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Model-based deep embedding for constrained
clustering analysis of single cell RNA-seq data
Tian Tian1,4, Jie Zhang2,4, Xiang Lin2, Zhi Wei 2✉ & Hakon Hakonarson 1,3✉

Clustering is a critical step in single cell-based studies. Most existing methods support

unsupervised clustering without the a priori exploitation of any domain knowledge. When

confronted by the high dimensionality and pervasive dropout events of scRNA-Seq data,

purely unsupervised clustering methods may not produce biologically interpretable clusters,

which complicates cell type assignment. In such cases, the only recourse is for the user to

manually and repeatedly tweak clustering parameters until acceptable clusters are found.

Consequently, the path to obtaining biologically meaningful clusters can be ad hoc and

laborious. Here we report a principled clustering method named scDCC, that integrates

domain knowledge into the clustering step. Experiments on various scRNA-seq datasets from

thousands to tens of thousands of cells show that scDCC can significantly improve clustering

performance, facilitating the interpretability of clusters and downstream analyses, such as cell

type assignment.
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C
lustering presents an essential data analysis and visuali-
zation tool that has become a key step in defining
cell types based on the transcriptome and has emerged

as one of the most powerful applications of scRNA-seq1–3.
Early research applied traditional dimension reduction methods,
such as PCA, t-SNE4,5, UMAP6, followed by k-means or hier-
archical clustering to group and visualize cells, including
SC37 (Spectral clustering), pcaReduce8 (PCA+ k-means+ hier-
archical), TSCAN9 (PCA+Gaussian mixture model) and
mpath10 (Hierarchical), to name a few. However, unlike bulk
RNA-seq or microarray, due to the extreme sparsity caused by
dropouts and high variability in gene expression levels, traditional
clustering approaches tend to deliver suboptimal results on
scRNA-seq data sets3,11.

Recently, various clustering methods have been proposed to
overcome the challenges in scRNA-seq data analysis. Shared
nearest neighbor (SNN)-Clip combines a quasi-clique-based
clustering algorithm with the SNN-based similarity measure to
automatically identify clusters in the high-dimensional and high-
variable scRNA-seq data12. DendroSplit13 applies “split” and
“merge” operations on the dendrogram obtained from hier-
archical clustering, which iteratively groups cells based on their
pairwise distances (calculated upon selected genes), to uncover
multiple levels of biologically meaningful populations with
interpretable hyperparameters. If the dropout probability P(u) is a
decreasing function of the gene expression u, CIDR14 uses a non-
linear least-squares regression to empirically estimate P(u) and
imputes the gene expressions with a weighted average to alleviate
the impact of dropouts. Clustering analysis is performed on the
first few principal coordinates, obtained through principal coor-
dinate analysis (PCoA) on the imputed expression matrix14.
SIMLR15 and MPSSC16 are both multiple kernel-based spectral
clustering methods. Considering the complexities of the scRNA-
seq data, multiple kernel functions can help to learn robust
similarity measures that correspond to different informative
representations of the data17. However, spectral clustering relies
on the full graph Laplacian matrix, which is prohibitively
expensive to compute and store18. The high complexity and
limited scalability generally impede applying these methods to
large scRNA-seq datasets3.

The large number of cells profiled via scRNA-seq provides
researchers with a unique opportunity to apply deep learning
approaches to model the noisy and complex scRNA-seq data.
scScope19 and DCA20 (Deep Count Autoencoder) apply regular
autoencoders to denoise single-cell gene expression data and
impute the missing values21. In autoencoders, the low-
dimensional bottleneck layer enforces the encoder to learn only
the essential latent representations and the decoding procedure
ignores non-essential sources of variations of the expression
data21. Compared to scScope, DCA explicitly models the over-
dispersion and zero-inflation with a zero-inflated negative bino-
mial (ZINB) model-based loss function and learns gene-specific
parameters (mean, dispersion and dropout probability) from the
scRNA-seq data. SCVI22 and SCVIS23 are variational auto-
encoders (VAE)24 focusing on dimension reduction of scRNA-
seq data. Unlike autoencoder, variational autoencoder assumes
that latent representations learnt by the encoder follow a pre-
defined distribution (typically a Gaussian distribution). SCVIS
uses the Student’s t-distributions to replace the regular MSE-loss
(mean square error) VAE, while SCVI applies the ZINB-loss VAE
to characterize scRNA-seq data. Variational autoencoder is a deep
generative model, but the assumption of latent representations
following a Gaussian distribution might introduce the over-
regularization problem25 and compromise its performance. More
recently, Tian et al. developed a ZINB model-based deep clus-
tering method (scDeepCluster)26 and showed that it could

effectively characterize and cluster the discrete, over-dispersed
and zero-inflated scRNA-seq count data. scDeepCluster combines
the ZINB model-based autoencoder with the deep embedding
clustering27,28, which optimizes the latent feature learning and
clustering simultaneously to achieve better clustering results.

Much of the downstream biological investigation relies on
initial clustering results. Although clustering aims to explore and
uncover new information (e.g., novel cell types), biologists expect
to see some meaningful clusters that are consistent with their
prior knowledge. In other words, totally exotic clustering with
poor biological interpretability is puzzling, which is generally not
desired by biologists. For a clustering algorithm, it is good to
accommodate biological interpretability while minimizing clus-
tering loss from computational aspect3. Most, if not all, existing
algorithms for scRNA-seq, however, only support clustering in an
unsupervised fashion, and are incapable of integrating prior
information. If a method initially fails to find a meaningful
solution, the only recourse may be for the user to manually and
repeatedly tweak clustering parameters until sufficiently good
clusters are found3,29.

