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Model-based Clustering with
Sparse Covariance Matrices

Michael Fop∗ Thomas Brendan Murphy∗ Luca Scrucca†

Abstract

Finite Gaussian mixture models are widely used for model-based clustering of continu-
ous data. Nevertheless, since the number of model parameters scales quadratically with the
number of variables, these models can be easily over-parameterized. For this reason, par-
simonious models have been developed via covariance matrix decompositions or assuming
local independence. However, these remedies do not allow for direct estimation of sparse
covariance matrices nor do they take into account that the structure of association among
the variables can vary from one cluster to the other. To this end, we introduce mixtures of
Gaussian covariance graph models for model-based clustering with sparse covariance matri-
ces. A penalized likelihood approach is employed for estimation and a general penalty term
on the graph configurations can be used to induce different levels of sparsity and incorporate
prior knowledge. Model estimation is carried out using a structural-EM algorithm for pa-
rameters and graph structure estimation, where two alternative strategies based on a genetic
algorithm and an efficient stepwise search are proposed for inference. With this approach,
sparse component covariance matrices are directly obtained. The framework results in a
parsimonious model-based clustering of the data via a flexible model for the within-group
joint distribution of the variables. Extensive simulated data experiments and application
to illustrative datasets show that the method attains good classification performance and
model quality.

Keywords: Finite Gaussian mixture models, Gaussian graphical models, Genetic algorithm,
Model-based clustering, Penalized likelihood, Sparse covariance matrices, Stepwise search, Structural-
EM algorithm

1 Introduction
Model-based clustering (Fraley and Raftery, 2002; McNicholas, 2016) is a popular and well es-
tablished framework for clustering multivariate data. In this approach, the data generating
process is represented as a finite mixture of probability distributions where each component
distribution corresponds to a group. When the observations are measured as continuous vari-
ables, it is common to model each component density using a multivariate Gaussian distribution.
Hence, the component covariance matrices encode the within-group association structure among
the observed variables. In several situations, this association structure may vary between the
groups and two (or more) variables correlated within one cluster may be independent in another.
In such cases, assuming a model where the variables are all independent and the component co-
variance matrices are diagonal would be too restrictive. On the other hand, not placing any
constraint on the covariance terms would introduce unnecessary parameters when some of the
variables have weak or almost null correlation (Dempster, 1972). Therefore, sparse covariance
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matrices can be used to characterize the component densities in order to better model and define
a parsimonious representation of the within-group association structure.

Graphical models (Whittaker, 1990; Koller and Friedman, 2009) are widely used to model
the relations among a collection of random variables. When the joint distribution of these
variables is multivariate Gaussian, a subclass of such models, the Gaussian covariance graph
model, defines a correspondence between the graph and the pattern of correlation embedded in
the covariance matrix (Chaudhuri et al., 2007; Richardson and Spirtes, 2002). The graph depicts
the association structure of the variables and two or more variables are independent if there is
no edge joining them. Thus, the marginal independence statements of the graph coincide to
zero covariance terms in the covariance matrix.

In this work we develop a framework for model-based clustering with sparse covariance ma-
trices. This framework is built upon the combination of Gaussian mixture models and Gaussian
covariance graph models. The component densities are then characterized by graphs represent-
ing the structure of association of each cluster and by covariance matrices with zero patterns
concomitant to the missing edges of the graphs. The approach results in a parsimonious model-
based clustering of the data via a flexible model for the within-group joint distribution of the
observed variables.

The article is structured as follows. Section 2 briefly recalls the model-based clustering frame-
work via finite mixture of Gaussian distributions. Section 3 describes the Gaussian covariance
models for modeling the marginal dependences among a collection of random variables. Section 4
introduces the mixture of Gaussian covariance graph models employed for model-based cluster-
ing with sparse covariance matrices. In particular, Section 4.1 focuses on model specification
and Section 4.2 on its estimation by means of a penalized log-likelihood. Section 4.3 presents a
simple Bayesian regularization approach for avoiding degeneracies of the likelihood. We present
and discuss different penalty functions for graph estimation in Section 4.4. These functions place
a direct penalty on the graph structure, hence the problem of structure estimation corresponds
to a combinatorial optimization task. Section 4.5 describes two alternative strategies for graph
structure search and sparse covariance estimation based respectively on genetic algorithm and
stepwise search. In Section 5 we assess the proposed method on simulated data experiments and
in Section 6 it is applied to two illustrative data examples. The paper ends with a discussion in
Section 7.

2 Model-based clustering
Let X be the N×V data matrix, in which each observation xi is a realization of a V -dimensional
vector of random variables (X1, . . . , Xj , . . . , XV ). Model-based clustering assumes that the data
arise from a finite mixture of K distributions, corresponding to the groups. For continuous data,
a popular approach is to model each component density by a multivariate Gaussian distribution.
Therefore, the density of each data point is given by:

f (xi |Θ) =
K∑
k=1

τk φ (xi |µk,Σk) ,

where τk are the mixing proportions such that
∑K
k=1 τk = 1 and τk > 0, and φ(·) is the

multivariate Gaussian density with mean vector µk and covariance matrix Σk, and Θ =
(τ1, . . . , τK−1,µ1, . . . ,µK ,Σ1, . . . ,ΣK) is the vector of model parameters. In this model, the
component densities characterize the groups and each observation belongs to the corresponding
cluster according to a latent group membership indicator variable Zik, such that Zik = 1 if xi
arises from the kth subpopulation, 0 otherwise. For a fixed number of components K, the model
is usually estimated using the EM algorithm (Dempster et al., 1977). See McLachlan and Peel
(2000) and Fraley and Raftery (2002) for further details, and McNicholas (2016) for a recent
review.
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In such setting, the curse of dimensionality (Bellman, 1957) takes the form of a dramatic
over-parametrization of the model. Indeed, the number of parameters is of order O(KV 2) and
is mainly led by the number of covariance terms in the matrices Σk (Bouveyron and Brunet-
Saumard, 2014). In the literature, different methods and alternative parameterizations of the
component densities have been proposed in order to overcome this issue and attain parsimony.
For example, Banfield and Raftery (1993) and Celeux and Govaert (1995) propose a parsimonious
parametrization of the covariance matrices based on an eigenvalue decomposition which allows
the control of the volume, shape and orientation of the Gaussian ellipsoids; McNicholas and
Murphy (2008) present a factorization of the covariance matrix based on a factor analysis model
where parsimony is attained by constraining the loading and noise matrices. Bouveyron and
Brunet (2012) propose a framework for model-based clustering in a low-dimensional subspace
of the data; Biernacki and Lourme (2014) suggest a decomposition of the covariance based
on conditional variance and conditional correlation matrices, different parsimonious models are
defined by placing constraints on such matrices. Several other approaches have been presented,
and for a review we suggest the excellent survey of Bouveyron and Brunet-Saumard (2014).

Most of the frameworks developed in the literature rely on some sort of matrix decomposition.
In fact, they often focus on the geometric properties of the mixture components, rather than
the dependence structure between the variables conveyed in the covariance matrices. However,
parsimony can also be obtained by direct modelling of such association structure via estima-
tion of sparse covariance matrices, where some covariance terms are set to zero. In this way,
parsimonious models can be defined by taking into account the fact that two (or more) vari-
ables correlated within a cluster may be independent in another one. Hence, the corresponding
covariance parameter should be enforced to zero in order to avoid the estimation of unneeded
parameters. Furthermore, this would also enable the definition of a general model where the
association structure may vary across the mixture components: capturing this feature with the
model can ease the interpretation of the clustering result and can lead to a better representa-
tion of the data generating process. In the next section we will introduce a tool that allows to
estimate sparse covariance matrices and model the relations among variables.

3 Gaussian covariance graph models
A graph G is a mathematical object denoted as the pair G = (V, E), where V is the set of vertices
(or nodes) and E the set of edges (or arcs). We denote with V and E the cardinalities of these
sets respectively. In the graph, two vertices j and h are adjacent if there is an edge joining them.
Edges can be directed, undirected or bi-directed, carrying different interpretations; here we focus
on the case of graphs with only bi-directed edges. Such type of graph is denoted as covariance
graph and can represent the pattern of zeros in a sparse covariance matrix, and consequently
the embedded association structure (Chaudhuri et al., 2007).

Let us consider a bi-directed graph G whose node set V of dimension V represents a collection
of random variables (X1, . . . , Xj , . . . , XV ) distributed according to a multivariate Gaussian
distribution. In this framework there is a one to one correspondence between the graph and the
joint distribution of the random variables (Koller and Friedman, 2009). A Gaussian covariance
graph model is the family of multivariate Gaussian distributions in which the restrictions on the
graph hold in the covariance matrix. Thus, a missing edge in the graph between any two nodes
is equivalent to the corresponding variables being marginally independent and the following
properties hold (Edwards, 2000):

(j, h) /∈ E ⇔ Xj ⊥⊥ Xh ⇔ σjh = 0.
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Figure 1: The covariance graph corresponding to the covariance matrix presented in 1.

For example, the graph in Figure 1 corresponds to the covariance matrix:

Σ =


σ1 σ12 σ13 σ14 0
σ12 σ2 0 σ24 0
σ13 0 σ3 0 σ35
σ14 σ24 0 σ4 0
0 0 σ35 0 σ5

 . (1)

Formally, we define a Gaussian covariance graph model as the collection of multivariate Normal
distributions:

{N (µ,Σ) : Σ ∈ C+(G) },

where C+(G) denotes the cone of V × V positive definite matrices induced by the graph G.
Note that the model framework is different from the standard Gaussian graphical model where
the Normal distribution is parameterized in terms of the precision matrix Ω = Σ−1 and an
undirected graph is used to represent the relations. When the precision matrix is considered,
the graph poses a set of pairwise conditional independences and sparsity in Σ may be obtained
only as a by-product of inverting Ω, but it is not guaranteed (Whittaker, 1990; Pourahmadi,
2011). Instead, with a covariance graph model, a sparse Σ is obtained directly, since the graph
places a sets of marginal independence restrictions on the corresponding pairs of variables.

Estimation of a covariance graph model refers to two tasks: structure learning, corresponding
to the task of inferring a graph structure from the data, and parameter estimation, concerning
the estimation of the covariance matrix terms according to the pairwise restrictions of the graph
and the constraint of the matrix being positive definite. The aim is closely related to the
estimation of a sparse covariance matrix for a vector of random variables, a problem that has
been tackled in a plethora of ways in the literature. For example, by using maximum likelihood
methods (Kauermann, 1996; Wermuth et al., 2006; Chaudhuri et al., 2007), by using penalized
likelihood methods and regularization techniques (Huang et al., 2006; Zhou et al., 2011; Bien
and Tibshirani, 2011; Rothman, 2012), or by exploiting a Bayesian framework with shrinkage
priors (Wang, 2015).

