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SUMMARY

We consider model-based clustering of data that lie on a unit sphere. Such data arise in the analysis of
microarray experiments when the gene expressions are standardized so that they have mean 0 and variance
1 across the arrays. We propose to model the clusters on the sphere with inverse stereographic projections
of multivariate normal distributions. The corresponding model-based clustering algorithm is described.
This algorithm is applied first to simulated data sets to assess the performance of several criteria for
determining the number of clusters and to compare its performance with existing methods and second to
a real reference data set of standardized gene expression profiles.
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1. INTRODUCTION

We consider model-based clustering of data that lie on a (p − 1)-dimensional unit sphere S p−1 of Rp.
Although the statistical analysis of data on a sphere is quite common in various fields, the clustering of
directional data is relatively recent; one can quote, for example, Peel and others (2001) for the analysis
of rock fracture data in the case p = 3 or Banerjee and others (2005) for text analysis in the general
case p � 3. Our main motivation is that, in gene expression analysis, standardized genes that have mean
0 and variance 1 across the arrays can be interpreted as directional data. This standardization is applica-
ble when one is interested in the gene expression variation under different conditions, such as different
types of gene expression profiles as given in Tavazoie and others (1999). The aim of the clustering of
such standardized genes is to produce groups of genes that are functionally related (Eisen and others,
1998).
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Model-based clustering on the unit sphere 67

There is an extensive literature on the use of different clustering techniques. Within the field of gene
expression analysis, one can quote, for example, hierarchical clustering (Eisen and others, 1998),
self-organizing maps (Tamayo and others, 1999), or k means (Tavazoie and others, 1999). Nevertheless,
it is generally recognized that such methods do not offer a rigorous statistical setting and some crucial
questions cannot be addressed, for example, the type or the number of clusters present in the data. The
model-based clustering approach offers an alternative. It assumes that the data are generated by a mix-
ture of underlying probability distributions such as multivariate normal distributions that allow different
shapes. A general presentation of this method and some applications can be found in Banfield and Raftery
(1993), Celeux and Govaert (1993), McLachlan and Basford (1988), or Titterington and others (1985).
The estimation of the different coefficients of the mixture model is commonly done via the EM algorithm
of Dempster and others (1977). Yeung and others (2001) studied the use of Gaussian mixture models for
clustering gene expressions. They showed that in general the method performs well, and they explored the
validity of the use of the multivariate normal distribution for different transformations of real expression
data.

Within the scope of a model-based clustering of data points on a sphere, one needs to consider appro-
priate distributions. Although there is an extensive literature on directional statistics and distributions (e.g.
Mardia and Jupp, 1999, or Fisher and others, 1987), the emphasis in this literature is on distributions on
spheres in R2 or R3, and direct generalization to higher dimensions seems problematic. The well-known
Fisher distribution on the sphere is defined for any dimensional space and is an extension of the von Mises
distribution. Banerjee and others (2005) used this distribution in a model-based clustering of directional
data. Nevertheless, since this Fisher distribution is only defined through a mean direction µ and a real
parameter related to its spread, the isodensity lines are circular, and thus the resulting clusters tend to
be spherical. Our aim is to consider a more general type of distribution that allows different shapes and
orientations. The so-called Kent distributions (Kent, 1982) have this interesting feature. Nevertheless, the
estimation of their parameters is problematic, and the author proposed, for the sphere in R3, estimation
by moments. These distributions have been used by Peel and others (2001) to form groups of fracture
data via a model-based clustering. In this paper, we propose to use the inverse stereographic projections
of multivariate normal distributions. We will see that, apart from some pathological cases (that in practice
can be avoided), such distributions allow a clustering with various shapes and orientations.

In Section 2 of the paper, we introduce the notations and briefly describe a standardization of multivar-
iate data points that gives directional data. In Section 3, the inverse stereographic mapping of multivariate
Gaussian distributions is presented. Some features of such distributions on the sphere are given and the
construction of the density function is explained. We also derive a method for estimating the parameters.
In Section 4, the corresponding model-based clustering algorithm is introduced and used in Section 5 on
several simulated data sets. These simulations allow us to assess the performance of common criteria for
determining the number of clusters and to compare the clustering algorithm described in this paper with
existing methods. Finally in Section 6, we study a real reference data set that comes from the analysis of
gene expression profiles, the yeast data set studied in Cho and others (1998).

