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Abstract

Compressive sensing (CS) is an alternative to Shannon/Nyquist sampling for acquisition of sparse or

compressible signals that can be well approximated by just K ≪ N elements from an N -dimensional

basis. Instead of taking periodic samples, we measure inner products with M < N random vectors

and then recover the signal via a sparsity-seeking optimization or greedy algorithm. The standard CS

theory dictates that robust signal recovery is possible from M = O (K log(N/K)) measurements. The

goal of this paper is to demonstrate that it is possible to substantially decrease M without sacrificing

robustness by leveraging more realistic signal models that go beyond simple sparsity and compressibility

by including dependencies between values and locations of the signal coefficients. We introduce a model-

based CS theory that parallels the conventional theory and provides concrete guidelines on how to create

model-based recovery algorithms with provable performance guarantees. A highlight is the introduction

of a new class of model-compressible signals along with a new sufficient condition for robust model-

compressible signal recovery that we dub the restricted amplification property (RAmP). The RAmP is

the natural counterpart to the restricted isometry property (RIP) of conventional CS. To take practical

advantage of the new theory, we integrate two relevant signal models — wavelet trees and block sparsity

— into two state-of-the-art CS recovery algorithms and prove that they offer robust recovery from just

M = O (K) measurements. Extensive numerical simulations demonstrate the validity and applicability

of our new theory and algorithms.
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I. INTRODUCTION

We are in the midst of a digital revolution that is enabling the development and deployment

of new sensors and sensing systems with ever increasing fidelity and resolution. The theoretical

foundation is the Shannon/Nyquist sampling theorem, which states that a signal’s information is

preserved if it is uniformly sampled at a rate at least two times faster than its Fourier bandwidth.

Unfortunately, in many important and emerging applications, the resulting Nyquist rate can be

so high that we end up with too many samples and must compress in order to store or transmit

them. In other applications the cost of signal acquisition is prohibitive, either because of a high

cost per sample, or because state-of-the-art samplers cannot achieve the high sampling rates

required by Shannon/Nyquist. Examples include radar imaging and exotic imaging modalities

outside visible wavelengths.

Transform compression systems reduce the effective dimensionality of an N-dimensional

signal x by re-representing it in terms of a sparse set of coefficients α in a basis expansion

x = Ψα, with Ψ an N × N basis matrix. By sparse we mean that only K ≪ N of the

coefficients α are nonzero and need to be stored or transmitted. By compressible we mean that

the coefficients α, when sorted, decay rapidly enough to zero that α can be well-approximated as

K-sparse. The sparsity and compressibility properties are pervasive in many signals of interest.

For example, smooth signals and images are compressible in the Fourier basis, while piecewise

smooth signals and images are compressible in a wavelet basis [1]; the JPEG and JPEG2000

standards are examples of practical transform compression systems based on these bases.

Compressive sensing (CS) provides an alternative to Shannon/Nyquist sampling when the

signal under acquisition is known to be sparse or compressible [2–4]. In CS, we measure

not periodic signal samples but rather inner products with M ≪ N measurement vectors. In

matrix notation, the measurements y = Φx = ΦΨα, where the rows of the M × N matrix

Φ contain the measurement vectors. While the matrix ΦΨ is rank deficient, and hence loses

information in general, it can be shown to preserve the information in sparse and compressible

signals if it satisfies the so-called restricted isometry property (RIP) [3]. Intriguingly, a large
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class of random matrices have the RIP with high probability. To recover the signal from the

compressive measurements y, we search for the sparsest coefficient vector α that agrees with

the measurements. To date, research in CS has focused primarily on reducing both the number

of measurements M (as a function of N and K) and on increasing the robustness and reducing

the computational complexity of the recovery algorithm. Today’s state-of-the-art CS systems

can robustly recover K-sparse and compressible signals from just M = O (K log(N/K)) noisy

measurements using polynomial-time optimization solvers or greedy algorithms.

While this represents significant progress from Nyquist-rate sampling, our contention in this

paper is that it is possible to do even better by more fully leveraging concepts from state-of-the-

art signal compression and processing algorithms. In many such algorithms, the key ingredient is

a more realistic signal model that goes beyond simple sparsity by codifying the inter-dependency

structure among the signal coefficients α.1 For instance, JPEG2000 and other modern wavelet

image coders exploit not only the fact that most of the wavelet coefficients of a natural image

are small but also the fact that the values and locations of the large coefficients have a particular

structure. Coding the coefficients according to a model for this structure enables these algorithms

to compress images close to the maximum amount possible – significantly better than a naı̈ve

coder that just processes each large coefficient independently.

In this paper, we introduce a model-based CS theory that parallels the conventional theory and

provides concrete guidelines on how to create model-based recovery algorithms with provable

performance guarantees. By reducing the degrees of freedom of a sparse/compressible signal

by permitting only certain configurations of the large and zero/small coefficients, signal models

provide two immediate benefits to CS. First, they enable us to reduce, in some cases significantly,

the number of measurements M required to stably recover a signal. Second, during signal

recovery, they enable us to better differentiate true signal information from recovery artifacts,

which leads to a more robust recovery.

1Obviously, sparsity and compressibility correspond to simple signal models where each coefficient is treated independently;

for example in a sparse model, the fact that the coefficient αi is large has no bearing on the size of any αj , j 6= i. We will

reserve the use of the term “model” for situations where we are enforcing dependencies between the values and the locations

of the coefficients αi.
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To precisely quantify the benefits of model-based CS, we introduce and study several new

theoretical concepts that could be of more general interest. We begin with signal models for K-

sparse signals and make precise how the structure encoded in a signal model reduces the number

of potential sparse signal supports in α. Then using the model-based restricted isometry property

(RIP) from [5, 6], we prove that such model-sparse signals can be robustly recovered from noisy

compressive measurements. Moreover, we quantify the required number of measurements M

and show that for some models M is independent of N . These results unify and generalize

the limited related work to date on signal models for strictly sparse signals [5–9]. We then

introduce the notion of a model-compressible signal, whose coefficients α are no longer strictly

sparse but have a structured power-law decay. To establish that model-compressible signals can

be robustly recovered from compressive measurements, we generalize the CS RIP to a new

restricted amplification property (RAmP). For some compressible signal models, the required

number of measurements M is independent of N .

To take practical advantage of this new theory, we demonstrate how to integrate signal

models into two state-of-the-art CS recovery algorithms, CoSaMP [10] and iterative hard thresh-

olding (IHT) [11]. The key modification is surprisingly simple: we merely replace the nonlinear

approximation step in these greedy algorithms with a model-based approximation. Thanks to our

new theory, both new model-based recovery algorithms have provable robustness guarantees for

both model-sparse and model-compressible signals.

To validate our theory and algorithms and demonstrate its general applicability and utility, we

present two specific instances of model-based CS and conduct a range of simulation experiments.

The first model accounts for the fact that the large wavelet coefficients of piecewise smooth

signals and images tend to live on a rooted, connected tree structure [12]. Using the fact that the

number of such trees is much smaller than
(

N
K

)
, the number of K-sparse signal supports in N

dimensions, we prove that a tree-based CoSaMP algorithm needs only M = O (K) measurements

to robustly recover tree-sparse and tree-compressible signals. Figure 1 indicates the potential

performance gains on a tree-compressible, piecewise smooth signal.

The second model accounts for the fact that the large coefficients of many sparse signals clus-
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(a) test signal (b) CoSaMP (RMSE = 1.123)

(c) ℓ1-optimization (RMSE = 0.751) (d) model-based recovery (RMSE = 0.037)

Fig. 1. Example performance of model-based signal recovery. (a) Piecewise-smooth HeaviSine test signal of length

N = 1024. This signal is compressible under a connected wavelet tree model. Signal recovered from M = 80 random

Gaussian measurements using (b) the iterative recovery algorithm CoSaMP, (c) standard ℓ1 linear programming, and

(d) the wavelet tree-based CoSaMP algorithm from Section V. In all figures, root mean-squared error (RMSE) values

are normalized with respect to the ℓ2 norm of the signal.

ter together [7, 8]. Such a so-called block sparse model is equivalent to a joint sparsity model for

an ensemble of J , length-N signals [9], where the supports of the signals’ large coefficients are

shared across the ensemble. Using the fact that the number of clustered supports is much smaller

than
(

JN
K

)
, we prove that a block-based CoSaMP algorithm needs only M = O

(
K + K

J
log(JN

K
)
)

measurements to robustly recover block-sparse and block-compressible signals. Moreover, as the

number of signals J grows large, the number of measurements approaches M = O (K).

Our new theory and methods relate to a small body of previous work aimed at integrating

signal models with CS. Several groups have developed model-specific signal recovery algorithms

[5–8, 13–16]; however, their approach has either been ad hoc or focused on a single model
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class. Previous work on unions of subspaces [5, 6, 17] has focused exclusively on strictly sparse

signals and has not considered feasible recovery algorithms. To the best of our knowledge, our

general framework for model-based recovery, the concept of a model-compressible signal, and

the associated RAmP are new to the literature.

This paper is organized as follows. A review of the CS theory in Section II lays out the

foundational concepts that we extend to the model-based case in subsequent sections. Section III

develops the concept of model-sparse signals and introduces the concept of model-compressible

signals. We also quantify how signal models improve the measurement and recovery process

by exploiting the model-based RIP for model-sparse signals and by introducing the RAmP for

model-compressible signals. Section IV indicates how to tune CoSaMP to incorporate model

information and establishes its robustness properties for model-sparse and model-compressible

signals. Sections V and VI then specialize our theory to the special cases of wavelet tree and

block sparse signal models and report on a series of numerical experiments that validate our

theoretical claims. We conclude with a discussion in Section VII. To make the paper more

readable, all proofs are relegated to a series of appendices.

II. BACKGROUND ON COMPRESSIVE SENSING

A. Sparse and compressible signals

Given a basis {ψi}Ni=1, we can represent every signal x ∈ R
N in terms of N coefficients

{αi}Ni=1 as x =
∑N

i=1 αiψi; stacking the ψi as columns into the N ×N matrix Ψ, we can write

succinctly that x = Ψα. In the sequel, we will assume without loss of generality that the signal

x is sparse or compressible in the canonical domain so that the sparsity basis Ψ is the identity

and α = x.

