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Relying on a Stochastic Binary Search Algorithm

Christophe Biernacki Julien Jacques
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Abstract

We design a probability distribution for ordinal data by modeling the process gen-

erating data, which is assumed to rely only on order comparisons between categories.

Contrariwise, most competitors often either forget the order information or add a nonex-

istent distance information. The data generating process is assumed, from optimality

arguments, to be a stochastic binary search algorithm in a sorted table. The resulting

distribution is natively governed by two meaningful parameters (position and precision)

and has very appealing properties: decrease around the mode, shape tuning from uni-

formity to a Dirac, identifiability. Moreover, it is easily estimated by an EM algorithm

since the path in the stochastic binary search algorithm can be considered as missing

values. Using then the classical latent class assumption, the previous univariate ordinal

model is straightforwardly extended to model-based clustering for multivariate ordinal

data. Parameters of this mixture model are estimated by an AECM algorithm. Both

simulated and real data sets illustrate the great potential of this model by its ability to

parsimoniously identify particularly relevant clusters which were unsuspected by some

traditional competitors.

Keywords. Ordinal data, binary search algorithm, latent variables, AECM algorithm.

1 Introduction

Clustering [39] is an important explanatory tool for practitioners to discover some hidden, but

hopefully valuable, structures in data sets. Mixture models [38, 28, 8, 30] have now become

a standard approach thanks to their ability to dive clustering into a well-posed mathematical

context for parameter estimation and model selection (in particular for the selection of the
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number of clusters). Additionally, mixture models are able to retrieve and generalize several

classical geometric methods and have successful use in very numerous practical situations.

In this model-based clustering context, classifying data relies thus on the availability of a

suitable distribution probability for the kinds of data at hand which can be numerical [5],

rankings [15], functional [17], categorical [11]. . .

One particular type of categorical data is ordinal data, occurring when the categories are

ordered. Such data are very frequent in practice, as for instance in marketing studies where

people are asked through questionnaires to evaluate some products or services on an ordinal

scale. However, contrary to nominal categorical data, ordinal data have received less attention

from a model-based clustering point of view, and then, in face of such data, the practitioners

often transform them into either quantitative data (associating an arbitrary number to each

category, see [19] or [22] for instance) or into nominal data (ignoring the order information,

see the Latent GOLD software [37]) in order to “recycle” easily related distributions.

We give now an overview of the main models and clustering algorithms used for ordinal

data. First of all, it should be mentioned that ordinality is a characteristic of the meaning

of measurements [35], and consequently it does not incur any restrictions for the shape of

their distributions. Several approaches have been considered along years to define probabil-

ity distributions for ordinal data: 1. modeling the cumulative probabilities rather than the

individual probabilities, 2. constraining the multinomial model in order to take into account

the ordinality of data, 3. assuming that ordinal data are the discretization of an underlying

continuous latent variable, 4. constructing directly the distribution in order to obtain a set

of desired properties for ordinal data. Note that approaches 2. and 4. can be sometimes con-

nected. The first approach is inspired by the regression framework, modeling a function (logit,

probit, log-log...) of the cumulative probabilities with a linear function of some covariables.

For instance, the cumulative logit model states that:

logit p(X ≤ x) = β0x + βtt,

whereX is the ordinal variable, x one of its categories, t the covariates and β0x are increasing in

x. In such models, the fact that β is common for all categories is justified by both parsimony

and a latent variable interpretation of the model. Let us notice that, in the absence of

covariates, the model is equivalent to a multinomial model. For a review of such models

refer to [1] (or to [3] in the case of unobserved (latent) covariates). Such kind of models

are used in a clustering context in the Latent GOLD software [37]. The second approach

consists in introducing constraints on the multinomial model in order to take into account
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the ordinality of the data. Earliest works are probably those of Vermunt [36], which define a

general class of non-parametric models by imposing linear or log-linear inequality restrictions

on probabilities. Following a similar idea, [12, 18] define probability distribution for ordinal

data by imposing different models for the decrease of the probabilities on each side of the

mode of the distribution. These models are used by their authors in a model-based clustering

framework. In the third approach, the probability distribution for ordinal data is obtained by

discretization of the probability distribution of an underlying continuous (Gaussian) variable.

For instance, [12] builds a clustering model using this assumption and estimating the unknown

discretization thresholds via an EM algorithm [7]. In [29], a similar approach is extended to

multivariate ordinal data by considering a conditional independence assumption and by using

a Bayesian paradigm for the model estimation. In the fourth approach, the models are

artificially constructed to obtain a probability distribution having some desired properties

such as the presence of a unique mode, a decrease of the probabilities from each side of this

mode, the possibility to achieve a uniform distribution... This is the case of the CUB model

[6], which is defined as a mixture of two components, a binomial distribution (which allows

to weight all the categories) and a uniform distribution:

p(x; ξ, α) = αCx−1
m−1ξ

m−x(1− ξ)x−1 + (1− α)/m,

where m is the number of categories, ξ ∈ [0, 1] allows to control the mode position and

α ∈ [0, 1] manages a trade-off between a unimodal and a uniform distribution. The extended

CUB model [14] considers additionally a third component: a Dirac distribution. The CUB

model is also extended in order to get rid of the notion of distance between categories induced

by the use of the binomial distribution (non linear CUB model (NLCUB), [24]). However, the

CUB or NLCUB distribution can not be used easily in a clustering context since a mixture of

CUB distributions is not identifiable. Indeed, in the mixture case, the uniform components

of different CUB components are indistinguishable. Let us finally cite some other geometric

clustering procedures for ordinal data. For instance, [32] consider hierarchical clustering with

ad-hoc distance metric and similarity measures (Kendall’s τ [20], Goodman-Kruskal’s γ [10]

or Somers’ d [34]), and [9] define a non parametric clustering algorithm based on thresholding

contingency tables.

In this work, an original approach is considered to define a new probability distribution for

ordinal data. This approach consists in modeling the hypothetical data generating process.