2. NOTATIONS—STANDARDIZATION OF MULTIVARIATE DATA POINTS ON A UNIT SPHERE

To introduce the statistical setting used throughout this paper, we describe a common standardization
procedure of multivariate data points. This standardization is of interest for clustering when one considers
as a similarity index of 2 data points the correlation of their coordinates.

Suppose that the n objects, i = 1, . . . , n, to be clustered are initially represented as multivariate data
points in Rp+1,

xi∗ = (xi∗
1 , . . . , xi∗

j , . . . , xi∗
p+1),
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68 J.-L. DORTET-BERNADET AND N. WICKER

where the p+1 coordinates correspond to the observations of p+1 real random variables. For each object
i , i = 1, . . . , n, let us denote by

xi∗ = 1

p + 1

p+1∑
j=1

xi∗
j and σ̂xi∗ =

⎧⎨⎩ 1

p + 1

p+1∑
j=1

(xi∗
j − xi∗)2

⎫⎬⎭
1/2

the empirical mean and standard deviation of its coordinates. We consider the standardization of the
coordinates defined by, for i = 1, . . . , n and j = 1, . . . , p + 1,

x̃ i
j = 1√

p + 1

xi∗
j − xi∗

σ̂xi∗
.

By construction, it is clear that we have for each i = 1, . . . , n,

p+1∑
j=1

x̃ i
j = 0 and

p+1∑
j=1

(x̃ i
j )

2 = 1.

Thus, the points x̃ i = (x̃ i
1, . . . , x̃ i

p+1) lie at the intersection of a plane of dimension p with the unit sphere

of Rp+1. Consequently, all these x̃ i ’s lie on the unit sphere Sp−1 of Rp defined by

Sp−1 =
⎧⎨⎩s = (s1, . . . , sp) ∈ Rp:

p∑
j=1

s2
j = 1

⎫⎬⎭ .

Recall that if 〈·, ·〉 denotes the usual scalar product for Rp+1, then for 2 objects i and i ′,

〈
x̃ i , x̃ i ′

〉
= 1

σ̂xi∗ σ̂xi ′∗

p+1∑
j=1

(xi∗
j − xi∗)

(
xi ′∗

j − xi ′∗)
represents the correlation of the initial coordinates.

Subsequently, for each object i = 1, . . . , n, the vector xi that lies on the unit sphere Sp−1,

xi = (xi
1, . . . , xi

p),

will correspond to the set of its standardized coordinates expressed in a given orthonormal basis of Rp.
Briefly, these points of Rp can be constructed by first expressing the x̃ i ’s in a given orthonormal basis of
Rp+1 whose first vector is proportional to (1, . . . , 1)′ and then by removing the first coordinate. Note that
this transformation does not affect the meaning of the scalar product, as 2 data points that are close on the
sphere Sp−1 have their initial coordinates correlated. Finally, we formulate the scope of this paper as the
clustering of n data points xi in Rp that lie on the unit sphere Sp−1.

3. USE OF INVERSE STEREOGRAPHIC PROJECTION OF MULTIVARIATE NORMAL DISTRIBUTIONS

We consider in this section the use of inverse stereographic projection of multivariate normal distributions.
Some features of such distributions on the sphere are given, after which we present the construction of the
corresponding density function and derive a method for estimating its parameters.

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/9/1/66/253727 by guest on 20 August 2022



Model-based clustering on the unit sphere 69

The distributions on the sphere Sp−1 that we will use in the mixture model are denoted by Lµ,� . They
depend on 2 types of parameters: a direction µ on the sphere Sp−1 and �, a (p − 1) × (p − 1) positive
definite matrix. A distribution Lµ,� corresponds to the image via an inverse stereographic projection of a
multivariate normal distributionNp−1(0, �) that is defined on the plane of dimension p−1 perpendicular
to µ. Recall that, if one considers a given direction µ on the sphere Sp−1, the corresponding stereographic
projection of a point x that belongs to Sp−1 lies at the intersection of a line joining the “antipole” −µ and
x , with a given plane perpendicular to µ.

