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Abstract

Experiments using active control to reduce oscilla-
tions in the flow past a rectangular cavity have un-
covered surprising phenomena: in the controlled sys-
tem, often new frequencies of oscillation appear, and
often the main frequency of oscillation is split into
two sideband frequencies. The goal of this paper is
to explain these effects using physics-based models,
and to use these ideas to guide control design.
We present a linear model for the cavity flow,

based on the physical mechanisms of the famil-
iar Rossiter model. Experimental data indicates
that under many operating conditions, the oscilla-
tions are not self-sustained, but in fact are caused
by amplification of external disturbances. We
present some experimental results demonstrating
the peak-splitting phenomena mentioned above, use
the physics-based model to study the phenomena,
and discuss fundamental performance limitations
which limit the achievable performance of any con-
trol scheme.

1 Introduction

Recent experiments using feedback to control oscil-
lations in the flow past a cavity have met with lim-
ited success. Typical control schemes are able to
reduce the steady-state amplitude at one resonant
frequency, but increase the amplitude at other fre-
quencies.2,11 The goal of this paper is to understand
these effects using physics-based models, to use these
models to guide future control designs, and to un-
derstand any performance limitations of feedback.
The usual description of the mechanism for cav-

ity oscillations involves self-sustained oscillations,
caused by the familiar Rossiter mechanism:8–10

small disturbances are amplified by the shear layer,
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and produce acoustic waves when they impinge on
the downstream corner; these acoustic waves then
propagate upstream and excite further instabilities
in the shear layer, leading to self-forcing. The usual
view is that the cavity is a “globally unstable” flow:
in the absence of any external forcing, the cavity
would still continue to oscillate. From a dynami-
cal systems point of view, then, the cavity behaves
as a dynamical system with an unstable equilibrium
point (a steady solution of Navier-Stokes), and a sta-
ble limit-cycle. The amplitude of the oscillations is
thus determined by the nonlinearities.
Here, we present an alternative viewpoint. We

demonstrate that for many conditions where oscil-
lations are observed, the cavity behaves as a stable,
lightly damped system. The flow amplifies noise at
certain resonant frequencies, but if the external forc-
ing were removed, the oscillations would disappear.
Purely linear models may be used to describe this
mechanism, as the final amplitude of oscillations is
determined not by nonlinear saturation, but rather
by the amplitude of the forcing disturbances (e.g.,
boundary layer turbulence), and by the linear gain
of the system∗. Feedback may be used to decrease
this gain at resonant frequencies, but as we shall
see, attenuation at certain frequencies must always
be balanced by amplification at other frequencies.
The paper is organized as follows: we give a brief

description of the experimental setup in section 2. In
section 3, we present the physics-based linear model
we use to describe the system, and in section 4 we
discuss the stable and unstable regimes observed in
the experiment. In section 5 we present the results
of a frequency response experiment designed to iden-
tify the system experimentally. Finally, in sections
6 and 7 we present some surprising phenomena ob-

∗Note that nonlinearities, such as saturation of instability
waves in the shear layer, may still be present in this mecha-
nism, and may affect the final amplitude of oscillations, but
are not necessary to explain finite-amplitude oscillations.
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Figure 1: Diagram of experimental apparatus (side
view). Location of Kulite pressure transducers is
indicated by K1–K8, location of hot films indicated
by HW1, HW2.

served in the closed-loop experiments, and use the
physics-based models to explain the observed behav-
ior.

2 Experimental setup

The experimental apparatus is described in detail in
a companion paper,12 so here we give only a brief
overview.

Experiments were performed using the 3 ft × 3 ft
subsonic wind tunnel at the United States Air Force
Academy in Colorado Springs. A cavity model was
installed in the floor of the test section, and a dia-
gram of the setup is shown in Figure 1.

2.1 Sensors

The cavity was instrumented with eight Kulite pres-
sure transducers placed along the cavity walls, one
on the upstream wall, one on the downstream
wall, and six along the floor, approximately equally
spaced. The approximate locations are indicated in
Figure 1.

Velocity measurements were obtained using two
hot-film sensors placed in the shear layer spanning
the cavity, one near the upstream corner, and one
near the downstream corner, both in line with the lip
of the cavity, and close to the center in the spanwise
direction. These are indicated in Figure 1.