This general principle has already been successfully used in [4, 15] in the case of ranking data.
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However, ranking and ordering data being totally different1, the data generating process is

also totally different: It was a sorting algorithm for ranking data and it is now a search algo-

rithm for ordinal data as we describe now. A search algorithm is based only on comparisons

between categories and thus the ordinal nature of data is wholly respected during the process

and no link to any nominal or continuous distribution is necessary. The retained search algo-

rithm is the binary search algorithm since it minimizes the averaged number of comparisons

between objects [21]. The parametrization of the model with a position parameter (the modal

category) and a precision parameter follows naturally from the model construction, as well

as convenient properties like the existence of a unique mode, the decrease of the probability

distribution on each side of the mode, the possibility to have a uniform or a Dirac distribu-

tion. Maximum likelihood estimation of model parameters can be simply performed using an

EM algorithm, since the path in the binary search algorithm can be viewed as a particular

latent variable. However, this estimation is of combinatorial complexity (as for models based

on latent Gaussian variables) but is easily tractable for ordinal data until eight categories,

which is the case of most ordinal variables (for instance in the reference book [1] all ordi-

nal data have less than eight categories). Extension to more than eight categories could be

considered by using a SEM-Gibbs-like estimation algorithm (see [15, 16] for instance), but is

not developed in this paper because of the relative rarity of such data. Finally, the model

is extended to the clustering of multivariate ordinal data through a mixture model of the

univariate and unimodal proposed distribution with a conditional independence assumption

[11]. As a matter of fact, we do not claim that the process generating ordinal data has to

follow a search algorithm and thus that any ordinal distribution should have to follow the

proposed unimodal related distribution. Our contribution is just to exhibit, in an original

but ordinal “compatible” way, a univariate, unimodal, meaningful (position and precision

parameters) and parsimonious distribution which could be then used as a basic ingredient for

multivariate model-based clustering. From a practical point of view also, this proposal seems

to make sense in the real data sets studied at the end of the present paper according to the

BIC model criterion [33].

The paper is organized as follows. Section 2 presents the new probability distribution for

ordinal data, its properties and the EM parameter estimation algorithm. Section 3 presents

the clustering algorithm for multivariate ordinal data, whereas Section 4 is devoted to numer-

ical applications on simulated and real data. Section 5 concludes and draws possible future

1Ranking data occur when some judges are asking to sort m objects, quoted by 1, . . . ,m, according to a
preference order. Thus, a ranking data is a permutation of the whole data set {1, . . . ,m}. Ordinal data occur
when some judges are asking to give a note among the set of ordered notes 1 < . . . < m. Thus, an ordinal
data is a unique element of {1, . . . ,m}.
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works.

2 Univariate model design

In this section, a new probability distribution for homogeneous ordinal data is designed. By

homogeneous we mean that no cluster is present in the data. This distribution, quoted as

BOS model in the sequel (for Binary Ordinal Search), will be parametrized by two meaningful

parameters: a position parameter µ and a precision parameter π. The design of the model

relies on the assumption that ordinal data is the result of a stochastic binary search algorithm.

This choice will be motivated by two arguments: First, a search algorithm relies only on order

comparisons (information present in ordinal data); Second, its binary version provides some

optimality properties (see details below). The section is organized as follows: Section 2.1

depicts how ordinal data can be viewed as the result of a search algorithm, whereas in Section

2.2, stochastic events are introduced in this search algorithm in order to define a probability

distribution on the whole set of categories. Section 2.3 presents the model properties and

Section 2.4 describes maximum likelihood estimation of the model parameters.

2.1 Ordinal data as the outcome of a binary search algorithm

An ordinal variable µ, with m categories {l1, . . . , lm}, is a categorical variable with categories

whose order is significant. The total order relation between the categories is quoted in the

sequel “≺”: l1 ≺ . . . ≺ lm. Moreover, for simplicity, the categories will be numbered {1, ..., m}

according to their order. Following this notation, an ordinal variable µ is therefore an element

of {1, . . . , m}.

The major assumption of this work is to consider µ as the outcome of a search process

within the ordered table (1, . . . , m) (see [21] for a description of main search algorithms).

More precisely, the exact value of µ is unknown at the beginning of the process but basic

order comparisons “≻” and “≺” between the unknown µ and any element of {1, . . . , m} are

available (note that equality “=” is deduced from the combination of “≻” and “≺”). Then, the

exact value of µ is gradually revealed after using successively these basic order comparisons

through the table. The great advantage of this approach is to strictly respect the ordinal

nature of µ relying only on order relations between possible elements.

We make also the additional assumption that some erroneous comparisons could arise

through the search process, so, a possibly erroneous outcome x ∈ {1, . . . , m} (it means possibly

different from µ) can be obtained. Obviously, the value of x depends both on the involved
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search process and also on the way the wrong comparisons occur. In order to minimize

the number of potentially wrong comparisons, it is necessary to minimize the number of

comparisons performed during the search process. Since the binary search algorithm is optimal

from this number of comparisons point of view [21], we retain it as the best candidate for

generating ordinal data.

We recall now the general principle of a binary algorithm in which we added the possibility

to perform wrong comparisons. It iterates in m − 1 iterations and the outcome is a data

x ∈ {1, . . . , m}. Starting from an interval ej = {b−j , . . . , b
+
j } ⊂ {1, . . . , m}, the jth iteration

(1 ≤ j ≤ m− 1) is divided into three steps:

Step 1 (break point yj): choose an element yj ∈ ej to break the interval ej;

Step 2 (accuracy zj): choose the accuracy zj ∈ {0, 1} of the order comparison between yj

and µ where zj = 0 when the comparison is blind (what means not using µ to perform

comparison) and where zj = 1 when the comparison is perfect (what means using µ to

perform comparison). Thus, wrong comparisons (according to µ) can only arise from

blind comparisons.

Step 3 (subinterval ej+1): choose a new search interval ej+1 ∈ {e−j , e
=
j , e

+
j } depending on

yj and zj where e−j = {b−j , . . . , yj − 1} is the interval on the left of the break, e=j = {yj}

is restricted to the break point yj, e
+
j = {yj + 1, . . . , b+j } is the interval on the right of

the break.

The sequence of ej , yj, zj resulting from the binary search algorithm is the following:

e1 = {1, . . . , m} → y1 → z1 → e2 → . . . → ym−1 → zm−1 → em = {x} → ym = x. (1)

A standard binary algorithm usually would select the break point yj at the middle of the

interval ej. Moreover no errors would be considered with such a standard deterministic

algorithm, so zj = 1 for all j and, consequently, the interval ej+1 would be necessarily the one

containing the researched value µ. However, in order to obtain a probability distribution on

the whole set of categories {1, . . . , m}, we assume that the values of yj, zj and ej are unknown

(missing values) and thus we propose to model our lack of knowledge by particular random

variables. It leads to a stochastic binary algorithm, defining itself a probabilistic model on

the ordinal variable x ∈ {1, . . . , m}, that we describe both now.
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2.2 Stochastic binary algorithm and related probabilistic model

A probability distribution is now associated with each decision taken at the three steps of

the previous binary search algorithm. It will provide at the end a probabilistic model on

x ∈ {1, . . . , m}.