We note that prior knowledge has become widely available in
many cases30. Quite a few cell type-specific signature sets have
been published, such as Immunome31, eTME32. Multi-omics
sequencing data can also be used as prior knowledge, such as
CITE-seq33 (profiling single-cell transcriptome and surface pro-
teins simultaneously) and single-cell ATAC-seq34. Alternatively,
researchers could also define the markers based on pilot or cross-
validation experiments30. Ignoring prior information may lead to
suboptimal, unexpected, and even illogical clustering results.
CellAssign35 and SCINA30 are two applications that have been
proposed recently to leverage prior knowledge of cell-type marker
genes. Their goal is to assign cells into one of the several pre-
defined cell types. Each predefined cell type is described by some
marker genes. CellAssign is essentially a generalized linear model
in which latent cell types and marker genes together with other
covariates to predict gene expression level. A marker gene is
assumed to have an over-expression effect (to be estimated)
relative to cells for which it is not a marker. CellAssign assumes
that gene expression in terms of counts follows a negative bino-
mial distribution (NB). SCINA uses a similar approach to utilize
prior knowledge of marker genes, but differs from CellAssign by
assuming that the normalized gene expressions follow a Gaussian
distribution. Both CellAssign and SCINA have demonstrated
significant improvement over existing methods, which supports
the usage of prior knowledge.

However, there are several limitations of these methods. First,
they are developed in the context of the marker genes and lack the
flexibility to integrate other kinds of prior information. Second,
they are only applicable to scenarios where cell types are pre-
defined and well-studied marker genes exist. Poorly understood
cell types would be invisible to these methods. Finally, they both
ignore pervasive dropout events, a well-known problem for
scRNA-seq data.

In this article, we are interested in integrating prior informa-
tion into the modeling process to guide our deep learning model
to simultaneously learn meaningful and desired latent repre-
sentations and clusters. Unlike traditional hard-constrained
clustering algorithms (e.g., COP K-means36), we convert (par-
tial) prior knowledge into soft pairwise constraints and add them
as additional terms into the loss function for optimization. The
proposed method presents a more flexible form of semi-
supervised clustering37,38, and is more feasible in real scRNA-
seq experiments. Here, we name the proposed model-based deep
embedding clustering method as scDCC (Single Cell Deep Con-
strained Clustering). The network architecture of scDCC is
summarized in Fig. 1. Basically, scDCC encodes prior knowledge
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into constraint information, which is integrated to the clustering
procedure via a novel loss function. We apply scDCC with
pairwise constraints to the scRNA-seq datasets of various sizes
(from thousands to tens of thousands of cells). Our extensive
experimental results illustrate that domain knowledge can help to
achieve better clustering performance under different scenarios.
We expect that the downstream analysis, such as cell type
assignment, will benefit from the prior knowledge and biologi-
cally meaningful clusters.

Results
Pairwise constraints. Pairwise constraints mainly focus on the
together or apart guidance as defined by prior information and
domain knowledge. They enforce small divergence between pre-
defined “similar” samples, while enlarging the difference between
“dissimilar” instances. Researchers usually encode the together
and apart information into must-link (ML) and cannot-link (CL)
constraints, respectively38,39. With the proper setup, pairwise
constraints have been proved to be capable of defining any
ground-truth partition37,40. In the context of scRNA-seq studies,
pairwise constraints can be constructed based on the cell distance
computed using marker genes, cell sorting using flow cytometry,
or other methods depending on real application scenarios.

To evaluate the performance of pairwise constraints, we
applied our scDCC model to four scRNA-seq datasets generated
from different sequencing platforms (Table 1, see data description
in the methods part). We selected 10% of cells with known labels
to generate constraints in each dataset and evaluated the
performance of scDCC on the remaining 90% of cells. We show

that the prior information encoded as soft constraints could help
inform the latent representations of the remaining cells and
therefore improve the clustering performance. Three clustering
metrics: normalized mutual information (NMI), clustering
accuracy (CA), and adjusted Rand index (ARI) were applied to
evaluate the performance from different aspects for each
competing method. Specifically, the ranges of NMI and CA are
from 0 to 1, while ARI can be negative. A larger value indicates
better concordance between the predicted labels and ground
truth. The number of pairwise constraints fed into the model
explicitly controls how much prior information is applied in the
clustering process. In the experiments, we varied the number
of pairs from 0 to 6000, which represent a small fraction of
all possible pairs (from 3.7 to 15.9% of all possible pairs in
the selected 10% of cells among four datasets). We repeated
the experiment for each setting ten times. As shown in Fig. 2, the
clustering performance improves consistently across various
datasets when the scDCC model takes more prior constraint
information into account. For datasets that are difficult to cluster
(e.g., worm neuron cells), imposing a small set of pairwise
constraints significantly improves the results. With 6000 pairwise
constraints, scDCC achieves acceptable performance on all four
datasets (most clustering metrics >0.8), regardless of the baseline
performances. To illustrate the contribution of the added
constraints, we use t-SNE4,5 to show the embedded representa-
tions of cells learned by different methods in the two-dimensional
space (Fig. 3). A random subset of corresponding ML (blue lines)
and CL (red lines) constraints are also plotted (Fig. 3). As shown,
the latent representations learned by the ZINB model-based
autoencoder are noisy and different labels are mixed. Although
the representations from scDeepCluster could separate different
clusters, the inconsistency against the constraints still exists.
Finally, by incorporating the soft constraints into the model
training, scDCC was able to precisely separate the clusters and the
results are consistent with both ML (blue lines) and CL (red lines)
constraints. Overall, these results show that pairwise constraints
can help to learn a better representation during the end-to-end
learning procedure and improve clustering performance.