All signals were passed through anti-aliasing fil-
ters prior to sampling by a digital data acquisition
system. Data were sampled at 6 kHz, typically for
65,536 samples (10.9 sec). The anti-aliasing filters
were 4th-order Butterworth bandpass filters, with a
pass band of 0.6Hz–2.2 kHz. (The high-pass filter
was necessary to remove the DC offset, and when
needed, the DC component was measured using a
digital multimeter.)

2.2 Actuator

The flow was forced using zero-net-mass blowing
through a slot in the upstream wall of the cavity,
shown in Figure 1. The actuator was a pair of
500-Watt 8 in diameter loudspeakers in an enclosed
chamber. Though the actuator injects zero net mass
through the slot, a nonzero net momentum is in-
duced by spanwise vortices generated by periodically
blowing through the slot (the “synthetic jet” effect).

2.3 Control implementation

Both analog and digital controllers were imple-
mented. The analog controller consisted of a band-
pass filter and a phase shifter. The gain and phase
could be continuously adjusted, and the frequencies
of the passbands could be adjusted in discrete incre-
ments.

Digital controllers were implemented using a
dSPACE interface board, running on a separate
computer from the data acquisition system. For typ-
ical controllers we were running, the maximum sam-
ple rate of the dSPACE system was about 20 kHz.

3 Physics-based model

Our model for the cavity dynamics is based on the
familiar Rossiter mechanism described in the intro-
duction. A block diagram of the model is shown in
Figure 2, where we represent each component of the
physical mechanism as a separate transfer function.

Here, G(s) represents the shear-layer transfer
function, i.e., the transfer function from velocity dis-
turbances v0 at the leading edge to velocity distur-
bances vL at the trailing edge. Transfer functions
for acoustic scattering, propagation, and receptiv-
ity are given by S, A, and R, and in the diagram
p0 and pL denote pressure disturbances at the lead-
ing and trailing edges, respectively. These quantities
may be measured from the experiment: v0 is mea-
sured by hot film 1, vL by hot film 2, and pL and
p0 by Kulites 2 and 8, respectively (see Figure 1).
Here, we do not use Kulite 1, as this sensor measures
substantial pressure fluctuations from the impinging
shear layer.

The other transfer functions depicted in Figure 2
represent the influence of the actuator and con-
troller. The controller transfer function (which we
choose) is given by C, and the actuator dynamics
are described by a transfer function V . The control
signal u is the voltage to the amplifier, and we use
the pressure signal from Kulite 8 as the plant out-
put y. The plant is excited by external noise (e.g.,
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Figure 2: Block diagram of cavity model.

turbulent boundary layer fluctuations), modeled by
a stochastic input n.
The overall transfer function P for the cavity is

then

P =
ASG

1−RASG
. (1)

For the purposes of studying the dynamical features
of this model, we ignore the actuator dynamics, set-
ting V = 1. (These actuator dynamics may in prin-
ciple be measured from the experiment, and once
measured, their effects may be inverted out of the
control laws we obtain.) Theoretical models for the
remaining transfer functions are discussed below.

3.1 Shear layer

The shear layer transfer function G(s) may be de-
termined from linear stability theory. We begin
with velocity profiles measured in experiments by
Williams and Fabris,11 shown in Figure 3. These
profiles are from an experiment with Mach number
M = 0.35, in a cavity with aspect ratio L/D = 5.
Figure 3 shows the experimental data along with
hyperbolic tangent profiles with the same vorticity
thickness. The spreading rate of the shear layer is
determined from a linear fit to the data, and used
as an input to a linear stability calculation to de-
termine the amplification and phase of shear layer
disturbances. We then fit a rational function to the
resulting transfer function (with little loss of accu-
racy), and the result is shown in Figure 4.
As a simpler alternative, we also consider the

shear layer modeled as a second-order system with
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Figure 3: Velocity profiles for the cavity shear layer.
Hot wire measurements (�) and tanh profiles with
same vorticity thickness and deflection ( ).

a time delay

G(s) = G0(s)e
−sτs =

ω2
0

s2 + 2ζω0s+ ω2
0

e−sτs , (2)

where ω0 is (approximately) the frequency of the
most unstable Kelvin-Helmholtz mode, and ζ is the
damping, related to the maximum shear-layer am-
plification. The time delay τs is the convection time
for a disturbance to travel the length of the cavity,
and is given by τs = L/cp, where cp is the mean
phase speed.
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Gs(s), determined from linear stability theory.
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Figure 5: Block diagram of transfer function A(s)
for cavity acoustics.