In particular, in this paper we focus on the work of Chaudhuri et al. (2007). The authors
propose a maximum likelihood method for estimating a positive definite covariance matrix with
zero entries given by a fixed graph structure. The method relies on the Iterative Conditional
Fitting (ICF) algorithm. The procedure estimates the joint distribution of the variables by fixing
the marginal distribution of a subset of variables and finding the conditional distribution of a
variable given the rest under the constraints induced by the graph. Then the joint distribution
is updated by multiplying the two distributions. The method is fast and easy to implement and
the covariance matrix obtained is ensured to be positive definite. Appendix A contains a more
detailed description of the algorithm within the context of this work.

A vast amount of literature exists on graphical models, and we conclude this section sug-
gesting some general references on the topic: Whittaker (1990), Edwards (2000) and Koller and
Friedman (2009) for an in-depth discussion on the subject and Drton and Maathuis (2017) for
a recent review on structure learning. Compared to undirected and directed graphs, bi-directed
graphs are usually employed for graphical modeling of the marginal dependences of a set of
random variables; Richardson and Spirtes (2002) contains a review on different graph types and
their properties.
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4 Mixtures of Gaussian covariance graph models
Gaussian covariance graph models determine a framework for estimating multivariate Normal
distributions with sparse covariance matrices and for modeling the relations among a set of
variables. In this section, we incorporate this framework into model-based clustering to obtain
a clustering of the data with sparse covariance matrices and groups with different association
patterns.

4.1 Model specification

In a mixture of Gaussian covariance graph models we assume that the density of each data point
is defined as follows:

f (xi |Θ,G) =
K∑
k=1

τk φ (xi |µk,Σk,Gk)

with Σk ∈ C+(Gk),
(2)

where G = {G1, . . . ,Gk, . . . ,GK} is the collection of graphs of mixture components and C+ (Gk)
denotes the cone of positive definite matrices induced by the graph Gk. Within each component,
a graph Gk = (V, Ek) poses a collection of marginal independence restrictions on the joint
distribution of the variables. This results in the corresponding component covariance matrix
being sparse with the related covariance terms set to zero. In addition, clusters with differing
dependence patterns are described by different sets of edges Ek. Therefore, the model takes into
account that groups can be characterized by dissimilar association structures and allows the
performing of model-based clustering with sparse covariance matrices.

4.2 Model estimation

For a fixed number of components K, model estimation concerns the estimation of mixture
parameters Θ and the selection of graph structures G. To accomplish the task we introduce a
structural EM algorithm (S-EM) (Friedman, 1997, 1998). The algorithm allows the estimation of
model parameters and inferring graph configurations in presence of incomplete data, combining
the standard EM algorithm (Dempster et al., 1977) and the penalized EM algorithm (Green,
1990) with a graph structure search. The S-EM algorithm maximizes a penalized version of the
log-likelihood, where the penalization term is some function of the graph structure. The penalty
term allows the definition of a scoring rule to be used for searching the best graph at each step
of the algorithm. The general outline is similar to the conventional EM algorithm, with the
relevant exception that we optimize not only parameters, but also graph edge sets.

The set of arcs Ek defines the structure of graph Gk. Let us represent it by introducing
the symmetric adjacency matrix Ak such that an entry ajhk is equal to zero if (j, h) /∈ Ek, 1 if
(j, h) ∈ Ek; in addition, diag{Ak} = 0. Let us also denote with A the collection of adjacency
matrices representing G. For the model in (2) we consider the following penalized log-likelihood:

` =
N∑
i=1

log
{

K∑
k=1

τk φ (xi |µk,Σk,Gk)
}
−

K∑
k=1

Q(Ak), (3)

where Q(·) is a function that penalizes the graph complexity. Different choices of Q(·) will be
discussed in Section 4.4. Equation (3) leads to the following penalized complete log-likelihood:

`C =
N∑
i=1

K∑
k=1

zik log {τk φ (xi |µk,Σk,Gk)} −
K∑
k=1

Q(Ak),

where we denoted by zik a realization of Zik.
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The S-EM algorithm is used to maximize (3) with respect to model parameters and graph
structures. The algorithm alternates between the two standard steps, E(xpectation) and M(aximization).
In addition, the M step includes the structure learning step, the so-called S step, employed to
search for the optimal graph configurations within the mixture components. We describe the
S-EM algorithm in detail in the following subsections. A description of how the the algorithm
is initialized is in Appendix B

4.2.1 E step

At iteration t of the S-EM algorithm, the estimated a posteriori probabilities ẑ(t)
ik = P̂r (Zik = 1 |xi)

are computed using mixture parameters and graph configurations as follows:

ẑ
(t)
ik = τ̂

(t−1)
k φ(xi | µ̂(t−1)

k , Σ̂(t−1)
k , Ĝ(t−1)

k )∑K
l=1 τ̂

(t−1)
l φ(xi | µ̂(t−1)

l , Σ̂(t−1)
l , Ĝ(t−1)

l )
,

where τ̂ (t−1)
k , µ̂

(t−1)
k , Σ̂(t−1)

k , Ĝ(t−1)
k are parameters and graph structures estimated in the M and

S steps at the previous iteration (t− 1).

4.2.2 M step

In the M step we solve the following maximization problem:

arg max
Θ,A

N∑
i=1

K∑
k=1

ẑ
(t)
ik log {τk φ (xi |µk,Σk,Gk)} −

K∑
k=1

Q(Ak).

Note that finding the optimal collection of adjacency matrices A corresponds to finding the
optimal set of graphs G. Since the penalization term does not involve mixing proportions and
cluster means, the updating formulas for these parameters are readily given by:

τ̂
(t)
k = N

(t)
k

N
, µ̂

(t)
k = 1

Nk

N∑
i=1

ẑ
(t)
ik xi,

where N (t)
k =

∑N
i=1 ẑ

(t)
ik . Estimation of the matrices Σk is coupled with the estimation of the

graphs Gk. In fact, Σk needs to fulfill the constraint Σk ∈ C+(Gk). We resort to the subsequent
S step to solve the optimization problem.

4.2.3 S step

For fixed (µ̂(t)
k , τ̂

(t)
k ), estimates of Σk and Ak are found solving the maximization problem:

arg max
Σ,A

− 1
2

K∑
k=1

{
N

(t)
k

[
tr(S(t)

k Σ−1
k ) + log det Σk

]}
−

K∑
k=1

Q(Ak),

with Σk ∈ C+ (Gk) ,
(4)

where S(t)
k = 1

N
(t)
k

∑N
i=1 ẑ

(t)
ik (xi − µ̂(t)

k )(xi − µ̂(t)
k )> is the within-component sample covariance

matrix and the objective function above corresponds to the (penalized) profile complete log-
likelihood. The solution to (4) is obtained by solving the problem component-wise with respect
to Σk and Ak:

arg max
Σk,Ak

−
N

(t)
k

2
[
tr(S(t)

k Σ−1
k ) + log det Σk

]
−Q(Ak),

with Σk ∈ C+ (Gk) .
(5)
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Here the problem corresponds to the estimation of a covariance graph model. In this case, the
structure learning task coincides with a combinatorial optimization problem. Given a proposed
graph G?k represented by A?

k, the corresponding Σ?
k is estimated using the ICF algorithm (see

Appendix A for details). Then, the objective function in (5) is evaluated for (A?
k,Σ?

k) and is used
to rank different graph structures. Consequently, Â(t)

k (thus Ĝ(t)
k ) and Σ̂(t)

k are determined as the
couple (A?

k,Σ?
k) that maximizes this quantity. Carrying out an exhaustive search is infeasible

since there are 2(V
2) possible graphs. We propose to efficiently solve the problem by means of

two alternative strategies based on genetic algorithm and stepwise search, both described in
Section 4.5.

4.3 Bayesian regularization

The likelihood of a Gaussian mixture model can be prone to degeneracies and singularities,
especially related to the covariance matrix estimate (Titterington et al., 1985). Moreover, the
ICF algorithm employed to estimate a sparse Σk requires the within-component sample covari-
ance matrix Sk to be strictly positive definite (Chaudhuri et al., 2007). This condition may
not be attained in practice if the expected number of observations falling into a cluster is less
than the number of variables or because of singularities, due to highly correlated variables, for
example. To overcome the issue, we delineate a Bayesian framework for regularization where
the maximum likelihood estimate is replaced by the maximum a posteriori (MAP) estimate. A
similar approach has already been suggested by Ciuperca et al. (2003), Fraley and Raftery (2005,
2007) and Baudry and Celeux (2015). Here the main purpose is in regularizing the estimate
of the covariance parameters, thus we place no prior distributions on the mixing proportions
and the component means. We consider exchangeable priors on the covariance matrices, such
that the prior factorizes as

∏
k p(Σk). Then, the aim is optimizing the following regularized

log-likelihood:

`R =
N∑
i=1

log
{

K∑
k=1

τk φ (xi |µk,Σk,Gk)
}

+
K∑
k=1

log p(Σk)−
K∑
k=1

Q(Ak), (6)

where we take p(Σk) to be an Inverse Wishart distribution, IW (ω,W), the standard conjugate
prior in this setting.

To maximize (6) with respect to parameters and graph configurations we use the same S-EM
algorithm of the previous section. The E step is unchanged and estimates ẑik are given as in
Section 4.2.1. Also estimates for τk an µk are obtained in the same way as Section 4.2.2. On the
other hand, maximization of (6) for Σk and Ak leads to the following optimization problem:

arg max
Σk,Ak

− Ñk

2
[
tr(S̃kΣ−1

k ) + log det Σk

]
−Q(Ak),

with Σk ∈ C+ (Gk) ,
where

Ñk = Nk + ω + V + 1, S̃k = 1
Ñk

[NkSk + W] . (7)

Numerical solution to this problem is found using the same approach adopted for solving (5),
this time replacing the maximum likelihood estimate of Σk under the covariance graph model
with its MAP estimate. Again, the process involves a type of combinatorial optimization, which
is solved using two alternative strategies as described in Section 4.5. To find the MAP estimate
of Σk given a graph structure, the ICF algorithm is modified consequently. Appendix A contains
further details.

Using arguments similar to Fraley and Raftery (2005, 2007) and Baudry and Celeux (2015),
we set:

ω = V + 2, W = S
det(S)1/V

(
c

K

)1/V
,

7



where S = 1
N

∑N
i=1(xi − x̄)(xi − x̄)>, the empirical covariance matrix of all the data, with x̄

the sample mean, x̄ = 1
N

∑N
i=1 xi. With this choice, det(W) = c

K and the tuning parameter
c determines the amount of regularization. The parameter allows a weaker regularization than
the one suggested in Fraley and Raftery (2005, 2007). A small value for c avoids masking the
clustering structure and allows to obtain components whose volume is within the volume of the
data (Baudry and Celeux, 2015). We set this parameter equal to 0.001 by default. A further
discussion on the choice of hyperparameters for the Inverse Wishart distribution in mixture
modeling is in Frühwirth-Schnatter (2006).