Starting with p(e1) = 1, each of the previous three steps is defined as follows at iteration j:

Step 1 (break point yj): yj is uniform in ej , so, I(.) being the indicator function and |ej | =

b+j − b−j ,

p(yj|ej) =
1

|ej|
I(yj ∈ ej); (2)

Step 2 (accuracy zj): zj ∈ {0, 1} is drawn from a Bernoulli of parameters π ∈ [0, 1]:

p(zj |ej; π) = πI(zj = 1) + (1− π)I(zj = 0); (3)

Step 3 (subinterval ej+1): the distribution of ej+1 ∈ {e−j , e
=
j , e

+
j } depends on yj and zj:

• If the comparison is blind (zj = 0), it is independent on µ and ej+1 is chosen

with a probability proportional to the length (i.e. the number of elements) of the

three allowed intervals e−j , e
=
j and e+j :

p(ej+1|yj, ej, zj = 0) =
|ej+1|

|ej|
I(ej+1 ∈ {e−j , e

=
j , e

+
j }); (4)

• If the comparison is perfect (zj = 1), the interval containing µ (or the closest

interval to µ if µ is no more in the allowed intervals at this step) is retained almost

surely:

p(ej+1|yj, ej, zj = 1;µ) = I(ej+1 = argmin
e∈{e−j ,e=j ,e+j }

δ(e, µ))I(ej+1 ∈ {e−j , e
=
j , e

+
j }), (5)

where δ measures a “distance” between µ and an interval e = {b−, . . . , b+}:

δ(e, µ) = min(|µ− b−|, |µ− b+|). (6)

Notice that the arithmetic distance can be used here since the categories are num-

bered {1, ..., m} according to their order (refer to the beginning of Section 2.1).

From this algorithm, it is easy to express the distribution of x. First, we marginalize on
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zj by using (3), (4) and (5)

p(ej+1|ej , yj;µ, π) = πp(ej+1|yj, ej , zj = 1;µ) + (1− π)p(ej+1|yj, ej, zj = 0). (7)

Then we marginalize on yj by combining with (2)

p(ej+1|ej ;µ, π) =
∑

yj∈ej

p(ej+1|ej , yj;µ, π)p(yj|ej). (8)

The last step consists of expressing p(x;µ, π) (= p(em;µ, π) from (1))2 thanks to the Marko-

vian properties of the ej ’s and by using (8)

p(x;µ, π) =
∑

em−1,...,e1

p(em, em−1, . . . , e1;µ, π) (9)

=
∑

em−1,...,e1

m−1
∏

j=1

p(ej+1|ej ;µ, π)p(e1). (10)

In the following we will note this model BOS for Binary Ordinal Search.

2.3 Properties of the BOS model

Even though ordinal data are compatible with any distributional shape [35], some properties

of the BOS model are very appealing from an interpretation point of view: unimodality,

precision parameter governing the prominence of the mode, identifiability of the parameters.

Mode µ is a position parameter indicating the mode of the distribution (see Proposition A.3).

In addition, this mode is unique and probabilities monotically decrease around it (see

Proposition A.6). Let us notice that the BOS model can consequently not model a

distribution with two neighbouring modes.

Precision π is a precision parameter since the mode µ is uniformly more pronounced when

π grows both from absolute (p(µ;µ, π) is an increasing function of π) and relative

(p(µ;µ, π)− p(x;µ, π) is an increasing function of π for all µ 6= x) points of view (see

Propositions A.4 and A.5 respectively). At the limit, the distribution is a Dirac in µ

when π = 1 (see Proposition A.2). On the contrary, the distribution is uniform on

{1, . . . , m} when π = 0 (see Proposition A.1).

2We will do the slight abuse of notation p(x;µ, π) = p({x};µ, π).
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Identifiability The parameters (µ, π) of the distribution are identifiable if π > 0 (see Propo-

sition A.7).

All propositions and related proofs are given in Appendix A. The shape of the BOS

distribution for different values of µ and π is also displayed on Figure 1.
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Figure 1: Distribution p(x;µ, π): shape for m = 5 and for different values of µ and π.

2.4 Maximum likelihood estimation by EM algorithm

let us consider a n-sample (x1, . . . , xn) independent and identically distributed from p(x;µ, π).

The aim is to estimate the parameters (µ, π) by maximizing the log-likelihood ℓ(µ, π) =
∑n

i=1 ln p(xi;µ, π). The EM algorithm [7] can be used since we have a model with missing

values: the break points yij, the accuracies zij and the subintervals eij (i = 1, . . . , n and

j = 1, . . . , d). These missing values are in the following quoted by c = (c1, . . . , cn), ci =

{yij, zij , eij}j=1,...,m−1 being the missing values associated to individual xi.

Starting from initial parameters (µ, π)[0] and noting Ci the space where ci stands, the qth

iteration (q ≥ 1) of the algorithm is the following:
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• E Step: for all ci ∈ Ci (i = 1, . . . , n), compute the conditional probabilities of the

missing data

p(ci|xi;µ
[q], π[q]) =

p(ci, xi;µ
[q], π[q])

p(xi;µ[q], π[q])
. (11)

Since each type of missing value evolves in a discrete space, this step requires to compute

p(ci, xi;µ, π) for all ci ∈ Ci.

• M Step: maximize over µ[q+1] ∈ {1, . . . , m} the expected conditional completed log-

likelihood

ℓ̄c(µ
[q+1]) =

n
∑

i=1

∑

ci∈Ci

p(ci|xi;µ
[q], π[q]) ln p(xi, ci;µ

[q+1], π[q+1]) (12)

where

π[q+1] =

∑n

i=1

∑m−1
j=1 p(zij = 1|xi;µ

[q], π[q])

n(m− 1)
. (13)

The algorithm is stopped typically when a predefined threshold ǫ > 0 is reached in the relative

change of the log-likelihood: |ℓ(µ[q+1], π[q+1])− ℓ(µ[q], π[q])| < ǫ.

In practice, it is easier to run the whole EM algorithm for each possible value of µ ∈

{1, . . . , m} and finally to retain the run leading to the largest log-likelihood value.

Computational cost Computing the log-likelihood ℓ(µ, π) and all the terms in Equations

(11), (12) and (13) present in both the E Step and the M Step relies on computing the key set

Pi = {p(ci, xi;µ, π), ci ∈ Ci}. Because of the combinatorial process generating the data, the

cardinal of Pi is of exponential order and then its computational cost is of exponential order

also. Consequently, this algorithm can be used for ordinal data with m ≤ 8, which is the

case for most ordinal variables. For instance, all the data sets studied in the reference book

[1] concern ordinal data with fewer than 8 categories. In this case, the computational time of

Pi remains very low as it is illustrated in Figure 2 (we used a Matlab code on a Intel Core

i7-3537U CPU 2.00GHz, 8Go RAM). Note also that computing Pi for a n-sample is then no

really more complex since only m different modality values are present in this whole sample.

It’s fair enough to say that this works for small scales and many scales are indeed small,

but any wording that somehow implies that a bigger scale is an oddity should be avoided
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Figure 2: Time to compute the set Pi = {p(ci, xi;µ, π), ci ∈ Ci} which is the key set to
perform one iteration of the EM algorithm.

3 Latent class extension for clustering

In this section a clustering algorithm for multivariate ordinal data is proposed, based upon a

mixture of multivariate BOS models built with a conditional independence assumption.