The state-of-the-art clustering methods for scRNA-seq data,
including CIDR14, DCA20+ k-means, DEC27, MPSSC16, PCA+
k-means, SCVI22+ k-means, SCVIS 23+ k-means, SIMLR15, SC37

and Seurat41, were selected as competing methods. In addition, we

Fig. 1 Network architecture of scDCC. The autoencoder is a fully connected neural network. The number below each layer denotes the size of that layer.

Table 1 Summary of four small scRNA-seq datasets.

Dataset Sequencing

platform

Sample size /

#Cell

#Genes #Groups

10X PBMC 10X 4271 16,449 8

Mouse

bladder cells

Microwell-seq 2746 19,079 16

Worm

neuron cells

sci-RNA-seq 4186 11,955 10

Human

kidney cells

10X 5685 25,215 11
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also compared the proposed scDCC model with traditional
constrained clustering algorithms (COP K-means35 and MPC K-
means40). Since some competing methods could not handle large-
scale datasets, we randomly sampled 2100 cells from each dataset
to form the final experimental datasets. The down-sampling
procedure did not drop any group in any dataset. Following the
same procedure, 10% of cells with labels were randomly selected to
generate constraints, and all methods were evaluated and
compared on the remaining 90% of cells. We note that competing
methods, including CIDR, DCA+ k-means, DEC, MPSSC, PCA
+ k-means, SCVI+ k-means, SCVIS+ k-means, SIMLR, SC3 and
Seurat, are unable to utilize prior information. As a result, we first
compared scDCC with these methods when no prior information
is utilized (i.e., with 0 pairwise constraints). Of note, the proposed
scDCC reduces to the scDeepCluster when no constraint
information is used. For the randomly selected 2100 cells in each
dataset, we observed that scDCC with 0 constraint outperformed
most competing scRNA-seq clustering methods (some strong
methods outperformed scDCC with 0 constraints on some
datasets, such as SC3 and Seurat on mouse bladder cells), and
by incorporating prior information, scDCC could perform
significantly better than all competing methods (Figs. S1, S3, S5
and S7: left panels). For the full datasets, the performance between
scDCC with 0 constraint and strong competing methods (e.g., SC3
and Seurat) was comparable, while considering the scDCC with
constraint information, demonstrated significantly better perfor-
mance than the competing methods as shown in Figs. S2, S4, S6,
S8 (left panels). For different datasets, we observed consistent
results that scDCC could deliver much better results than the
traditional constrained clustering algorithms (COP K-means36 and
MPC K-means42) on scRNA-seq datasets (Figs. S1, S3, S5 and S7:
left panels).

In real applications, we recognize that constraint information
may not be 100% accurate (e.g., must-link cells may be
erroneously labeled as cannot-link, and vice versa). To evaluate
the robustness of the proposed method, we applied scDCC to the
datasets with 5% and 10% erroneous pairwise constraints (Fig. S9).
Though the errors in the constraints could degrade the
performance, scDCC still achieves better clustering results by
imposing constraints with 5% errors in all datasets (compared to
scDCC with 0 constraint), indicating that scDCC is robust to
noisy constraints. When the error rate increased to 10%, scDCC
began to underperform in some datasets (e.g., mouse bladder
cells) when the number of constraints increased. Therefore, users
should take caution when adding highly erroneous constraints

With ongoing development of the sequencing technology, it is
interesting to see the performance of scDCC on the very large
scRNA-seq datasets. To this end, we applied scDCC to two

additional large datasets with 14,653 and 27,499 cells (Table 2).
Again, we randomly selected 10% of cells with known labels to
generate constraints and evaluated the performance of the
remaining cells. We observed consistent improvements over
baselines with the increasing number of constraints (Fig. 4,
Fig. S10). As illustrated in Fig. S11, scDCC, when integrated with
soft pairwise constraints, is robust to noise on the two large
scRNA-seq datasets.

Robustness on highly dispersed genes. Gene filtering is widely
applied in many single-cell analysis pipelines (e.g., Seurat41). One
typical gene filtering strategy is to filter out low variable genes and
only keep highly dispersed genes. Selecting highly dispersed genes
could amplify the differences among cells but lose key informa-
tion between cell clusters. To evaluate the robustness of scDCC
on highly dispersed genes, we conducted experiments on the top
2000 highly dispersed genes of the four datasets and displayed the
performances of scDCC and baseline methods in Figs. S1–8
(right panels). As we can see in Figs. S1–8 (right panels), scDCC
without any constraints could provide comparable results to
strong baseline methods in different datasets. When incorporat-
ing constraint information, scDCC was consistently better
than other methods in both down-sampled and full data sets
(Figs. S1–8: right panels). Figure S12 summarizes the detailed
performance of scDCC in the four datasets (with 2100 selected
cells or all cells) and different settings (all genes or top 2000
highly variable genes). As we increase the number of pairwise
constraints constructed upon the randomly selected 10% of cells,
the scDCC tends to provide better clustering performance on the
remaining 90% of cells, which shows from another viewpoint that
the prior information could be leveraged to obtain better clusters.

Real applications and use cases. In the previous sections, we
mainly constructed the pairwise constraints for a small set of cells
whose ground truth information is available (e.g., cell labels). In
practice, depending on the concrete application and use case, we
may generate constraints for the utilization of various informa-
tion sources. Generating accurate constraints is the key to suc-
cessfully apply the proposed scDCC algorithm to obtain robust
and desired clustering results. Here we conducted two case stu-
dies to illustrate two different methods for encoding external
information as constraints.