4.4 Penalty functions

The framework for sparse covariance estimation has been rendered as a combinatorial optimiza-
tion problem, where the function Q(·) in (3) acts with the purpose of scoring the different graph
configurations. This function penalizes the complexity of a graph structure and different specifi-
cations of it lead to different modeling strategies and control on the amount of sparsity induced
in the component covariance matrices. Furthermore, within the context of maximum penalized
likelihood estimation, the choice of Q(·) can also be interpreted as a choice for the prior distri-
bution p(Ak), thus, indirectly, p(Gk); in fact, it may be considered p(Gk) = p(Ak) ∝ e−Q(Ak)

(Green, 1990). With this view, the decision can be made as to include prior knowledge about
the correlation pattern among the variables or to penalize more some structures of association
than others. Indeed, specification of the form of Q(·) is context and purpose-dependent. For
example, in high-dimensional settings, one may want to have sparser component covariance ma-
trices, opting for a function that penalizes significantly complex association structures; also, if
the aim is to derive a graphical model for the within-cluster joint distribution of the variables,
a penalty function based on a model selection criterion could be specified. In the subsequent
sections we suggest some alternatives that we found to work well in practice; these are tailored
to different situations and have a meaningful interpretation.

4.4.1 BIC-type

Within the S-EM algorithm, the structure learning task can be recast as a model selection
problem. The set of edges delineates a model for the association among the variables within a
mixture component and selection of the optimal structure corresponds to selection of the best
model for such association. Let us denote by Ek =

∑
j>h ajhk the number of arcs in a graph Gk,

i.e. the number of non-zero off-diagonal entries ofAk, corresponding to the number of covariance
parameters of the associated matrix Σk; let also T =

(V
2
)
, i.e. the total number of covariance

terms for a set of V variables. In the context of Gaussian graphical model selection, a natural
penalty function is such that the score in (5) corresponds to the Bayesian Information Criterion
(BIC, Schwarz, 1978; Koller and Friedman, 2009) of a Gaussian graph covariance model. In this
case the function is given by:

QBIC(Ak) = 1
2Ek logN.

With this choice of Q(·), solving the problem in (5) is equivalent to selecting the best covariance
graph model using the BIC. The score obtained in this way is an approximation to the marginal
likelihood of the Gaussian covariance graph model and consistency properties hold (Koller and
Friedman, 2009). When N and V are of comparable size, this score may select graphs that are
overly complex. In this case, Foygel and Drton (2010) suggest an extended Bayesian information
criterion (EBIC). The corresponding Q(·) function is given by:

QEBIC(Ak) = 1
2Ek logN + 2γEk log V,

where 0 ≤ γ ≤ 1. The parameter γ downweighs the probability of selecting graphs with a
large number of arcs. In the case γ = 1, the probability of selecting a graph with Ek edges is

8



proportional to
( T
Ek

)−1. Clearly, for a choice of γ = 0 the BIC score is recovered. In practice,
setting γ = 1 results in very sparse covariance matrices and is particularly suitable when the
number of variables is large. We refer to Chen and Chen (2008), Foygel and Drton (2010), and
Barber and Drton (2015) for more details.

4.4.2 Erdős-Rényi

The Erdős-Rényi model is a popular model for random graphs. Under this model, the probability
of a graph Gk with Ek arcs is given by αEk(1 − α)T−Ek , where α is the probability that two
nodes are associated (Erdős and Rényi, 1959; Bollobas, 2001). From this quantity, the following
penalty function can be derived:

QER(Ak) = −Ek logα− (T − Ek) log(1− α).

The parameter α controls the connectivity of a graph. In particular, Erdős and Rényi (1960)
derived a tight bound on the density of a graph in relation to the value of α. For values of
this parameter less than log V/V , the graph will be almost surely disconnected as V → ∞, i.e.
there exists two nodes such that there is no path in the graph joining them (Edwards, 2000).
Therefore, for small values of α the penalization tends to favor situations where the component
joint distribution decomposes into the product of independent blocks, which contain correlated
variables. We suggest setting α = log V/T , a value such that the expected number of arcs is
equal to log V and such that the graph will almost surely have disconnected components of size
larger than O(log V ) (Bollobas, 2001).

4.4.3 Power law

The previous Q(·) functions penalize in the same way graphs with equal number of edges but
dissimilar configurations. However, in some situations some form of association structures may
be preferred to others a priori. To assign different penalization to different structures defined
on the same number of arcs, we consider the following penalty function:

QPL(Ak) = β
V∑
j=1

log(dkj + 1),

where β is a weighting coefficient and dkj =
∑V
h=1 ajhk, the degree of node j in graph Gk,

i.e. the number of nodes connected to it. The penalty is derived from a power law on the
nodes of a graph of the form

∏
j(dkj + 1)β. With this function, for a fixed number of edges,

structures of association characterized by few hub variables correlated to the others are preferred.
Figure 2 contains an explicit example. With the choice β = log(NV ), the penalty function can be
rewritten as QPL(Ak) =

∑V
j=1 log(dkj+1) logN+

∑V
j=1 log(dkj+1) log V , and thus its magnitude

is approximately on a similar scale as BIC and EBIC penalizations. However, contrary to QEBIC

and QBIC functions, it is not linear in the number of parameters and denser graphs will tend to
be less penalized.

4.5 Solving the optimization problem in the S step

We resort to two alternative strategies in order to solve the optimization problem in the S-step
and obtain estimates of the graph structures and the corresponding covariance matrices. The
first is based on a genetic algorithm, while the second is based on a stepwise search. We note
that both strategies allow parallelization of the search procedure, leading to a notable reduction
of computing time.
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Figure 2: Example of the QPL penalty function. The two graphs have the same number of edges while they
differ in the association structure. The graph in (a) corresponds to a matrix where X1 is a central variable,
while the graph in (b) to a case where the variables are pairwise correlated. For (a), QPL = 5.08 β, while
for (b), QPL = 6.60 β.

4.5.1 Genetic algorithm

Genetic algorithms (GAs) are stochastic optimization algorithms based on concepts and op-
erators of biological evolution and natural selection (Goldberg, 1989; Holland, 1992). These
algorithms have been applied in numerous fields of statistics (see Chatterjee et al., 1996; Bozdo-
gan, 2004; Galimberti et al., 2017, for example), in graphical modeling (Poli and Roverato, 1998;
Roverato and Paterlini, 2004), and Gaussian mixture model estimation (Martínez and Vitria,
2000; Pernkopf and Bouchaffra, 2005).

Compared to standard stepwise search strategies, GAs are less prone to be trapped in local
optima, but may not scale well to problems with a large space of possible solutions. Although
GAs require some parameter tuning, the stochastic evolutionary nature of these algorithms make
the final solution less sensitive to initialization (Goldberg, 1989). Furthermore, convergence
results have been derived (Greenhalgh and Marshall, 2000; Sharapov and Lapshin, 2006, for
example).

A GA is started with a population of randomly generated individuals or solutions. The
fitness of every individual in the population is evaluated and a new population is formed by
applying genetic operators. In our framework, a graph is encoded through its adjacency matrix
as a binary string indicating the presence or absence of an arc between any pair of variables.
For example, the graph represented in Figure 1 is encoded as the binary vector represented in
Table 1, where the pairs of variables coincide to the off-diagonal elements of the related adjacency
matrix.

In our setting, a population corresponds to a collection of possible graphs. Then the fitness
of each individual is evaluated according to the objective function of Equation (5) (or Equation
(7) in case of regularization). At each iteration, a new population is generated by means of the
following operators:

• Selection: this step involves selecting a subset of graphs for breeding. A weighted rank
selection scheme is used to assign a weight between 0 and 1 to each graph structure based on
its fitness value. Consequently, a new population is randomly sampled with such computed
weights. Thus, better models of association have higher chance of being included in the
next generation.
• Crossover: two strings (parents) are selected at random with probability 0.8 (by default)
and re-combined in order to produce two different strings (offspring). Single-point crossover

X1−X2 X1−X3 X1−X4 X1−X5 X2−X3 X2−X4 X2−X5 X3−X4 X3−X5 X4−X5

1 1 1 0 0 1 0 0 1 0

Table 1: The binary string representing the adjacency matrix corresponding to the graph in Figure 1.
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selects a point at random and the resulting graph is then obtained copying one parent from
beginning to the crossover point and the rest is from the second parent.
• Mutation: a randommutation is introduced in the population to ensure that the searching
process does not get trapped in some local optima of the searching space. With probability
0.2 (by default), an arc is either introduced or removed from the graph.
• Elitism: the graph structure with the largest fitness value is retained at each iteration of
the genetic algorithm. Moreover, in order to maintain the general monotonicity property,
elitism is performed also between each iteration of the S-EM algorithm. Therefore, the
optimal graph structure selected in the S-step at the previous iteration is included in the
starting population of the S-step at the following iteration.

For a population of graphs, the related sparse covariance matrices are estimated using the
ICF algorithm and the optimal couple (Σk,Ak) is selected as the one with the largest fitness
value in the population. At each iteration of the GA, the evolutionary scheme is repeated and
the aim is to generate novel population members that gradually improve their average fitness
value. The GA stops when there are no further improvements in the fitness value of the optimal
couple (Σk,Ak) of a population for a fixed number of consecutive iterations. By default, we set
this number of consecutive iterations equal to 100, a value ensuring that a stable solution has
been reached without slowing down the procedure. Due to the elitism operator, the general S-
EM algorithm is in the class of generalized EM algorithms and generates a sequence of values of
` (or `R) that monotonically converges to a stationary point (Wu, 1983; Green, 1990; Friedman,
1997, 1998).

The genetic algorithm is implemented in practice using the R (R Core Team, 2017) package
GA (Scrucca, 2017, 2013). The implementation allows parallelization of the search procedure.
Moreover, the nature of the optimization problem allows to discard solutions already evalu-
ated during the previous iterations. This results in a considerable reduction of the amount of
computing time.

4.5.2 Stepwise search

Although less prone to be trapped in a local optimum, GAs can be computationally intensive
and not suited for high-dimensional problems. Despite being sub-optimal, stepwise searching
strategies are standard procedures for combinatorial model search (Miller, 2002; Wiegand, 2010)
and can scale better in higher dimensions. Here we propose a stepwise search particularly suited
to the case when the number of variables V is large.