We use for convention the stereographic projection described in Figure 1 for the simple case p = 2 and
where µ is the unit vector e1 of the horizontal axis. In this figure, the point z represents the stereographic
projection on the real line of the point of the unit circle with Cartesian coordinates (x, y); it lies at the
intersection of the plane generated by e2, the unit vector of the vertical axis, with the line joining the
antipole (−1, 0) and (x, y). The stereographic projection of the sphere S2 of R3 is described, for example,
in Mardia (1972, p. 216).

By construction, the isodensity lines of a Lµ,�-distribution are inverse stereographic mappings of
ellipsoids. This allows different shapes and orientations. See Figure 2 for examples of these isodensity
lines for a same direction µ and for different “reasonable” values of the � matrix. In these cases, theLµ,�-
distributions are unimodal with modal direction µ. Note that the isodensity lines of a Lµ,�-distribution
are circular for the case � = σ 2 Ip−1.

As the values of the � matrix tend to be large, a Lµ,�-distribution can become multimodal: regions of
Rp−1 far from 0 have relatively large probability mass according to a Np−1(0, �) distribution, and they
are mapped onto relatively small regions of Sp−1. In this case, µ is only a local maximum of the density
function and the center of symmetry of the maxima set. See Figure 3 for an example in R3. One can verify
that a necessary and sufficient condition for the density of a Lµ,�-distribution being unimodal is that the
greatest eigenvalue of � is smaller than 1/2(p − 1). Clearly, this feature is problematic in the setting of
model-based clustering. Nevertheless, the problem can be avoided in practice: a reasonable cluster covers
a reasonable portion of the sphere so that the isodensity lines of the corresponding Lµ,�-distribution are
centered around a unique mean direction. We will return to this point in Section 4.

Fig. 1. Case S1 of R2, µ = e1; z stereographic mapping of (x, y).
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70 J.-L. DORTET-BERNADET AND N. WICKER

Fig. 2. Case S2 of R3; examples of isodensity lines for different �’s.

Fig. 3. Case S2 of R3; example of isodensity lines for a multimodal distribution (large �).

We denote by {e1, . . . , ep} the canonical basis of Rp that corresponds to the construction of the coor-
dinates of xi . In order to define a density function associated with Lµ,� , we first consider the case where
µ coincides with the direction e1. Thus, the stereographic projection maps Sp−1 on the space generated by
{e2, . . . , ep}. We call this projection as P(·). If y = (y2, . . . , yp) represents the stereographic projection
of x according to P expressed in the basis {e2, . . . , ep}, we have, for i = 2, . . . , p,

yi = xi

1 + x1
.
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If dS denotes the surface element on the sphere Sp−1, we find that the expression of the density of Le1,�

with respect to dS is given by

fe1,�(x1, . . . , x p) = 1

(2π)(p−1)/2
|�|−1/2 exp

{
−1

2
P(x)′�−1 P(x)

}
1

(1 + x1)p−1
,

where x = (x1, . . . , x p) is a point on Sp−1 and A′ denotes the transpose of A. The calculation of this
density function, using the polar coordinates of x , is described in Section A of the supplementary material
available at Biostatistics online (http://www.biostatistics.oxfordjournals.org).

In order to define the density of Lµ,� in the general case where µ is a given direction on Sp−1, we
consider a given rotation Rµ(·) in Rp such that Rµ(e1) = µ. The density function of Lµ,� with respect
to dS is

fµ,�(x) = fe1,�(R−1
µ (x))

or, more explicitly,

fµ,�(x) = 1

(2π)(p−1)/2
|�|−1/2 exp

{
−1

2
P(R−1

µ (x))′�−1 P(R−1
µ (x))

}
1

(1 + 〈x, µ〉)p−1

since the Jacobian of the transformation Rµ(·) is equal to 1.
With regard to the maximum likelihood estimation of µ and �, suppose now that we observe a number

n > p of independent realizations of the distribution Lµ,� . The values of µ and � are unknown and are
to be estimated. We denote by l(x1, . . . , xn ; µ,�) the corresponding log-likelihood function:

l(x1, . . . , xn ; µ,�) =
n∑

i=1

log fµ,�(xi ).