Protein marker-based constraints. The CITE-seq can profile
expression levels of mRNAs and cell surface proteins simulta-
neously. Protein levels can provide additional information for cell
type identification. We conducted the experiment on a CITE-seq
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Fig. 2 Performances of scDCC on small datasets. a 10X PBMC; b Mouse bladder cells; c Worm neuron cells; d Human kidney cells. Clustering

performances of scDCC on four small scRNA-seq datasets with different numbers of pairwise constraints, measured by NMI, CA, and ARI. All experiments

are repeated ten times, and the means and standard errors are displayed.
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PBMC dataset43 with constraints built upon protein data. Spe-
cifically, to leverage the protein information and improve clus-
tering on mRNAs, we generated constraints based on protein
expression levels. We used a stringent criterion to generate ML
and CL constraints (See “Methods”: Obtain constraints). As
shown in Fig. 5a, scDCC with 25,000 constraints significantly
outperforms competing methods (including scDCC without any
constraints) and achieves better results than SC3 (performed on
the mRNA data), PhenoGraph44, and k-means (performed on
protein levels). We visualize the CD4 and CD8 protein levels in
the clustering results of scDCC with and without constraints.
Clusters were identified by differential expression analysis of CD4
and CD8 genes via the Wilcoxon test implemented in Seurat.
Clusters with the most significantly high expressed CD4 and CD8
mRNAs were labeled as CD4 and CD8 T cells, respectively. As
shown in Fig. 5b, in the clustering results of scDCC without
constraint, CD4+/CD8− cells identified by the protein levels
were erroneously labeled as CD8 T cells; in the clustering results
of scDCC with constraints, protein levels of CD4 and CD8 were
consistent with the clustering labels on mRNAs.

Marker gene-based constraints. After unsupervised clustering,
cell-type marker genes are usually leveraged to annotate scRNA-
seq data into predefined or de novo cell types. The success of such
manual interpretations requires purified clusters with different
marker genes highly expressed and concentrated only in some
specific clusters. We show that the scDCC model with marker
gene-based constraints could generate more interpretable clus-
tering results.

Firstly, we conducted simulation experiments to systematically
show that marker gene-based constraints can guide the model to
separate the marker genes better with the increasing number of

constraints (Fig. S13, Supplementary Notes). Then we conducted
real data experiments based on a human liver dataset45, which
had about 8000 cells. The authors provided clustering analysis
results and annotated the clusters based on overexpression of
marker genes. We used the marker genes to generate low
dimensional latent representations for the downloaded 8000 cells.
A t-SNE plot of all cells based on ZIFA latent features of marker
genes was shown in Fig. S14. We construct constraints based on
learned latent representations (See “Methods”: Obtain con-
straints). We observed that by incorporating the constraint
information, scDCC improved clustering performance signifi-
cantly (Fig. 6a). It is noted that scDCC achieves better
performance than PhenoGraph and k-means on the ZIFA latent
features (scDCC with constraints vs k-means on ZIFA latent
space, averaged measures: NMI: 0.905 vs 0.833, CA: 0.928 vs
0.928, ARI: 0.952 vs 0.924).

We show that scDCC with marker gene-based constraints
could produce clusters with highly expressed marker genes
concentrated in some specific clusters. We examined the
distributions of these marker genes in each cluster. A gene is
designated as a marker gene generally because it could represent a
cell type. Ideally, biologists expect to see cells of the same type
clustered together. As a result, it makes more biological sense if
marker genes overexpress and concentrate on one cluster, but it is
hard to interpret if a marker gene is highly expressed all over
many clusters. Maintaining such cluster specificity of marker
genes will bring enhanced biological interpretability. We defined
a cluster specificity score for 55 marker genes, each of which is
assigned to only one cell type. We expect each of them to be
highly expressed in only one cluster. We apply DESeq246 to
conduct differential expression analysis of these marker genes by
comparing one cluster versus the others. The statistics reported
by DESeq2 reflect the significance of the difference between the
cluster and the rest. Each gene will then have one testing statistic
for one cluster. The larger the testing statistic, the more
significantly differentially expressed the gene clusters are. To
summarize the level of a marker gene concentrated in one cluster
(highly expressed in only one cluster), we define the maximum of
the statistics of all clusters as the specificity score for a marker
gene. We show that scDCC can increase cluster specificity of
marker genes. We compared the averaged specificity scores of the
ten repeats before and after adding constraints. As shown in
Fig. 6b, adding constraints increases the specificity scores for

Table 2 Summary of two large scRNA-seq datasets.

Dataset Sequencing

platform

Sample

size /#Cell

#Genes #Groups

Macosko mouse

retina cells

Drop-seq 14,653 11,422 39

Shekhar mouse

retina cells

Drop-seq 27,499 13,166 19
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Fig. 4 Performances of scDCC on large datasets. a Macosko mouse retina cells; b Shekhar mouse retina cells. Clustering performances of scDCC on two

large scRNA-seq datasets with different numbers of pairwise constraints, measured by NMI, CA, and ARI. All experiments are repeated ten times, and the

means and standard errors are displayed.
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most marker genes. Most points are above the diagonal line, and
the improvement is significant (p-value= 0.00024, one-sided
Wilcoxon test). The detailed specificity scores of each marker
gene under the settings with and without constraints are
summarized in Fig. S15.