A signal x is K-sparse if only K ≪ N entries of x are nonzero. We call the set of indices

corresponding to the nonzero entries the support of x and denote it by supp(x). The set of all

K-sparse signals is the union of the
(

N
K

)
, K-dimensional subspaces aligned with the coordinate

axes in R
N . We denote this union of subspaces by ΣK .

Many natural and manmade signals are not strictly sparse, but can be approximated as such;
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we call such signals compressible. Consider a signal x whose coefficients, when sorted in order

of decreasing magnitude, decay according to the power law

∣∣xI(i)

∣∣ ≤ S i−1/r, i = 1, . . . , N, (1)

where I indexes the sorted coefficients. Thanks to the rapid decay of their coefficients, such

signals are well-approximated by K-sparse signals. Let xK ∈ ΣK represent the best K-term

approximation of x, which is obtained by keeping just the first K terms in xI(i) from (1).

Denote the error of this approximation in the ℓp norm as

σK(x)p := arg min
x̄∈ΣK

‖x− x̄‖p = ‖x− xK‖p, (2)

where the ℓp norm of the vector x is defined as ‖x‖p =
(∑N

i=1 |xi|p
)1/p

for 0 < p <∞. Then,

we have that

σK(x)p ≤ (rs)−1/p SK−s, (3)

with s = 1
r
− 1

p
. That is, when measured in the ℓp norm, the signal’s best approximation error

has a power-law decay with exponent s as K increases. We dub such a signal s-compressible.

The approximation of compressible signals by sparse signals is the basis of transform coding

as is used in algorithms like JPEG and JPEG2000 [1]. In this framework, we acquire the full

N-sample signal x; compute the complete set of transform coefficients α via α = Ψ−1x; locate

the K largest coefficients and discard the (N − K) smallest coefficients; and encode the K

values and locations of the largest coefficients. While a widely accepted standard, this sample-

then-compress framework suffers from three inherent inefficiencies: First, we must start with

a potentially large number of samples N even if the ultimate desired K is small. Second, the

encoder must compute all of the N transform coefficients α, even though it will discard all

but K of them. Third, the encoder faces the overhead of encoding the locations of the large

coefficients.

B. Compressive measurements and the restricted isometry property (RIP)

Compressive sensing (CS) integrates the signal acquisition and compression steps into a

single process [2–4]. In CS we do not acquire x directly but rather acquire M < N linear
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measurements y = Φx using an M×N measurement matrix Φ. We then recover x by exploiting

its sparsity or compressibility. Our goal is to push M as close as possible to K in order to

perform as much signal “compression” during acquisition as possible.

In order to recover a good estimate of x (the K largest xi’s, for example) from the M

compressive measurements, the measurement matrix Φ should satisfy the restricted isometry

property (RIP) [3].

Definition 1: An M × N matrix Φ has the K-restricted isometry property (K-RIP) with

constant δK if, for all x ∈ ΣK ,

(1− δK)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δK)‖x‖22. (4)

In words, the K-RIP ensures that all submatrices of Φ of size M × K are close to an

isometry, and therefore distance (and information) preserving. Practical recovery algorithms

typically require that Φ have a slightly stronger 2K-RIP, 3K-RIP, or higher-order RIP in order to

preserve distances between K-sparse vectors (which are 2K-sparse in general), three-way sums

of K-sparse vectors (which are 3K-sparse in general), and other higher-order structures.

While the design of a measurement matrix Φ satisfying the K-RIP is an NP-Complete

problem in general [3], random matrices whose entries are i.i.d. Gaussian, Bernoulli (±1), or

more generally subgaussian2 work with high probability provided M = O (K log(N/K)). These

random matrices also have a so-called universality property in that, for any choice of orthonormal

basis matrix Ψ, ΦΨ has the K-RIP with high probability. This is useful when the signal is sparse

not in the canonical domain but in basis Ψ. A random Φ corresponds to an intriguing data

acquisition protocol in which each measurement yj is a randomly weighted linear combination

of the entries of x.

2A random variable X is called subgaussian if there exists c > 0 such that E
`

eXt
´

≤ ec2t2/2 for all t ∈ R. Examples include

the Gaussian and Bernoulli random variables, as well as any bounded random variable. [18]
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C. Recovery algorithms

Since there are infinitely many signal coefficient vectors x′ that produce the same set of

compressive measurements y = Φx, to recover the “right” signal we exploit our a priori

knowledge of its sparsity or compressibility. For example, we could seek the sparsest x that

agrees with the measurements y:

x = arg min
y=Φx′

‖x′‖0, (5)

where the ℓ0 “norm” of a vector counts its number of nonzero entries. While this optimization

can recover a K-sparse signal from just M = 2K compressive measurements, it is unfortunately

a combinatorial, NP-Complete problem; furthermore, the recovery is not stable in the presence

of noise.

Practical, stable recovery algorithms rely on the RIP (and therefore require at least M =

O (K log(N/K)) measurements); they can be grouped into two camps. The first approach

convexifies the ℓ0 optimization (5) to the ℓ1 optimization

x = arg min
y=Φx′

‖x′‖1. (6)

This corresponds to a linear program that can be solved in polynomial time [2, 3]. Adaptations to

deal with additive noise in y or x include basis pursuit with denoising (BPDN) [19], complexity-

based regularization [20], and the Dantzig Selector [21].

The second approach finds the sparsest x agreeing with the measurements y through an

iterative, greedy search. Algorithms such as matching pursuit, orthogonal matching pursuit

[22], StOMP [23], iterative hard thresholding (IHT) [11], CoSaMP [10], and Subspace Pursuit

(SP) [24] all revolve around a best L-term approximation for the estimated signal, with L varying

for each algorithm.

D. Performance bounds on signal recovery

Given M = O (K log(N/K)) compressive measurements, a number of different CS signal

recovery algorithms, including all of the ℓ1 techniques mentioned above and the CoSaMP, SP,
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and IHT iterative techniques, offer provably stable signal recovery with performance close to

optimal K-term approximation (recall (3)). For a random Φ, all results hold with high probability.

For a noise-free, K-sparse signal, these algorithms offer perfect recovery, meaning that the

signal x̂ recovered from the compressive measurements y = Φx is exactly x̂ = x.

For a K-sparse signal x whose measurements are corrupted by noise n of bounded norm

— that is, we measure y = Φx+ n — the mean-squared error of the recovered signal x̂ is

‖x− x̂‖2 ≤ C‖n‖2, (7)

with C a small constant [2, 3, 10, 11].

For an s-compressible signal x whose measurements are corrupted by noise n of bounded

norm, the mean-squared error of the recovered signal x̂ is

‖x− x̂‖2 ≤ C1‖x− xK‖2 + C2
1√
K
‖x− xK‖1 + C3‖n‖2. (8)

Using (3) we can simplify this expression to

‖x− x̂‖2 ≤
C1SK

−s

√
2s

+
C2SK

−s

s− 1/2
+ C3‖n‖2. (9)

III. BEYOND SPARSE AND COMPRESSIBLE SIGNALS

While many natural and manmade signals and images can be described to first-order as sparse

or compressible, the support of their large coefficients often has an underlying inter-dependency

structure. This phenomenon has received only limited attention by the CS community to date [5–

8, 14–16]. In this section, we introduce a model-based theory of CS that captures such structure.

A model reduces the degrees of freedom of a sparse/compressible signal by permitting only

certain configurations of supports for the large coefficient. As we will show, this allows us to

reduce, in some cases significantly, the number of compressive measurements M required to

stably recover a signal.
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A. Model-sparse signals

Recall from Section II-A that a K-sparse signal vector x lives in ΣK ⊂ R
N , which is a union

of
(

N
K

)
subspaces of dimension K. Other than its K-sparsity, there are no further constraints

on the support or values of its coefficients. A signal model endows the K-sparse signal x with

additional structure that allows certain K-dimensional subspaces in ΣK and disallows others [5,

6].

To state a formal definition of a signal model, let x|Ω represent the entries of x corresponding

to the set of indices Ω ⊆ {1, . . . , N}, and let ΩC denote the complement of the set Ω.

Definition 2: A signal model MK is defined as the union of mK canonical K-dimensional

subspaces

MK =

mK⋃

m=1

Xm, such that Xm := {x : x|Ωm ∈ R
K , x|ΩC

m
= 0},

where each subspace Xm contains all signals x with supp(x) ∈ Ωm. Thus, the model MK is

defined by the set of possible supports {Ω1, . . . ,ΩmK
}.

Signals from MK are called K-model sparse. Clearly, MK ⊆ ΣK and contains mK ≤
(

N
K

)

subspaces.

In Sections V and VI below we consider two concrete models for sparse signals. The first

model accounts for the fact that the large wavelet coefficients of piecewise smooth signals and

images tend to live on a rooted, connected tree structure [12]. The second model accounts for

the fact that the large coefficients of sparse signals often cluster together [7–9].

B. Model-based RIP

If we know that the signal x being acquired is K-model sparse, then we can relax the

RIP constraint on the CS measurement matrix Φ and still achieve stable recovery from the

compressive measurements y = Φx [5, 6].

Definition 3: [5, 6] An M × N matrix Φ has the MK-restricted isometry property (MK-

RIP) with constant δMK
if, for all x ∈MK , we have

(1− δMK
)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δMK

)‖x‖22. (10)
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To obtain a performance guarantee for model-based recovery of K-model sparse signals in

additive measurement noise, we must define an enlarged union of subspaces that includes sums

of elements in the model.

Definition 4: The B-Minkowski sum for the set MK , with B > 1 an integer, is defined as

MB
K =

{
x =

B∑

r=1

x(r), with x(r) ∈MK

}
.

Define MB(x,K) as the algorithm that obtains the best approximation of x in the enlarged

union of subspaces MB
K :

MB(x,K) = arg min
x̄∈MB

K

‖x− x̄‖2.

We write M(x,K) := M1(x,K) when B = 1. Note that for many models, we will have

MB
K ⊂MBK , and so the algorithm M(x,BK) will provide a strictly better approximation than

MB(x,K).

Our performance guarantee for model-sparse signal recovery will require that the measure-

ment matrix Φ be a near-isometry for all subspaces in MB
K for some B > 1. This requirement

is a direct generalization of the 2K-RIP, 3K-RIP, and higher-order RIPs from the conventional

CS theory.

Blumensath and Davies [5] have quantified the number of measurements M necessary for

a random CS matrix to have the MK-RIP with a given probability.