3.1 Multivariate probabilistic model for clustering

Let x = (xh)1≤h≤d be a multivariate ordinal variable, where the hth component xh is an ordinal

variable of mh categories. Let w = (w1, . . . , wg) ∈ {0, 1}g be a group indicator variable, such

that wk = 1 if the observation belongs to cluster k and wk = 0 otherwise. w is assumed to

follow a one order multinomial distribution:

w ∼ M(1, α1, . . . , αg)

where αk is the mixing proportion of cluster k, αk > 0 and
∑g

k=1 αk = 1. Conditionally on

cluster k, the distribution of x is assumed to be:

p(x|wk = 1;µk,πk) =
d
∏

h=1

p(xh;µ
h
k, π

h
k )

11



where µk = (µ1
k, . . . , µ

d
k) and πk = (π1

k, . . . , π
d
k). This conditional independence assumption

states that, conditionally on the belonging to cluster k, the d ordinal responses of an individual

are independently drawn from d univariate BOS models of parameters µh
k and πh

k (h =

1, . . . , d). Conditional independence is commonly used for its simplicity in the clustering

context (k-means [13], nominal data [11], ranking data [15]...), and experiments show that

the clustering algorithm we proposed is relatively robust to this assumption (Section 4.1).

The marginal distribution of x is then

p(x;α,µ,π) =

g
∑

k=1

αkp(x|wk = 1;µk,πk)

with α = (α1, . . . , αg), µ = (µ1, . . . ,µg) and π = (π1, . . . ,πg).

Remark The identifiability of this mixture model is not theoretically studied in this work,

and could be the subject to a future work, inspired by [2] which gives conditions for the

identifiability of a mixture of multivariate Bernoulli. Nevertheless, it should be noticed that

no identifiability problems have been encountered in simulation studies and practical appli-

cations. See for instance experiments given at the end of Section 3.2 below.

3.2 Maximum likelihood estimation by AECM algorithm

AECM description let us consider a n-sample (x1, . . . ,xn) of multivariate ordinal data,

independent and identically distributed from p(x;α,µ,π). As for the parameter estima-

tion in the homogeneous univariate case (Section 2.4), the model parameters (α,µ,π) can

be estimated by maximizing the log-likelihood ℓ(α,µ,π) =
∑n

i=1 p(xi;α,µ,π) using an

EM-like algorithm, with one additional latent variable: the group indicators (w1, . . . ,wn)

of the observed data. Thus, the missing values associated to the individual xi are now

ci =
{

wi, {yhijk, z
h
ijk, e

h
ijk}1≤j≤mh−1, 1≤k≤g, 1≤h≤d

}

with straightforward notations. Starting from

initial parameters (α,µ,π)[0], the qth iteration (q ≥ 1) of the algorithm is the following:

• E Step: compute the conditional probabilities, for all 1 ≤ i ≤ n and 1 ≤ k ≤ g

p(wik = 1|xi;α
[q],µ[q],π[q]) =

α
[q]
k p(xi|wik = 1;µ

[q]
k ,π

[q]
k )

∑g

k′=1 α
[q]
k′ p(xi|wik′ = 1;µ

[q]
k′ ,π

[q]
k′ )

.

• M Step: update the estimation of the model parameters as follows:

12



– for the mixing proportion (1 ≤ k ≤ g),

α
[q+1]
k =

1

n

n
∑

i=1

p(wik = 1|xi;α
[q],µ[q],π[q]),

– for the mode and precision parameters, (µh
k , π

h
k)

[q+1] are estimated by an internal

EM algorithm (as described in Section 2.4), by weighting each observation by

p(wik = 1|xi;α
[q],µ[q],π[q]), for all (k, h) ∈ {1, . . . , g} × {1, . . . , d}.

As for the EM algorithm described in Section 2.4, the algorithm is stopped when a predefined

threshold is reached in the relative change of the log-likelihood.

The proposed algorithm is known as Alternating Expectation-Conditional Maximization

(AECM, [28, Section 8.7]). It has the same convergence properties than a generalized EM

algorithm (GEM), increasing the (observed-data) likelihood at each step, even though the

internal EM algorithm used in the M step is iterated only once.

AECM evaluation We provide now a set of simulated data to illustrate the behavior of

our AECM estimation procedure. We simulate 20 data sets of size n ∈ {50, 500} from a

bivariate and a trivariate (d ∈ {2, 3}) mixture of two and three BOS components (g ∈ {2, 3}),

each dimension having three categories (mh = 3), with equal (αk = 1/g) or different mixing

parameters (αk = k/(
∑g

k′=1 k
′)), other parameters being fixed to µh

k = k and πh
k = 0.5,

for k = 1, . . . , g and h = 1, . . . , d. On each data set and with the true g value, the AECM

algorithm is run 10 times with uniform random starting parameters, each run being stopped as

soon as the following relative change of the log-likelihood is reached: |ℓ(α[q+1],µ[q+1],π[q+1])−

ℓ(α[q]µ[q],π[q])| < 10−3. Only the run providing the best log-likelihood is finally kept among

the 10 ones. The mean of the Kullback-Leibler divergence of the estimated mixture parameter,

the mean of the distance between each kind of parameter (mixing proportion α, mode µ,

precision π) and its estimate3, and also all associated standard deviations are displayed in

Table 1. The AECM procedure results improve a lot between n = 50 and n = 500, as would

be required for consistency of parameter estimates.

On each data set, the four cluster number candidates {1, . . . , 4} are now considered with

the previous tuning values for AECM. The estimated value ĝ of g corresponds to this one

leading to the largest BIC criterion value [33], BIC being defined by

BIC = ℓ̂− 0.5ν ln(n), (14)

3For avoiding the label cluster dependency, we keep the best distance over all label permutations.
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αk equal αk different
d = 2 d = 3 d = 2 d = 3

g = 2 g = 3 g = 2 g = 3 g = 2 g = 3 g = 2 g = 3
n 50 500 50 500 50 500 50 500 50 500 50 500 50 500 50 500

KL
.055 .005 .070 .007 .092 .007 .184 .011 .051 .005 .092 .006 .096 .007 .183 .011
.044 .003 .037 .002 .056 .005 .102 .004 .028 .005 .049 .003 .060 .004 .087 .004

∆α
.129 .046 .126 .072 .111 .037 .124 .043 .185 .077 .132 .077 .145 .047 .126 .058
.094 .039 .068 .039 .084 .028 .051 .028 .116 .049 .089 .045 .072 .041 .085 .035

∆µ
.012 .000 .091 .000 .025 .000 .083 .000 .037 .000 .116 .000 .025 .000 .250 .000
.055 .000 .114 .000 .081 .000 .129 .000 .122 .000 .144 .000 .061 .000 .186 .000

∆π
.173 .060 .269 .172 .178 .048 .252 .081 .221 .080 .268 .176 .188 .063 .258 .099
.067 .028 .058 .061 .054 .018 .051 .030 .092 .037 .060 .056 .051 .027 .043 .031

Table 1: Mean of the Kullback-Leibler divergence (KL), of the mean distance between the
true α and its estimated value α̂ (∆α =

∑g

k=1 |αk − α̂k|/g), of the mean distance between

the true µ and its estimated value µ̂ (∆µ =
∑g

k=1

∑d

h=1 |µ
h
k− µ̂h

k|/(gd)), of the mean distance

between the true π and its estimated value π̂ (∆π =
∑g

k=1

∑d

h=1 |π
h
k − π̂h

k |/(gd)), for the
multivariate BOS mixture estimate provided by the AECM algorithm. The corresponding
standard deviation of each is italic.

where ℓ̂ denotes the maximum log-likelihood value of the model and ν the corresponding

number of continuous parameters. Table 2 displays the frequency of ĝ retained by BIC. The

results of the BIC criterion improve a lot between n = 50 and n = 500, as would be required

for consistency of g value estimates.