Finally, we show that the cells with the same highly expressed
marker genes tend to be clustered together when the scDCC
model is trained with constraint information. We generated the t-
SNE plots based on latent representations of scDCC without any
constraints (Fig. 6c), and with 25,000 pairwise constraints
(Fig. 6d). The cells with highly expressed marker genes are
marked in red. As shown in Fig. 6c, d, cells with highly expressed
marker genes distribute across different clusters when scDCC is
trained without constraints. In contrast, they become more
concentrated in one cluster when scDCC utilizes constraint
information. The observation is consistent among marker genes
AIF1, CD68, LYZ, and HAMP.

In summary, we addressed the problem of integrating prior
knowledge into deep embedding clustering analysis for the
scRNA-seq data and proposed a model-based constrained deep
embedding clustering framework. Integrating soft constraints into
the modeling process is flexible and can be applied to various real
experimental settings. Our results on various small and large
scRNA-seq datasets illustrate that even a small number of
constraints can significantly improve the clustering performance.
This observation is consistent with the expectation that
constraints, which encode prior knowledge, help to learn better
latent representations and clusters. Following most clustering
studies, we assume the number of clusters k has already been
defined in all experiments. In practice, this information is usually
unknown. We propose the use of an elbow method26 or a density
method47 to estimate the value of k. We propose one simple
distance-based method and one clustering-based method for
integrating prior information. The key is to generate accurate
constraints so the defined must-links and cannot-links can
faithfully represent domain knowledge. We hope the two
methods could ignite the creativity of users to construct
constraints for encoding their own domain knowledge. As future

work, we will explore different kinds of domain information and
develop general ways of constructing constraints from implicit
knowledge.

Methods
Read count data preprocessing and transformation. Following the methods of
Tian et al.26, we applied the Python package SCANPY48 (version 1.4.4) to pre-
process the raw scRNA-seq read count data. Firstly, we filter out genes with no
count in any cell. Secondly, we calculate the size factors for each cell and normalize
the read counts by the library size, such that the total counts are the same across
cells. Formally, let’s denote the library size (i.e., the number of total read counts) of
cell i as si; the size factor of cell i is then si/median(s). Finally, we take the log
transformation and scale the read counts to have unit variance and zero mean. The
transformed read count matrix is used as the input for our denoising ZINB model-
based autoencoder. When calculating the ZINB loss, we use the raw count
matrix20,22,26.

Denoising ZINB model-based autoencoder. The autoencoder is a special artificial
neural network with a low-dimensional bottleneck layer capable of learning effi-
cient nonlinear representations in an unsupervised manner21. Among various
autoencoder models, the denoising autoencoder receives corrupted data (e.g., by
adding Gaussian noises) as inputs and is trained to reconstruct the original
uncorrupted data49. It has proven to be robust and powerful in learning a good
representation from noisy datasets. Here, we apply the denoising autoencoder to
map the preprocessed read counts to a low dimensional embedded space to carry

out clustering. Formally, denoting the preprocessed input as ~X, the input for
denoising autoencoder is

~X
corrupt

¼ ~X þ e ð1Þ

where e is the Gaussian noise. We define encoder function as Z ¼ fW X
corruptð Þ and

decoder function X
0 ¼ gW 0 Zð Þ. Encoder and decoder functions are both multi-

layered fully connected neural networks with the rectifier activation function
(ReLU)50. Here W and W 0 are the learnable weights. The learning process of the
denoising autoencoder is to minimize the loss function

L X; gW 0 fW ~X
corrupt

� �� �� �

ð2Þ

with regard to the learnable weights.
Following previous studies20,22,26, we employ a ZINB model-based autoencoder

to model the scRNA-seq data. Unlike the traditional autoencoder methods, ZINB
model-based autoencoder uses the likelihood of a ZINB distribution to characterize
scRNA-seq count data. Let Xcount

ij be the read count for cell i and gene j in the

scRNA-seq raw count matrix. The ZINB distribution is parameterized by a
negative binomial distribution with mean μij and dispersion θij, and an additional
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coefficient πij that represents the probability of dropout events:

NB Xcount
ij μij; θij

�

�

�

� �

¼
Γ Xcount

ij þ θij

� �

Xcount
ij !Γ θij

� �

θij

θij þ μij

 !θij μij

θij þ μij

 !Xcount
ij

ð3Þ

ZINB Xcount
ij πij; μij; θij

�

�

�

� �

¼ πijδ0 Xcount
ij

� �

þ 1� πij

� �

NB Xcount
ij μij; θij

�

�

�

� �

ð4Þ

Letting D ¼ g 0W 0 fW ~X
corrupt

� �� �

be the output matrix of the last hidden layer of

decoder, we append three independent fully connected layers to D to estimate the

ZINB parameters:

M ¼ diag sið Þ ´ exp
�

WμD
�

Θ ¼ exp W
θ
Dð Þ

Π ¼ sigmoid W
π
Dð Þ

ð5Þ

where M, Θ, and Π represent the matrix form of the estimated mean, dispersion,
and dropout probability, respectively. The size factors si are precalculated (See
Section: Read count data preprocessing and transformation) and included as an
independent input to the ZINB model-based autoencoder. The loss function of
ZINB model-based autoencoder is the sum of the negative log of ZINB likelihood
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of each data entry

LZINB ¼ ∑
ij
� log ZINB Xcount

ij πij; μij; θij

�

�

�

� �� �

ð6Þ

ZINB model-based deep embedded clustering. Clustering analysis is conducted

on the embedded latent space27,28. Let X denote a set of n cells with xi 2N
d

representing the read counts of d genes in the I th cell. scDCC applies the denoising
ZINB model-based autoencoder to learn a non-linear mapping fW : xi ! zi and
transforms the input X to a low-dimensional latent space Z. Let Q be the dis-
tribution of soft labels measured by Student’s t-distribution and P be the derived
target distribution from Q. We define the clustering loss function as the Kullback-
Leibler (KL) divergence between P and Q

