from all

the clusterings (via the pairwise probability matrix) and is intuitively appealing

because it selects the “average” clustering (instead of forming a clustering via

an external, ad hoc clustering algorithm).

Uncertainty about a particular clustering estimate can be accessed from the

posterior clustering distribution. For example, one can readily estimate the prob-

ability that two genes are clustered together by computing the relative frequency

of this event among the clusterings in the Markov chain. Also, the posterior

distribution of the number of clusters is easily obtained.

10.4 Simulation Study

This section provides a simulation study comparing the proposed clustering

method to several standard methods. To assess the robustness of the clustering

methods, four degrees of clustering are considered:

Heavy clustering: Data with 12 clusters of 100 genes per cluster.

Moderate clustering: Data with 60 clusters of 20 genes per cluster.

Weak clustering: Data with 240 clusters of 5 genes per cluster.

No clustering: Data with no clustering of the genes.

Each data set has 1,200 genes. The simulated experimental design is a time-

course experiment (with three time points) and two groups, making in all T = 6

treatments.

Each cluster may be classified as either containing genes that are differ-

entially expressed or equivalently expressed. Clusters that are equivalently

expressed have equal treatment effects for the two treatments within a time

point. Clusters that are differentially expressed have independently sampled

treatment effects at one or more of the time points. In all cases, the precision λ

for a cluster is a draw from a gamma distribution with mean 1 and variance 1/10,

the treatment effects τ1, . . . , τ6 for a cluster are drawn independently from a

normal distribution with mean 0 and variance (9λ)−1, and the gene-specific

shift µ is drawn from a normal distribution with mean 7 and variance 1.
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Regardless of the degree of clustering, each data set contains 300 genes that

are differentially expressed. A third of the differentially expressed clusters have

unequal treatment effects at only one time point, a third have unequal treatment

effects at two time points, and the remaining third have unequal treatment

effects at all three time points. Finally, the observed data is drawn as specified

in (10.1), with the first time point having five replicates per treatment and the

other time points having three replicates.

10.4.1 Simulation Results

The MAP and least-squares clusterings based on the BEMMA model (as de-

scribed in Section 10.3) were computed for each simulated data set and are

labeled “BEMMA(map)” and “BEMMA(least-squares),” respectively. To com-

pare the performance of BEMMA, the MCLUST procedure (Fraley and Raftery

1999, 2002) and hierarchical clustering (Hartigan 1975; Ihaka and Gentleman

1996) were applied to the simulated data. Specifically, the following methods

were used:

MCLUST: The Mclust( ) function of the mclust package of R (Ihaka and

Gentleman 1996)

HCLUST(correlation,average): Hierarchical clustering where the distance

between genes was one minus the square of the Pearson correlation

of the sample treatment means and using the “average” agglomeration

method

HCLUST(correlation,complete): Hierarchical clustering using correlation

distance and using the “complete” agglomeration method

HCLUST(effects,average): Hierarchical clustering where the distance be-

tween genes was the Euclidean distance between the sample treatment

effects and using the “average” agglomeration method

HCLUST(effects,complete): Hierarchical clustering using effects distance

and using the “complete” agglomeration method

Hierarchical clustering is a heuristic clustering procedure, while BEMMA and

MCLUST are model-based clustering procedures. The number of clusters in

the data is unspecified in the proposed model. For simplicity, the number

of clusters for the other clustering methods was set to the true number of

clusters.

There are many indices for measuring the agreement between two cluster-

ings. In a comprehensive comparison, Milligan and Cooper (1986) recommend
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Table 10.1. Adjusted Rand Index for BEMMA and Other Methods

Adjusted Rand
Degree of clustering Clustering method index w/95% C.I.

Heavy MCLUST 0.413 (0.380, 0.447)
BEMMA(least-squares) 0.402 (0.373, 0.431)
BEMMA(map) 0.390 (0.362, 0.419)
HCLUST(effects,average) 0.277 (0.247, 0.308)
HCLUST(effects,complete) 0.260 (0.242, 0.279)
HCLUST(correlation,complete) 0.162 (0.144, 0.180)
HCLUST(correlation,average) 0.156 (0.141, 0.172)

Moderate BEMMA(least-squares) 0.154 (0.146, 0.163)
MCLUST 0.144 (0.136, 0.152)
BEMMA(map) 0.127 (0.119, 0.135)
HCLUST(effects,complete) 0.117 (0.111, 0.123)
HCLUST(effects,average) 0.101 (0.095, 0.107)
HCLUST(correlation,average) 0.079 (0.075, 0.083)
HCLUST(correlation,complete) 0.073 (0.068, 0.078)

Weak MCLUST 0.050 (0.048, 0.052)
HCLUST(effects,complete) 0.045 (0.043, 0.048)
BEMMA(least-squares) 0.042 (0.040, 0.043)
HCLUST(effects,average) 0.037 (0.035, 0.038)
BEMMA(map) 0.031 (0.030, 0.033)
HCLUST(correlation,average) 0.029 (0.027, 0.030)
HCLUST(correlation,complete) 0.027 (0.025, 0.029)

Note: Large values of the adjusted Rand index indicate better agreement between the
estimated and true clustering.

the adjusted Rand index (Hubert and Arabie 1985; Rand 1971) as the preferred

measure of agreement between two clusterings. Large values for the adjusted

Rand index mean better agreement. That is, an estimated clustering that closely

matches the true clustering has a relatively large adjusted Rand index.

Table 10.1 shows the adjusted Rand index for BEMMA and the other clus-

tering methods. Under heavy, moderate, and weak clustering, the MCLUST

does very well. BEMMA too performs well. Notice that the newly pro-

posed least-squares clustering method of Section 10.3 performs better than

the MAP clustering method. The hierarchical clustering procedures generally

do not perform very well, especially those based on the correlation distance

matrix.