Though the model (2) has less physical justifica-
tion than the model obtained from the linear stabil-
ity calculation, it provides the same general features,
and is easier to analyze. Moreover, its adjustable
parameters allow it to be tuned to better match ex-
perimental results, and give insight into the effects
of the various parameters.

3.2 Acoustics

The model we use for acoustic propagation in the
cavity is shown in Figure 5. Here, τa = L/a is
a time delay which represents the acoustic lag be-
tween the trailing edge and leading edge (here, L
is the cavity length and a is the sound speed inside
the cavity). An acoustic wave emanating from the
downstream corner x = L propagates upstream, and
some of it reflects off the upstream wall, propagates
downstream, and again reflects off the downstream
wall. The reflection coefficient r measures the total
efficiency of the reflection process, including losses
via acoustic radiation to the farfield (e.g., if both re-
flections are perfect, with no radiation to the farfield,
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Figure 6: Frequency response of acoustic transfer
function, for M = 0.6. Reflection coefficient r = 0
( ); r = 0.25 ( ); r = 0.5 ( ); r = 0.75
( ). Note the linear frequency scale.

then r = 1; if each reflection reduces the amplitude
by 0.5, then r = 0.25). This model therefore cap-
tures longitudinal modes of acoustic resonance, but
ignores depth modes. It is probably reasonable to
ignore the depth modes for such a shallow cavity
(L/D = 5).
The overall transfer function is given by

A(s) =
e−sτa

1− re−2sτa

(3)

and the Bode plot is shown in Figure 6, for M =
U/a = 0.6, and various values of r, ranging from
0 to 0.75. The resonant peaks are clearly appar-
ent, and for this simple model, all of the harmonics
are equally strong. (Harmonics of different strengths
could easily be introduced by making r frequency-
dependent.) Note that these resonant peaks repre-
sent the longitudinal acoustic modes of the cavity,
and not the Rossiter frequencies. However, when
these resonant acoustic frequencies approach the
Rossiter frequencies, they may influence the mode
selection, determining which Rossiter mode is dom-
inant.11

3.3 Scattering and Receptivity

The scattering and receptivity effects, which cou-
ple vortical and acoustic disturbances at the trailing
and leading edge, are the least simple to model. De-
tails of these effects have been studied by Crighton3

for edge tones, and Kerschen5 for cavity flows. How-
ever, both of these models describe the scattering by
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a sharp edge, rather than a corner; scattering at a
sharp edge produces a dipole source, as is well known
for edge tones, while the acoustic source in the cav-
ity is more closely represented by a monopole.9,10

Furthermore, these previous scattering models are
quite detailed, employing a Wiener-Hopf factoriza-
tion (which does not extend easily to corners).
In Rossiter’s empirical formula for predicting cav-

ity frequencies, the scattering and receptivity effects
are treated together as a simple phase lag, indepen-
dent of frequency. Here, we follow Rossiter’s ap-
proach and model scattering and receptivity each
as constant gains, essentially neglecting them alto-
gether. This model is admittedly crude, but for the
purposes of control we are not concerned with de-
tailed flow features, but merely the overall phase and
amplitude effects, and neglecting scattering and re-
ceptivity provides a reasonable starting point.

3.4 Overall cavity model

The overall cavity transfer function P is formed
from equation (1). To gain some insight into the
model, first we consider some special cases. In par-
ticular, for certain choices of parameters, we re-
cover the Rossiter formula for the frequencies of os-
cillation. For the shear layer model (2), suppose
G0(s) = ei2πγ , a constant phase, and take τs = L/cp,
with cp/U = κ. Assuming no reflections (r = 0) in
the acoustic model (3), the overall transfer function
becomes