Lc ¼ KL P k Qð Þ ¼ ∑
i
∑
j
pij log

pij

qij
ð7Þ

where qij is the soft label of embedded point zi. Specifically,

qij ¼
1þ kzi � μjk

2
� ��1

∑j0 1þ kzi � μjk
2

� ��1 ð8Þ

measures the similarity between point zi and cluster center μj calculated by the
Student’s t-distribution4,5 and

pij ¼
q2ij=∑i qij

∑j0 q2ij0=∑i qij0
� � ð9Þ

represents the target distribution applied in the self-training51. At each iteration,
minimizing the loss function Lc will push Q moving towards the derived target
distribution P.

Pairwise constraints. Pairwise constraint can have two types: must-link (ML) and
cannot-link (CL) 38. The loss of must-link constraint forces the two instances to
have similar soft labels:

LML ¼ � ∑
a;bð Þ2ML

log∑
j
qaj ´ qbj ð10Þ

In contrast, the loss of cannot-link encourages different soft labels:

LCL¼ � ∑
a;bð Þ2CL

logð1�∑
j
qaj ´ qbjÞ ð11Þ

Deep constrained clustering framework. We first pre-train the denoising ZINB
model-based autoencoder to minimize the reconstruction loss (LZINB). We initialize
the clustering centroids by performing standard k-means clustering on the learned
embedded latent vectors. We then jointly optimize losses

L ¼ LZINB þ γLclustering þ γ0Lconstraint ð12Þ

where LZINB, Lclustering and Lconstraint are the ZINB reconstruction loss, the clustering

loss, and the constraint loss, respectively; γ and γ0 > 0 control the relative weights of
the two losses. Combining the ZINB loss and clustering loss can preserve the local
structure of the data generating distribution28. During the clustering stage, we
optimize the ZINB loss and clustering loss per batch of data points, and optimize
the constraint loss per batch of constraints.

Implementation. scDCC is implemented in Python 3 (version 3.7.6) using
PyTorch52 (version 1.5). The sizes of hidden layers in ZINB model-based auto-
encoder are set to be (256, 64, 32, 64, 256), where the bottleneck layer’s size is 32.
The standard deviation of Gaussian random noise is 2.5. Adam with AMSGrad
variant53,54 and Adadelta55 are applied for pretraining stage and clustering stage,
respectively. The parameters of Adam optimizer are set with initial learning rate lr
= 0.001, β1= 0.9, and β2= 0.999, and parameters of Adadelta optimizer are set to
be of lr= 1.0 and rho= 0.95. The choice of γ follows scDeepCluster’s setting of 1.
The weight of constraint loss γ0 is set to be 1 for all experiments. The batch size for
pretraining and clustering is 256. We pretrained the autoencoder 300 epochs. The
convergence threshold for clustering stage is 0.1% of the changed clustering labels
per epoch. All experiments are conducted on Nvidia Tesla P100 (16 G) GPU.

Constraint construction. For the datasets listed in Table 1 and Table 2, we ran-
domly selected 10% of the total cells as a hold-out cell set to generate pairwise
constraints and left the remaining cells for evaluation. Specifically, we randomly
selected 1000, 2000, 3000, 4000, 5000, and 6000 pairs of cells from the hold-out set
and defined must-link and cannot-link constraints based on the label information
we collected. Then, we ran scDCC on the whole cells with the generated constraints
and evaluated the performance on the remaining 90% of cells.

The CITE-seq PBMC dataset provides read counts of both mRNAs and
proteins. Firstly, protein counts were normalized and scaled by the Seurat
“NormalizeData” function with the setting of “CLR”. Secondly, we calculated

Euclidean distances for all possible pairs of cells based on the normalized protein
data and chose the 0.5th and 95th percentile of all pairwise distances as the must-
link and cannot-link constraint cutoffs. Specifically, we repeatedly sampled two
cells, and if the Euclidean distance between the two cells was less than the 0.5th
percentile of all pairwise distances, we defined it as a must-link constraint; if the
Euclidean distance between the two cells was greater than the 95th percentile of all
pairwise distances, we defined it as a cannot-link constraint. We generated 20,000
constraints based on all protein levels. To separate CD4 and CD8 T cells, we
further added 5000 constraints based on following rules: if one cell has high CD4
protein level (>70th percentile) and low CD8 protein level (<30th percentile) and
another cell has high CD8 protein level (>70th percentile) and low CD4 protein
level (<30th percentile), then a cannot-link is constructed. To further identify
subtypes of CD4 and CD8 T cells (CD8+CD27−, CD8+CD27+, CD4+CD27+,
CD4+CD27−DR+, CD4+CD27−DR−), we generate must-links for each subtype.
Taking the CD8+CD27+ T cells as an example, we require that the two randomly
selected cells to form a must-link constraint should have both high CD8 protein
levels (>85th percentile) and high CD27 protein levels (>85th percentile). In
contrast, the two cells to form a must-link constraint for the CD8+CD27− subtype
should have high CD8 protein levels (>85th percentile) but low CD27 protein levels
(<30th percentile). For CD4+CD27+, CD4+CD27−DR+, CD4+CD27−DR−
cells, we applied similar rules to construct must-links.