It is clear that, for a given µ on Sp−1, the matrix � that maximizes this function is the one that maximizes
the expression

n∑
i=1

log

[
1

(2π)(p−1)/2
|�|−1/2 exp

{
−1

2
P(R−1

µ (xi ))′�−1 P(R−1
µ (xi ))

}]
.

We denote by �̂(µ) the positive definite matrix solution of this maximization problem. Standard results
on multivariate normal distributions (Anderson, 1958) give

�̂(µ) = 1

n

n∑
i=1

P(R−1
µ (xi ))P(R−1

µ (xi ))′,

that is the empirical covariance matrix of the stereographic projections of the xi ’s on the plane perpendic-
ular to µ. By replacing � by �̂(µ) in the log-likelihood function, it appears that the maximum likelihood
estimate µ̂MLE of µ maximizes the expression, defined on Sp−1,

Expr(µ) = −1

2
n log |�̂(µ)| − (p − 1)

n∑
i=1

log{1 + 〈xi , µ〉}.

When this expression has been maximized, the maximum likelihood estimate �̂MLE of � is then given by

�̂MLE = �̂(µ̂MLE).

To our knowledge, there is no closed expression for µ̂MLE. Nevertheless, in practice, it can be easily found
via a heuristic search algorithm.

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/9/1/66/253727 by guest on 20 August 2022

http://www.biostatistics.oxfordjournals.org
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4. MODEL-BASED CLUSTERING WITH Lµ,� -DISTRIBUTIONS

We detail in this section some features of the model-based clustering algorithm. We describe an EM
algorithm for the maximum likelihood estimation of the parameters of a mixture of Lµ,�-distributions.
We consider also the use of an extra component to model the noise. Finally, the problem of dimension
reduction is discussed.

4.1 The EM algorithm

We briefly describe here the algorithm needed to obtain the maximum likelihood estimates of the unknown
parameters of a mixture of G distributions Lµ1,�1 , . . . ,LµG ,�G from the observation of n data points
x1, . . . , xn on Sn−1. This estimation is classically done by an EM-type algorithm. For more details on this
technique, see McLachlan and Basford (1988) or Banfield and Raftery (1993).

If τ1, . . . , τG represent the weights of the G different distributions in the mixture and the xi ’s are
considered as independent realizations, the observed likelihood is expressed as

LM (µ1, . . . , µG, �1, . . . , �G, τ1, . . . , τG |x1, . . . , xn) =
n∏

i=1

G∑
g=1

τg fµg,�g (xi ).

One considers the observations xi as being incomplete. The component labels zi
g are then introduced with

the convention

zi
g =

{
1, if xi belongs to cluster g,

0, if not.

The vectors zi are assumed to be independent realizations from a multinomial distribution consisting of
one draw on G categories with respective probabilities τ1, . . . , τG . The “complete” log-likelihood is then
given by

l((µg, �g, τg), g = 1, . . . , G|(xi , zi
g), i = 1, . . . , n, g = 1, . . . , G) =

n∑
i=1

G∑
g=1

zi
g log

{
τg fµg,�g (xi )

}
.

The EM algorithm requires an iterative use of 2 steps, the E-step and the M-step. Briefly, in the E-step,
one calculates the conditional expectations of the variables zi

g given the observed data and the current
estimate of the unknown parameters. This step comes down to calculating the values

ẑi
g = τg fµg,�g (xi )∑G

g′=1 τg′ fµg′ ,�g′ (xi )
.

The M-step corresponds to the determination of the maximum likelihood estimates of all the unknown
parameters, estimation using all the observations weighted by the zi

g’s. More precisely, we calculate for
each g = 1, . . . , G,

τ̂g = 1

n

n∑
i=1

ẑi
g,

then we obtain the updated values of µ̂gMLE and �̂gMLE as maximum likelihood estimates from all the
xi ’s weighted by ẑi

g/
( ∑n

i ′=1 ẑi ′
g

)
. The procedure is reiterated until the convergence to a (local) maximum

of the log-likelihood function.
One can also consider the Classification EM algorithm (Celeux and Govaert, 1992) where the E-step

is replaced by a discrete classification of the zi
g’s.
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4.2 Addition of a noise component

In practice, the data set can contain a significant amount of noise. As in Banfield and Raftery (1993),
this noise can be modeled with an extra component in the mixture model, which then allows the data to
determine the amount of noise.