Theorem 1: [5] LetMK be the union of mK subspaces of K-dimensions in R
N . Then, for

any t > 0 and any

M ≥ 2

cδ2
MK

(
ln(2mK) +K ln

12

δMK

+ t

)
,

an M×N i.i.d. subgaussian random matrix has theMK-RIP with constant δMK
with probability

at least 1− e−t.

This bound can be used to recover the conventional CS result by substituting mK =
(

N
K

)
≈

(Ne/K)K . The MK-RIP property is sufficient for robust recovery of model-sparse signals, as

we show below in Section IV-B.
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C. Model-compressible signals

Just as compressible signals are “nearly K-sparse” and thus live close to the union of

subspaces ΣK in R
N , model-compressible signals are “nearly K-model sparse” and live close

to the restricted union of subspaces MK . In this section, we make this new concept rigorous.

Recall from (3) that we defined compressible signals in terms of the decay of their K-term

approximation error.

The ℓ2 error incurred by approximating x ∈ R
N by the best model-based approximation in

MK is given by

σMK
(x) := inf

x̄∈MK

‖x− x̄‖2 = ‖x−M(x,K)‖2.

The decay of this approximation error defines the model-compressibility of a signal.

Definition 5: The set of s-model-compressible signals is defined as

Ms =
{
x ∈ R

N : σMK
(x) ≤ SK−1/s, 1 ≤ K ≤ N, S <∞

}
.

Define |x|Ms as the smallest value of S for which this condition holds for x and s.

We say that x ∈Ms is an s-model-compressible signal under the signal model MK . These

approximation classes have been characterized for certain signal models; see Section V for an

example.

D. Nested model approximations and residual subspaces

In conventional CS, the same requirement (RIP) is a sufficient condition for the stable

recovery of both sparse and compressible signals. In model-based recovery, however, the class

of compressible signals is much larger than that of sparse signals, since the set of subspaces

containing model-sparse signals does not span all K-dimensional subspaces. Therefore, we need

to introduce some additional tools to develop a sufficient condition for the stable recovery of

model-compressible signals.

We will pay particular attention to models MK that generate nested approximations, since

they are more amenable to analysis.
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Definition 6: A model M = {M1,M2, . . .} has the nested approximation property (NAP)

if supp(M(x,K)) ⊂ supp(M(x,K ′)) for all K < K ′ and for all x ∈ R
N .

In words, a model generates nested approximations if the support of the best K ′-term model-

based approximation contains the support of the best K-term model-based approximation for all

K < K ′. An important example of a NAP model is the standard compressible signal model of

(3).

When a model obeys the NAP, the support of the difference between the best jK-term

model-based approximation and the best (j + 1)K-term model-based approximation of a signal

can be shown to lie in a small union of subspaces, thanks to the structure enforced by the

model. This structure is captured by the set of subspaces that are included in each subsequent

approximation, as defined below.

Definition 7: The jth set of residual subspaces of size K is defined as

Rj,K(M) =
{
u ∈ R

N such that u = M(x, jK)−M(x, (j − 1)K) for some x ∈ R
N
}
,

for j = 1, . . . , ⌈N/K⌉.

Under the NAP, each signal x in a model can be partitioned into its best K-term

approximation xT1 , the additional components present in the best 2K-term approximation xT2 ,

and so on, with x =
∑⌈N/K⌉

j=1 xTj
and xTj

∈ Rj,K(M) for each j. Each signal partition xTj
is a

K-sparse signal, and thus Rj,K(M) is a union of subspaces of dimension K. We will denote

by Rj the number of subspaces that compose Rj,K(M) and omit the dependence on M in the

sequel for brevity.

Intuitively, the norms of the partitions ‖xTj
‖2 decay as j increase for signals that are

compressible under the model. As the next subsection shows, this observation is instrumental in

relaxing the isometry restrictions on the measurement matrix Φ and bounding the recovery error

for s-model-compressible signals when the model obeys the NAP.
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E. The restricted amplification property (RAmP)

For exactly K-model-sparse signals, we discussed in Section III-B that the number of

compressive measurements M required for a random matrix to have theMK-RIP is determined

by the number of canonical subspaces mK via (11). Unfortunately, such model-sparse concepts

and results do not immediately extend to model-compressible signals. Thus, we develop a

generalization of the MK-RIP that we will use to quantify the stability of recovery for model-

compressible signals.

One way to analyze the robustness of compressible signal recovery in conventional CS is

to consider the tail of the signal outside its K-term approximation as contributing additional

“noise” to the measurements of size ‖Φ(x− xK)‖2 [10, 11, 25]. Consequently, the conventional

K-sparse recovery performance result can be applied with the augmented noise n+ Φ(x−xK).

This technique can also be used to quantify the robustness of model-compressible signal

recovery. The key quantity we must control is the amplification of the model-based approximation

residual through Φ. The following property is a new generalization of the RIP and model-based

RIP.

Definition 8: A matrix Φ has the (ǫK , r)-restricted amplification property (RAmP) for the

residual subspaces Rj,K of model M if

‖Φu‖22 ≤ (1 + ǫK)j2r‖u‖22 (11)

for any u ∈ Rj,K for each 1 ≤ j ≤ ⌈N/K⌉.

The regularity parameter r > 0 caps the growth rate of the amplification of u ∈ Rj,K as a

function of j. Its value can be chosen so that the growth in amplification with j balances the

decay of the norm in each residual subspace Rj,K with j.

We can quantify the number of compressive measurements M required for a random

measurement matrix Φ to have the RAmP with high probability; we prove the following in

Appendix I.

Theorem 2: Let Φ be an M × N matrix with i.i.d. subgaussian entries and let the set of

residual subspaces Rj,K of model M contain Rj subspaces of dimension K for each 1 ≤ j ≤
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⌈N/K⌉. If

M ≥ max
1≤j≤⌈N/K⌉

1
(
jr
√

1 + ǫK − 1
)2
(

2K + 4 ln
RjN

K
+ 2t

)
, (12)

then the matrix Φ has the (ǫK , r)-RAmP with probability 1− e−t.

The order of the bound of Theorem 2 is lower than O (K log(N/K)) as long as the number

of subspaces Rj grows slower than NK .

Armed with the RaMP, we can state the following result, which will provide robustness for

the recovery of model-compressible signals; see Appendix II for the proof.

Theorem 3: Let x ∈ Ms be an s-model compressible signal under a model M that obeys

the NAP. If Φ has the (ǫK , r)-RAmP and r = s− 1, then we have

‖Φ(x−M(x,K))‖2 ≤
√

1 + ǫKK
−s ln

⌈
N

K

⌉
|x|Ms .

IV. MODEL-BASED SIGNAL RECOVERY ALGORITHMS

To take practical advantage of our new theory for model-based CS, we demonstrate how to

integrate signal models into two state-of-the-art CS recovery algorithms, CoSaMP [10] (in this

section) and iterative hard thresholding (IHT) [11] (in Appendix III). The key modification is

simple: we merely replace the best K-term approximation step in these greedy algorithms with a

best K-term model-based approximation. Since at each iteration we need only search over the mK

subspaces ofMK rather than
(

N
K

)
subspaces of ΣK , fewer measurements will be required for the

same degree of robust signal recovery. Or, alternatively, using the same number of measurements,

more accurate recovery can be achieved. After presenting the modified CoSaMP algorithm, we

prove robustness guarantees for both model-sparse and model-compressible signals.

A. Model-based CoSaMP

We choose to modify the CoSaMP algorithm [10] for two reasons. First, it has robust

recovery guarantees that are on par with the best convex optimization-based approaches. Second,
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Algorithm 1 Model-based CoSaMP

Inputs: CS matrix Φ, measurements y, model MK

Output: K-sparse approximation x̂ to true signal x

x̂0 = 0, r = y, i = 0 {initialize}
while halting criterion false do

i← i+ 1

e← ΦT r {form signal residual estimate}
Ω← supp(M2(e,K)) {prune signal residual estimate according to signal model}
T ← Ω ∪ supp(x̂i−1) {merge supports}
b|T ← Φ†

T y, b|T C ← 0 {form signal estimate}
x̂i ←M(b,K) {prune signal estimate according to signal model}
r ← y − Φx̂i {update measurement residual}

end while

return x̂← x̂i

it has a simple iterative, greedy structure based on a best BK-term approximation (with B a

small integer) that is easily modified to incorporate a best BK-term model-based approximation

MB(K, x). Pseudocode for the modified algorithm is given in Algorithm 1.

We now study the performance of model-based CoSaMP signal recovery on model-sparse

signals and model-compressible signals.

B. Performance of model-sparse signal recovery

A robustness guarantee for noisy measurements of model-sparse signals can be obtained

using the model-based RIP (10). The following theorem is proven in Appendix IV.

Theorem 4: Let x ∈MK and let y = Φx+ n be a set of noisy CS measurements. If Φ has

an M4
K-RIP constant of δM4

K
≤ 0.1, then the signal estimate x̂i obtained from iteration i of the

model-based CoSaMP algorithm satisfies

‖x− x̂i‖2 ≤ 2−i‖x‖2 + 15‖n‖2. (13)
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C. Performance of model-compressible signal recovery

Using the new tools introduced in Section III, we can provide a robustness guarantee for

noisy measurements of model-compressible signals, using the RAmP as a condition on the

measurement matrix Φ.

Theorem 5: Let x ∈ Ms be an s-model-compressible signal from a model M that obeys

the NAP, and let y = Φx + n be a set of noisy CS measurements. If Φ has the M4
K-RIP with

δM4
K
≤ 0.1 and the (ǫK , r)-RAmP with ǫK ≤ 0.1 and r = s − 1, then the signal estimate x̂i

obtained from iteration i of the model-based CoSaMP algorithm satisfies

‖x− x̂i‖2 ≤ 2−i‖x‖2 + 35
(
‖n‖2 + |x|MsK

−s(1 + ln⌈N/K⌉)
)
. (14)

To prove the theorem, we first bound the recovery error for an s-model-compressible signal

x ∈ Ms when the matrix Φ has the (ǫK , r)-RAmP with r ≤ s − 1. Then, using Theorems 3

and 4, we can easily prove the result by following the analogous proof in [10].

D. Robustness to model mismatch

We now analyze the robustness of model-based CS recovery to model mismatch, which occurs

when the signal being recovered from compressive measurements does not conform exactly to

the model used in the recovery algorithm.

We begin with optimistic results for signals that are “close” to matching the recovery model.