αk equal αk different
d = 2 d = 3 d = 2 d = 3

g = 2 g = 3 g = 2 g = 3 g = 2 g = 3 g = 2 g = 3
ĝ\n 50 500 50 500 50 500 50 500 50 500 50 500 50 500 50 500
1 12 . 19 2 4 . 14 . 17 . 17 . 9 . 13 .
2 8 20 1 1 16 20 3 . 3 20 3 18 11 20 7 2
3 . . . 17 1 . 3 20 . . . 2 . . . 18
4 . . . . . . . . . . . . . . . .

Table 2: Frequency (on 20 data sets) of each estimate ĝ provided by the BIC criterion derived
from the AECM algorithm.

3.3 Comparison with state of the art methods

Competitors to the proposed model-based algorithm (multivariate BOS mixture) are mainly

the multinomial model (which ignores the order information), the Gaussian model (which as-

signs an arbitrary numerical value to each category) and the models based on the discretization

of latent Gaussian variables [12, 29].

From a model complexity point of view (i.e. the number of continuous parameters),

the multivariate BOS mixture model is the most parsimonious model (see Table 3). From

a probabilistic point of view, the multinomial model, which is an efficient competitor for

14



large data sets thanks to its high flexibility, has the drawback to be totally non identifiable

for univariate ordinal data and thus to be unavailable in this case. From a computational

point of view, the model based on the discretization of latent Gaussian variables suffers from

numerical integration difficulties in its frequentist version [12]. In its Bayesian version [29], the

main problem is the large amount of hyper parameters to fix, whose choice should significantly

influence the resulting clustering. The less computational demanding estimation methods are

the multinomial and the Gaussian models. However, as we noted at the end of Section 2.4,

the BOS is particularly fast to estimate until m = 8 categories, which is the case for many

ordinal scales.

model continuous (ν) discrete g = 2, d = 4,mh = 4

BOS mixture g − 1 + gd gd 9 (+8 discrete)
multinomial [11] g − 1 + g

∑

h(m
h − 1) . 25

Gaussian (diagonal) [5] g − 1 + 2gd . 17
Latent Gaussian [12] g − 1 + gd(d + 3)/2 +

∑

h(m
h − 1) . 41

Table 3: Number of continuous and discrete parameters for the BOS mixture and its com-
petitors.

4 Numerical illustration

The aim of this section is first to evaluate, through simulation studies, the robustness of the

mixture of BOS models in a clustering context, and second to illustrate its usefulness on real

data sets. In all the experiments reported in this section, the AECM algorithm is used with

uniform random initializations for parameters and with a threshold for the relative change of

the log-likelihood of 10−3.

4.1 Simulated data

In these simulation studies, the robustness of the proposed clustering algorithm to the quan-

tization of categories and to the conditional dependency assumption is evaluated.

Robustness to category quantization As it is argued throughout this paper, the BOS

model building is well in accordance with the fundamental nature of ordinal data since it does

not rely on any somewhat artificial continuous information. The goal of this first numerical

study is to illustrate that the BOS mixture model is much more robust than the Gaussian
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mixture model when they are both applied on any artificial continuous coding (quantization)

of the categories.

To illustrate this important property for ordinal data, let us consider the following uni-

variate distribution of ordinal data x (with m = 4 categories), based on a binned univariate

Gaussian distribution (h = 1, . . . , 4, k = 1, 2):

p(x = h; ak, b1, . . . , b5) = p(bh ≤ xgaus < bh+1) with xgaus ∼ N (ak, 1). (15)

N (a, 1) designates the Gaussian distribution of center a and unit variance, the bounds

b1, . . . , b5 satisfying the following constraint ({h, h′, H} ∈ {1, . . . , 4}3)

∃!H s.t. (1)∀h 6= H, pkH ≥ pkh, (2)∀h < h′ < H, pkh ≤ pkh′, (3)∀H < h < h′, pkh ≥ pkh′.

(16)

The goal of such constraints is to obtain decreasing probabilities pkh = p(x = h; ak, b1, . . . , b5)

around a unique modal interval. In this manner, each distribution pk = {pkh}1≤h≤4 respects

the property of monotonic decrease around the mode held by the BOS distribution, even

though it can be very different from a BOS distribution. Let us notice finally that this

simulation scheme corresponds to a latent Gaussian model [12, 29].

b2 b3 ak b4

pk1

pk2

pk3

pk4

Figure 3: Illustration of the parameters ak, b2, b3, b4 and the associated probabilities pkh

(1 ≤ h ≤ 4).

Then, 100 samples of size n = 100 are drawn from the bi-component mixture 0.5p1+0.5p2

where parameters a1, a2, b1, b2, b3, b4 and b5 are fixed as follows for each n-sample. Figure 3

illustrates the parameters ak, b2, b3, b4 and the associated probabilities pkh (1 ≤ h ≤ 4).

• a1 = 0 and a2 is deduced from a given Bayes error rate E of the underlying Gaussian

mixture. The Bayes error rate, which indicates the separation of the clusters, is defined
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E = 0.1 E = 0.2
BOS Gaussian BOS Gaussian

cor(∆, Ê) 0.0436 0.5144 0.0128 0.5173

mean(Ê) 0.2676 0.3332 0.3601 0.3796

sd(Ê) 0.1605 0.1611 0.1144 0.1192

Table 4: Results of the robustness to category coding. We have noted ∆ = |(b4−b3)−(b3−b2)|
the difference between the ranges of the second and the third intervals, Ê the empirical
classification error rate, cor(·, ·) the empirical correlation, mean(·) the empirical mean, sd(·)
the standard deviation.

for the present bi-component mixture as:

E = 0.5
∑

h∈Ω1

p2h + 0.5
∑

h∈Ω2

p1h

where Ω1 = {1 ≤ h ≤ 4 : p1h ≥ p2h} (and symmetrically for Ω2). We plan two different

Bayes error rates E ∈ {0.1, 0.2}.