Let O(Σk,Ak) be the value of the objective function in (5) (or (7) in case of regularization)
at a given iteration of the S-EM algorithm (note we omit the iteration superscript t− 1 for ease
of notation). Let also denote with A+

k the collection of adjacency matrices where an edge has
been added to Ak, and with A−k the collection of adjacency matrices where an edge has been
removed from Ak. We indicate with e a generic edge, thus Ae

k is the adjacency matrix whose
edge e has been added or removed. For matrix Ae

k, the corresponding sparse covariance matrix
Σe
k is estimated using the ICF algorithm. We alternate the following steps.

• Addition - Add one edge:

1. ForAe
k ∈ A

+
k , estimate Σe

k using the ICF algorithm givenAe
k and computeO(Σe

k,A
e
k);

2. Find the couple (Σ?
k,A

?
k) = arg max

Ae
k
∈A+

k

{O(Σe
k,A

e
k)}

3. If O(Σ?
k,A

?
k) > O(Σk,Ak), an edge is added to Ak, thus set Σk = Σ?

k, Ak = A?
k and

O(Σk,Ak) = O(Σ?
k,A

?
k).
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• Removal - Remove one edge:

1. ForAe
k ∈ A

−
k , estimate Σe

k using the ICF algorithm givenAe
k and computeO(Σe

k,A
e
k);

2. Find the couple (Σ?
k,A

?
k) = arg max

Ae
k
∈A−

k

{O(Σe
k,A

e
k)}

3. If O(Σ?
k,A

?
k) ≥ O(Σk,Ak), an edge is removed from Ak, therefore set Σk = Σ?

k,
Ak = A?

k and O(Σk,Ak) = O(Σ?
k,A

?
k).

The procedure is repeated until no edges are added or removed for two consecutive addition and
removal steps.

In some situations, at a given addition or removal step, the number of adjacency matrices in
the collection Ak to be considered as a potential solution can still be remarkably large. Moreover,
the addition or removal of some edges will give a value of the objective function significantly
smaller than the current optimum. Therefore, it is reasonable to reduce the space of candidate
adjacency matrices at the subsequent step by discarding those with a value of the objective
function O(Σe

k,A
e
k) which is too distant from the current optimal value O(Σ?

k,A
?
k). To this

purpose, after we found the current optimal couple (Σ?
k,A

?
k), we compute the differences:

De = O(Σ?
k,A

?
k)−O(Σe

k,A
e
k).

Then, at the next addition or removal step, we only consider the set of adjacency matrices such
that:

{Ae
k ∈ Ak : De ≤ C},

where C is a constant to be specified. In this way, only candidate solutions whose value of
O(Σe

k,A
e
k) is within the interval [ O(Σ?

k,A
?
k) − C ; O(Σ?

k,A
?
k) + C ] will be evaluated. The

rationale is that possible solutions which give a value of the objective function too small compared
to the current best are unlikely to be good candidates at the next step and should no longer be
considered.

The idea is closely connected to the Occam’s window of Madigan and Raftery (1994) (see
also Hoeting et al., 1999) and greatly reduces the number of adjacency matrices to be taken into
account at each step of the stepwise search. In this context, the quantity C can be interpreted
as the maximum log-odds ratio value between the likelihood of the current best graphical model
and the likelihood of a candidate graphical model, both weighted by the corresponding graph
structure prior (i.e. the penalty term). Selection of C is context dependent and represents a
trade-off between speed and quality of the solution. Smaller values shrink the searching space
around the current optimum, thus the algorithm runs faster, but the search could be more prone
to reach a sub-optimal solution; larger values allows the algorithm to better explore the space
of association structures, but at the price of an higher computational cost. In practice and
simulated data experiments we found setting C = 50 to provide a good balance between quality
of the solution and efficiency, especially in high-dimensional settings.

The overall stepwise strategy is particularly easy to implement, less computationally intensive
than a genetic algorithm and allows parallelization of the search procedure as well. Furthermore,
also in this case, since the optimal solution is carried to the next iteration, the general S-EM
algorithm with stepwise search is in the class of generalized EM algorithms and generates a
sequence of log-likelihood values that monotonically converges to a stationary point.

4.6 Model selection and cluster assignment

The number of mixture components is often unknown and needs to be inferred from the data.
Here we make use of the Bayesian information criterion (BIC) for choosing the number of clusters
and performing model selection

BIC = 2
N∑
i=1

log f(xi | Θ̂, Ĝ)− ν logN,
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where Θ̂ and Ĝ are the estimated mixture parameters and graphs, and ν is the number of
non-zero parameters. We remark that, differently from penalized model-based clustering with
lasso penalty, where parameters are first estimated and then shrunk to zero, in our framework
covariance parameters corresponding to zero entries in the graph are exactly zero and not es-
timated, therefore ν coincides to the actual number of parameters and degrees of freedom (see
Xie et al., 2008; Yuan and Lin, 2007; Pan and Shen, 2007; Zou et al., 2007; Pan et al., 2006).
The best model is the one that maximizes the BIC. Also resampling model selection methods
(such as cross-validation) could be employed, however BIC has the advantage of being less com-
putationally demanding (Shen and Ye, 2002; Ruan et al., 2011). Several other methods for
model selection in mixture models have been proposed in the literature; for an in depth review
we recommend McLachlan and Rathnayake (2014). Moreover, we point that BIC can be used
to compare different sparse covariance models once they have been estimated using different
penalty functions in the S-EM algorithm. Note that, in doing so, BIC shall not be used to
choose the type of penalization function and state its superiority over the others. Rather, the
selection of the penalty function Q(·) is context and purpose dependent. Nevertheless, differ-
ent penalty functions may lead to different mixtures of Gaussian covariance graph models with
different general structures of association, and BIC can be employed to compare these models.

After estimating parameters, graph configurations, and selecting the number of components,
each observation xi is assigned to the corresponding cluster using the maximum a posteriori
rule. The rule assigns an observation to the cluster k if

k = argmax
l

{ẑi1, . . . , ẑil, . . . , ẑiK},

where ẑil are the posterior probabilities as estimated in the E step of Section 4.2.1.

5 Simulated data experiments
In this section we assess the proposed sparse modeling approach through different simulated
data scenarios. The objective is to evaluate the ability of the mixture of Gaussian covariance
graph models framework of discovering the group structure in the data, as well as its ability in
modeling the within-cluster associations among the variables. We test the method by considering
various configurations of sample size, number of variables and dependence patterns.

For each simulated dataset, we fit a mixture of Gaussian covariance graph models using the
four penalizations described in Section 4.4: BIC-type, EBIC-type, Erdős-Rényi and power law;
we will refer to the sparse covariance models with mgc and to the different penalizations with
BIC, EBIC, ER and PL, respectively. For each penalization, we will estimate the model using both
the genetic algorithm and the stepwise search, denoted with Ga and Step respectively. Hence,
for example, a sparse covariance model estimated using the stepwise search and the EBIC-type
penalization will be indicated by mgcStepEBIC.

For comparison, we also apply the well known model-based clustering approach of Banfield
and Raftery (1993) and Celeux and Govaert (1995), implemented in the widely popular R package
mclust (Scrucca et al., 2016). The approach is based on a family of 14 parsimonious models
defined imposing constraints on the covariance matrix eigendecomposition Σk = λkVkDkV>k .
The models characterize the geometric properties of the clusters, however, with regards to the
association structure between the variables, they can only convey two alternatives: diagonal
covariance, where all the variables are independent (the eigenvectors Vk are constrained to
correspond to the standard basis vectors), or full covariance, where all the variables are allowed
to be dependent (no constraints on Vk); see Scrucca et al. (2016) and Celeux and Govaert (1995)
for details. In using the package, we let it automatically select the best covariance decomposition
model (among the available 14), and we simply use the umbrella term mclust to denote the
package, the methodology and the corresponding results.
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To evaluate the ability of recovering the generating graphs, we consider the false positive rate
(proportion of incorrectly identified edges) and the false negative rate (proportion of incorrectly
missed edges). To overcome the problem of label matching and the fact that the selected number
of clusters K̂ may differ from the data generating one, we compute the following indexes:

FPR = 1
K̂

K̂∑
g=1

FPR∗g, FNR = 1
K̂

K̂∑
g=1

FNR∗g,

where

FPR∗g = min{FPR(1)
g , . . . FPR(k)

g . . . FPR(K)
g },

FNR∗g = min{FNR(1)
g , . . . FNR(k)

g . . . FNR(K)
g },

with FPR(k)
g and FNR(k)

g the false positive rate and the false negative rate computed between
the estimated graph of component g and the graph corresponding to group k. As usual, to
evaluate the classification performance we make use of the Adjusted Rand Index (ARI, Hubert
and Arabie, 1985).

We consider four scenarios differentiated by the association structures and the sparsity rates
corresponding to the group covariance matrices:

Scenario 1. Alternated-blocks covariance matrices.
Scenario 2. Sparse at random covariance matrices.
Scenario 3. Random hubs covariance matrices.
Scenario 4. Mixed type covariance matrices.

Examples of the different scenarios are depicted in Figures 3, 4, 5 and 6. In the figures,
each large square represents the association structure corresponding to a component covariance
matrix. Within each large square, a small black square denotes the presence of an edge between
a pair of variables, thus a non-zero covariance term. Appendix C contains details of the four
situations. For each scenario, we simulate from a mixture of K = 3 multivariate Gaussian
distributions with mixing proportions τ = (0.2, 0.5, 0.3). Mean parameters are randomly selected
in (−1, 1), (−2, 2) and (−3, 3), respectively.

We will report results concerning BIC, ARI, FPR, FNR, estimated number of clusters and
relative computing time with respect to the time taken by mclust. In all cases, we will estimate
models considering values of K ranging from 1 to 4. All the experiments are run on a com-
puter cluster with 24 processors Intel Ivybridge E5-2620 @2GHz. Some considerations about
computing time evaluation are in Appendix D.

Different experiments and settings are presented in the following three parts.

5.1 Part I

In this section we generate random datasets for different combinations of sample sizes and
numbers of variables, N = (100, 200) and V = (10, 20, 30). For every combination of N and V
and each scenario we replicate the experiment 100 times. The results are reported in Tables 2,
3, 4 and 5.

For sample size N = 100, as the number of variables increases, the mixture of covariance
graph models with different penalization terms tends to outperform mclust, both in terms of
classification and identification of the correct number of clusters, and also in terms of BIC.
Nevertheless, models with PL penalty perform surprisingly badly in all the simulation settings
for V = 30. The fact suggests that the power law penalty function may be particularly sensitive
to the tuning parameter if N is not decisively larger than V . For sample size N = 200, all the
methods tend to attain an almost perfect classification of the data and consistently select the
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Table 2: Simulated data Scenario 1. The table reports the values of BIC, ARI, FPR, FNR, selected
number of clusters and relative time for each method averaged over 100 replicates of the experiment. The
relative time is computed with respect to mclust.