In the Human liver dataset, we used marker genes to generate constraints. The
table of (revised) marker genes was downloaded from ref. 35. We first used
“NormalizeData” function from Seurat package41 to normalize the raw count
matrix and obtained normalized counts of the 63 marker genes, among which 55
marker genes uniquely belonged to one cell type. We applied a zero-inflated factor
analysis (ZIFA) method56 to reduce the dimensions of the marker gene matrix to
10 (Fig. S14). Constraints were generated based on the ZIFA latent representations.
Specifically, we applied k-means on the ZIFA latent representations, and used k-
means results as the pseudo labels. Must-link and cannot-link constraints were
defined on these k-means labels. After obtaining clustering results, we applied
DESeq246 to compare levels of differential expression of the 55 marker genes.
Dispersions were estimated using “mean” for the fitType parameter. We defined the
level of differential expression by the Wald statistics reported by DESeq2.

Competing methods. CIDR14 (https://github.com/VCCRI/CIDR), DCA20 (https://
github.com/theislab/dca), DEC27 (https://github.com/XifengGuo/DEC-keras),
MPSSC16 (https://github.com/ishspsy/project/tree/master/MPSSC), PCA + k-
means, scDCC (without constraint, https://github.com/ttgump/scDCC), SCVI22

(https://github.com/YosefLab/scVI), SCVIS23 (https://github.com/shahcompbio/
scvis), SIMLR15 (https://bioconductor.org/packages/release/bioc/html/SIMLR.
html), SC37 (https://bioconductor.org/packages/release/bioc/html/SC3.html),
Seurat41 (http://satijalab.org/seurat/), COP K-means36 (R package “conclust”) and
MPC K-means42 (R package “conclust”) are used as competing methods. Packages
and APIs developed by original authors are applied to conduct the experiments,
when available. In addition, the raw count matrices are pre-processed based on the
steps described in previous works for each competing method. Following Lin
et al.14, we construct scData R objects based on the raw count matrices and conduct
a series of clustering steps: determining the dropout events and imputation
weighting thresholds, computing the CIDR dissimilarity matrix, reducing the
dimensionality, and clustering. We apply DCA to denoise and impute the read
counts data. Principal component analysis (PCA) is applied to reduce the high-
dimensional denoised read count matrix to the 2D space, and k-means clustering is
conducted on the projected 2D space to predict the final labels. SCVI uses sto-
chastic optimization and deep neural networks to aggregate information across
similar cells and genes and learn a probabilistic representation to approximate the
distributions that underlie observed expression values. Following Lopez et al.22, we
retained the top 700 genes ordered by variance computed on the log gene
expressions. SCVIS is a variational autoencoder based model and could capture the
low-dimensional representation of scRNA-seq data. Following Ding et al.23, the
gene expression is quantified as log2(CPM/10+ 1), where ‘CPM’ stands for ‘counts
per million’, and the pre-processed matrix is then projected into a 100-dimensional
space via PCA for the SCVIS analysis. As DCA, SCVI, and SCVIS mainly focus on
imputation or learning good representations, k-means clustering is performed on
their results to obtain the final clustering labels. Therefore, we denote them as
‘DCA+ k-means’, ‘SCVI+ k-means’, and ‘SCVIS+ k-means’, respectively. DEC
and scDCC share the same input that the raw count matrix is library-size nor-
malized, log transformed, scaled, and centered. Default settings and hyperpara-
meters are selected for different methods according to their original publications
and online user guides. For example, the parameters for MPSSC are rho= 0.2, lam
= 0.0001, lam2= 0.0001, eta= 1, and c= 0.1, and the sizes of the hidden layers for
DEC are 500, 500, 2,000, and 10. For MPSSC, SIMLR, PCA+ k-means, COP K-
means, and MPC K-means, the read count matrix is normalized by library size and
log-transformed. PCA+ k-means, which applies PCA to project the processed raw
read count matrix to 2D space directly, followed by k-means clustering is chosen as
a baseline method for evaluating the impacts of linear and non-linear repre-
sentations. It should be noted that traditional constrained clustering algorithms,
COP K-means and MPC K-means, are also applied on the PCA projected 2D
space. SC3 first calculates three different distances- Euclidean, Pearson and
Spearman metrics- to construct distance matrices. Then, a consensus spectral
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clustering combines all distance matrices to archive high-accurate and robust
results. Seurat is developed and maintained by the Satija lab, which is an R package
integrated with state-of-the-art methods and has been broadly applied by biological
researchers for QC, analysis, and exploration of single-cell RNA-seq data. Seurat
identifies clusters of cells by a SNN modularity optimization-based clustering
algorithm. Parameters for Seurat were set to be default (e.g., resolution= 0.8).
PhenoGraph44 (https://github.com/jacoblevine/PhenoGraph) is a clustering
method designed for high-dimensional single-cell data. It works by creating a
graph representing phenotypic similarities between cells and identifying commu-
nities in this graph. For both Seurat and PhenoGraph, we selected the default
settings with Louvain algorithm as their core implementations.

Evaluation metrics. NMI57, CA27 and ARI58 are used as metrics to compare the
performance of different methods.

Let U ¼ fU1;U2; ¼ ;UCU
g and V ¼ fV1;V2; ¼ ;VCV

g be the predicted and

ground-truth clusters on a set of n data points. NMI is defined as follows:

NMI ¼
IðU ;VÞ

max H Uð Þ; HðVÞf g
ð13Þ

where IðU;VÞ ¼ ∑
CU
p¼1 ∑

CV
q¼1 jUp \ Vqj log

njUp\Vq j

jUp j ´ jVq j
represents the mutual

information between U and V; HðUÞ ¼ �∑
CU

p¼1 jUpj log
jUp j

n and H Vð Þ ¼

�∑
CV
q¼1 jVqj log

jVq j

n
are the entropies.

