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Model-Based Deep Learning PET Image 

Reconstruction Using Forward-Backward Splitting 

Expectation Maximisation 

Abolfazl Mehranian† and Andrew J. Reader 

1
Abstract– We propose a forward backward splitting algorithm to 

integrate deep learning into maximum-a-posteriori (MAP) PET 

image reconstruction. The MAP reconstruction is split into 

regularisation, expectation-maximisation (EM) and a weighted 

fusion. For regularisation, use of either a Bowsher prior (using 

Markov-random fields) or a residual learning unit (using 

convolutional-neural networks) were considered. For the latter, 

our proposed forward backward splitting expectation-

maximisation (FBSEM), accelerated with ordered-subsets (OS), 

was unrolled into a recurrent-neural network in which network 

parameters (including regularisation strength) are shared across 

all states and learned during PET reconstruction. Our network 

was trained and evaluated using PET-only (FBSEM-p) and PET-

MR (FBSEM-pm) datasets for low-dose simulations and short-

duration in-vivo brain imaging. It was compared to OSEM, 

Bowsher MAPEM and a post-reconstruction U-Net denoising 

trained on the same PET-only (Unet-p) or PET-MR (Unet-pm) 

datasets. For simulations, FBSEM-p(m) and Unet-p(m) nets 

achieved a comparable performance, on average, 14.4% and 

13.4% normalised root-mean square error (NRMSE), 

respectively; and both outperformed OSEM and MAPEM 

methods (with 20.7% and 17.7% NRMSE respectively). For in-

vivo datasets, FBSEM-p(m), Unet-p(m), MAPEM and OSEM 

methods achieved average root-sum-of-squared errors of 3.9%, 

5.7%, 5.9% and 7.8% in different brain regions, respectively. In 

conclusion, the studied U-Net denoising method achieved a 

comparable performance to a representative implementation of 

FBSEM net. 
 

Index Terms– Deep learning, image reconstruction, PET, MRI. 

I. INTRODUCTION 

odel-based image reconstruction of positron emission 

tomography (PET) has now almost superseded 

conventional reconstruction methods by accounting for all 

statistical and physical processes of data acquisition in the 

image reconstruction. Founded on a Bayesian framework, these 

techniques can even model the prior probability distribution of 

the unknown activity distribution. Different image priors have 

been proposed in the literature, particularly to suppress noise in 

the reconstructed images without compromising image quality 

[1]. Based on Markov random fields, the majority of these 

priors aim to assign a low probability to images that have large 

local intensity differences between their voxels based on the 

hypothesis that those differences are due to noise. The major 

limitation of these hypothesis-driven priors is that they might 

not only suppress noise but also legitimate image details and 
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boundaries, depending on the strength of hyperparameters 

chosen before reconstruction. Thus, edge-preserving and 

anatomically informed priors have been used to reduce noise 

while preserving PET details [2-5]. However, their performance 

highly depends on their functional form and hyperparameters, 

which are often hand-engineered and selected before 

reconstruction.  

Machine learning and deep learning (DL) and techniques 

have recently shown promise in many aspects of PET imaging 

from photon detection to image reconstruction and 

quantification [6, 7]. In particular, deep convolutional neural 

networks (CNNs) have an immense potential to learn most 

representative image features from a multi-modal training space 

and hence give rise to data-driven priors which can surpass 

hypothesis-driven ones.  

Recent developments for leveraging supervised deep 

learning techniques in PET image reconstruction can be 

categorised into three groups: i) direct mapping of PET 

sinograms to PET images using end-to-end neural networks [8, 

9], ii) image enhancement of PET images in terms of noise [10, 

11] or convergence [11, 12] and iii) model-based deep learning 

reconstruction, which combines DL with conventional model-

based reconstruction methods [13]. Direct techniques aim to 

learn the whole process of image reconstruction including the 

PET system matrix, using fully connected as well as 

convolutional layers, resulting in a complex learning task for 

which a large and diverse training corpus is presumably 

required. Image enhancement techniques aim to map low-dose 

or low-resolution or under-converged images to their target 

full-dose, high-resolution and fully converged images using 

CNNs. On the other hand, DL reconstruction networks aim to 

merge the power of model-based Bayesian algorithms with 

neural networks through unrolling an iterative optimization 

algorithm, which provides an elegant theoretical foundation for 

designing robust data correction and image prior models.  