First consider a signal x that is not K-model sparse as the recovery algorithm assumes but rather

(K + κ)-model sparse for some small integer κ. This signal can be decomposed into xK , the

signal’s K-term model-based approximation, and x − xK , the error of this approximation. For

κ ≤ K, we have that x−xK ∈ R2,K . If the matrix Φ has the (ǫK , r)-RAmP, then it follows than

‖Φ(x− xK)‖2 ≤ 2r
√

1 + ǫK‖x− xK‖2. (15)
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Using equations (13) and (15), we obtain the following guarantee for the ith iteration of model-

based CoSaMP:

‖x− x̂i‖2 ≤ 2−i‖x‖2 + 16 · 2r
√

1 + ǫK‖x− xK‖2 + 15‖n‖2.

By noting that ‖x− xK‖2 is small, we obtain a guarantee that is close to (13).

Second, consider a signal x that is not s-model compressible as the recovery algorithm

assumes but rather (s− ǫ)-model compressible. The following bound can be obtained under the

conditions of Theorem 5 by modifying the argument in Appendix II:

‖x− x̂i‖2 ≤ 2−i‖x‖2 + 35

(
‖n‖2 + |x|MsK

−s

(
1 +
⌈N/K⌉ǫ − 1

ǫ

))
.

As ǫ becomes smaller, the factor
⌈N/K⌉ǫ−1

ǫ
approaches log⌈N/K⌉, matching (14). In summary,

as long as the deviations from the model-sparse and model-compressible models are small, our

model-based recovery guarantees still apply within a small bounded constant factor.

We end with a more pessimistic, worst-case result for signals that are arbitrarily far away

from model-sparse or model-compressible. Consider such an arbitrary x ∈ R
N and compute its

nested model-based approximations xjK = M(x, jK), j = 1, . . . , ⌈N/K⌉. If x is not model-

compressible, then the model-based approximation error σjK(x) is not guaranteed to decay as j

decreases. Additionally, the number of residual subspaces Rj,K could be as large as
(

N
K

)
; that is,

the jth difference between subsequent model-based approximations xTj
= xjK − x(j−1)K might

lie in any arbitrary K-dimensional subspace. This worst case is equivalent to setting r = 0 and

Rj =
(

N
K

)
in Theorem 2. It is easy to see that this condition on the number of measurements

M is nothing but the standard RIP for CS. Hence, if inflate the number of measurements to

M = O (K log(N/K)) (the usual number for conventional CS), the performance of model-based

CoSaMP recovery on an arbitrary signal x follows the K-term model-based approximation of x

within a bounded constant factor.

E. Computational complexity of model-based recovery

The computational complexity of a model-based signal recovery algorithm differs from

that of a standard algorithm by two factors. The first factor is the reduction in the number
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of measurements M necessary for recovery: since most current recovery algorithms have a

computational complexity that is linear in the number of measurements, any reduction in M

reduces the total complexity. The second factor is the cost of the model-based approximation.

The K-term approximation used in most current recovery algorithms can be implemented with a

simple sorting operation (O (N logN) complexity, in general). Ideally, the signal model should

support a similarly efficient approximation algorithm.

To validate our theory and algorithms and demonstrate their general applicability and utility,

we now present two specific instances of model-based CS and conduct a range of simulation

experiments.

V. EXAMPLE: WAVELET TREE MODEL

Wavelet decompositions have found wide application in the analysis, processing, and

compression of smooth and piecewise smooth signals because these signals are K-sparse and

compressible, respectively [1]. Moreover, the wavelet coefficients can be naturally organized

into a tree structure, and for many kinds of natural and manmade signals the largest coefficients

cluster along the branches of this tree. This motivates a connected tree model for the wavelet

coefficients [26–28].

While CS recovery for wavelet-sparse signals has been considered previously [14–16],

the resulting algorithms integrated the tree constraint in an ad-hoc fashion. Furthermore, the

algorithms provide no recovery guarantees or bounds on the necessary number of compressive

measurements.

A. Tree-sparse signals

We first describe tree sparsity in the context of sparse wavelet decompositions. We focus

on one-dimensional signals and binary wavelet trees, but all of our results extend directly to

d-dimensional signals and 2d-ary wavelet trees.

Consider a signal x of length N = 2I , for an integer value of I . The wavelet representation
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...
Fig. 2. Binary wavelet tree for a one-dimensional signal. The squares denote the large wavelet coefficients that arise

from the discontinuities in the piecewise smooth signal drawn below; the support of the large coefficients forms a

rooted, connected tree.

of x is given by

x = v0ν +

I−1∑

i=0

2i−1∑

j=0

wi,jψi,j ,

where ν is the scaling function and ψi,j is the wavelet function at scale i and offset j. The

wavelet transform consists of the scaling coefficient v0 and wavelet coefficients wi,j at scale i,

0 ≤ i ≤ I − 1, and position j, 0 ≤ j ≤ 2i − 1. In terms of our earlier matrix notation, x has

the representation x = Ψα, where Ψ is a matrix containing the scaling and wavelet functions as

columns, and α = [v0 w0,0 w1,0 w1,1 w2,0 . . .]
T is the vector of scaling and wavelet coefficients.

We are, of course, interested in sparse and compressible α.

The nested supports of the wavelets at different scales create a parent/child relationship

between wavelet coefficients at different scales. We say that wi−1,⌊j/2⌋ is the parent of wi,j

and that wi+1,2j and wi+1,2j+1 are the children of wi,j. These relationships can be expressed

graphically by the wavelet coefficient tree in Figure 2.

Wavelet functions act as local discontinuity detectors, and using the nested support property

of wavelets at different scales, it is straightforward to see that a signal discontinuity will give

rise to a chain of large wavelet coefficients along a branch of the wavelet tree from a leaf to

the root. Moreover, smooth signal regions will give rise to regions of small wavelet coefficients.

This “connected tree” property has been well-exploited in a number of wavelet-based processing
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[12, 29, 30] and compression [31, 32] algorithms. In this section, we will specialize the theory

developed in Sections III and IV to a connected tree model T .

A set of wavelet coefficients Ω forms a connected subtree if, whenever a coefficient wi,j ∈ Ω,

then its parent wi−1,⌊j/2⌋ ∈ Ω as well. Each such set Ω defines a subspace of signals whose support

is contained in Ω; that is, all wavelet coefficients outside Ω are zero. In this way, we define the

model TK as the union of all K-dimensional subspaces corresponding to supports Ω that form

connected subtrees.

Definition 9: Define the set of K-tree sparse signals as

TK =



x = v0ν +

I−1∑

i=0

2i∑

j=1

wi,jψi,j : w|ΩC = 0, |Ω| = K,Ω forms a connected subtree



 .

To quantify the number of subspaces in TK , it suffices to count the number of distinct

connected subtrees of size K in a binary tree of size N . We prove the following result in

Appendix V.

Proposition 1: The number of subspaces in TK obeys TK ≤ 4K+4

Ke2 for K ≥ log2N and

TK ≤ (2e)K

K+1
for K < log2N .

B. Tree-based approximation

To implement tree-based signal recovery, we seek an efficient algorithm T(x,K) to solve

the optimal approximation

xTK = arg min
x̄∈TK

‖x− x̄‖2. (16)

Fortuitously, an efficient solver exists, called the condensing sort and select algorithm (CSSA)

[26–28]. Recall that subtree approximation coincides with standard K-term approximation (and

hence can be solved by simply sorting the wavelet coefficients) when the wavelet coefficients

are monotonically nonincreasing along the tree branches out from the root. The CSSA solves

(16) in the case of general wavelet coefficient values by condensing the nonmonotonic segments

of the tree branches using an iterative sort-and-average routine. The condensed nodes are called

“supernodes”. Condensing a large coefficient far down the tree accounts for the potentially large

cost (in terms of the total budget of tree nodes K) of growing the tree to that point.

22



The CSSA can also be interpreted as a greedy search among the nodes. For each node in the

tree, the algorithm calculates the average wavelet coefficient magnitude for each subtree rooted

at that node, and records the largest average among all the subtrees as the energy for that node.

The CSSA then searches for the unselected node with the largest energy and adds the subtree

corresponding to the node’s energy to the estimated support as a supernode [28].

Since the first step of the CSSA involves sorting all of the wavelet coefficients, overall it

requires O (N logN) computations. However, once the CSSA grows the optimal tree of size K,

it is trivial to determine the optimal trees of size < K and computationally efficient to grow the

optimal trees of size > K [26].

The constrained optimization (16) can be rewritten as an unconstrained problem by

introducing the Lagrange multiplier λ [33]:

min
x̄∈T̄
‖x− x̄‖22 + λ(‖ᾱ‖0 −K),

where T̄ = ∪N
n=1Tn and ᾱ are the wavelet coefficients of x̄. Except for the inconsequential

λK term, this optimization coincides with Donoho’s complexity penalized sum of squares [33],

which can be solved in only O (N) computations using coarse-to-fine dynamic programming on

the tree. Its primary shortcoming is the nonobvious relationship between the tuning parameter

λ and and the resulting size K of the optimal connected subtree.

C. Tree-compressible signals

Specializing Definition 2 from Section III-C to T , we make the following definition.

Definition 10: Define the set of s-tree compressible signals as

Ts =
{
x ∈ R

N : ‖x− T(x,K)‖2 ≤ SK−s, 1 ≤ K ≤ N, S <∞
}
.

Furthermore, define |x|Ts as the smallest value of S for which this condition holds for x and s.

Tree approximation classes contain signals whose wavelet coefficients have a loose (and

possibly interrupted) decay from coarse to fine scales. These classes have been well-characterized

for wavelet-sparse signals [27, 28, 32] and are intrinsically linked with the Besov spaces
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Bs
q(Lp([0, 1])). Besov spaces contain functions of one or more continuous variables that have

(roughly speaking) s derivatives in Lp([0, 1]); the parameter q provides finer distinctions of

smoothness. When a Besov space signal xa with s > 1/p − 1/2 is sampled uniformly and

converted to a length-N vector x, its wavelet coefficients belong to the tree approximation space

Ts, with

|xN |Ts ≍ ‖xa‖Lp([0,1]) + ‖xa‖Bs
q (Lp([0,1])),

where “≍” denotes an equivalent norm. The same result holds if s = 1/p− 1/2 and q ≤ p.