P (s) =
ei2πγe−sτs

1− ei2πγe−s(τs+τa)

which has poles at s = iω, with

ωL

2πU
=

γ + n

M + 1/κ
, n = 1, 2, . . . , (4)

which is the familiar Rossiter formula for the fre-
quencies of oscillation. The other features of the
model include the effects of longitudinal acoustic
modes in the cavity (with r > 0), as well as am-
plification effects by the shear layer (with G0(iω) �=
const).
Parameters are chosen to make the model approx-

imately agree with the experimental conditions at
M = 0.35, and the resulting frequency response is
shown in Figure 7. For the shear layer, equation (2)
is used, with ω0 = 350Hz, ζ = .2, and τs = L/cp,
with κ = cp/U = 0.625. (Here, U ≈ 117.5m/s is
the freestream velocity.) For the time delay, we use
an 8th-order Padé approximation to obtain a ratio-
nal transfer function. The acoustics are modeled by
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Figure 7: Magnitude and phase of P (iω) for cavity
model, withM = 0.35. Also shown is the phase with
a time delay of τ = 8ms removed.

equation (3) with r = 0.1 and τa = L/a, where a is
the sound speed in the freestream, and a 6th-order
Padé approximation is used for the time delay. Vari-
ations in the sound speed are assumed small for this
relatively low Mach number. The scattering gain is
taken to be 0.2, and changing this parameter adjusts
the stability of the system: for larger values of this
gain, the system becomes unstable, and for smaller
values, the system is more heavily damped.

The model shown in Figure 7 is stable (all poles
in the left half plane), so the magnitude of the fre-
quency response may be viewed precisely as the
amount the flow amplifies disturbances at each fre-
quency. The peaks predicted by the model (imag-
inary parts of the lightly-damped poles) are at
114Hz, 234Hz, and 336Hz, which correspond to the
first three Rossiter frequencies. The third peak is the
strongest because the shear layer amplification is the
greatest for this frequency, and because the cavity
acoustics reinforce oscillations at this frequency.

4 Stable and unstable regimes

As mentioned in the introduction, two possible
mechanisms may lead to finite-amplitude oscilla-
tions. The conventional view9,10 is that the sys-
tem (i.e., the plant P (s) from the previous section)
is linearly unstable, so tiny perturbations will grow
in time, and eventually saturate once nonlinearities
become important. An alternative view, considered
recently for combustion instabilities,1 is that the sys-
tem is linearly stable, but lightly damped, and con-
stantly excited by external disturbances. These dis-
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turbances are then amplified, causing oscillations at
the resonant frequency of the plant, but if the distur-
bances were removed, the oscillations would also dis-
appear. In this mechanism, nonlinearities may not
be important: the amplitude of the oscillations is de-
termined by the amplitude of the excitation noise,
not by any saturation effects of nonlinearities. In
this section, we demonstrate that the cavity may
operate in either regime, depending on the Mach
number.

4.1 Notion of stability

First, we clarify what we mean by stability of a sys-
tem. In dynamical systems, one typically discusses
stability of an equilibrium point, or a limit cycle. In
fluid mechanics, one must further specify the refer-
ence frame (e.g., fixed or traveling with the fluid),
and this leads to different notions of stability (e.g.,
convective vs. absolute).

In this paper, we view the cavity as an input-
output system, and we say that the system is sta-

ble if the input-output map u �→ y is bounded in
L2. (Here, as indicated in Figure 2, the input u is a
shear-layer disturbance, and the output y is the pres-
sure measured at the upstream wall of the cavity.)
For instance, suppose that the system is excited by
noise for a finite amount of time, so that the input
u is bounded. If the output y decays after the noise
is removed, then the output will be bounded, so we
regard the system as stable. If finite-amplitude os-
cillations persist after the noise is removed, then the
output will not be bounded in L2, so we regard the
system as unstable.

4.2 Cavity flow regimes

It is difficult (and perhaps impossible) to distinguish
between stable and unstable regimes using only fre-
quency spectra. Both regimes are characterized by
peaks at the resonant frequencies, and one cannot
tell whether the system is in a limit cycle (with noise
on top of it), or whether it is stable, merely ampli-
fying disturbances at certain frequencies. However,
it is possible to distinguish between the two regimes
using the probability density function (PDF) of the
output signal.7

If the input disturbances have a Gaussian distribu-
tion, the PDF of the stable system excited by these
disturbances will also be Gaussian. By contrast, the
PDF of a limit cycling system (say y(t) = sin(t))
will have two peaks, because the system spends more
time near the extrema of the limit cycle. In addi-
tion, the phase portrait of a limit cycle will look like
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Figure 8: Two different Mach numbers, without con-
trol: comparison of spectra, phase portraits, and
probability density functions at M = 0.34 ( )
and M = 0.45 ( ). The M = 0.34 case is unsta-
ble and limit cycling; the M = 0.45 case is stable,
driven by noise.

an ellipse, so the phase portrait of a noisy limit cy-
cle will look like a “fuzzy ellipse,” while the phase
portrait of a stable system forced by noise will be
concentrated about a point.