Gong et al [13] proposed an unrolled network, based on the 

alternating direction method of multipliers (ADMM) algorithm, 

which alternates between PET maximum likelihood 

expectation maximisation (MLEM) reconstruction and 

supervised learning of a deep image prior using a U-Net model 

[14]. In [15], the authors further explored unsupervised learning 

of this network using MR images and noisy PET images as 

inputs and targets, respectively. To ensure the convergence of 

the network, the ADMM’s penalty parameter was 
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experimentally chosen and U-Net’s parameters were initialised 
using separately reconstructed PET images. In [16], the authors 

used a similar deep image prior for unsupervised de-noising of 

PET images. For optimally chosen number of training iterations 

(epochs), it was shown this method outperformed a number of 

known de-nosing methods.  

Lim et al [17] proposed a deep learning reconstruction 

network by unrolling a block coordinate descent (BCD) 

algorithm, which alternates between MLEM PET 

reconstruction and iteration-dependent denoising modules that 

are composed of convolution, soft-thresholding (as an 

activation function) and deconvolution layers. The network’s 
regularisation hyperparameter was finely tuned to achieve the 

highest contrast-to-noise ratio. 

In this work, we i) propose an optimization algorithm for 

Bayesian maximum a posteriori (MAP) PET image 

reconstruction, which generalizes De Pierro’s MAPEM 
algorithm [18] for any differentiable convex prior, ii) unroll the 

resulting algorithm into a model-based deep reconstruction 

network in which CNNs are used to learn image features while 

activity images are reconstructed from emission data, iii) learn 

any hyperparameter from data, iv) optionally incorporate 

anatomical side information into PET reconstruction without 

substantial suppression of PET unique features as seen with 

conventional MR-guided reconstruction algorithms, and 

importantly v) investigate whether deep reconstruction methods 

can outperform DL-based denoising methods and whether 

redesign of the current reconstruction workflow for PET 

scanners is justified, which would be required for clinical 

deployment. In this paper, the proposed deep reconstruction 

network was evaluated using realistic 3D brain simulations and 

in-vivo PET-MR scans and was compared with conventional 

ordered subsets expectation maximisation (OSEM), MR-

guided MAPEM and DL-based denoising using PET only and 

PET-MR input channels.  

II. MATERIAL AND METHODS 

A. Forward-backward splitting expectation maximisation 

(FBSEM) 

The Bayesian maximum a posteriori (MAP) reconstruction of 

PET emission data is obtained by the following maximisation: 𝒙 = argmax𝒙 {𝐿(𝒚|𝒙) − 𝛽𝑅(𝒙)} 𝐿(𝒚|𝒙) =∑𝑦𝑖log([𝑯𝒙]𝑖 + 𝑏̅𝑖) − ([𝑯𝒙]𝑖 + 𝑏̅𝑖)𝑖  
(1) 

where 𝐿 is the Poisson log-likelihood of measured data, 𝒚, given 

an activity distribution, 𝒙. 𝑯 is a system matrix and 𝒃̅ is the 

expected accidental coincidences. 𝑅 is a penalty function that 

imposes prior information about 𝒙, controlled by the 

regularization parameter 𝛽. Eq. (1) can be solved using 

optimisation transfer techniques as long as a separable, 

differentiable and convex surrogate can be defined for 𝑅. 