• Conditionally to (16) (it means by throwing away realizations until (16) is fulfilled), the

bounds bh (h = 1, . . . , 5) are randomly chosen with the following design

b1 = −∞, b2 ∼ N (0, 1), b3|b2 ∼ b2 + u1, b4|b3 ∼ b3 + 8u2, b5 = +∞,

where u1 and u2 designate two independent random variables from the uniform dis-

tribution on [0, 1]. In this way, the second and the third intervals can possibly have

very different ranges b3 − b2 and b4 − b3, the difference of these ranges being noted

∆ = |(b4 − b3)− (b3 − b2)|. It is an important matter for illustrating robustness of the

BOS model to scale data.

On each n-sample, a two component BOS model and a two component Gaussian model4 are

estimated by their respective suitable EM and AECM algorithms. Table 4 displays results

which clearly indicate that the BOS model is drastically less sensitive to the choice of bounds

bh than the Gaussian model (see the correlation values) and also that the BOSmodel provides

more accurate partitioning (see the mean and the standard deviation of the classification error

rates).

4Note that a two component multinomial model is not performed in this univariate situation since it is not
identifiable.
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Robustness to conditional dependency The goal of this second simulation study is

to show that the BOS mixture model is relatively robust to (i.e. little influenced by) the

violation of the class independence assumption, in particular if clusters are well separated,

situation of particular interest in clustering. For this, we define a specific mixture model

in which the latent class assumption is violated, simulate data according to this model and

compare our clustering results with the known partition according to the classification error

rate.

For this, let us consider the following cumulative distribution function (cdf) of a mixture

of Gaussian copula:

P(x;α,µ,π,Γ) =

g
∑

k=1

αkΦd(Φ
−1(P(x1;µ1

k, π
1
k)), . . . ,Φ

−1(P(xd;µd
k, π

d
k)); 0,Γ), (17)

where P(x;µ, π) is the univariate BOS cdf, Φ(·) is the cdf of N (0, 1) and Φd(·; 0,Γ) is the cdf

of the d-variate normal distribution with center 0 and with correlation matrix Γ as covariance

matrix. The Gaussian copula [31] has the nice property to easily define a kind of multivari-

ate BOS model for which marginal distributions are exactly univariate BOS and for which

pairwise component correlations are totally described by the correlation matrix Γ.

In our numerical experiments, we consider bivariate data (d = 2) with four categories

each (m1 = m2 = 4), a bi-component mixture (g = 2) with BOS parameters µ1 = (2, 3),

µ2 = (3, 2), π1 = π2 = (π, π), with equal mixture coefficients (α1 = α2 = 0.5), and with

a correlation matrix Γ where the unique correlation coefficient is noted ρ. The value of π is

fixed from a given value of the Bayes error rate E . Note that in the case ρ = 0, the latent

class assumption (made by the BOS model) is satisfied.

Twenty samples of size n = 1000 are drawn from (17) with crossed designs E ∈ {0.1, 0.2, 0.3}

and ρ ∈ {0.0, 0.4, 0.8} and a bi-component BOS mixture model is estimated on each sample

with the EM algorithm. Classification error rate Ê is displayed in Table 5. It appears that

Ê are poorly influenced by the class conditional dependence, especially when components are

well-separated, situation of particular interest in the clustering framework.

4.2 Application to AERES evaluation

Data Created by the French programme law on research of 2006 and up and running since

March 2007, the AERES (Evaluation Agency for Research and Higher Education) is tasked

with evaluating research and higher education institutions, research organisations, research

units, higher education programs and degrees and with approving their staff evaluation pro-
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ρ E = 0.1 E = 0.2 E = 0.3
0.0 0.1083 (0.0088) 0.2269 (0.0692) 0.3407 (0.0537)
0.4 0.1125 (0.0846) 0.2469 (0.0908) 0.3893 (0.0790)
0.8 0.1391 (0.0798) 0.2613 (0.0759) 0.4151 (0.0800)

Table 5: Results of the robustness to conditional dependency. Mean of the classification error
rate Ê is displayed (its standard deviation in parenthesis).

cedures. The evaluation is generally done on an ordinal scale, and the results are available on

the agency website5. In the present study, the Bachelor’s degrees evaluation of March 2011 for

the 23 universities of the French academies of Bordeaux, Toulouse, Lyon, Montpellier, Greno-

ble are analyzed. The universities have been evaluated through four criteria: programme

leadership (pilot training, PT), educational project (EP), schemes for helping students to

succeed (support success, SS), integration of graduates into the job market and continuation

of chosen studies (employability and further studies, EFS). The evaluations on a (classical)

ordinal scale {A+, A, B, C} are available in Appendix B.

Global analysis First of all, a global analysis is performed by estimating the BOS model

(g = 1) on the whole data set by the one-cluster EM algorithm, and the corresponding

parameter estimation is obtained:

µ̂ = (B,A,B,B) and π̂ = (0.37, 0.39, 0.27, 0.59).

This preliminary analysis exhibits that these French universities have relatively good edu-

cational projects, but are less efficient in term of program leadership, schemes for helping

students to succeed, and integration of graduates into the job market and continuation of

chosen studies. Moreover, the evaluations concerning the support success are more heteroge-

neous (low value of π̂3) than the employability and further studies (higher value for π̂4). A

clustering analysis may allow to identify more homogeneous groups of universities.

Cluster analysis In a second step, a clustering is performed with one to six clusters.

Mixture of multivariate BOS models are compared with the multinomial model (which is

a parsimonious version of the model used in the Latent GOLD software [37]) and with the

Gaussian (diagonal) model, on the basis of the BIC criterion (see Equation (14)). Results in

Table 6 show that the best model is a mixture of BOS with four components. Note that the

5http://www.aeres-evaluation.com/
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Gaussian model fails to estimate more than two components because of degeneracy problems

appearing for larger number of clusters when considering ordinal variables as continuous ones,

since many values are obviously exactly repeated.

Model g = 1 g = 2 g = 3 g = 4 g = 5 g = 6
BOS -111.90 -109.14 -107.80 -104.25 -108.49 -114.28
Multinomial -108.37 -111.50 -120.08 -135.01 -151.84 -169.75
Gaussian (diagonal) -105.76 -109.31 NaN NaN NaN NaN

Table 6: Values of the BIC criterion for the BOS mixture model and its competitors for 1 to
6 clusters on the AERES data set.

Before analyzing the clustering into four groups with the BOS mixture model, let us

graphically compare the clustering obtained by the three models for g = 2. Using the pro-

jection of data into the first and the third axes6 of multiple correspondance analysis (Figure

4), we note that the partition obtained by the proposed algorithm is closer to the Gaussian

partition than to the multinomial one.
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Figure 4: Clustering of the universities of the AERES data set into two clusters with the
BOS mixture model and its competitors displayed in the first and the third axes of multiple
correspondance analysis (MCA). Values of ordinal variables are also displayed in superposition
(“PT B” for “pilot training with evaluation B”, etc.).

let us now concentrate our analysis on the clustering into four groups with the BOS mix-

ture selected by BIC (Figure 5 and Table 7). The first cluster is composed by universities with

homogeneous high scores for all criteria, whereas the third cluster consists also in homoge-

neous but lower scores. The second cluster is composed by universities having heterogeneous

scores for the different criteria: good and very good for the educational project and the sup-

port success, but poor for the employability and further studies of the students. Finally, the

fourth cluster is composed by the universities having the lowest scores at the four criteria.