Measurements from the cavity experiment at two
different Mach numbers are shown in Figure 8. At
M = 0.34, the system appears to be unstable, in a
limit cycle. The phase portrait indeed looks like a
fuzzy ellipse, and the PDF has two distinct peaks.
However, at M = 0.45, the system appears to be
stable, driven by noise. The phase portrait is con-
centrated about a point, and the PDF has a single
peak which closely resembles a Gaussian.

A sweep of Mach numbers from 0.1 to 0.45 re-
vealed that M = 0.34 is the only Mach number
where the unstable regime is observed. Furthermore,
at this Mach number, only a single frequency is ob-
served, while at most other Mach numbers, multiple
modes exist simultaneously. This is probably be-
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cause at M = 0.34, the longitudinal acoustic modes
in the cavity reinforce the Rossiter modes: the fre-
quency of the first longitudinal mode coincides with
the frequency of the third Rossiter mode.11 Pre-
sumably, this reinforcement increases the loop gain
at this frequency enough to cause the system (P in
Figure 2) to become unstable.

We note that more generally, any effect which
increases this loop gain may cause instability. In
particular, laminar upstream boundary layers pro-
vide greater shear layer amplification,6 so experi-
ments with laminar boundary layers should be more
likely to operate in the unstable regime. This may
explain why recent simulations9 with laminar up-
stream boundary layers are apparently in the unsta-
ble regime, where the parameter values are otherwise
similar to those in the present experiment.

5 Model identification from experiment

In this section, we describe a frequency-response ex-
periment designed to identify the cavity model di-
rectly. The experiment was performed at M = 0.34,
where only a single frequency of oscillation was ob-
served. Because the system appears to be unstable
and limit cycling (see the previous section), nonlin-
earities are present and active, so a frequency re-
sponse experiment on the limit cycling system would
not make sense. To remove (or reduce) the effect of
nonlinearities, we first stabilize the system using a
feedback controller, reducing the amplitude of oscil-
lations enough, we hope, that nonlinearities are no
longer active; and then add sinusoidal disturbances
to this stable, closed-loop system.

An analog controller used in previous experi-
ments11 was used to stabilize the system, and pres-
sure measurements for the baseline and controlled
cases are compared in Figure 9. From the phase por-
trait and the PDF, it appears that the unforced case
is limit cycling, but with control the system is stable.
The frequency response shows that the closed-loop
system does excite oscillations at a new frequency
(about 420Hz), and we discuss these adverse effects
of control later, but from the PDF it appears that
these oscillations are the result of disturbance am-
plification, not instability.

The magnitude and phase of the measured fre-
quency response are shown in Figure 10, along with
the coherence between the input and output signals.
Here, the input is the voltage to the actuator and
the ouput is the pressure measured by Kulite 8, on
the upstream wall of the cavity. We found that when
the system was forced at a frequency near the res-
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Figure 9: With and without control, M = 0.34:
comparison of spectra, phase portraits, and proba-
bility density functions for unforced system ( ),
and closed-loop system with gain-delay feedback
( ).

onant frequency (337Hz), the data revealed a PDF
with two peaks, indicating that the system again
became unstable, despite the presence of the sta-
bilizing controller. Therefore, measurements near
340Hz are not accurate, despite the good coherence,
because nonlinearities have become important. This
frequency range is, of course, the most important for
control analysis, as it is the frequency range where
we desire good performance (i.e., reduction in dis-
turbance amplification).

For a reliable control design, we must not have
large uncertainties over the same frequency range
where we desire good performance, so in this sense
the frequency response experiment was not fruitful.
Presumably, it would be much easier to perform such
a system identification for other Mach numbers (e.g.,
M = 0.45), where nonlinearities are not important
(see Figure 8). The M = 0.34 case at first may
seem the easiest to control, because only one oscil-
lation frequency is present, but it may actually be
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Figure 11: Power spectrum with 3 different digital filters, tuning gain and phase manually for best suppres-
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Figure 10: Transfer function from input voltage to
pressure measured by Kulite 8, measured from fre-
quency response experiment at M = 0.34. Also
shown is the phase with a time delay of τ = 8ms
removed.

the hardest to control, because it is the one Mach
number we have observed which is actually unstable
and limit cycling.