In our setting, it seems natural to model the noise with a uniform distribution on the sphere. Such
a procedure does not need to define a hypervolume of the data as in a classical mixture of multivariate
normal distributions. The density with respect to the surface element dS of this uniform distribution on
Sp−1 is defined by

f (x) = �(p/2)

2π p/2
,

where �(·) denotes the gamma function. Peel and others (2001) used this uniform component in their
mixture of Kent distributions for the case p = 3.

Note that, with regard to the potential problem of multimodality mentioned in Section 2, the possi-
bility of avoiding the allocation of noisy observations to “good” clusters appears to be essential in our
setting: a cluster corrupted by noisy data can have an artificially large �g so that the corresponding Lµ,�-
distribution is multimodal.

4.3 Starting values for the algorithm

For running the EM algorithm, one needs to provide some starting values of the parameters. As the al-
gorithm does not converge systematically to a global maximum, this initialization is performed several
times.

In a classical mixture of multivariate normal distributions, such starting values are usually given by the
use of a k-means algorithm or a hierarchical clustering. Different versions of such algorithms, that depend
on the similarity measure or the distance measure that is used, can be considered in our particular context.
An example of a k-means algorithm on a sphere that uses the angle between vectors as a distance measure
is briefly described in Peel and others (2001). We have used this version for the algorithm presented in this
paper because it appears to work well in practice. Another example is the version “spkmeans” of Dhillon
and Modha (2001) where the scalar product of the vectors is used as a similarity measure.

4.4 Dimension reduction

It is clear that the sizes of the clusters have to be sufficiently large relatively to p − 1 to avoid any singular
estimates of the � matrices. In the setting of this work, with n � p, this condition is generally satisfied
(it is here the case for the study of a real data set of gene expression profiles in Section 6).

One way to tackle high-dimensional data is to consider a more parsimonious model. In the case of
a Gaussian mixture model, a common recommendation for this problem is to use spherical or diagonal
models (Fraley and Raftery, 1999). In our context, the use of a spherical model is similar to the use of
model-based clustering via a mixture of Fisher distributions. The restriction to diagonal � matrices for
data on Sp−1 is hard to advocate since it is related to the particular choices of the basis on the planes per-
pendicular to the mean directions µ of the clusters. We encounter the same problem if we want to use in our
context the idea of mixtures of factor models, as described, for example, in McLachlan and others (2002).

Another common way to handle high-dimensional data is to use principal components analysis
(Anderson, 1958) for dimension reduction. Before the standardization, one looks for the linear combi-
nations of variables with maximal variance that are uncorrelated; then the standardization is conducted on
the objects that are expressed in the space of the first principal components.
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5. COMPARISONS ON SIMULATED DATA SETS

The algorithm described in Section 4.1 has been tested on several simulated data sets. The goal of these
simulations was to assess the performance of several criteria for determining the number of clusters and to
compare the algorithm described in this paper with existing clustering methods. We give below some de-
tails on the criteria and the clustering methods that have been considered, before giving a brief description
of the results of the simulations.

5.1 Criteria for the number of clusters

For determining the number of clusters in a data set, we first consider 2 common criteria in a mixture
model setting: Akaike information criterion (AIC) (Akaike, 1973) and Bayesian information criterion
(BIC) (Schwarz, 1978). Both belong to the class of penalized likelihood criteria. The use of the AIC
criterion in our context consists of choosing the number of clusters as the G that maximizes the quantity

AICG = log LG − kG,

where log LG is the estimated maximum of the log-likelihood and kG is the number of free parameters
for the mixture model with G different Lµ,�-distributions (and the noise component). In general, such
a procedure is known to overestimate the true number of groups. Note that this criterion is used in Peel
and others (2001) for their mixture of Kent distributions on the sphere S2 of R3. The use of the BIC cri-
terion consists of choosing the number of groups as the G that maximizes the quantity

BICG = log LG − 1

2
kG(log n).