6All partitions are better displayed in the first and the third axes than in the first and second axes.
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Notice finally that all groups and all evaluation criteria have much more precision (higher

value of πh
k ) than in the preliminary global analysis, due to the fact that splitting up the data

set into clusters makes the clusters more homogeneous than the data set was before.

−3 −2 −1 0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

1st MCA axis

3
rd

 M
C

A
 a

x
is

BOS

 

 

PT C

PT B

PT A

PT A+
EP B

EP A
EP A+

SS C

SS B

SS A

SS A+

EFS C

EFS B

EFS A

Class 1

Class 2

Class 3

Class 4

Figure 5: Clustering of the universitie of the AERES data set into four clusters with the BOS

mixture model displayed in the first and the third axes of multiple correspondance analysis
(MCA). Values of ordinal variables are also displayed in superposition (“PT B” for “pilot
training with evaluation B”, etc.).

cluster proportion αk mode µk precision πk

1 0.30 (A, A, A, B) (0.89, 0.62, 0.83, 0.83)
2 0.18 (B, A, A+, C) (0.36, 0.73, 0.99, 0.99)
3 0.38 (B, B, B, B) (0.86, 0.48, 0.69, 0.99)
4 0.13 (C, B, B, C) (0.99, 0.99, 0.62, 0.99)

Table 7: Parameter estimation for the BOS mixture model with four clusters on the AERES
data set.

4.3 Application to Arthritis data

Data The data come from a clinical trial in which 303 patients suffering from rheumatoid

arthritis are randomly assigned to a treatment group and to a placebo group. At the start of

the study and after one month, three months and five months of treatment, patients assessed

their arthritis on the ordinal scale: good (quoted by 3), fair (2), poor (1). This data, early

studied in [23] and [1], has been considered in a clustering context using only the patients

assessments after one and five months in [29]. In the present work, all assessments except

the first one occurring before to take the treatment/placebo (baseline) are considered: one,

three and five months. The first four patients description has been displayed in Table 8 for a

comprehensive understanding.
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Arthritis Assessment
subject treatment baseline 1 month 3 months 5 months

1 Auranofin 2 1 1 1
2 Auranofin 3 2 2 2
3 placebo 2 3 1 3
4 placebo 3 1 3 2

Table 8: Four observations from the Arthritis data set.

Global analysis We begin by checking the estimated BOS parameters for the one cluster

case (g = 1) and we obtain:

µ̂ = (2, 3, 3) and π̂ = (0.15, 0.10, 0.22).

It appears that arthritis seems to evolve favorably over the months but precision of the patient

perception is very heterogeneous (low πh values).

Cluster analysis In a second step, a clustering is performed with one to six clusters. A

mixture of multivariate BOS models is compared with the multinomial model (which is a

parsimonious version of the model used in the Latent GOLD software [37]) and with the

Gaussian (diagonal) model, on the basis of the BIC criterion. Results in Table 9 show that

the best model of all is a mixture of BOS with three components. Note that the Gaussian

model fails again in estimating more than three components.

Model g = 1 g = 2 g = 3 g = 4 g = 5 g = 6
BOS -941.65 -873.75 -853.58 -861.78 -868.03 -879.50
Multinomial -936.18 -861.53 -862.37 -879.73 -897.82 -917.56
Gaussian (diagonal) -1008.65 -1028.48 -1048.32 NaN NaN NaN

Table 9: Values of the BIC criterion for the BOS mixture model and its competitors for 1 to
6 clusters on the Arthritis data set.

Table 10 displays estimated parameters of the BOS model with three components. Each

cluster corresponds to a stable perception of the disease evolution (good, fair and poor) over

the months but with important differences concerning precision. Precision of clusters 1 (poor

arthritis) and 3 (good) which increases month after month (πh
k s globally increase) suggests

that the presence or absence of effect of the treatment (or of the placebo) is more and more

significant in opposite directions. Precision of cluster 2 (more than the half of the patients)
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is quite intermediate and without any important evolution over the time, grouping patients

with quite heterogeneous level of Arthritis.

cluster proportion αk mode µk precision πk

1 0.11 (1, 1, 1) (0.67, 0.88, 0.97)
2 0.55 (2, 2, 2) (0.47, 0.42, 0.44)
3 0.34 (3, 3, 3) (0.74, 0.72, 0.93)

Table 10: Parameter estimation for the BOSmixture model with four clusters on the Arthritis
data set.

5 Concluding remarks

We have designed a parsimonious distribution for ordinal variables, parametrized by two

meaningful position and precision parameters. This model is easy to implement through an

EM algorithm. Extension to multivariate model-based clustering has also been straightfor-

wardly performed by making the assumption of conditional independence. Its use in real data

sets showed its ability to discover clusters unrevealed by traditional competitor methods.

In our future works, we plan to reuse our ordinal model in a biclustering context where,

similarly to the one-way clustering developed in the present paper, there is again a lack of

really specific distributions for ordinal data. This new biclustering approach will have to be

compared to this one based on the proportional odds model [27] proposed in [26]. Another

pursuit of the work is to break down the latent class assumption by introducing dependence

between ordinal variables. One way to do this could be to use copulas as in [25] in the case

of mixed data.

Software A R package is under construction, and a Matlab code is available on request.

APPENDIX A. The BOS properties: statements and

proofs

From Equations (7), (8) and (10) in Section 2.2, it is easily seen that the BOS model has a

polynomial expression related to π of degree less than or equal to m− 1:

p(x;µ, π) =
m−1
∑

j=0

aj(m,µ, x)πj . (18)
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From this statement, we have developed a formal Matlab code computing the exact expres-

sion of each coefficient aj(m,µ, x) for any x, µ and m values. For instance, for m = 5, µ = 2

and x = 4, we obtain the following exact expression:

p(4; 2, π) = a0(5, 2, 4) + a1(5, 2, 4)π + a2(5, 2, 4)π
2 + a3(5, 2, 4)π

3 + a4(5, 2, 4)π
4

=
1

5
−

33

200
π −

457

7200
π2 +

2

75
π3 +

13

7200
π4.

This formal calculus tool is used in the proofs of all the following properties. Its advantage

is to provide very straightforward proofs. Its drawback is to provide proofs for only some

selected values of m. However, we have chosen m ∈ {1, . . . , 8} since it answers to most

practical situations7. For instance in the reference book [1] all ordinal data have less than 8

categories.

Proposition A.1 (π = 0: Uniformity.) If π = 0, then ∀(µ, x) ∈ {1, . . . , m}2, p(x;µ, π) =

m−1.