N = 100 N = 200
BIC K FPR FNR ARI Rel. time BIC K FPR FNR ARI Rel. time

mclust -1567 3.02 — — 0.99 1 -2899 3.20 — — 0.95 1

V = 10

mcgGaBIC -1399 2.97 0.05 0.01 0.99 56 -2587 3.01 0.02 0.00 1.00 80
mcgGaEBIC -1453 2.97 0.01 0.28 0.99 49 -2596 3.00 0.00 0.02 1.00 68
mcgGaER -1401 2.98 0.03 0.02 0.99 58 -2587 3.00 0.02 0.00 1.00 86
mcgGaPL -1417 2.97 0.00 0.07 0.99 50 -2592 3.00 0.00 0.00 1.00 76

mcgStepBIC -1400 2.97 0.05 0.01 0.99 1 -2587 3.00 0.02 0.00 1.00 2
mcgStepEBIC -1435 2.97 0.01 0.16 0.99 1 -2593 3.00 0.00 0.01 1.00 2
mcgStepER -1403 2.97 0.03 0.01 0.99 1 -2587 3.00 0.02 0.00 1.00 2
mcgStepPL -1417 2.97 0.01 0.06 0.99 1 -2591 3.00 0.00 0.00 1.00 2

mclust -3226 2.91 — — 0.88 1 -5046 3.12 — — 0.97 1

V = 20

mcgGaBIC -2881 2.71 0.13 0.06 0.93 162 -4429 3.00 0.02 0.00 1.00 31
mcgGaEBIC -3088 2.89 0.01 0.56 0.98 61 -4634 3.00 0.00 0.34 1.00 16
mcgGaER -2901 2.73 0.05 0.24 0.94 101 -4444 3.00 0.00 0.01 1.00 26
mcgGaPL -2965 2.71 0.09 0.08 0.93 117 -4455 3.00 0.00 0.00 1.00 22

mcgStepBIC -2870 2.71 0.13 0.06 0.93 11 -4418 3.00 0.03 0.00 1.00 2
mcgStepEBIC -3064 2.92 0.01 0.54 0.98 3 -4594 3.00 0.00 0.28 1.00 1
mcgStepER -2877 2.76 0.05 0.21 0.95 6 -4431 3.00 0.01 0.01 1.00 1
mcgStepPL -2917 2.77 0.06 0.07 0.95 5 -4448 3.00 0.00 0.00 1.00 1

mclust -5212 3.55 — — 0.75 1 -7405 2.99 — — 0.99 1

V = 30

mcgGaBIC -5764 2.72 0.31 0.10 0.92 1595 -7792 3.00 0.09 0.04 1.00 131
mcgGaEBIC -5048 3.00 0.01 0.73 1.00 361 -7864 3.00 0.00 0.65 1.00 69
mcgGaER -5047 3.00 0.05 0.47 1.00 693 -7628 3.00 0.02 0.29 1.00 80
mcgGaPL -6364 1.22 0.81 0.02 0.16 1685 -7952 3.00 0.07 0.01 1.00 119

mcgStepBIC -5565 2.84 0.25 0.10 0.96 242 -7751 3.00 0.10 0.04 1.00 18
mcgStepEBIC -5031 3.00 0.01 0.74 1.00 38 -7845 3.00 0.00 0.65 1.00 5
mcgStepER -5012 3.00 0.06 0.46 1.00 92 -7583 3.00 0.03 0.29 1.00 10
mcgStepPL -6414 1.35 0.81 0.00 0.25 15 -7664 3.00 0.03 0.03 1.00 8

Table 3: Simulated data Scenario 2. The table reports the values of BIC, ARI, FPR, FNR, selected
number of clusters and relative time for each method averaged over 100 replicates of the experiment. The
relative time is computed with respect to mclust.

N = 100 N = 200
BIC K FPR FNR ARI Rel. time BIC K FPR FNR ARI Rel. time

mclust -2678 3.02 — — 1.00 1 -5066 3.00 — — 1.00 1

V = 10

mcgGaBIC -2441 3.00 0.06 0.03 1.00 85 -4673 3.00 0.04 0.01 1.00 84
mcgGaEBIC -2491 3.00 0.00 0.23 1.00 67 -4699 3.00 0.01 0.07 1.00 81
mcgGaER -2443 3.00 0.04 0.04 1.00 79 -4673 3.00 0.04 0.01 1.00 87
mcgGaPL -2476 3.00 0.02 0.20 1.00 65 -4681 3.00 0.02 0.03 1.00 79

mcgStepBIC -2445 3.00 0.06 0.03 1.00 2 -4676 3.00 0.05 0.01 1.00 2
mcgStepEBIC -2492 3.00 0.01 0.22 1.00 1 -4699 3.00 0.01 0.06 1.00 2
mcgStepER -2447 3.01 0.04 0.04 1.00 2 -4677 3.00 0.04 0.01 1.00 2
mcgStepPL -2479 3.00 0.02 0.21 1.00 1 -4684 3.00 0.02 0.04 1.00 2

mclust -4922 2.59 — — 0.90 1 -8490 3.03 — — 0.99 1

V = 20

mcgGaBIC -4477 2.69 0.21 0.08 0.93 124 -7503 3.00 0.04 0.02 1.00 57
mcgGaEBIC -4572 2.99 0.01 0.37 1.00 55 -7749 3.00 0.00 0.23 1.00 43
mcgGaER -4439 2.92 0.07 0.16 0.98 96 -7542 3.00 0.01 0.06 1.00 49
mcgGaPL -4623 2.59 0.28 0.15 0.90 118 -7542 3.00 0.05 0.06 1.00 46

mcgStepBIC -4458 2.71 0.19 0.08 0.94 7 -7495 3.00 0.04 0.02 1.00 2
mcgStepEBIC -4550 3.00 0.01 0.36 1.00 3 -7734 3.00 0.00 0.22 1.00 2
mcgStepER -4429 2.90 0.07 0.17 0.98 6 -7535 3.00 0.02 0.05 1.00 2
mcgStepPL -4700 2.59 0.31 0.15 0.89 3 -7535 3.00 0.05 0.06 1.00 2

mclust -7488 2.69 — — 0.93 1 -11712 2.95 — — 0.99 1

V = 30

mcgGaBIC -7613 2.14 0.49 0.08 0.65 4075 -10387 2.99 0.05 0.05 1.00 663
mcgGaEBIC -7370 2.93 0.02 0.36 0.99 1098 -11058 3.00 0.00 0.41 1.00 155
mcgGaER -7162 2.79 0.11 0.18 0.96 2435 -10553 3.00 0.01 0.20 1.00 306
mcgGaPL -7844 1.31 0.80 0.03 0.24 4499 -10642 2.95 0.14 0.07 0.99 554

mcgStepBIC -7455 2.50 0.38 0.08 0.83 437 -10335 2.99 0.06 0.06 1.00 49
mcgStepEBIC -7317 2.86 0.02 0.38 0.97 84 -10987 3.00 0.00 0.41 1.00 14
mcgStepER -7093 2.76 0.10 0.20 0.95 270 -10489 3.00 0.01 0.20 1.00 28
mcgStepPL -7964 1.30 0.85 0.01 0.23 0 -10725 2.93 0.17 0.08 0.98 8
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Table 4: Simulated data Scenario 3. The table reports the values of BIC, ARI, FPR, FNR, selected
number of clusters and relative time for each method averaged over 100 replicates of the experiment. The
relative time is computed with respect to mclust.

N = 100 N = 200
BIC K FPR FNR ARI Rel. time BIC K FPR FNR ARI Rel. time

mclust -1565 3.00 — — 1.00 1 -2796 3.01 — — 1.00 1

V = 10

mcgGaBIC -1352 3.00 0.05 0.36 1.00 83 -2448 3.00 0.03 0.27 1.00 91
mcgGaEBIC -1432 3.00 0.02 0.67 1.00 78 -2506 3.00 0.01 0.49 1.00 85
mcgGaER -1355 3.01 0.03 0.41 1.00 83 -2449 3.00 0.02 0.29 1.00 96
mcgGaPL -1410 3.00 0.04 0.58 1.00 68 -2480 3.00 0.02 0.42 1.00 75

mcgStepBIC -1358 3.00 0.06 0.36 1.00 2 -2453 3.00 0.04 0.27 1.00 3
mcgStepEBIC -1430 3.00 0.02 0.65 1.00 2 -2507 3.00 0.01 0.48 1.00 2
mcgStepER -1362 3.00 0.03 0.41 1.00 2 -2452 3.00 0.03 0.29 1.00 3
mcgStepPL -1416 3.00 0.04 0.57 1.00 2 -2483 3.00 0.02 0.41 1.00 2

mclust -3150 2.74 — — 0.92 1 -5165 3.00 — — 1.00 1

V = 20

mcgGaBIC -2634 2.69 0.18 0.46 0.93 129 -3966 3.00 0.03 0.51 1.00 44
mcgGaEBIC -2756 2.99 0.01 0.79 1.00 72 -4284 3.00 0.00 0.77 1.00 40
mcgGaER -2621 2.79 0.06 0.63 0.96 115 -4012 3.00 0.01 0.60 1.00 39
mcgGaPL -2853 2.69 0.23 0.51 0.93 142 -4070 3.00 0.01 0.62 1.00 34

mcgStepBIC -2629 2.71 0.17 0.48 0.94 11 -3958 3.00 0.03 0.51 1.00 3
mcgStepEBIC -2738 2.96 0.01 0.79 0.99 6 -4267 3.00 0.00 0.76 1.00 2
mcgStepER -2611 2.79 0.06 0.64 0.96 9 -4007 3.00 0.01 0.60 1.00 3
mcgStepPL -2860 2.69 0.23 0.51 0.93 7 -4061 3.00 0.01 0.61 1.00 2

mclust -4949 2.97 — — 0.83 1 -7450 2.97 — — 0.99 1

V = 30

mcgGaBIC -4752 2.55 0.31 0.45 0.89 1833 -5192 2.99 0.03 0.63 1.00 79
mcgGaEBIC -4672 2.74 0.02 0.83 0.95 453 -5816 3.00 0.00 0.86 1.00 42
mcgGaER -4428 2.62 0.08 0.71 0.92 1025 -5365 3.00 0.00 0.75 1.00 60
mcgGaPL -5262 1.41 0.71 0.19 0.32 2122 -5407 2.97 0.03 0.71 0.99 65

mcgStepBIC -4625 2.59 0.28 0.48 0.91 307 -5159 2.99 0.04 0.64 1.00 9
mcgStepEBIC -4601 2.71 0.02 0.83 0.94 57 -5738 3.00 0.00 0.85 1.00 4
mcgStepER -4353 2.60 0.07 0.72 0.92 123 -5328 3.00 0.01 0.75 1.00 9
mcgStepPL -5360 1.41 0.75 0.16 0.32 4 -5387 2.97 0.03 0.71 0.99 3

Table 5: Simulated data Scenario 4. The table reports the values of BIC, ARI, FPR, FNR, selected
number of clusters and relative time for each method averaged over 100 replicates of the experiment. The
relative time is computed with respect to mclust.