Consequently, a monotonically convergent MAP expectation 

maximisation (EM) algorithm is obtained [18]. In this work, we 

use a forward-backward splitting (FBS) algorithm [19] for 

solving Eq. (1) for any differentiable convex prior. The FBS 

algorithm in fact generalises the projected gradient descent 

(a.k.a. Landweber algorithm) by substituting its projection 

operator with a proximal mapping operator. As a result, the 

optimisation is performed in the following steps:  𝒙𝑅𝑒𝑔(𝑛) = 𝒙(𝑛−1) − 𝛾𝛽𝛁𝑅(𝒙(𝑛−1)) (2) 𝒙(𝑛) = argmax𝒙 {𝐿(𝒚|𝒙) − 12𝛾 ‖𝒙 − 𝒙𝑅𝑒𝑔(𝑛) ‖2} (3) 

Eq. (2) is the gradient descent minimization of 𝑅 with the step 

size of 𝛾, whereas Eq. (3) is a proximal mapping [19] associated 

with the log-likelihood 𝐿 with 1/𝛾 as a regularization 

hyperparameter that controls the data fidelity of 𝒙 to 𝒚 and its 

proximity to 𝒙𝑅𝑒𝑔(𝑛)
. The quadratic prior in Eq. (3) is separable. 

Following [20], a seprarable surrogate is then defined for the 

function 𝐿, whereby Eq. (3) can be rewritten as: 
 (4) 𝒙(𝑛) = argmax𝒙 ∑𝑥𝑗,𝐸𝑀(𝑛) ln(𝑥𝑗) − 𝑥𝑗 − 12𝛾𝑠𝑗 (𝑥𝑗 − 𝑥𝑗,𝑅𝑒𝑔(𝑛) )2𝑗  

where 𝒙𝐸𝑀(𝑛)  is given by the following MLEM update: 𝑥𝑗,𝐸𝑀(𝑛) = 𝑥𝑗(𝑛−1)𝑠𝑗 ∑ ℎ𝑖𝑗𝑦𝑖∑ ℎ𝑖𝑘𝑥𝑘(𝑛−1)𝑘 + 𝑏̅𝑖𝑖 ,   𝑠𝑗 =∑ ℎ𝑖𝑗𝑖  (5) 

By setting the derivative of the objective function of Eq. (4) to 

zero, a closed-form solution is obtained as follows [21]: 𝑥𝑗(𝑛) = 2𝑥𝑗,𝐸𝑀(𝑛)
(1 − 𝛿𝑗𝑥𝑗,𝑅𝑒𝑔(𝑛) ) + √(1 − 𝛿𝑗𝑥𝑗,𝑅𝑒𝑔(𝑛) )2 + 4𝛿𝑗𝑥𝑗,𝐸𝑀(𝑛)  

  𝛿𝑗 = 1𝛾𝑠𝑗  
(6) 

Algorithm 1 summarises the resulting FBSEM algorithm, which 

is accelerated by ordered subsets (OS) method. As a result, the 

optimisation of Eq. (1) is split into three steps: regularization 

of the previous image estimate, Eq. (7), EM update of the 

previous image estimate, Eq. (8), and fusion of the resulting two 

images, Eq. (9), weighted by 𝛾 and the subset-dependent 

sensitivity image 𝒔(𝑚). 
 

ALGORITHM 1: FBSEM FOR MAP PET IMAGE RECONSRUCTION 

Initialize: 𝒙(0,1) = 𝟏, number of iterations (𝑁𝑖𝑡) and subsets (𝑁𝑠𝑢𝑏) 
For 𝑛 = 1,… ,𝑁𝑖𝑡 
 For 𝑚 = 1,… ,𝑁𝑠𝑢𝑏 

 𝑥𝑗,𝑅𝑒𝑔(𝑛,𝑚) = 𝑥𝑗(𝑛−1,𝑚) − 𝛾𝛽 𝜕𝜕𝑥𝑗 𝑅(𝒙(𝑛−1,𝑚))                                 (7) 𝑥𝑗,𝐸𝑀(𝑛,𝑚) = 𝑥𝑗(𝑛−1,𝑚)𝑠𝑗(𝑚) ∑ ℎ𝑖𝑗𝑦𝑖∑ ℎ𝑖𝑘𝑥𝑘(𝑛−1,𝑚) + 𝑏̅𝑖𝑘𝑖∈Ω𝑚                            (8) 
𝑥𝑗(𝑛,𝑚) = 2𝑥𝑗,𝐸𝑀(𝑛,𝑚)