In general, this BIC criterion is known to underestimate the true number of groups. It is commonly used
in the setting of Gaussian mixtures, for example, in the Mclust algorithm of Fraley and Raftery (1999).

The third criterion that we consider here is the gap statistic of Tibshirani and others (2001). This tech-
nique is applicable to any clustering algorithm. It compares an observed internal index, a within-cluster
dispersion, to its expectation under an appropriate reference null distribution. Let WG denote the within-
cluster dispersion associated with the output of a clustering of the data into G groups. If W ∗1

G , . . . , W ∗B
G

denote the values of the same index on B data sets generated under the reference null distribution, the gap
statistic is given by

GapG = 1

B

B∑
b=1

log(W ∗b
G ) − log(WG).

If sdG is the standard deviation of log(W ∗b
G ), b = 1, . . . , B, and if sG = sdG

√
1 + 1/B, then the gap

criterion chooses the number of clusters as the smallest G such that

GapG � GapG+1 − sG+1.

In our context, we have considered as the index of within-cluster dispersion the sum of the angles to the
cluster means. The uniform distribution on the sphere appears to be a natural reference null distribution.

The fourth criterion considered in this paper is a prediction-based resampling method called Clest that
has been introduced in Dudoit and Fridlyand (2002). As for the gap criterion, this method is applicable
to any clustering algorithm. The authors have compared its performance with 6 existing criteria using
data from 4 published data sets from cancer microarray studies, in the case of the clustering of arrays.
The clustering method that was considered is the partitioning around medoids method of Kaufman and
Rousseeuw (1990), closely related to the k means. Briefly, the Clest procedure first consists, for each
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possible number G, in repeated random splits of all the observations in a learning set and a test set. The
classifications obtained on each of the test sets from the classifier constructed on the learning sets are
compared to the classifications constructed on the test sets alone by using an external index. An observed
similarity statistic is then computed and compared to its expected value under a reference null distribution.
The number of clusters G that is chosen corresponds to the largest significant evidence against the null
hypothesis. See Dudoit and Fridlyand (2002) for a more detailed description of the method.

5.2 The clustering methods

We compare the clustering algorithm presented in this paper with the k-means method adapted to the
sphere, using the angle between vectors as a distance measure. This method is here associated with the
use of the gap and the Clest criteria. We also consider a comparison with a classical mixture of multivariate
normal distributions. For this purpose, we use the Mclust algorithm of Fraley and Raftery (1999), more
precisely the EMclustN function that considers noisy data sets. This algorithm uses the BIC criterion to
estimate the number of clusters.

Concerning the k-means method, recall that this algorithm is similar in our context to the use of a
mixture of Fisher distribution and tends to produce spherical clusters. Thus, it is expected to perform
poorly when there are elongated clusters in the data. Note moreover that this algorithm cannot provide a
determination of the “noisy” genes.

Concerning the Mclust algorithm, one would expect that it performs poorly in our setting since it
does not take into account the particular geometry of the space where the data lie. This feature can be
easily verified on simple data sets. When one simulates some data from one single Lµ,�-distribution with
relatively large values for �, so that the resulting cluster covers a relatively large portion of the sphere,
the Mclust algorithm systematically overestimates the number of groups, whereas the algorithm presented
in this paper gives the correct answer with any of the criteria that are considered here. See Figure 4 for
such an example, for the case p = 3, where 60 data points have been simulated from a single Lµ,�-
distribution with � diagonal, σ 2

1 =0.025, and σ 2
2 =0.012, and where a noise cluster has been simulated

with 15 realizations from the uniform distribution on S2; for this example, the Mclust algorithm gives one
additional group.

Fig. 4. One cluster from a single Lµ,� -distribution: simulated data set (left), results with Mclust (center), and re-
sults with the algorithm presented in this paper (right); the symbol “+” represents the data points from the Lµ,� -
distribution, “n” represents the noisy observations, and the symbol “#” represents the data points from the additional
cluster proposed by Mclust.
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5.3 Results of the simulations

The different methods and criteria have been compared using 10 simulations of 5 types of data set. These
different types of data set correspond to different sizes n, different values for the dimension p, different
proportions of noisy data, and different distributions used to simulate the components of each cluster.
Three types of data sets use simulations from Lµ,�-distributions, another type of data set uses Gaussian
simulations mapped onto the sphere via a simple scaling, and a last type of data set is the so-called “cyclic
data” described in Yeung and others (2001).