N = 100 N = 200
BIC K FPR FNR ARI Rel. time BIC K FPR FNR ARI Rel. time

mclust -1362 3.02 — — 0.99 1 -2452 3.04 — — 0.99 1

V = 10

mcgGaBIC -1184 3.02 0.06 0.06 1.00 79 -2125 3.00 0.03 0.01 1.00 83
mcgGaEBIC -1271 3.00 0.06 0.3 1.00 68 -2143 3.00 0.01 0.05 1.00 67
mcgGaER -1186 2.99 0.04 0.06 1.00 79 -2125 3.00 0.03 0.01 1.00 85
mcgGaPL -1248 2.99 0.13 0.2 1.00 70 -2152 3.01 0.04 0.07 1.00 53

mcgStepBIC -1188 2.99 0.07 0.05 1.00 2 -2134 3.00 0.05 0.01 1.00 2
mcgStepEBIC -1259 2.99 0.07 0.25 1.00 2 -2153 3.00 0.01 0.07 1.00 2
mcgStepER -1191 3.01 0.05 0.07 1.00 2 -2133 3.00 0.05 0.01 1.00 2
mcgStepPL -1254 2.99 0.14 0.21 1.00 2 -2170 3.00 0.06 0.09 1.00 2

mclust -2748 2.68 — — 0.92 1 -4128 3.02 — — 0.99 1

V = 20

mcgGaBIC -2225 2.71 0.18 0.06 0.93 140 -3031 3.00 0.04 0.01 1.00 30
mcgGaEBIC -2384 2.96 0.03 0.33 0.99 85 -3185 3.00 0.01 0.13 1.00 22
mcgGaER -2211 2.85 0.07 0.11 0.97 121 -3049 3.00 0.01 0.02 1.00 25
mcgGaPL -2449 2.69 0.30 0.14 0.93 144 -3132 3.00 0.05 0.09 1.00 22

mcgStepBIC -2221 2.72 0.17 0.06 0.94 9 -3022 3.00 0.03 0.01 1.00 1
mcgStepEBIC -2363 2.95 0.03 0.31 0.99 5 -3173 3.00 0.00 0.12 1.00 1
mcgStepER -2208 2.84 0.07 0.11 0.97 10 -3037 3.00 0.01 0.01 1.00 1
mcgStepPL -2483 2.74 0.32 0.12 0.94 6 -3139 3.00 0.06 0.09 1.00 1

mclust -4565 2.61 — — 0.91 1 -6075 2.96 — — 0.99 1

V = 30

mcgGaBIC -4263 2.59 0.32 0.06 0.90 2597 -4082 2.99 0.05 0.01 1.00 171
mcgGaEBIC -4252 2.81 0.02 0.3 0.96 723 -4680 3.00 0.00 0.28 1.00 92
mcgGaER -3953 2.62 0.12 0.18 0.92 1761 -4152 3.00 0.01 0.03 1.00 107
mcgGaPL -4786 1.39 0.77 0.04 0.30 2907 -4380 2.97 0.08 0.13 0.99 165

mcgStepBIC -4163 2.59 0.30 0.06 0.90 343 -4032 2.98 0.05 0.01 1.00 20
mcgStepEBIC -4176 2.86 0.03 0.27 0.97 72 -4584 3.00 0.00 0.24 1.00 7
mcgStepER -3902 2.62 0.13 0.18 0.92 279 -4097 3.00 0.01 0.03 1.00 13
mcgStepPL -4872 1.39 0.8 0.01 0.30 4 -4388 2.96 0.09 0.14 0.99 7
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Figure 3: Example of simulation setting 1 - Alternated-blocks covariance matrices.

Figure 4: Example of simulation setting 2 - Sparse at random covariance matrices.

Figure 5: Example of simulation setting 3 - Random hubs covariance matrices.

Figure 6: Example of simulation setting 4 - Mixed type covariance matrices.

correct number of groups. However, compared to the mclust results, the BIC for the mixture of
Gaussian covariance models is higher on average. In particular, models ER are on average almost
always preferred to the others in terms of BIC, for both sample sizes and different dimensions.
Regardless of the covariance eigen-decomposition, mclust can estimate either full covariance
matrices or diagonal ones and is not capable of recovering the underlying association structure
within the clusters. With respect to the ability of selecting the correct graph structures, the
EBIC-type penalty tends to select very sparse graphs, while the power law favors denser graphs,
especially for sample size equal to 100. Moreover, the BIC-type penalization selects graph with
spurious associations in some cases. Models estimated using the Erdős-Rényi penalty function
outperforms the others on average in terms of dependence structure detection. Note that in
Scenario 3 it is particularly difficult to infer the underlying within group correlation structures,
and all the models estimated by the different penalizations have an high mean false negative
rate. In fact, the method used to simulate the sparse covariance matrices often downweighs
some of the covariance terms even when the variables are connected in the corresponding graph
(see Appendix C). Overall, sparse covariance mixture models ER and BIC with Erdős-Rényi
and BIC-type penalty have on average the better performance in terms of classification, graph
structure detection and BIC.

For the sparse covariance models mgc, in all situations the stepwise search Step is remarkably
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(d) Scenario 4.

Figure 7: Heat-map plot of the proportion of times an arc has been estimated between a pair of variables
for the simulation setting examples as in Figures 3 (a), 4 (b), 5 (c), 6 (d)

faster than the evolutionary search Ga, especially as the number of variables increases. Surpris-
ingly, on average the stepwise search tends also to provide models of slightly better quality in
terms of BIC and accuracy in graph structure detection, although in general the results between
Step and Ga are quite similar. We attribute the inferior performance of Ga search to the fact
of setting the maximum number of iterations equal to 100, while in higher dimension a larger
value would have been beneficial, but at an additional computational cost.

5.2 Part II

In this section we set up another simulated data experiment in order to further investigate the
ability of the Erdős-Rényi penalty function to recover the underlying graph structure. Using the
same parameters as before, we generate data according to the association structures depicted
in the Figures 3, 4, 5 and 6, for V = 20 and sample sizes N = (100, 200). On such simulated
data, we fit the mixture of Gaussian covariance graph models with Erdős-Rényi penalty, using
the genetic algorithm search Ga to infer the association structures, and with K fixed to 3 in
advance. For each association structure and sample size, we replicate the experiment 50 times
and we record the inferred graph configurations. Figure 7 reports the proportion of times an
edge has been estimated between a pair of variables. The darker the color, the larger the
frequency of two variables being declared as associated. Overall, models mcg with Erdős-Rényi
penalty show a good performance in detecting the underlying graph configurations, especially
on the association structures related to Scenario 1, 2, and 4, and as the sample size increases.
We point out again that the association structure related to Scenario 3 is particularly difficult
to infer, since some of the correlations are downweighted by the method used to generate the
covariance matrices. For this reason, in this scenario sparse covariance mixture models with ER
penalty tend to miss some arcs, resulting in larger false negative rates.
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Table 6: Simulated data, high-dimensional setting, Scenario 2. The table reports the values of BIC, ARI,
FPR, FNR, selected number of clusters, difference between number of estimated and number of actual
parameters, and relative time for each method averaged over 50 replicates of the experiment. The relative
time is computed with respect to mclust.

BIC K FPR FNR ARI Diff. Rel. time

mclust -191763 2.60 — — 0.78 3956.62 1

mcgStepBIC -151948 3.00 0.11 0.04 0.95 136.18 102
mcgStepEBIC -152221 3.00 0.00 0.07 0.95 -0.35 52
mcgStepER -152773 2.98 0.06 0.03 0.94 23.05 63
mcgStepPL -152120 3.00 0.13 0.08 0.95 95.93 48

Table 7: Simulated data, high-dimensional setting, Scenario 4. The table reports the values of BIC, ARI,
FPR, FNR, selected number of clusters, difference between number of estimated and number of actual
parameters, and relative time for each method averaged over 50 replicates of the experiment. The relative
time is computed with respect to mclust.

BIC K FPR FNR ARI Diff. Rel. time

mclust -190438 2.79 — — 0.79 2451.79 1

mcgStepBIC -157662 3.00 0.04 0.04 0.95 -19.79 92
mcgStepEBIC -158800 3.00 0.00 0.19 0.95 -379.23 42
mcgStepER -157702 3.00 0.04 0.03 0.96 -89.11 34
mcgStepPL -157714 3.00 0.05 0.08 0.95 -68.96 50

5.3 Part 3

In this part we evaluate the performance of the mgc models in a high-dimensional setting.
We generate data with N = 1000 and V = 100 according to the association structures of
Scenario 2 and Scenario 4. We replicate the experiment 50 times and we estimate the sparse
covariance models for the different penalty functions BIC, EBIC, ER, and PL. We only consider
the stepwise search for graph structure inference, as more suited in practice for such a large
number of variables. In fact, in this setting for fixed K there are K24950 ≈ K101650 possible
association structures. To generate the data we use the same parameters (cluster means and
mixing proportions) described in Section 5. For this experiment we also compute the difference
between the number of estimated parameters and the number of actual parameters of the data
generating model. Results are reported in Tables 6 and 7.

Overall, the sparse covariance models outperform mclust in terms of model quality, selected
number of cluster and classification. In particular, in such high-dimensional situation, despite
the parsimonious covariance eigendecomposition, on average the models of mclust family can be
largely over-parameterized compared to the mgc models. In fact, the average difference between
estimated and effective number of parameters for mclust is significantly larger than for the
mgc models. For most of the times, mclust selected the VVE model, for which 5552 mixture
parameters need to be estimated for K = 3, while the actual number of mixture parameters is
on average 1137 and 1775 for Scenario 2 and Scenario 4 respectively. The remaining times,
mclust preferred either the diagonal model EEI, with 402 mixture parameters for K = 3, or
the diagonal model VII with K = 1 and 101 parameters: both too restrictive and completely
missed the presence of association between some of the variables.
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Table 8: Clustering results for the thyroid gland data: BIC, estimated number of clusters, number of
estimated parameters, ARI, and relative time. Relative time is computed with respect to the mclust best
model.

BIC K N. par. ARI Rel. time

mclust-VVV -4810 3 62 0.86 —
mclust -4778 3 32 0.89 1
mgcGaBIC -4725 3 41 0.86 561
mgcGaEBIC -4739 3 35 0.88 830
mgcGaER -4729 3 44 0.86 1127
mgcGaPL -4758 3 33 0.89 821
mgcStepBIC -4751 3 47 0.86 15
mgcStepEBIC -4747 3 37 0.88 10
mgcStepER -4766 3 53 0.86 12
mgcStepPL -4759 3 37 0.88 8

6 Illustrative datasets
In this section we consider two illustrative data examples. As in the previous section, we fit
the mixture of Gaussian covariance graph models using the different penalty functions described
in Section 4.4 and using the stepwise and genetic algorithm search for graph configuration
inference. Again, the results are compared to mclust. In both examples, the classification of
the observations is known and the ARI is used to evaluate the quality of the clustering.