(1 − 𝛿𝑗𝑥𝑗,𝑅𝑒𝑔(𝑛,𝑚)) + √(1 − 𝛿𝑗𝑥𝑗,𝑅𝑒𝑔(𝑛,𝑚))2 + 4𝛿𝑗𝑥𝑗,𝐸𝑀(𝑛,𝑚) (9)   𝛿𝑗 = 1𝛾𝑠𝑗(𝑚) , 𝑠𝑗(𝑚) = ∑ ℎ𝑖𝑗𝑖∈Ω𝑚  

End 

End 



 

 

 
Fig. 1 Architecture of the proposed network using a residual learning unit with D layers of convolution (Conv) filters, batch normalization (BN) 

and rectified linear unit (ReLU). All trainable parameters including the regularization parameter, which is the only trainable parameter in the 

fusion block, are shared across all reconstruction states (𝑡). In this network, a co-registered MR image can be optionally used as a second input 

channel to each state.

Algorithm 1 can be used for the following commonly used 

quadratic prior, weighted by MR information (𝑤𝑗𝑏): 𝑅(𝒙) = 12∑ ∑ 𝑤𝑗𝑏(𝑥𝑗 − 𝑥𝑏)2𝑏∈𝒩𝑗𝑗  (10) 

where 𝒩𝑗  is a neighbourhood of voxels around jth voxels. For 

this prior, by setting 𝛽 = 12 , 𝛾 = 1∑ 𝑤𝑗𝑏𝑏  in Eq. (7), we obtain:  𝑥𝑗,𝑅𝑒𝑔(𝑛,𝑚) = 12∑ 𝑤𝑗𝑏𝑏 ∑ 𝑤𝑗𝑏(𝑥𝑗(𝑛−1,𝑚) + 𝑥𝑏(𝑛−1,𝑚))𝑏∈𝒩𝑗  (11) 

whereby, Algorithm 1 is reduced to De Pierro’s MAPEM 
algorithm [18]. As 𝛾 → ∞, this algorithm reduces to the OSEM 

algorithm.  In this paper, we used a CNN-based model for 𝑅 

and unrolled the FBSEM algorithm into an recurrent neural 

network (RNN) with 𝑁 = 𝑁𝑖𝑡 × 𝑁𝑠𝑢𝑏  reconstruction states, in 

which model parameters are shared across all states, hence the 

number of trainable parameters became independent of the 

number of reconstruction updates [22]. As shown in Fig. 1, a 

D-layer learning unit with a non-negativity constraint (imposed 

by a final rectified linear unit (ReLU) layer) was used, whereby 

Eq. (7) was converted to a residual learning unit [23]. Of course, 

alternative CNN models such as convolutional encoder-

decoders (e.g. U-Net [14]) could also be used.  

The proposed network was trained in a supervised manner 

using a training dataset composed of 𝑁𝑠 reference high-

definition high-dose (HD) PET images (𝒙𝑠𝑅𝑒𝑓), low-definition 

low-dose (LD) PET sinograms (𝒚𝑠, 𝒃̅𝑠) and optionally co-

registered MR images (𝒙𝑠𝑀𝑅). The training was formulated as 

the minimization of the mean-squared-error loss function 

between the network’s output (𝒙𝑠(𝑁)) and the reference image 𝒙𝑠𝑅𝑒𝑓: 𝜽̂ = argmin𝜽 1𝑁𝑠∑‖𝒙𝑠(𝑁) − 𝒙𝑠𝑅𝑒𝑓‖2𝑁𝑠
𝑠=1  𝒙𝑠(𝑁) = FBSEM𝜽(𝒚𝑠, 𝒃̅𝑠, 𝒙 (0), 𝒙𝑠𝑀𝑅),𝑁 = 𝑁𝑖𝑡 × 𝑁𝑠𝑢𝑏  

(12) 

where model parameters, 𝜽 ∈ ℝ𝑑, include convolution kernels, 

biases, batch normalization parameters and 𝛾. 𝒙 (0) is an initial 

 
1 https://www.fil.ion.ucl.ac.uk/spm/ 

image estimate. Eq. (12) was optimized using the Adam 

optimiser.  