6 Closed-loop results

Here, we present some results of different control
schemes applied to the cavity atM = 0.34. We point
out some surprising phenomena we have observed,
and in the next section we present an analysis which
explains these phenomena, at least qualitatively, us-
ing the physics-based model.

The control schemes all involved bandpass filters,
with an adjustable gain and a time delay. We tried
several digital Butterworth filters of different orders
and passbands, and the orders and passbands for the
filters used here are shown in Table 1.

Name Order Passband

Filter 1 2 320–360Hz
Filter 2 2 290–390Hz
Filter 3 2 215–465Hz

Table 1: Parameters of digital Butterworth filters
used.

6.1 New oscillation frequencies

Figure 11 shows the results of the closed-loop exper-
iments with the different filters. In this figure, the
gain and delay were tuned for the best suppression.
The narrow band filter showed very little attenu-
ation, and the broadband filters better attenuated
the main cavity frequency, but a higher frequency
peak appears. This same effect was observed with
the analog controller, as can be seen from Figure 9.
The frequency of this peak shifts with different con-
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(a) Delay = 4× 10−4 sec
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(b) Delay = 5× 10−4 sec
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(c) Delay = 6× 10−4 sec

Figure 12: Power spectra with digital controllers, showing sidebands: control off ( ); control on, using
filter 2 ( ).

trollers: with filter 2, the peak is at 430Hz; with
filter 3, 449Hz.

6.2 Peak splitting

Note that, especially evident in Figure 11b, the main
cavity frequency is sometimes split into two side-
bands when the control is turned on. This effect
is explored further in Figure 12, where filter 2 was
used, and the time delay was adjusted. The main
resonant frequency at 337Hz is almost completely
attenuated, but sidebands appear very close in fre-
quency, at about 320Hz and 341Hz. As the time
delay is changed, the relative strength of the side-
bands changes, and the frequency changes slightly—
the lower frequency shifts from 320 to 325Hz in Fig-
ures (a)–(c). In retrospect, this peak-splitting phe-
nomenon also appears in some previous closed-loop
cavity experiments (e.g., Cattafesta,2 Fig. 5). This
phenomenon has also been observed in combustion
experiments at UTRC,1 where they have been ex-
plained using the ideas presented in the next section.

7 Sensitivity function analysis

To understand the effects described in the previ-
ous section, we need to understand how feedback
affects the amplification of disturbances. Without
control, the transfer function from disturbances to
measured pressure is simply P (s) (see Figure 2).
With (negative) feedback, the transfer function is
P (s)/(1+P (s)C(s)), so the open-loop transfer func-
tion is modified by the amount

S(s) =
1

1 + P (s)C(s)
(5)

called the sensitivity function. If |S(iω)| < 1, then
disturbances are attenuated, so feedback is benefi-
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Figure 13: Nyquist plot for the feedback system,
along with corresponding frequencies (in Hz). Points
outside the dashed circle correspond to a perfor-
mance benefit (|S(iω)| < 1), and points inside the
circle correspond to a penalty (|S(iω)| > 1).

cial, but if |S(iω)| > 1, then disturbances are ampli-
fied further, and the controlled system is worse than
open-loop.

The sensitivity function may determined easily
from a Nyquist plot of the system, which is just
a plot of P (iω)C(iω) in the complex plane, as ω
varies from 0 → ∞. Figure 13 shows the Nyquist
plot for the plant P (s) given by the physics-based
model from section 3, and for C(s) given by filter 2,
with a gain and time delay.