A detailed description of the data sets and a discussion of the results of the simulations can be found
in Section B of the supplementary material available at Biostatistics online (http://www.biostatistics.
oxfordjournals.org). Briefly, it appears that the mixture of Lµ,�-distributions associated with the AIC
or the gap criterion generally performs well, compared to the other associations of methods and criteria,
with a small advantage for the AIC criterion. We consider this criterion for the study of a real example in
Section 6.2.

6. APPLICATION TO THE CLUSTERING OF GENE EXPRESSION PROFILES

6.1 Clustering of gene expression profiles

The standardization considered in Section 2 is commonly used for clustering n genes described by their
expressions observed on p + 1 microarray experiments; see, for example, Tavazoie and others (1999) or
Yeung and others (2001). As noted by these last authors, standardizing gene expression data so that the
genes have mean 0 and variance 1 across the arrays is helpful when the goal of the clusters is to capture
the general patterns across experiments, without considering the absolute expression levels. For example,
this standardization is appropriate when one considers the fluctuation of gene expressions over cell cycles.
However, each microarray experiment should correspond to a different condition; in the opposite extreme
case where all the microarray experiments are replicates of the same condition, clearly the standardization
is not appropriate as it comes down to a random projection of the gene expressions onto the sphere. In
intermediate cases, it is possible to replace, for each gene, the expressions corresponding to the replicates
of a same condition by a single mean or median value.

The scaling across the arrays maps all the gene profiles onto the surface of a sphere, in particular
the profiles of some “uninteresting” genes that present low expressions and/or low variability across the
experiments. Thus, a preprocessing of the raw data removing from the analysis all uninteresting genes has
to be conducted before the standardization of the expressions. Many such procedures have been proposed
in the microarray literature, and it is not the focus of this paper to give such recommendations.

Finally, a related but different processing of the data consists in standardizing the gene expression
data so that the arrays have mean 0 and variance 1 across the genes. This standardization procedure
is particularly helpful when the goal is to cluster arrays (Dudoit and Fridlyand, 2002) so as to prevent
the expression levels in one particular array from dominating the average expression levels. As noted by a
referee of a previous version of this paper and an associate editor, the fact that the expression levels in a few
arrays dominate the average expression levels can introduce spurious correlations between genes; in this
case, when the goal is to cluster genes with similar expression profiles, one can first use a standardization
of the arrays across the genes, followed by a standardization of the genes across the arrays. McLachlan
and others (2002) also used this 2 types of standardizations before clustering arrays.

6.2 Real example: the yeast data set

The real example that we consider here is the yeast microarray data set of gene expressions described in
Cho and others (1998). This has been the subject of several studies recently and is generally accepted as
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a reference. Briefly, for these data, thermosensible cdc28 mutant cells have been synchronized in early
G1 phase by heat treatment. Then, temperature G1 block was further released and cells were harvested
every 10 min covering almost 2 entire cell cycles. The complete data set contains the expression profiles
of approximately 6220 genes observed over 17 time points.

Tavazoie and others (1999) carried out the reference clustering analysis on the most variable 2945
genes of the 6220 genes of the data set. They discovered distinct expression patterns using a k-means
cluster analysis. They fixed by trial and error the number of clusters to 30 and suspected that this number
may have overestimated the underlying diversity of biological expression classes in the data. The k-means
method was applied to the selected 2945 genes which were previously standardized as in Section 2 and
with time points at 90 and 100 min removed, so that the resulting gene expression profiles are over 15
time points. The density of points clustering criterion proposed by Wicker and others (2002) found 35
clusters for this data set and Mclust estimates 28 clusters.

We have run the algorithm presented in this paper on this data set of the 2945 genes considered by
Tavazoie and others (1999). The AIC criterion gave 26 clusters of different sizes and a “noise” cluster with
114 genes. So, our estimated number of clusters is of the same order as the one estimated by Tavazoie and
others (1999), but slightly smaller. This result is not surprising as the model has a noise component and
the Lµ,�-distributions allow different shapes for the clusters. Note that the gap criterion associated with
the algorithm presented in this paper gave 43 clusters and that the Clest criterion gave here only 4 clusters.
The results of our clustering procedure are summarized in Figure 5, where each cluster is represented by
its mean expression profile over the 15 time points.