D. Stable tree-based recovery from compressive measurements

For tree-sparse signals, by applying Theorem 1 and Proposition 1, we find that a subgaussian

random matrix has the TK-RIP property with constant δTK
and probability 1−e−t if the number

of measurements obeys

M ≥





2
cδ2

TK

(
K ln 48

δTK
+ ln 512

Ke2 + t
)

if K < log2N,

2
cδ2

TK

(
K ln 24e

δTK

+ ln 2
K+1

+ t
)

if K ≥ log2N,

Thus, the number of measurements necessary for stable recovery of tree-sparse signals is linear

in K, without the dependence on N present in conventional non-model-based CS recovery.

For tree-compressible signals, we must quantify the number of subspaces Rj in each residual

set Rj,K for the approximation class. We can then apply the theory of Section IV-C with

Proposition 1 to calculate smallest allowable M via Theorem 5.

Proposition 2: The number of K-dimensional subspaces that comprise Rj,K obeys

Rj ≤





(2e)K(2j+1)

(Kj+K+1)(Kj+1)
if 1 ≤ j <

⌊
log2 N

K

⌋
,

2(3j+2)K+8ejK

(Kj+1)K(j+1)e2 if j =
⌊

log2 N
K

⌋
,

4(2j+1)K+8

K2j(j+1)e4 if j >
⌊

log2 N
K

⌋
.

(17)

Using Proposition 2 and Theorem 5, we obtain the following condition for the matrix Φ to

have the RAmP, which is proved in Appendix VI.
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Proposition 3: Let Φ be an M ×N matrix with i.i.d. subgaussian entries.. If

M ≥





2

(
√

1+ǫK−1)
2

(
10K + 2 ln N

K(K+1)(2K+1)
+ t
)

if K ≤ log2N,

2

(
√

1+ǫK−1)
2

(
10K + 2 ln 601N

K3 + t
)

if K > log2N,

then the matrix Φ has the (ǫK , s)-RAmP for model T and all s > 0.5 with probability 1− e−t.

Both cases give a simplified bound on the number of measurements required as M = O (K),

which is a substantial improvement over the M = O (K log(N/K)) required by conventional

CS recovery methods. Thus, when Φ satisfies Proposition 3, we have the guarantee (14) for

sampled Besov space signals from Bs
q(Lp([0, 1])).

E. Experiments

We now present the results of a number of numerical experiments that illustrate the

effectiveness of a tree-based recovery algorithm. Our consistent observation is that explicit

incorporation of the model in the recovery process significantly improves the quality of recovery

for a given number of measurements. In addition, model-based recovery remains stable when the

inputs are no longer tree-sparse, but rather are tree-compressible and/or corrupted with differing

levels of noise. We employ the model-based CoSaMP recovery of Algorithm 1 with a CSSA-

based approximation step in all experiments.

We first study one-dimensional signals that match the connected wavelet-tree model described

above. Among such signals is the class of piecewise smooth functions, which are commonly

encountered in analysis and practice.

Figure 1 illustrates the results of recovering the tree-compressible HeaviSine signal of length

N = 1024 from M = 80 noise-free random Gaussian measurements using CoSaMP, ℓ1-norm

minimization using the l1 eq solver from the ℓ1-Magic toolbox,3 and our tree-based recovery

algorithm. It is clear that the number of measurements (M = 80) is far fewer than the minimum

number required by CoSaMP and ℓ1-norm minimization to accurately recover the signal. In

contrast, tree-based recovery using K = 26 is accurate and uses fewer iterations to converge

3http://www.acm.caltech.edu/l1magic.
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Fig. 3. Performance of CoSaMP vs. wavelet tree-based recovery on a class of piecewise-cubic signals as a function

of M/K .

than conventional CoSaMP. Moreover, the normalized magnitude of the squared error for tree-

based recovery is equal to 0.037, which is remarkably close to the error between the noise-free

signal and its best K-term tree-approximation (0.036).

Figure 3 illustrates the results of a Monte Carlo simulation study on the impact of the number

of measurements M on the performance of model-based and conventional recovery for a class

of tree-sparse piecewise-polynomial signals. Each data point was obtained by measuring the

normalized recovery error of 500 sample trials. Each sample trial was conducted by generating

a new piecewise-polynomial signal with five polynomial pieces of cubic degree and randomly

placed discontinuities, computing its best K-term tree-approximation using the CSSA, and then

measuring the resulting signal using a matrix with i.i.d. Gaussian entries. Model-based recovery

attains near-perfect recovery at M = 3K measurements, while CoSaMP only matches this

performance at M = 5K. We defer a full Monte Carlo comparison of our method with the

much more computationally demanding ℓ1-norm minimization to future work. In practice, we

have noticed that CoSaMP and ℓ1-norm minimization offer similar recovery trends; consequently,

we can expect that model-based recovery will offer a similar degree of improvement over ℓ1-norm

minimization.

Further, we demonstrate that model-based recovery performs stably in the presence of
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Fig. 4. Robustness to measurement noise for standard and wavelet tree-based CS recovery algorithms. We plot the

maximum normalized recovery error over 200 sample trials as a function of the expected signal-to-noise ratio. The

linear growth demonstrates that model-based recovery possesses the same robustness to noise as CoSaMP and ℓ1-norm

minimization.

measurement noise. We generated sample piecewise-polynomial signals as above, computed

their best K-term tree-approximations, computed M measurements of each approximation, and

finally added Gaussian noise of expected norm ‖n‖2 to each measurement. Then, we recovered

the signal using CoSaMP and model-based recovery and measured the recovery error in each case.

For comparison purposes, we also tested the recovery performance of a ℓ1-norm minimization

algorithm that accounts for the presence of noise, which has been implemented as the l1 qc

solver in the ℓ1-Magic toolbox. First, we determined the lowest value of M for which the

respective algorithms provided near-perfect recovery in the absence of noise in the measurements.

This corresponds to M = 3.5K for model-based recovery, M = 5K for CoSaMP, and M = 4.5K

for ℓ1 minimization. Next, we generated 200 sample tree-modeled signals, computed M noisy

measurements, recovered the signal using the given algorithm and recorded the recovery error.

Figure 4 illustrates the growth in maximum normalized recovery error (over the 200 sample

trials) as a function of the expected measurement signal-to-noise ratio for the tree algorithms. We

observe similar stability curves for all three algorithms, while noting that model-based recovery

offers this kind of stability using significantly fewer measurements.
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(a) Peppers (b) CoSaMP (c) model-based recovery

(RMSE = 22.8) (RMSE = 11.1)

Fig. 5. Example performance of standard and model-based recovery on images. (a) N = 128× 128 = 16384-pixel

Peppers test image. Image recovery from M = 5000 compressive measurements using (b) conventional CoSaMP and

(c) our wavelet tree-based algorithm.

Finally, we turn to two-dimensional images and a wavelet quadtree model. The connected

wavelet-tree model has proven useful for compressing natural images [27]; thus, our algorithm

provides a simple and provably efficient method for recovering a wide variety of natural images

from compressive measurements. An example of recovery performance is given in Figure 5. The

test image (Peppers) is of size N = 128 × 128 = 16384 pixels, and we computed M = 5000

random Gaussian measurements. Model-based recovery again offers higher performance than

standard signal recovery algorithms like CoSaMP, both in terms of recovery mean-squared error

and visual quality.

VI. EXAMPLE: BLOCK-SPARSE SIGNALS AND SIGNAL ENSEMBLES

In a block-sparse signal, the locations of the significant coefficients cluster in blocks under

a specific sorting order. Block-sparse signals have been previously studied in CS applications,

including DNA microarrays and magnetoencephalography [7, 8]. An equivalent problem arises

in CS for signal ensembles, such as sensor networks and MIMO communication [8, 9, 34]. In this

case, several signals share a common coefficient support set. For example, when a frequency-

sparse acoustic signal is recorded by an array of microphones, then all of the recorded signals

28



contain the same Fourier frequencies but with different amplitudes and delays. Such a signal

ensemble can be re-shaped as a single vector by concatenation, and then the coefficients can be

rearranged so that the concatenated vector exhibits block sparsity.

It has been shown that the block-sparse structure enables signal recovery from a reduced

number of CS measurements, both for the single signal case [7, 8] and the signal ensemble

case [9], through the use of specially tailored recovery algorithm [7, 8, 35]. However, the

robustness guarantees for such algorithms either are restricted to exactly sparse signals and

noiseless measurements, do not have explicit bounds on the number of necessary measurements,

or are asymptotic in nature.

In this section, we formulate the block sparsity signal model as a union of subspaces and

pose an approximation algorithm on this union of subspaces. The approximation algorithm is

used to implement block-based signal recovery. We also define the corresponding class of block-

compressible signals and quantify the number of measurements necessary for robust recovery.

A. Block-sparse signals

Consider a class S of signal vectors x ∈ R
JN , with J and N integers. This signal can be

reshapped into a J × N matrix X , and we use both notations interchangeably in the sequel.

We will restrict entire columns of X to be part of the support of the signal as a group. That

is, signals X in a block-sparse model have entire columns as zeros or nonzeros. The measure

of sparsity for X is its number of nonzero columns. More formally, we make the following

definition.

Definition 11: [7, 8] Define the set of K-block sparse signals as

SK = {X = [x1 . . . xN ] ∈ R
J×N such that xn = 0 for n /∈ Ω,Ω ⊆ {1, . . . , N}, |Ω| = K}.

It is important to note that a K-block sparse signal has sparsity KJ , which is dependent

on the size of the block J . We can extend this formulation to ensembles of J , length-N signals

with common support. Denote this signal ensemble by {x̃1, . . . , x̃J}, with x̃j ∈ R
N , 1 ≤ j ≤ J .

We formulate a matrix representation X̃ of the ensemble that features the signal x̃j in its jth

row: X̃ = [x̃1 . . . x̃N ]T . The matrix X̃ features the same structure as the matrix X obtained
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from a block-sparse signal; thus, the matrix X̃ can be converted into a block-sparse vector x̃

that represents the signal ensemble.

B. Block-based approximation

To pose a the block-based approximation algorithm, we need to define the mixed norm of

a matrix.

Definition 12: The (p, q) mixed norm of the matrix X = [x1 x2 . . . xN ] is defined as

‖X‖(p,q) =

(
N∑

n=1

‖xn‖qp

)1/q

.

When q = 0, ‖X‖(p,0) simply counts the number of nonzero columns in X .