Graphically, the magnitude of the sensitivity
function S(iω) is just 1 over the distance from
P (iω)C(iω) to the −1 point. Figure 13 then demon-
strates why peak splitting occurs: because C(iω) has
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Figure 14: Magnitude of disturbance-output trans-
fer function, without control ( ), and with con-
trol ( ), demonstrating peak splitting.

a narrow passband, the magnitude of P (iω)C(iω) is
large only over a narrow frequency range. Over this
frequency range, the phase of P (iω)C(iω) changes
rapidly, because of the large time delay in P (iω),
and because of the steep phase change of C(iω) in
the passband. Thus, if the phase of C(iω) is chosen
to rotate the resonant frequency (≈ 337Hz) far away
from the −1 point, nearby frequencies will move
closer to the −1 point, and feedback will amplify
disturbances at these frequencies.
From Figure 13, we would therefore expect the

main frequency at 337Hz to be attenuated by feed-
back, but sidebands at about 315Hz and 360Hz
to be amplified. These effects are confirmed by
Figure 14, which shows the magnitude of the
disturbance-output transfer function, with and with-
out control. As expected, feedback attenuates the
main frequency, but produces sidebands.
For a slightly smaller time delay than that used in

Figure 13, the Nyquist plot will be rotated slightly
counter-clockwise, so the lower frequency peak (≈
315Hz) will be amplified even more, and the higher
frequency (≈ 360Hz) will not be amplified as much.
conversely, for a larger time delay, the Nyquist plot
will be rotated clockwise, so the lower frequency
peak will decrease, and the higher frequency peak
will increase. These effects also agree with those
measured in experiment (cf. Figure 12).

7.1 Performance limitations

Ideally, one would like to design a compensator C(s)
such that the sensitivity function |S(iω)| ≪ 1 for all
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Figure 15: Magnitude of sensitivity function S(iω)
for the model plant, with gain-delay controller. The
area rule says that the area corresponding to attenu-
ation (dark shaded region) must equal the area cor-
responding to amplification (light shaded region).

frequencies. Unfortunately, this is not possible, be-
cause of the area rule, which states that any decrease
in sensitivity over one frequency range must be bal-
anced by an increase for some other frequencies.4

More precisely, for a system with relative degree at
least 2, the area rule states that

∫
∞

0

log |S(iω)| dω = π
∑

k

Re(pk), (6)

where pk are the unstable poles of PC. So for a
stable plant, any negative area (|S(iω)| < 1) in the
log-linear plot of S versus ω must be balanced by an
equal positive area (|S(iω)| > 1), as shown in Fig-
ure 15. For unstable plants, the situation is worse,
and the net area must be positive.

The area rule in itself does not imply any peak-
ing of |S(iω)|, as the positive area may be spread
out over a large frequency band, as ω → ∞. How-
ever, for narrow bandwidth controllers, and plants
with significant time delays, the area rule does im-
ply a peaking of |S(iω)|, since all of the amplifi-
cation must occur within the narrow bandwidth of
the controller.1 The more narrow the bandwidth,
the greater the amount of peaking. This implies a
strong argument in favor of large bandwidth actu-
ators, and suggests that narrow-bandwidth actua-
tors (such as piezoelectrics) might not be suitable
for feedback control.
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8 Conclusions

We have presented a linear model for cavity oscil-
lations, incorporating the effect of external distur-
bances. Under some conditions, the system is un-
stable, so perturbations will grow until nonlinearities
become important and the linear model is no longer
valid. However, for other conditions, the system is
stable, but lightly damped, acting as a noise ampli-
fier. Phase portraits and probability density func-
tions of experimental data indicate that for most
flow regimes observed in our experiment, the cav-
ity is a stable noise amplifier, oscillating at several
different Rossiter modes. For the M = 0.35 case,
however, the flow is in a limit cycle, oscillating at a
single Rossiter mode.

For this Mach number, the flow may be stabilized
using a controller consisting of a bandpass filter and
time delay. When control is introduced, however,
surprising effects are observed, including new peaks
at different frequencies, and a peak splitting phe-
nomenon, where the main peak splits into two side-
bands. These same effects are found in the linear
model. The peak splitting effect has been observed
in experiments in combustion instabilities,1 and is a
common feature of systems with limited bandwidth
and large time delay.

If the noise-amplification model of cavity oscilla-
tions is correct, one cannot expect to be able to re-
duce the amplitude of oscillations at all frequencies
using feedback, because of fundamental limitations
imposed by the area rule. However, given an ac-
curate model of the system (e.g., from a frequency
response experiment as described in section 5), it
is straightforward to design a compensator to min-
imize these adverse effects, and reduce oscillations
over important frequency ranges, while paying the
penalty over less important frequency ranges, or
ranges where the plant itself is not so sensitive to
disturbances.
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