CA is defined as the best matching between the predicted clusters and the

ground-truth clusters. Let li and l̂i be the ground-truth label and the prediction of
the clustering algorithm for the data point i. The CA is calculated as follows:

CA ¼ max
m

∑
n
i¼1 1

li ¼ m l̂i

� �n o

n
ð14Þ

where n is the number of data points and m ranges over all possible one-to-one
mapping between cluster assignments and true labels. The best mapping can be
efficiently searched by the Hungarian algorithm59.

In data clustering, Rand Index60 measures the agreement/similarity between
cluster assignments U and V. The Adjust Rand Index (ARI) is the corrected-for-
chance version of the Rand index58. Assume that a is the number of pairs of two
objects in the same group in both U and V; b is the number of pairs of two objects
in different groups in both U and V; c is the number of pairs of two objects in the
same group in U but in different groups in V; and d is the number of pairs of two
objects in different groups in U but in the same group in V. The ARI is formally
defined as

ARI ¼

n

2

� �

aþ dð Þ � ½ aþ bð Þ aþ cð Þ þ ðcþ dÞðbþ dÞ�

n

2

� �

� ½ aþ bð Þ aþ cð Þ þ ðcþ dÞðbþ dÞ�

: ð15Þ

Real scRNA-seq datasets. 10X PBMC dataset was provided by the 10X scRNA-
seq platform61, which profiled the transcriptome of about 4000 peripheral blood
mononuclear cells (PBMCs) from a healthy donor. The 10X PBMC dataset was
downloaded from the website of 10X genomics (https://support.10xgenomics.com/
single-cell-gene-expression/datasets/2.1.0/pbmc4k). We downloaded the filtered
gene/cell matrix. Cell labels identified by graph-based clustering (https://
support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/
output/analysis) were used as ground-truth labels.

The mouse bladder cells dataset was provided by the Mouse Cell Atlas project62

(https://figshare.com/s/865e694ad06d5857db4b). We downloaded the count matrix
of all 400,000 single cells sorted by tissues. We used the cell types annotated by the
authors61. From the raw count matrix, we selected the cells from bladder tissue for
the experiments.

The worm neuron cells dataset was profiled by the sci-RNA-seq platform
(single-cell combinatorial indexing RNA sequencing)63. Authors profiled about
50,000 cells from the nematode Caenorhabditis elegans at the L2 larval stage and
identified the cell types (http://atlas.gs.washington.edu/worm-rna/docs/). We
selected the subset of the neural cells and removed the cells with the label of
“Unclassified neurons”. As a result, we obtained 4186 neural cells for the
experiments.

The human kidney dataset64 was downloaded from https://github.com/
xuebaliang/scziDesk/tree/master/dataset/Young. Authors profiled human renal
tumors and normal tissue from fetal, pediatric, and adult kidneys. The dataset
contains 5685 cells grouped into 11 clusters and each cell has 25,215 genes.

The Macosko mouse retina cells65 and Shekhar mouse retina cells66 datasets
were profiled by the Drop-seq platform. Macosko mouse retina cells were
downloaded from https://scrnaseq-public-datasets.s3.amazonaws.com/scater-
objects/macosko.rds. Macosko et al. profiled more than 40,000 cells and identified
cell labels via PCA and density-based clustering, and they further validated cell
labels by differential gene expression analysis. We downloaded the Macosko dataset
and filtered cells and genes. Concretely, cells with <700 genes and genes with <3
reads in 3 cells were filtered out. As a result, we obtained 14,653 cells by 11,422

genes among 39 clusters. Shekhar mouse retina cells were downloaded from
https://scrnaseq-public-datasets.s3.amazonaws.com/scater-objects/shekhar.rds.
Labels were provided by authors which we kept unchanged.

CITE-seq PBMC data43 was downloaded from https://github.com/canzarlab/
Specter. The dataset contains 3,762 cells, 18,677 genes and 49 protein markers. By
clustering analysis and gene differential expression analysis, the dataset was divided
into 12 clusters. We selected the top 2000 dispersed genes to conduct clustering
experiments.

The human liver dataset was downloaded from https://github.com/BaderLab/
scClustViz. The dataset contains 8,444 cells by 20,007 genes. The authors provided
the clustering results and marker gene list. The true labels were obtained by using
the “labelCellTypes” function from the scClustViz package67. As a result, the
dataset contains 11 cell types. We selected the top 5000 dispersed genes to conduct
clustering experiments.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
The scRNA-seq datasets supporting this study are available publicly: 10X PBMC dataset

(https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/pbmc4k);

mouse bladder cells (https://figshare.com/s/865e694ad06d5857db4b); worm neuron cells

(http://atlas.gs.washington.edu/worm-rna/docs/); human kidney cells (https://github.

com/xuebaliang/scziDesk/tree/master/dataset/Young); Macosko mouse retina cells

(https://scrnaseq-public-datasets.s3.amazonaws.com/scater-objects/macosko.rds);

Shekhar mouse retina cells (https://scrnaseq-public-datasets.s3.amazonaws.com/scater-

objects/shekhar.rds); CITE-seq dataset (https://github.com/canzarlab/Specter/tree/

master/data); human liver dataset (https://github.com/BaderLab/scClustViz). All datasets

can be found on GitHub: https://github.com/ttgump/scDCC/tree/master/data.

Code availability
The code that supports the results can be found on GitHub: https://github.com/ttgump/

scDCC.
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