Proof The formal calculus leads to a0(m,µ, x) = m−1 for all m ∈ {1, . . . , 8}. Conclusion

follows by setting π = 0 in (18).

Proposition A.2 (π = 1: Dirac in µ.) If π = 1, then ∀(x, µ) ∈ {1, . . . , m}2, p(x;µ, π) =

I(x = µ).

Proof The formal calculus leads to
∑m−1

j=0 aj(m,µ, µ) = 1 for all m ∈ {1, . . . , 8}. Conclusion

follows by setting π = 1 in (18).

Proposition A.3 (µ: mode if π > 0.) If π > 0, then ∀(µ, x) ∈ {1, . . . , m}2 such that µ 6= x,

p(µ;µ, π) > p(x;µ, π).

Proof For π = 1, Proposition A.2 already established that µ is the mode. We consider now

0 < π < 1. From (18), p(µ;µ, π)− p(x;µ, π) is a polynomial of degree less than or equal to

m− 1. Moreover, from Proposition A.1, π = 0 is a root of p(µ;µ, π)− p(x;µ, π), thus we can

factorize it by π

p(µ;µ, π)− p(x;µ, π) = π

(

m−2
∑

j=0

bj(m,µ, x)πj

)

. (19)

7We conjecture that all propositions hold for any m value. In particular, we have proved the simplest of
them (Propositions (A.1), (A.2), (A.4)) in this general situation (these general proofs are not given in this
paper).
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Since 0 < π < 1 implies that 0 < πj < 1 for any j > 1, the following lower bound is directly

obtained

p(µ;µ, π)− p(x;µ, π) > π

(

b0(m,µ, x) +

m−2
∑

j=1

b−j (m,µ, x)

)

(20)

where b−j (m,µ, x) = min(0, bj(m,µ, x)). All bj(m,µ, x) are obtained from a formal polynomial

Euclidian division for all m ∈ {1, . . . , 8}, allowing to show by formal calculus that b0(m,µ, x)+
∑m−2

j=1 b−j (m,µ, x) > 0 for all m ∈ {1, . . . , 8}. Conclusion follows.

Proposition A.4 (µ: absolute growing of its probability with π.) ∀µ ∈ {1, . . . , m}, p(µ;µ, π)

is an increasing function of π.

Proof The formal calculus leads to aj(m,µ, µ) ≥ 0 for all m ∈ {1, . . . , 8} and for all j ∈

{1, . . . , m− 1}. Conclusion follows directly from (18).

Proposition A.5 (µ: relative growing of its probability with π.) ∀(µ, x) ∈ {1, . . . , m}2 such

that µ 6= x, p(µ;µ, π)− p(x;µ, π) is an increasing function of π.

Proof The key is to prove the differential (in π) expression p′(µ;µ, π) − p′(x;µ, π) > 0.

From (18), p′(µ;µ, π)− p′(x;µ, π) is a polynomial of degree less than or equal to m− 2

p′(µ;µ, π)− p′(x;µ, π) =
m−2
∑

j=0

bj(m,µ, x)πj. (21)

Since 0 < π < 1 implies that 0 < πj < 1 for any j > 1, the following lower bound is directly

obtained

p′(µ;µ, π)− p′(x;µ, π) > b0(m,µ, x) +
m−2
∑

j=1

b−j (m,µ, x) (22)

where b−j (m,µ, x) = min(0, bj(m,µ, x)). All bj(m,µ, x) are obtained from a formal deriva-

tion of a polynomial for all m ∈ {1, . . . , 8}, allowing to show by formal calculus again that

b0(m,µ, x) +
∑m−2

j=1 b−j (m,µ, x) > 0 for all m ∈ {1, . . . , 8}. Conclusion follows.

Proposition A.6 (Decreasing around µ if 0 < π < 1.) ∀(x, x′) ∈ {1, . . . , m}2 such that

x′ < x < µ or µ > x > x′, p(x;µ, π) > p(x′;µ, π).

Proof From (18), p(x;µ, π)− p(x′;µ, π) is a polynomial of degree less than or equal to m−

1. Moreover, from Propositions A.1 and A.2 respectively, π = 0 and π = 1 are roots of
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p(x;µ, π)− p(x′;µ, π), thus we can factorize it by π(1− π)

p(x;µ, π)− p(x′;µ, π) = π(1− π)

(

m−3
∑

j=0

bj(m,µ, x, x′)πj

)

. (23)

Since 0 < π < 1 implies that 0 < πj < 1 for any j > 1, the following lower bound is directly

obtained

p(x;µ, π)− p(x′;µ, π) > π(1− π)

(

b0(m,µ, x, x′) +

m−3
∑

j=1

b−j (m,µ, x, x′)

)

(24)

where b−j (m,µ, x, x′) = min(0, bj(m,µ, x, x′)). All bj(m,µ, x, x′) are obtained from a formal

polynomial Euclidian division for all m ∈ {1, . . . , 8}, allowing to show by formal calculus again

that b0(m,µ, x, x′) +
∑m−2

j=1 b−j (m,µ, x, x′) > 0 for all m ∈ {1, . . . , 8}. Conclusion follows.

Proposition A.7 (Identifiability) If 0 < π ≤ 1, identifiability holds.

Proof The identifiability problem could concern µ and/or π.

• First, there exists no couple (µ, µ′) ∈ {1, . . . , m}2 with µ 6= µ′ such that p(x;µ, π) =

p(x;µ′, π′) for any x ∈ {1, . . . , m} and any (π, π′) ∈ (0, 1]2. Indeed, otherwise both µ

and µ′ should be modes of both distributions, which is impossible by unicity of the mode

(Propositions A.3 and A.6).

• Second, there exists no couple (π, π′) ∈ (0, 1]2 with π 6= π′ such that p(x;µ, π) =

p(x;µ, π′) for any x ∈ {1, . . . , m} and any µ ∈ {1, . . . , m} since p(x;µ, π) is a poly-

nomial of order at least one. This last statement comes from the fact that p(x;µ, π)

varies from 1/m to 0 or 1 when π varies (respectively when x 6= µ and x = µ) from

Propositions A.1 and A.2, thus depends on the value of π.
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APPENDIX B. AERES data
University PT EP SS EFS

Bordeaux 1 A A A B

Bordeaux 2 A+ A A+ A

Bordeaux 3 B A B B

Bordeaux 4 B A A+ A

Pau C B B C

Toulouse 1 B B B B

Toulouse 2 B B A B

Toulouse 3 A A A+ A

Champollion A B B B

Lyon 1 A A+ A A

Lyon 2 B A B B

Lyon 3 B A+ B B

St Etienne A B A B

Montpellier 1 B A A B

Montpellier 2 A A A B

Montpellier 3 B B A B

Nı̂mes C B C C

Perpignan B B B B

Grenoble 1 B B A+ A

Grenoble 2 A A B B

Grenoble 3 C B B C

Savoie A A A B
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