B. Simulation and in-vivo datasets  

T1-weighted MPRAGE MR images of 70 epilepsy and 

dementia patients, referred for PET-MR brain imaging at PET 

Centre St. Thomas’s Hospital in London, were used for 

generating realistic brain PET-MR phantoms. The MR image 

matrix and voxel sizes were 230 × 230 × 254 and 1.04 × 1.04 × 

1.01 mm3, respectively. The images were segmented into grey 

matter (GM), white matter (WM), cerebrospinal fluid (CSF), 

skull and skin using the SPM12 software1. For each dataset, an 

FDG PET phantom was generated as follows. Random uptake 

values of 96.0 ± 5.0 and 32.0 ± 5.0 (arbitrary units) were 

respectively assigned to GM and WM regions, leading to 

uptake ratio of 3:1 between GM and WM. Low values (>16) 

were assigned to the remaining regions. Four circular lesions 

with random radii in 2-8 mm (uniformly distributed) and 

random locations were generated with the hot-to-cold ratio of 

50%. The uptake value of 144.0 (1.5× of GM) was assigned to 

hot lesions and 48.0 (0.5× of WM) was assigned to cold ones. 

An attenuation map was also generated by assigning attenuation 

values of 0.13, 0.0975 and 0 cm-1 to skull, tissues and air, 

respectively. The PET, attenuation map and T1-MR images 

were resampled into the voxel sizes and field of view of the 

standard PET images from the Siemens mMR scanner, with 

matrix and voxel sizes of 344×344×128 and 2.08×2.08×2.03 

mm3, respectively.  

For data augmentation, the resulting images were rotated in 

the axial direction with 3 random angles within [0, 15] degrees, 

resulting in 210 datasets. Noisy sinograms were then generated, 

using image-space point-spread-function (PSF) modelling in 

the forward model, attenuation, normalisation and Poisson 

noise. Random and scatter coincidences were not modelled. 

Each sinogram had a matrix size of 344 (radial bins) ×252 

(azimuthal angles) ×837 (sinogram plans), as per the standard 

sinogram format for the mMR scanner. 

For each dataset, a high-definition high-dose (HD) sinogram 

and a low-definition low-dose (LD) sinogram were generated. 

For HD sinograms, 1 billion counts and a PSF with 2.5 mm full- 
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Fig. 2 Top: Reference high-definition high-dose (HD) images and 

reconstructed low-definition low-dose (LD) images of a sample 

simulation dataset. Bottom: full-dose (30 min) images of an in-vivo 

dataset reconstructed using 72 EM updates (vendor’s default) and 140 
updates. Increasing the number of updates improved the convergence 

but led to PSF Gibbs artefacts (see arrows). Thus, MR-guided 

MAPEM (210 updates) was used as a reference. 
 

width-at-half-maximum (FWHM) Gaussian kernels were 

considered, while for LD ones randomly chosen count levels in 

[90-120] million with PSF of 4.5 mm FWHM were considered. 

The HD data were reconstructed using the OSEM algorithm 

with 𝑁𝑖𝑡 = 10, 𝑁𝑠𝑢𝑏 = 14 and 𝑃𝑆𝐹 = 2.5 𝑚𝑚 to generate a 

reference image. The LD data were reconstructed using the same 

number of updates with and without PSF modelling (𝑃𝑆𝐹 =4 𝑚𝑚) and with post-reconstruction Gaussian filtering (4-mm 