We immediately find that ‖X‖(p,p) = ‖x‖p, with x the vectorization of X . Intuitively, we

pose the algorithm S(X,K) to obtain the best block-based approximation of the signal X as

follows:

XS
K = arg min

X̄∈RJ×N
‖X − X̄‖(2,2) subject to ‖X̄‖(2,0) ≤ K. (18)

It is easy to show that to obtain the approximation, it suffices to perform column-wise hard

thresholding: let ρ be the K th largest ℓ2-norm among the columns of X . Then our approximation

algorithm is S(X,K) = XS
K = [xSK,1 . . . xSK,N ], where

xSK,n =





xn ‖xn‖2 ≥ ρ,

0 ‖xn‖2 < ρ,

for each 1 ≤ j ≤ J and 1 ≤ n ≤ N . Alternatively, a recursive approximation algorithm can be

obtained by sorting the columns of X by their ℓ2 norms, and then selecting the largest columns.

The complexity of this sorting process is O (NJ +N logN).

C. Block-compressible signals

The approximation class under the block-compressible model corresponds to signals with

blocks whose ℓ2 norm has a power-law decay rate.
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Definition 13: We define the set of s-block compressible signals as

Ss = {X = [x1 . . . xN ] ∈ R
J×N s.t. ‖xI(i)‖2 ≤ Si−s−1/2, 1 ≤ i ≤ N, S <∞},

where I indexes the sorted column norms.

We say that X is an s-block compressible signal if X ∈ Ss. For such signals, we have ‖X −
XK‖(2,2) = σSK

(x) ≤ S1K
−s, and ‖X−XK‖(2,1) ≤ S2K

1/2−s. Note that the block-compressible

signal model does not impart a structure to the decay of the signal coefficients, so that the sets

Rj,K are equal for all values of j; due to this property, the (δSK
, s)-RAmP is implied by the

SK-RIP. Taking this into account, we can derive the following result from [10], which is proven

similarly to Theorem 4.

Theorem 6: Let x be a signal from model S, and let y = Φx + n be a set of noisy CS

measurements. If Φ has the S4
K-RIP with δS4

K
≤ 0.1, then the estimate obtained from iteration i

of block-based CoSaMP, using the approximation algorithm (18), satisfies

‖x− x̂i‖2 ≤ 2−i‖x‖2 + 20

(
‖X −XS

K‖(2,2) +
1√
K
‖X −XS

K‖(2,1) + ‖n‖2
)
.

Thus, the algorithm provides a recovered signal of similar quality to approximations of X

by a small number of nonzero columns. When the signal x is K-block sparse, we have that

||X − XS
K‖(2,2) = ||X − XS

K‖(2,1) = 0, obtaining the same result as Theorem 4, save for a

constant factor.

D. Stable block-based recovery from compressive measurements

Since Theorem 6 poses the same requirement on the measurement matrix Φ for sparse and

compressible signals, the same number of measurements M is required to provide performance

guarantees for block-sparse and block-compressible signals. The class SK contains S =
(

N
K

)

subspaces of dimension JK. Thus, a subgaussian random matrix has the SK-RIP property with

constant δSK
and probability 1− e−t if the number of measurements obeys

M ≥ 2

cδ2
SK

(
K

(
ln

2N

K
+ J ln

12

δSK

)
+ t

)
. (19)

31



The first term in this bound matches the order of the bound for conventional CS, while the

second term introduces a linear dependence on the size of the block J . This shows that the

number of measurements required for robust recovery scales as M = O (KJ +K log(N/K)),

which is a substantial improvement over the M = O (JK log(N/K)) that would be required by

conventional CS recovery methods. When the size of the block J is larger than log(N/K), then

this term becomes O (KJ); that is, it is linear on the total sparsity of the block-sparse signal.

We note in passing that the bound on the number of measurements (19) assumes a dense

subgaussian measurement matrix, while the measurement matrices used in [9] have a block-

diagonal. structure. To obtain measurements from an M × JN dense matrix in a distributed

setting, it suffices to partition the matrix into J pieces of size M × N and calculate the CS

measurements at each sensor with a corresponding matrix; these individual measurements are

then summed to obtain the complete measurement vector. For large J , (19) implies that the

total number of measurements required for recovery of the signal ensemble is lower than the

bound for the case where each signal recovery is performed independently for each signal (M

= O (JK log(N/K))).

E. Experiments

We conducted several numerical experiments comparing model-based recovery to CoSaMP

in the context of block-sparse signals. We employ the model-based CoSaMP recovery of

Algorithm 1 with the block-based approximation algorithm (18) in all cases. For brevity, we

exclude a thorough comparison of our model-based algorithm with ℓ1-based optimization and

defer it to future work. In practice, we observed that our algorithm performs several times faster

than convex optimization-based procedures.

Figure 6 illustrates an N = 4096 signal that exhibits block sparsity, and its recovered version

using CoSaMP and model-based recovery. The block size J = 64 and there were K = 6 active

blocks in the signal. We observe the clear advantage of using the block-sparsity model in signal

recovery.

We now consider block-compressible signals. An example recovery is illustrated in Figure 7.
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(a) original block-sparse signal (b) CoSaMP (c) model-based recovery

(RMSE = 0.723) (RMSE = 0.015)

Fig. 6. Example performance of model-based signal recovery for a block-sparse signal. (a) Example block-

compressible signal of length N = 4096 with K = 6 nonzero blocks of size J = 64. Recovered signal from

M = 960 measurements using (b) conventional CoSaMP recovery and (c) block-based recovery.

In this case, the ℓ2-norms of the blocks decay according to a power law, as described

above. Again, the number of measurements is far below the minimum number required to

guarantee stable recovery through conventional CS recovery. However, enforcing the model in the

approximation process results in a solution that is very close to the best 5-block approximation

of the signal.

Figure 8 indicates the decay in recovery error as a function of the numbers of measurements

for CoSaMP and model-based recovery. We generated sample block-sparse signals as follows:

we randomly selected a set of K blocks, each of size J , and endow them with coefficients that

follow an i.i.d. Gaussian distribution. Each sample point in the curves is generated by performing

200 trials of the corresponding algorithm. As in the connected wavelet-tree case, we observe

clear gains using model-based recovery, particularly for low-measurement regimes; CoSaMP

matches model-based recovery only for M ≥ 5K.

VII. CONCLUSIONS

In this paper, we have aimed to demonstrate that there are significant performance gains

to be made by exploiting more realistic and richer signal models beyond the simplistic sparse

and compressible models that dominate the CS literature. Building on the unions of subspaces

results of [5] and the proof machinery of [10], we have taken some of the first steps towards
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(a) signal (b) best 5-block approximation

(RMSE = 0.116)

(c) CoSaMP (d) model-based recovery

(RMSE = 0.711) (RMSE = 0.195)

Fig. 7. Example performance of model-based signal recovery for block-compressible signals. (a) Example block-

compressible signal, length N = 1024. (b) Best block-based approximation with K = 5 blocks. Recovered signal

from M = 200 measurements using both (c) conventional CoSaMP recovery and (d) block-based recovery.

what promises to be a general theory for model-based CS by introducing the notion of a model-

compressible signal and the associated restricted amplification property (RAmP) condition it

imposes on the measurement matrix Φ.

For the volumes of natural and manmade signals and images that are wavelet-sparse

or compressible, our tree-based CoSaMP and IHT algorithms offer performance that signif-

icantly exceeds today’s state-of-the-art while requiring only M = O (K) rather than M =

O (K log(N/K)) random measurements. For block-sparse signals and signal ensembles, our

block-based CoSaMP and IHT algorithms offer not only excellent performance but also require

just M = O (JK) measurements, where JK is the signal sparsity. Furthermore, block-based

recovery can recovery signal ensembles using fewer measurements than the number required
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Fig. 8. Performance of CoSaMP and block-based recovery on a class of block-sparse signals as a function of M/K .

Standard CS recovery does not match the performance of block-based recovery until M = 5K .

when each signal is recovered independently.

There are many avenues for future work on model-based CS. We have only considered the

recovery of signals from models that can be geometrically described as a union of subspaces;

possible extensions include other, more complex geometries (for example, high-dimensional

polytopes, nonlinear manifolds.) We also expect that the core of our proposed algorithms — a

model-enforcing approximation step — can be integrated into other iterative algorithms, such

as relaxed ℓ1-norm minimization methods. Furthermore, our framework will benefit from the

formulation of new signal models that are endowed with efficient model-based approximation

algorithms.

APPENDIX I

PROOF OF THEOREM 2

To prove this theorem, we will study the distribution of the maximum singular value of a

submatrix ΦT of a matrix with i.i.d. Gaussian entries Φ corresponding to the columns indexed

by T . From this we obtain the probability that RAmP does not hold for a fixed support T . We

will then evaluate the same probability for all supports T of elements of Rj,K , where the desired

bound on the amplification is dependent on the value of j. This gives us the probability that the
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RAmP does not hold for a given residual subspace set Rj,K . We fix the probability of failure

on each of these sets; we then obtain probability that the matrix Φ does not have the RAmP

using a union bound. We end by obtaining conditions on the number of rows M of Φ to obtain

a desired probability of failure.

We begin from the following concentration of measure for the largest singular value of a

M ×K submatrix ΦT , |T | = K, of an M ×N matrix Φ with i.i.d. subgaussian entries that are

properly normalized [18, 36, 37]:

P

(
σmax(ΦT ) > 1 +

√
K

M
+ τ + β

)
≤ e−Mτ2/2.

For large enough M , β ≪ 1; thus we ignore this small constant in the sequel. By letting

τ = jr
√

1 + ǫK − 1−
√

K
M

(with the appropriate value of j for T ), we obtain

P
(
σmax(ΦT ) > jr

√
1 + ǫK

)
≤ e

−M
2

“

jr
√

1+ǫK−1−
√

K
M

”2

.

We use a union bound over all possible Rj supports for u ∈ Rj,K to obtain the probability that

Φ does not amplify the norm of u by more than jr
√

1 + ǫK :

P
(
‖Φu‖2 >

(
jr
√

1 + ǫK
)
‖u‖2 ∀ u ∈ Rj,K

)
≤ Rje

− 1
2(

√
M(jr

√
1+ǫK−1)−

√
K)

2

.