On the whole, one can distinguish 3 major types of clusters. The first type is “cyclic gene clusters”
like clusters numbered 1–4 in which one can recognize the 2 yeast cycles in the mean expression profiles.
The second type includes the “stress gene clusters.” In fact, due to the synchronization of the cell cycles,
an important stress has been put on the cells from which they must recover when cell cycles are restarted.
This can be observed in clusters 5–11. The last type includes clusters that are in between: roughly, they
concern genes that are neither expressed cyclically nor sensitive to the induced stress (clusters in Figure 5
numbered 12–26).

More specifically, cluster 2 contains many known genes involved in the cell cycle, in particular
in phase G1 (CLN1, CLN2, PCL1, and PCL2). Similarly, cluster 1 contains other known cell cycle
genes involved in phase G2 (CLB1 and CLB2). Clusters 5 and 11, which have the same type of de-
clining expression profile, are characteristics of genes which somatize the yeast cell stress, namely heat
shock proteins (HSP12, HSP26, etc.) and oxidative heat-induced proteins (DHA2, GPD1, etc.). Genes
in cluster 10 are known to respond to the cell stress by reactivating the lipid metabolism and by DNA
repair.

The noise cluster (cluster numbered 27 in Figure 5) appears to gather various expression profiles for
the cycles that cannot be included in other clusters. Its role is to prevent the corruption of clusters by
outliers and to highlight stand-alone genes. It is noticeable that the mean profile of this noise cluster over
the time points is flat. This feature is not surprising as the genes from this noise cluster are expected to be
distributed uniformly on the sphere.

Note that the Lµ,� mixture model associated with the AIC criterion has recovered nearly all the
clusters that are highlighted in Tavazoie and others (1999). In this way, the 3 cyclic clusters numbered 2,
7, and 14 in Tavazoie and others (1999) match with the clusters numbered, respectively, 2, 1, and 4 in this
paper. As detailed by the authors, these clusters mostly concern some genes implied in the replication and
DNA synthesis (cluster here numbered 2), the budding and cell polarity (cluster here numbered 1), and the
organization of the centrosome (cluster here numbered 4). Concerning the noncyclic clusters highlighted
in this reference study, clusters numbered 1, 3, 4, and 8 in Tavazoie and others (1999) correspond to
clusters here numbered, respectively, 12, 17, 7, and 8. These clusters are known to contain genes involved
with ribosomal proteins (cluster here numbered 12), with RNA metabolism and translation (cluster here

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/9/1/66/253727 by guest on 20 August 2022



78 J.-L. DORTET-BERNADET AND N. WICKER

Fig. 5. Yeast data set—mean expression profiles of the 27 clusters found by the algorithm: “cyclic genes” (clusters
1–4), “stress genes” (clusters 5–11), “miscellaneous genes” (clusters 12–26), and noise cluster (cluster 27).
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numbered 17), with mitochondrial organization (cluster here numbered 7), and with the carbohydrate
metabolism (cluster here numbered 8).

In conclusion, our reanalysis of this data set has given interpretable results that are broadly consistent
with the previous analysis by Tavazoie and others (1999).

7. CONCLUSION

This paper has considered model-based clustering of data points that lie on a unit sphere. We have de-
scribed and discussed a common standardization of multivariate data points that gives directional data.
The inverse stereographic projection of a multivariate normal distribution has been considered as a direc-
tional distribution. Apart from some pathological cases that can be avoided in practice, such distributions
allow a clustering with various shapes and orientations. We have described a procedure to obtain the max-
imum likelihood estimates of the related parameters with the incorporation of a noise component. This
algorithm, by comparison with other clustering methods such as the k-means algorithm on the sphere or
the Mclust algorithm, appeared to perform well on simulated data sets, while the AIC and the gap cri-
teria seem to provide good estimates of the number of clusters. Finally, we studied a real reference data
set of gene expression profiles for which clustering method provided reasonable clusters with apparent
biological meaning.
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