In summary, the simulation study suggests that the least-squares cluster-

ing is able to estimate the true clustering relatively well. It does about as

well as MCLUST and much better than hierarchical clustering, even though
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Fig. 10.1. Posterior distribution of the number of clusters.

BEMMA does not have the benefit of knowing the true number of clusters.

Further, the model-based nature of BEMMA allows one to readily assess the

variability in the estimated clustering. Finally, when information on differ-

ential expression is desired, BEMMA is also shown by Dahl and Newton

(submitted) to be a very sensitive method for detecting differentially expressed

genes.

10.5 Example

The proposed method was implemented on a replicated, multiple treatment

microarray experiment. Researchers were interested in the transcriptional re-

sponse to oxidative stress in mouse skeletal muscle and how that response

changes with age. Young (5-month-old) and old (25-month-old) mice were

treated with an injection of paraquat (50 mg/kg). Mice were sacrificed at

1, 3, 5, and 7 hours after paraquat treatment or were sacrificed having not

received paraquat (constituting a baseline). Thus, T = 10 experimental con-

ditions were under consideration. Edwards et al. (2003) discuss the experi-

mental details. All treatments were replicated three times. Gene expression

was measured on G = 10,043 probe sets using high-density oligonucleotide

microarrays manufactured by Affymetrix (MG-U74A arrays). The data was

background-corrected and normalized using the Robust Multichip Averaging

(RMA) method of Irizarry et al. (2003) as implemented in the affy package of

BioConductor (Gentleman et al. 2004). For a review of the issues and proce-

dures for background-correction and normalization, see Irizarry et al. (2003)

and Dudoit et al. (2002)
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Fig. 10.2. Effects intensity plot for genes clustered with the probe set of interest. This
effects intensity plot shows the estimated treatment effects for the other probe sets
that were clustered with the probe set of interest in the least-squares clustering. Rows
correspond to the genes in this cluster. The reference treatment is old at baseline and is
shaded gray. Lighter shades indicate underexpression relative to the reference, whereas
darker shades indicate overexpression.

10.5.1 Burn-in and Posterior Simulation

The model was fit using MCMC. The hyperparameters α0, β0, �0, and η0 were

set according to Section 10.2.5, resulting in the prior and posterior expected

number of clusters being 98 (i.e., mass parameter η0 = 15).

Two Markov chains were run from one of two extreme starting configura-

tions: (1) all genes belonging to a single cluster, or (2) each gene belonging

to its own cluster. One iteration of the Markov chain consisted of a Gibbs

scan (accounting for more than 97% of the CPU time) and five sequentially

allocated merge–split proposals of Dahl (2003). The moving average (of size

50) of the number of clusters was monitored. When these averages crossed,

the chains were declared to be burned-in. Trace plots of various univariate
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Fig. 10.3. Effects intensity plot for all probe sets. This figure, based on the least-squares
clustering, shows the estimated treatment effects of all the clusters simultaneously and
sorts the clusters based on size.

summaries of the chains support this burn-in procedure. Two desktop comput-

ers independently implemented this burn-in procedure and then sampled from

the posterior for less than four days. To reduce disk storage requirements, the

sample was thinned by saving only one in 100 states, leaving a total of 1,230

nearly independent draws from the posterior distribution.

10.5.2 Inference

The least-squares clustering (described in Section 10.3) of the expression data

had 105 clusters, ranging in size from 1 to 700 probe sets. Pairwise probabilities

of coregulation can readily be obtained by examining the relative frequency

that genes are clustered together in states of the Markov chain. The posterior

distribution of the number of clusters is given in Figure 10.1.
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Fig. 10.4. Effects intensity plot for the 4% of probe sets in the smallest clusters.

Probe set 92885 at was identified as scientifically interesting based on an-

other analysis. Biologists may be interested in the other probe sets that are

clustered with probe set 92885 at. The proposed clustering procedure provides

this information. Figure 10.2 graphically shows the treatment effects for the

other probe sets that were clustered with probe set 92885 at in the least-squares

clustering. The columns represent the 10 different treatment conditions and

the rows correspond to the probe sets in this cluster. The reference treatment

is old at baseline and is shaded gray. At other treatments, lighter shades are

used to indicate underexpression relative to the reference and the darker shades

indicate overexpression.

This chapter introduces the effects intensity plot which displays the entire

clustering in one plot. An effects intensity plot is produced by making a plot like

Figure 10.2 for each cluster and then stacking them in order of size. Figure 10.3

shows an effects intensity plot for the least-squares clustering. Since some of the

clusters are very small, the smaller clusters are difficult to see. To better see the
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small clusters, Figure 10.4 shows only 4% of the probe sets corresponding to the

smallest clusters. Notice that the smaller clusters exhibit more variation from

the reference treatment than do the larger clusters. The effects intensity plot

can help researchers visualize a clustering and identify clusters for additional

study.

10.6 Conclusion

This chapter describes a model-based clustering procedure for microarray ex-

pression data based on a conjugate Dirichlet process mixture model. The model

was first proposed by Dahl and Newton (submitted) to exploit clustering for

increased sensitivity in a battery of correlated hypothesis tests. This chapter

shows how the model can also be used as a clustering procedure. The model is

fit with MCMC and the computational burden of the DPM model is eased by

exploiting conjugacy. This chapter also introduced least-squares model-based

clustering in which a point estimate of the true clustering is based on squared

distances for the pairwise probability matrix. Unlike ad hoc clustering methods,

the model provides measures of uncertainty about the clustering. Further, the

model automatically estimates the number of clusters and quantifies uncertainty

about this parameter. The method compares well to other clustering methods

in a simulation study and the demonstration shows its feasibility using a large

microarray data set.
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