Bound the right hand side by a constant µ; this requires

Rj ≤ e
1
2(

√
M(jr

√
1+ǫK−1)−

√
K)

2

µ (20)

for each j. We use another union bound among the residual subspaces Rj.K to measure the

probability that the RAmP does not hold:

P
(
‖Φu‖2 >

(
jr
√

1 + ǫK
)
‖u‖2 ∀ u ∈ Rj,K , ∀ j, 1 ≤ j ≤ ⌈N/K⌉

)
≤
⌈
N

K

⌉
µ.

To bound this probability by e−t, we need µ = K
N
e−t; plugging this into (20), we obtain

Rj ≤ e
1
2(

√
M(jr

√
1+ǫK−1)−

√
K)

2K

N
e−t

for each j. Simplifying, we obtain that for Φ to posess the RAmP with probability 1− e−t, the

following must hold for all j:

M ≥ 1
(
jr
√

1 + ǫK − 1
)2

(√

2

(
ln
RjN

K
+ t

)
+
√
K

)2

. (21)
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Since (
√
a +
√
b)2 ≤ 2a + 2b for a, b > 0, then the hypothesis (12) implies (21), proving the

theorem. �

APPENDIX II

PROOF OF THEOREM 5

In this proof, we denote M(x,K) = xK for brevity. To bound ‖Φ(x−xK )‖2, we write x as

x = xK +

⌈N/K⌉∑

j=2

xTj
,

where

xTj
= xjK − x(j−1)K , j = 2, . . . , ⌈N/K⌉

is the difference between the best jK model approximation and the best (j − 1)K model

approximation. Additionally, each piece xTj
∈ Rj,K . Therefore, since Φ satisifes the (ǫK , s− 1)

RAmP, we obtain

‖Φ(x− xK)‖2 =

∥∥∥∥∥∥
Φ




⌈N/K⌉∑

j=2

xTj




∥∥∥∥∥∥
2

≤
⌈N/K⌉∑

j=2

‖ΦxTj
‖2 ≤

⌈N/K⌉∑

j=2

√
1 + ǫKj

s−1‖xTj
‖2. (22)

Since x ∈Ms, the norm of each piece can be bounded as

‖xTj
‖2 = ‖xjK − x(j−1)K‖2 ≤ ‖x− x(j−1)K‖2 + ‖x− xjK‖2 ≤ |x|MsK

−s
(
(j − 1)−s + j−s

)
.

Applying this bound in (22), we obtain

‖Φ(x− xK)‖2 ≤
√

1 + ǫK

⌈N/K⌉∑

j=2

js−1‖xTj
‖2,

≤
√

1 + ǫK |x|MsK
−s

⌈N/K⌉∑

j=2

js−1((j − 1)−s + j−s),

≤
√

1 + ǫK |x|MsK
−s

⌈N/K⌉∑

j=2

j−1.

It is easy to show, using Euler-Maclaurin summations, that
∑⌈N/K⌉

j=2 j−1 ≤ ln⌈N/K⌉; we then

obtain

‖Φ(x− xK)‖2 ≤
√

1 + ǫKK
−s ln

⌈
N

K

⌉
|x|Ms ,

which proves the theorem. �
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Algorithm 2 Model-Based Iterative Hard Thresholding

Inputs: CS Matrix Φ, measurements y, model MK

Outpurs: K-sparse approximation x̂

initialize: x̂0 = 0, r = y, i = 0.

while halting criterion false do

i← i+ 1

b← x̂i−1 + ΦT r {form signal estimate}
x̂i ←M(b,K) {prune signal estimate according to signal model}
r ← y − Φx̂i {update measurement residual}

end while

return x̂← x̂i

APPENDIX III

MODEL-BASED ITERATIVE HARD THRESHOLDING

Our proposed model-based iterative hard thresholding (IHT) is given in Algorithm 2. For

this algorithm, Theorems 4, 5, and 6 can be proven with only a few modifications: Φ must have

the M3
K-RIP with δM3

K
≤ 0.1, and the constant factor in the bound changes from 15 to 4 in

Theorem 4, from 35 to 10 in Theorem 5, and from 20 to 5 in Theorem 6.

To illustrate the performance of the algorithm, we repeat the HeaviSine experiment from

Figure 1. Recall that N = 1024, and M = 80 for this example. The advantages of using

our tree-model-based approximation step (instead of mere hard thresholding) are evident from

Figure 9. In practice, we have observed that our model-based algorithm converges in fewer steps

than IHT and yields much more accurate results in terms of recovery error.

APPENDIX IV

PROOF OF THEOREM 4

The proof of this theorem is identical to that of the CoSaMP algorithm in [10, Section 4.6],

and requires a set of six lemmas. The sequence of Lemmas 1–6 below are modifications of
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(a) original (b) IHT (c) model-based IHT

(RMSE = 0.627) (RMSE = 0.080)

Fig. 9. Example performance of model-based IHT. (a) Piecewise-smooth HeaviSine test signal, length N = 1024.

Signal recovered from M = 80 measurements using both (b) standard and (c) model-based IHT recovery. Root mean-

squared error (RMSE) values are normalized with respect to the ℓ2 norm of the signal.

the lemmas in [10] that are restricted to the signal model. Lemma 4 does not need any changes

from [10], so we state it without proof. The proof of Lemmas 3–6 use the properties in Lemmas 1

and 2, which are simple to prove.

Lemma 1: Suppose Φ has M-RIP with constant δM. Let Ω be a support corresponding to

a subspace in M. Then we have the following handy bounds.

‖ΦT
Ωu‖2 ≤

√
1 + δM‖u‖2,

‖Φ†
Ωu‖2 ≤

1√
1− δM

‖u‖2,

‖ΦT
ΩΦΩu‖2 ≤ (1 + δM)‖u‖2,

‖ΦT
ΩΦΩu‖2 ≥ (1− δM)‖u‖2,

‖(ΦT
ΩΦΩ)−1u‖2 ≤

1

1 + δM
‖u‖2,

‖(ΦT
ΩΦΩ)−1u‖2 ≥

1

1− δM
‖u‖2.

Lemma 2: Suppose Φ has M2
K-RIP with constant δM2

K
. Let Ω be a support corresponding

to a subspace in MK , and let x ∈ MK . Then ‖ΦT
ΩΦx|ΩC‖2 ≤ δM2

K
‖x|ΩC‖2.
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We begin the proof of Theorem 4 by fixing an iteration i ≥ 1 of model-based CoSaMP. We

write x̂ = x̂i−1 for the signal estimate at the beginning of the ith iteration. Define the signal

residual s = x − x̂, which implies that s ∈ M2
K . We note that we can write r = y − Φx̂ =

Φ(x− x̂) + n = Φs+ n.

Lemma 3: (Identification) The set Ω = supp(M2(e,K)), where e = ΦT r, identifies a

subspace in M2
K , and obeys

‖s|ΩC‖2 ≤ 0.2223‖s‖2 + 2.34‖n‖2.

Proof of Lemma 3: Define the set Π = supp(s). Let eΩ = M2(e,K) be the model-based

approximation to e with support Ω, and similarly let eΠ be the approximation to e with support

Π. Each approximation is equal to e for the coefficients in the support, and zero elsewhere. Since

Ω is the support of the best approximation in M2
K , we must have:

‖e− eΩ‖22 ≤ ‖e− eΠ‖22,
N∑

n=1

(e[n]− eΩ[n])2 ≤
N∑

n=1

(e[n]− eΠ[n])2,

∑

n/∈Ω

e[n]2 ≤
∑

n/∈Π

e[n]2,

N∑

n=1

e[n]2 −
∑

n/∈Ω

e[n]2 ≥
N∑

n=1

e[n]2 −
∑

n/∈Π

e[n]2,

∑

n∈Ω

e[n]2 ≥
∑

n∈Π

e[n]2,

∑

n∈Ω

e[n]2 ≥
∑

n∈Π

e[n]2,

∑

n∈Ω\Π
e[n]2 ≥

∑

n∈Π\Ω
e[n]2,

‖e|Ω\Π‖22 ≥ ‖e|Π\Ω‖22,

where Ω \ Π denotes the set difference of Ω and Π. These signals are in M4
K (since they arise

as the difference of two elements from M2
K); therefore, we can apply the M4

K-RIP constants
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and Lemmas 1 and 2 to provide the following bounds on both sides (see [10] for details):

‖e|Ω\Π‖2 ≤ δM4
K
‖s‖2 +

√
1 + δM2

K
‖e‖2, (23)

‖e|Π\Ω‖2 ≥ (1− δM2
K
)‖s|ΩC‖2 − δM2

K
‖s‖2 −

√
1 + δM2

K
‖e‖2. (24)

Combining (23) and (24), we obtain

‖s|ΩC‖2 ≤
(δM2

K
+ δM4

K
)‖s‖2 + 2

√
1 + δM2

K
‖e‖2

1− δM2
K

.

The argument is completed by noting that δM2
K
≤ δM4

K
≤ 0.1. �

Lemma 4: (Support Merger) Let Ω be a set of at most 2K indices. Then the set Λ =

Ω ∪ supp(x̂) contains at most 3K indices, and ‖x|ΛC‖2 ≤ ‖s|ΩC‖2.

Lemma 5: (Estimation) Let Λ be a support corresponding to a subspace in M3
K , and define

the least squares signal estimate b by b|T = Φ†
Ty, b|T C = 0. Then

‖x− b‖2 ≤ 1.112‖x|ΛC‖2 + 1.06‖n‖2.

Proof of Lemma 5: It can be shown [10] that

‖x− b‖2 ≤ ‖x|ΛC‖2 + ‖(ΦT
ΛΦΛ)−1ΦT

ΛΦx|ΠC‖2 + ‖Φ†
Πn‖2.

Since Λ is a support corresponding to a subspace in M3
K and x ∈ MK , we use Lemmas 1

and 2 to obtain

‖x− b‖2 ≤ ‖x|ΛC‖2 +
1

1− δM3
K

‖ΦT
ΛΦx|ΠC‖2 +

1√
1− δM3

K

‖n‖2,

≤
(

1 +
δM4

K

1− δM3
K

)
‖x|ΠC‖2 +

1√
1− δM3

K

‖n‖2.

Finally, note that δM3
K
≤ δM4

K
≤ 0.1. �

Lemma 6: (Pruning) The pruned approximation x̂i = M(b,K) is such that

‖x− x̂i‖2 ≤ 2‖x− b‖2.
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Proof of Lemma 6: Since x̂i is the best approximation in MK to b, and x ∈MK , we obtain

‖x− x̂i‖2 ≤ ‖x− b‖2 + ‖b− x̂i‖2 ≤ 2‖x− b‖2.