6.1 Thyroid gland data

The data consist of five laboratory tests:

• T4, total Serum thyroxin as measured by the isotopic displacement method.
• T3, total serum triiodothyronine as measured by radioimmuno assay.
• RT3U, T3-resin uptake test (percentage).
• TSH, basal thyroid-stimulating hormone as measured by radioimmuno assay.
• DTSH, maximal absolute difference of TSH value after injection of 200 micro grams of
thyrotropin-releasing hormone as compared to the basal value.

These tests are administered to a sample of 215 patients to assess whether a subject’s thyroid
gland can be classified as euthyroidism (normal functioning, N = 150), hypothyroidism (under-
active gland not producing enough hormone, N = 30) or hyperthyroidism (overactive thyroid
producing excessive amounts of the free thyroid hormones T3 and/or thyroxine T4, N = 35).
Each patient was assigned to one of the three classes according to a complete medical assessment
(Coomans et al., 1983).

Table 8 reports the clustering results. All the methods correctly identify the number of groups
and attain a good classification of the patients. mclust selects a VVI model, corresponding to a
model where all the variables are independent within each cluster, i.e. the component covariance
matrices are diagonal (see Scrucca et al. (2016) for details). However, this could be a restrictive
assumption as, for example, hormones T3 and T4 are typically correlated (Kumar et al., 1977).
For comparison, we also report the mclust model VVV (mclust-VVV), which places no constraints
on the covariance matrices and allows all the variables to be correlated. However, this model is
clearly over-parameterized and attains the lowest BIC. Indeed, the models with sparse covariance
matrices allow some of the variables to be associated in different clusters. All of the sparse
covariance mixture models have a larger number of parameters than the model with diagonal
covariance matrices, but with a higher BIC value than the one of mclust. Sparse covariance
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Table 9: Cross-tabulation between the patients classification and the classification estimated by mgcBIC
for the thyroid gland data.

Cluster
1 2 3

Hypothyroidism 26 4
Euthyroidism 2 145 3

Hyperthyroidism 35

RT3U

T4

T3TSH

DTSH

(a) Cluster 1

RT3U

T4

T3TSH

DTSH

(b) Cluster 2

RT3U

T4

T3TSH

DTSH

(c) Cluster 3

Figure 8: Graphs inferred by mgcGaBIC for the thyroid gland data.

models whose structure of association was estimated using stepwise search give comparable
results to those models employing the genetic algorithm, and with a reduced relative computing
time.

Among the sparse covariance mixture models, mgcGaBIC is the one with the highest BIC value
and Table 9 presents the cross-tabulation between the patients classification and the estimated
partition. There is good agreement between the two partitions and we can match the three
diagnosis to the clusters. Figure 8 represents the inferred graphs. Hormones T4 and T3 are
associated in all three clusters and overall the correlation structures differ across the groups. In
particular, the graph for Cluster 1 is characterized by the relation between T3, T4 and TSH.
This cluster is predominantly composed of subjects affected by hypothyroidism and the disease
is usually identified by an inverse association between TSH and (T3, T4) (Kumar et al., 1977;
Garber et al., 2012).

6.2 Italian wine data

The data consist of 27 chemical measurements from N = 178 wine samples from Piedmont
region, in Italy (Forina et al., 1986). The samples derive from three different cultivars: Barbera
(N = 48), Grignolino (N = 71) and Barolo (N = 59). Table 10 contains the names of the
measured variables.

The clustering results are reported in Table 11. Apart from the sparse covariance model
estimated with BIC penalty function, all the models obtain good clustering results, even though
the BIC of the sparse covariance model with PL penalization preferred a mixture distribution with
4 components. mclust selects an EVI model, corresponding to graphs where all the variables are
independent. However, the assumption could be too restrictive as the characteristics of the wine
types are naturally defined by the different relations among the chemical components (Amerine,
1953). Note that the number of parameters reported in the table for the mclust model is
related to the corresponding covariance matrix decomposition, where the volume of the clusters
is constrained to be equal across the mixture components (see Scrucca et al. (2016)). The
table also reports the mclust model VVV (mclust-VVV), with no restrictions on the component
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Table 10: Variables in the Italian wine dataset.

1. Alcohol 10. Potassium 19. Color Intensity
2. Sugar-free Extract 11. Calcium 20. Hue
3. Fixed Acidity 12. Magnesium 21. OD280/OD315 of Diluted Wines
4. Tartaric Acid 13. Phosphate 22. OD280/OD315 of Flavanoids
5. Malic Acid 14. Chloride 23. Glycerol
6. Uronic Acids 15. Total Phenols 24. 2-3-Butanediol
7. pH 16. Flavanoids 25. Total Nitrogen
8. Ash 17. Non-flavanoid Phenols 26. Proline
9. Alcalinity of Ash 18. Proanthocyanins 27. Methanol

Table 11: Clustering results for the Italian wine data: BIC, estimated number of clusters, number of
estimated parameters, ARI, and relative time. Relative time is computed with respect to mclust.

BIC K N. par. ARI Rel. time

mclust-VVV -24254 1 405 0.00 —
mclust -23954 3 162 0.83 1

mgcGaBIC -23217 2 248 0.48 128
mgcGaEBIC -23185 3 189 0.88 57
mgcGaER -22965 3 231 0.89 79
mgcGaPL -23451 4 240 0.83 92

mgcStepBIC -23485 2 273 0.41 38
mgcStepEBIC -23208 3 186 0.88 8
mgcStepER -23042 3 233 0.81 17
mgcStepPL -23429 4 241 0.83 27

covariance matrices. The VVV model is largely over-parameterized. In fact, for this data, if no
constraints are imposed on the covariance matrices, a large number of parameters need to be
estimated as the number of component increases, thus resulting in the selection of a mixture
model with only one component by BIC. Regarding the sparse covariance mixture models, also
in this example the number of estimated parameters is larger than the number of parameters of
the model preferred by mclust. Indeed, these models pose less restrictive assumptions on the
structure of dependence and allow some of the chemical quantities to be associated in different
ways within the clusters. Again, despite the higher number of estimated parameters, the sparse
covariance mixture models outperform the mclust model in terms of BIC. Also here, the stepwise
search Step provides results comparable to those obtained employing the evolutionary search
Ga and with a smaller relative computing time.

In this case, mgcGaER is the sparse covariance model with the largest BIC and Table 12
contains the cross-tabulation between the actual classification of the samples and the estimated
partition. The clustering shows good agreement to the wine types and only in Cluster 1 there is

Table 12: Cross-tabulation between the actual classification and the classification estimated by mgcGaER
for the Italian wine data.

Cluster
1 2 3

Barolo 59
Grignolino 6 65

Barbera 48
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Figure 9: Graphs inferred by mgcGaER for the Italian wine data. The numbers correspond to the variable
names of Table 10.
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Figure 10: Arcs present in each pair of clusters for the Italian wine data as estimated by mgcGaER.
Isolated nodes are not shown. The numbers correspond to the variable names of Table 10.

overlapping between Barolo and Grignolino samples. Figure 9 depicts the estimated graphs. The
correlation structures among the chemical measurements differ from cluster to cluster, however
some similarities are also present. Figure 10 displays the variables that are associated in each
pair of clusters. In particular, edges (8, 10), (15, 16), and (21, 22) are present in all three
groups. The chemical compounds corresponding to (3, 5) regulate the acidity of the wine and
are thus related to the pH measured by variable 7. The subset of variables (15, 16, 17, 18, 19,
20, 21, 22) tend to be particularly connected in the three clusters, with different set of edges.
Specifically, variables (15, 16, 17, 18) are related to the phenolic content and are responsible for
the coloration of the wine (Harbertson and Spayd, 2006), expressed by the variables (19, 20).

7 Discussion
We present a framework for model-based clustering with sparse covariance matrices. This frame-
work is based on a mixture of Gaussian covariance graph models where the component densities
are characterized by bi-directed graphs and corresponding sparse covariance matrices. The
approach results in a flexible model that can accommodate association structures among the
variables that vary from cluster to cluster. Estimation is accomplished via maximization of a
penalized likelihood by means of a structural EM algorithm. Two alternative strategies based on
genetic algorithm and stepwise search are suggested to solve the optimization problem related to
graph and sparse covariance matrix estimation. In order to introduce different degree of sparsity
in the covariance matrices, we proposed a general penalization term on the graph structures that
allows for various specifications of the penalty function.

The presented work is related to the estimation of a Gaussian graphical model when the
observed sample arises from an heterogeneous population. Recently, the problem has attracted
increasing attention, with particular focus on parameterization of the multivariate Gaussian
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distribution via its precision matrix. In a supervised context, where the classification of the
data points is known in advance, different approaches have been suggested in the literature.
Baladandayuthapani et al. (2014) and Peterson et al. (2015) propose full Bayesian frameworks
with different parameterizations and priors for the precision matrix. With the aim of joint
estimation of multiple graphical models sharing common characteristics among the classes, Guo
et al. (2011), Mohan et al. (2012), Mohan et al. (2014), Danaher et al. (2014), Zhu et al. (2014)
and Ma and Michailidis (2016) propose penalized likelihood approaches that place a penalty
on the entries of the precision matrix and are inspired by the graphical lasso (Friedman et al.,
2008).

Within the context of clustering and Gaussian mixture models, seminal work can be found
in Thiesson et al. (1997), where the authors parameterize each component density in terms of
conditional distributions and a related directed acyclic graph (DAG, Whittaker, 1990). Re-
cent work on mixtures of DAGs is in Chalmond (2015). Rodríguez et al. (2011) and Talluri
et al. (2014) develop a Bayesian framework for estimating infinite mixtures of sparse Gaussian
graphical models where different prior distributions on the inverse covariance are employed. Kr-
ishnamurthy (2011), Lotsi and Wit (2013), Gao et al. (2016), and Lee and Xue (2017) present
methods for estimating mixture models with sparse precision matrices via penalized likelihood
estimation and lasso-type penalty functions. Compared to these approaches, in our proposed
framework we parameterize the mixture of Gaussians directly in terms of the component co-
variance matrices. This has the main advantage of obtaining sparse component covariance
matrices immediately, and not as a by-product of inverting the corresponding precision matri-
ces. Indeed, a sparse precision matrix does not guarantee a sparse covariance (Whittaker, 1990;
Pourahmadi, 2011). Moreover, zero covariance terms between any pair of variables can be easily
understood in terms of marginal independence, instead of conditional independence (Whittaker,
1990; Edwards, 2000), leading to a simpler interpretation of the clustering results. With regard
to Gaussian mixture models parameterized by the covariance matrix, Galimberti and Soffritti
(2013) propose an approach where the vector of variables is partitioned into subsets that are
conditionally independent within the clusters. As a consequence, the component covariance ma-
trices are sparse and have a block diagonal structure. The framework we propose in this paper
is more general, since no structure is assumed and the variables are allowed to be dependent
also between blocks.

The topic covered in the paper overlaps also with the framework of sparse Gaussian mixture
models estimation. The problem was originally introduced by Pan and Shen (2007) with the aim
of variable selection for clustering, although the authors did not deal with estimation of sparse
component covariance matrices, which were assumed all equal and diagonal. Subsequently, in the
context of high-dimensional data and regularization, Zhou et al. (2009), Azizyan et al. (2015),
and Ruan et al. (2011) extended the approach to incorporate sparse inverse covariance estimation
via lasso-type penalization. Within a Bayesian framework, Malsiner-Walli et al. (2016) propose
to use a shrinkage prior on the component means, although no shrinkage prior is considered on
the component covariance matrices.

Compared to lasso-type penalizations and the prior distributions employed in the Bayesian
frameworks (such as the G-Wishart distribution, Roverato (2002), for example), we proposed a
general penalty term placed on the collection of graph structures. This type of penalty is flexible
and allows for any form of functional specification. We discussed some alternatives that are
tailored to different situations and objectives. The BIC-type penalty function can be employed
when the purpose is to delineate a model for the within-cluster association among the variables.
With this aim, graph structure estimation is actually a model selection problem and consistency
results of BIC for Gaussian graphical models apply (Koller and Friedman, 2009). In settings
with a large number of variables, the BIC could prefer overly complex association structures. In
these contexts, the EBIC-type penalty can be considered, since it induces a larger penalization
than the BIC-type one, favoring models with sparser covariance matrices. Moreover, consistency
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results are available in the case where sample size and dimensions of the data are comparable
(Foygel and Drton, 2010). The power law penalty function tends to penalize less situations where
few nodes in the graph have high degree than situations where all the nodes have comparable
degree values (see Figure 2). Thus, it is suitable if the clusters are believed to be characterized
by structures of association where a small number of hub variables are correlated to the others.
Furthermore, the tuning parameter β allows to control the amount of sparsity induced. The
Erdős-Rényi penalty function favors graphs with disconnected components and can be used in
situations where the within-cluster joint distribution is believed to decompose into the product
of independent blocks containing associated variables. Also for this function, a tuning parameter
allows to control the degree of sparsity of the inferred covariance matrices.

By placing a penalty function on the within-component association structures embedded in
the adjacency matrices, optimization over the graph space is recast as a combinatorial prob-
lem. We propose two alternative strategies based on genetic algorithm and stepwise search
to effectively solve the task. In both cases, the nature of the optimization problem allows for
parallelization of the computations. In particular, the genetic algorithm extensively explores
the space of solutions, but it could be slow and require a substantial number of iterations and
computing time to attain convergence to a stable solution when clustering data recorded on
a large number of variables. On the other hand, although sub-optimal, the stepwise search is
significantly faster and provides models of comparable quality.

Current and future work focuses on computational improvements and the extension of the
methodology to model-based clustering and sparse modeling of categorical and mixed-type data.

The general framework for model-based clustering with sparse covariance matrices is imple-
mented in the R package mixGGraph that will be soon available on CRAN.

A Iterative conditional fitting algorithm
The ICF algorithm (Chaudhuri et al., 2007) is employed to estimate a sparse covariance matrix
given a certain structure of association. In this appendix, we present the algorithm in application
to Gaussian mixture model estimation and we extend it to allow for Bayesian regularization of
the covariance matrix.

Given a graph Gk = (V, Ek), to find the corresponding sparse covariance matrix under the
constraint of being positive definite we need to maximize the objective function:

−Nk

2
[
tr(SkΣ−1

k ) + log det Σk

]
with Σk ∈ C+ (Gk) .

Let us make use of the following conventions: subscript [j, h] denotes element (j, h) of a matrix,
a negative index such as −j denotes that row or column j has been removed, subscript [ , j] (or
[j, ]) denotes that column (or row) j has been selected. Moreover, we denote with s(j) the set of
indexes corresponding to the variables connected to variable Xj in the graph, i.e. the positions
of the non zero entries in the covariance matrix for Xj . Following Chaudhuri et al. (2007), the
ICF algorithm is implemented as follows:

1. Set the iteration counter r = 0. Initialize the covariance matrix Σ̂(0)
k = diag(Sk).

2. For j = (1, . . . , V )

2.a) compute Ω(r)
k = (Σ̂(r)

k[−j,−j])
−1

2.b) compute the covariance terms estimates

Σ̂(r)
k[j,s(j)] =

(
Sk[j,−j] Ω

(r)
k[ ,s(j)]

)(
Ω(r)
k[s(j), ]Sk[−j,−j]Ω

(r)
k[ ,s(j)]

)
2.c) compute λj = Sk[j,j] − Σ̂(r)

k[j,s(j)]

(
Sk[j,−j] Ω

(r)
k[ ,s(j)]

)>
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2.d) compute the variance term estimate

Σ̂(r)
k[j,j] = λj + Σ̂(r)

k[j,s(j)]Ω
(r)
k[s(j),s(j)]Σ̂

(r)
k[s(j),j]

3. Set Σ̂(r+1)
k = Σ̂(r)

k , increment r = r + 1 and return to (2).

The algorithm stops when the increase in the objective function is less than a pre-specified
tolerance. The covariance matrix in output has zero entries corresponding to the graph structure
and is guaranteed of being positive definite.

In the case of Bayesian regularization, the objective function becomes:

−Ñk

2
[
tr(S̃kΣ−1

k ) + log det Σk

]
with Σk ∈ C+ (Gk) ,

where
Ñk = Nk + ω + V + 1, S̃k = 1

Ñk

[NkSk + W] .

The shape of the objective function corresponds to the one not regularized. Therefore, the same
algorithm can be applied replacing Nk and Sk with Ñk and S̃k.

B Initialization of the S-EM algorithm
The S-EM algorithm requires two initialization steps: initialization of cluster allocations and
initialization of the graph structure search. For the first task we use the Gaussian model-based
hierarchical clustering approach of Scrucca and Raftery (2015), which has been shown to yield
good starting points, be computationally efficient and work well in practice. For initialization
of the graph structure search we use the following approach. Let Rk be the correlation matrix
for component k, computed as:

Rk = UkSkUk,

where Uk is a diagonal matrix whose elements are S−1/2
k,[j,j] for j = 1, . . . , V , i.e. the within

component sample standard deviations. A sound strategy is to initialize the search for the
optimal association structure by looking at the most correlated variables. Therefore, we define
the adjacency matrix Ak whose off-diagonal elements ajhk are given by:

ajhk =
{

1 if |rjhk| ≥ ρ,

0 otherwise

where rjhk is an off-diagonal element of Rk and ρ is a threshold value. In practice, we define
a vector of values for ρ ranging from 0.4 to 1. For each value of ρ, the related adjacency
matrix is derived and the corresponding sparse covariance matrix is estimated using the ICF
algorithm. Then the different adjacency matrices are ranked according to their value of the
objective function in (5). Subsequently the structure search starts from the adjacency matrix
at the top of the rank.

C Details of simulation experiments
This appendix section describes the various simulated data scenarios considered in Section 5 of
the paper.

Scenario 1 : In this setting we consider a structure with a single block of associated variables
of size

⌊
V
2

⌋
. The groups are differentiated by the position of the block, top corner, center and

bottom corner respectively. Figure 3 displays an example of such structure for V = 20. To
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generate the covariance matrices, first we generate a V × V matrix with all entries equal to 0.9
and diagonal 1. Then we use it as input of the ICF algorithm to estimate the corresponding
covariance matrix with the given structure.

Scenario 2 : For this scenario, the graphs are generated at random from an Erdős-Rényi
model. The groups are characterized by different probabilities of connection, 0.3, 0.2 and 0.1
respectively. Figure 4 presents an example of a collection of structures of association for V = 20.
Starting from a V × V matrix with all entries equal to 0.9 and diagonal 1, we employ the
ICF algorithm to estimate the corresponding sparse covariance matrix. In the simulated data
experiment of Part III, we consider connection probabilities equal to 0.10, 0.05 and 0.03.

Scenario 3 : This scenario is characterized by hubs, i.e. highly connected variables. Each
cluster has V

2 such hubs. The graph structures and the corresponding covariance matrices are
generated randomly using the R package hglasso. (Tan, 2014). The three groups have different
sparsity levels, respectively 0.7, 0.8 and 0.9. Figure 5 presents an example of this type of graphs
for V = 20. We point out that the method implemented in the package poses strict constraints
on the covariance matrix and often some connected variables have weak correlations, making
difficult to infer the association structure.

Scenario 4 : Here the groups have structures of different types: block diagonal, random
connections and Toeplitz type. For the first group we consider a block diagonal matrix with
blocks of size 5. Regarding the second, the graph is generated at random from an Erdős-Rényi
model with parameter 0.2. In both cases, we start from a V ×V matrix with all entries equal to
0.9 and diagonal 1, and then we employ the ICF algorithm to estimate the corresponding sparse
covariance matrices. For the Toeplitz matrix we take σj, j−1 = σj−1, j = 0.5 for j = 2, . . . , V .
Figure 6 depicts an example of these graph configurations for V = 20. In the simulated data
experiment of Part III, we consider an Erdős-Rényi model with parameter 0.05 and a block
diagonal matrix with 5 blocks of size 20; the Toeplitz matrix is generated as before.

D A note on computing time
In the simulated data experiment and illustrative examples we presented the computational time
of our framework using as reference the computing time of the widely used software mclust.
The software has more than twenty years history, is highly developed and the core functionalities
are implemented in Fortran, for these reasons it is particularly efficient and fast. On the other
hand, the code implementing our proposed method is written in pure R (which is known to be
slower than compiled languages) and, although much care and effort have been put for an efficient
implementation, it is the product of a shorter development time. Moreover, in our framework we
are tackling the particularly complex problem of joint mixture and graphical model estimation:
even for a relatively small size problem with 10 variables and 2 mixture components there are
approximatively 7×1013 possible models. As expected, the runtime of our methodology is shown
to be several orders of magnitude larger than mclust. Although computing time is a relevant
variable to be taken into account in practice, here we argue that evaluating the effective runtime
and speed of an algorithm or method is a very difficult task. This for multiple reasons: software
implementation, modeling framework and purpose, computational resources, characteristics of
the problem to be solved. An intriguing discussion is in Kriegel et al. (2017) and references
therein.
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