�

We use these lemmas in reverse sequence for the inequalities below:

‖x− x̂i‖2 ≤ 2‖x− b‖2,

≤ 2(1.112‖x|ΛC‖2 + 1.06‖n‖2),

≤ 2.224‖s|ΩC‖2 + 2.12‖n‖2,

≤ 2.224(0.2223‖s‖2 + 2.34‖n‖2) + 2.12‖n‖2,

≤ 0.5‖s‖2 + 7.5‖n‖2,

≤ 0.5‖x− x̂i−1‖2 + 7.5‖n‖2.

From the recursion on x̂i, we obtain ‖x− x̂i‖2 ≤ 2−i‖x‖2 + 15‖n‖2. This completes the proof

of Theorem 4. �

APPENDIX V

PROOF OF PROPOSITION 1

When K < log2N , the number of subtrees of size K of a binary tree of size N is the

Catalan number [38]

TK,N =
1

K + 1

(
2K

K

)
≤ (2e)K

K + 1
,

using Stirling’s approximation. When K > log2N , we partition this count of subtrees into the

numbers of subtrees tK,h of size K and height h, to obtain

TK,N =

log2 N∑

h=⌊log2 K⌋+1

tK,h
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We obtain the following asymptotic identity from [38, page 51]:

tK,h =
4K+1.5

h4

∑

m≥1

[
2K

h2
(2πm)4 − 3(2πm)2

]
e−

K(2πm)2

h2 + 4KO
(
e− ln2 h

)

+4KO
(

ln8 h

h5

)
+ 4KO

(
ln8 h

h4

)
,

≤ 4K+2

h4

∑

m≥1

[
2K

h2
(2πm)4 − 3(2πm)2

]
e−

K(2πm)2

h2 . (25)

We now simplify the formula slightly: we seek a bound for the sum term (which we denote

by βh for brevity):

βh =
∑

m≥1

[
2K

h2
(2πm)4 − 3(2πm)2

]
e−

K(2πm)2

h2 ≤
∑

m≥1

2K

h2
(2πm)4e−

K(2πm)2

h2 . (26)

Let mmax = h
π
√

2K
, the value of m for which the term inside the sum (26) is maximum; this is

not necessarily an integer. Then,

βh ≤
⌊mmax⌋−1∑

m=1

2K

h2
(2πm)4e−

K(2πm)2

h2 +

⌈mmax⌉∑

m=⌊mmax⌋

2K

h2
(2πm)4e−

K(2πm)2

h2

+
∑

m≥⌈mmax⌉+1

2K

h2
(2πm)4e−

K(2πm)2

h2 ,

≤
∫ ⌊mmax⌋

1

2K

h2
(2πx)4e−

K(2πx)2

h2 dx+

⌈mmax⌉∑

m=⌊mmax⌋

2K

h2
(2πm)4e−

K(2πm)2

h2

+

∫ ∞

⌈mmax⌉

2K

h2
(2πx)4e−

K(2πx)2

h2 dx,

where the second inequality comes from the fact that the series in the sum is strictly increasing

for m ≤ ⌊mmax⌋ and strictly decreasing for m > ⌈mmax⌉. One of the terms in the sum can be

added to one of the integrals. If we have that

(2π ⌊mmax⌋)4e−
K(2π⌊mmax⌋)2

h2 < (2π ⌈mmax⌉)4e−
K(2π(⌈mmax⌉))2

h2 , (27)

then we can obtain

βh ≤
∫ ⌈mmax⌉

1

2K

h2
(2πx)4e−

K(2πx)2

h2 dx+
2K

h2
(2π ⌈mmax⌉)4e−

K(2π⌈mmax⌉)2

h2

+

∫ ∞

⌈mmax⌉

2K

h2
(2πx)4e−

K(2πx)2

h2 dx.
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When the opposite of (27) is true, we have that

βh ≤
∫ ⌊mmax⌋

1

2K

h2
(2πx)4e−

K(2πx)2

h2 dx+
2K

h2
(2π ⌊mmax⌋)4e−

K(2π⌊mmax⌋)2

h2

+

∫ ∞

⌊mmax⌋

2K

h2
(2πx)4e−

K(2πx)2

h2 dx.

Since the term in the sum reaches its maximum for mmax, we will have in all three cases that

βh ≤
∫ ∞

1

2K

h2
(2πx)4e−

K(2πx)2

h2 dx+
8h2

Ke2
.

We perform a change of variables u = 2πx and define σ = h/
√

2K to obtain

βh ≤
1

2π

∫ ∞

0

1

σ2
u4e−u2/2σ2

dx+
8h2

Ke2
≤ 1

2σ
√

2π

∫ ∞

−∞

1√
2πσ

u4e−u2/2σ2

dx+
8h2

Ke2
.

Using the formula for the fourth central moment of a Gaussian distribution:
∫ ∞

−∞

1√
2πσ

u4e−u2/2σ2

dx = 3σ4,

we obtain

βh ≤
3σ3

2
√

2π
+

8h2

Ke2
=

3h3

8
√
πK3

+
8h2

Ke2
.

Thus, (25) simplifies to

tK,h ≤
4K

K

(
6

h
√
πK

+
128

h2e2

)
.

Correspondingly, TK,N becomes

TK,N ≤
log2 N∑

h=⌊log2 K⌋+1

4K

K

(
6

h
√
πK

+
128

h2e2

)
,

≤ 4K

K



 6√
πK

log2 N∑

h=⌊log2 K⌋+1

1

h
+

128

e2

log2 N∑

h=⌊log2 K⌋+1

128

h2e2



 .

It is easy to show, using Euler-Maclaurin summations, that

b∑

j=a

j−1 ≤ ln
b

a− 1
and

b∑

j=a

j−1 ≤ 1

a− 1
;

we then obtain

TK,N ≤ 4K

K

(
6√
πK

ln
log2N

⌊log2K⌋
+

128

e2⌊log2K⌋

)
≤ 4K+4

Ke2⌊log2K⌋
≤ 4K+4

Ke2
.

This proves the proposition. �
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APPENDIX VI

PROOF OF PROPOSITION 3

We wish to find the value of the bound (12) for the subspace count given in (17). We obtain

M ≥ max1≤j≤⌈N/K⌉Mj , where Mj follows one of these three regimes:

Mj =





1

(jr
√

1+ǫK−1)
2

(
2K + 4 ln (2e)K(2j+1)N

K(Kj+1)(Kj+K+1)
+ 2t

)
if j <

⌊
log2 N

K

⌋
,

1

(jr
√

1+ǫK−1)
2

(
2K + 4 ln 2(3j+2)K+8ejKN

K(Kj+1)(Kj+K+1)e2 + 2t
)

if j =
⌊

log2 N
K

⌋
,

1

(jr
√

1+ǫK−1)
2

(
2K + 4 ln 4(2j+1)K+8N

K3j(j+1)e4 + 2t
)

if j >
⌊

log2 N
K

⌋
.

We separate the terms that are linear on K and j, and obtain

Mj =






1

(jr
√

1+ǫK−1)
2

(
K(3 + 4 ln 2) + 8Kj(1 + ln 2) + 4 ln N

K(Kj+1)(Kj+K+1) + 2t
)

if j <
⌊

log
2

N

K

⌋
,

1

(jr
√

1+ǫK−1)
2

(
2K(1 + 4 ln 2) + 4Kj(1 + ln 8) + 4 ln 256N

K(Kj+1)(Kj+K+1)e2 + 2t
)

if j =
⌊

log
2

N

K

⌋
,

1

(jr
√

1+ǫK−1)
2

(
2K(1 + 4 ln 2) + 16Kj ln 2 + 4 ln 65536N

K3j(j+1)e4 + 2t
)

if j >
⌊

log
2

N

K

⌋
,

=






1

(js−0.5
√

1+ǫK−j−0.5)2

(
8K(1 + ln 2) + K(3+4 ln 2)

j
+ 4

j
ln N

K(Kj+1)(Kj+K+1) + 2t
j

)
if j <

⌊
log

2
N

K

⌋
,

1

(js−0.5
√

1+ǫK−j−0.5)2

(
4K(1 + ln 8) + 2K(1+4 ln 2)

j
+ 4

j
ln 256N

K(Kj+1)(Kj+K+1)e2 + 2t
j

)
if j =

⌊
log

2
N

K

⌋
,

1

(js−0.5
√

1+ǫK−j−0.5)2

(
16K ln 2 + 2K(1+4 ln 2)

j
+ 4

j
ln 65536N

K3j(j+1)e4 + 2t
j

)
if j >

⌊
log

2
N

K

⌋
.

The sequences {Mj}⌊
log2 N

K ⌋−1

j=1 and {Mj}⌈
N
K ⌉

j=⌊ log2 N
K ⌋+1

are decreasing sequences, since the

numerators are decreasing sequences and the denominator is an increasing sequence whenever

s > 0.5. When K ≤ log2N , we have

M ≥ max

(
1

(√
1 + ǫK − 1

)2
(
K(11 + 12 ln 2) + 4 ln

N

K(K + 1)(2K + 1)
+ 2t

)
,

4K(1 + ln 8) +
2K(1+4 ln 2)+4 ln 256N

K(log2 N+1)(log2 N+K+1)e2
+2t

log2 N
K(

log2 N
K

s−0.5√
1 + ǫK − log2 N

K

−0.5
)2 ,

16K ln 2 +
2K(1+4 ln 2)+4 ln 65536N

K(log2 N+K)(log2 N+2K)e4
+2t

log2 N
K

+1
((

log2 N
K

+ 1
)s−0.5√

1 + ǫK −
(

log2 N
K

+ 1
)−0.5

)2


 .
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These three terms have sequentially smaller numerators and sequentially larger denominators,

resulting in

M ≥ 1
(√

1 + ǫK − 1
)2
(
K(11 + 12 ln 2) + 4 ln

N

K(K + 1)(2K + 1)
+ 2t

)
.

When K > log2N , the first two regimes of Mj are nonexistent, and so we have

M ≥ 1
(√

1 + ǫK − 1
)2
(

2K(1 + 12 ln 2) + 4 ln
32768N

K3e4
+ 2t

)
.

This completes the proof of Proposition 3. �
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