FWHM). Fig. 2, top, shows one simulated example dataset. For 

in-vivo datasets, 45 PET-MR brain datasets of patients 

suspected of epilepsy and dementia were retrospectively 

collected from our PET centre in St. Thomas’s Hospital. 
Following the injection of ~220 MBq [18F]FDG and uptake 

time of 60 min, patients underwent a simultaneous T1-

MPRAGE MR scan and a 30-min PET scan on a Siemens mMR 

scanner. MR acquisition and parameters were as follows: 

repetition time: 1700 ms, echo time: 2.63 ms, inversion time: 

900 ms, number of averages: 1, flip angle: 9 degrees and 

acquisition time of 382 seconds. For PET attenuation 

correction, a standard Dixon sequence and a UTE sequence was 

performed. The MR images were rigidly registered to PET 

images using SPM12 with default co-registration parameters 

and normalized mutual-information cost function. 

The datasets were split into 35 training and 10 test ones. PET 

list-mode data were histogrammed into full-dose 30-min 

sinograms and low-dose 2-min sinograms. For one test dataset, 

the list-mode data were further histogrammed into 1-min and 

30-sec sinograms. To obtain a HD reference image, the full-

dose sinograms were reconstructed with PSF modelling (using 

image-space 4 mm FWHM Gaussian kernels) and a MR-guided 

MAPEM algorithm with a quadratic prior, Eq. (10), weighted 

using Bowsher method [24] with 𝒩of 3×3×3. The FBSEM 

algorithm was used for optimisation. The regularisation 

parameter, 𝛽, was chosen to be as small as possible while still 

mitigating PSF Gibbs-like artefacts.  

Fig. 2, bottom, shows a full-dose (30 min) brain scan of a 

subject reconstructed by i) OSEM using 72 updates followed by 

5 mm Gaussian smoothing (Siemens e7 tools’ default), ii) 
OSEM with 140 updates and iii) MR-guided MAPEM with 210 

updates. As shown the default reconstruction suffers from over-

smoothing and lack of convergence, while increasing the 

number of updates improved the convergence at the cost of PSF 

overshoot artefacts (see arrows). The MAPEM image shows 

less artefacts.  

C. Network Training  

In this study, the proposed FBSEM was trained and evaluated 

in two modes: one with PET-only inputs (FBSEM-p) and one 

with both PET and MR inputs (FBSEM-pm). For comparison 

purposes, we also included a post-reconstruction U-Net 

denoising model trained on the same datasets with two modes: 

using PET only (Unet-p) and then using both PET and MR 

(Unet-pm) input images. For this purpose, the original U-Net 

proposed in [14] was extended to 3D with two modifications: 

inclusion of batch normalisation (BN) before ReLU activation 

and using trilinear upsampling in the decoder part of the 

network. The FBSEM and U-Net networks were trained in 

supervised learning sessions using both simulation and in-vivo 

training datasets. Each training dataset consists of a low-dose 

sinogram, attenuation and normalisation correction factors, 

scatter and random sinograms, reference (HD/full-dose) PET 

images, low-dose PET images and co-registered MR images. 

All sinograms were generated using Siemens e7 tools. All 

reference and low-dose sinograms were corrected for frame 

length and radionuclide decay before reconstruction, hence the 

resulting PET images were in counts-per-second units and had 

a similar dynamic range, which helped accelerate the training 

of the networks. 

Table I summarises the number of training and test datasets 

used for the training of the networks together with other 

parameters that were experimentally chosen. In this table, depth 

refers to the number of layers in FBSEM net (see Fig.1) and 

number of resolution levels (or scales) in U-Net. Both networks 

were implemented in PyTorch and trained on a workstation 

equipped with a Nvidia Quadro k6000 12GB graphic card. 

Thanks to the parallelism of FBSEM net, the EM-update 

module was implemented in Python using a GPU-enabled PET 

projector, while regularization and fusion modules (with 

trainable parameters) were implemented in PyTorch with GPU 

acceleration. 

The training of unrolled 3D reconstruction networks is 

extremely time-consuming and memory demanding. To tackle 

these issues for training of the proposed FBSEM-p(m) nets on 

both simulations and in-vivo datasets, the following fivefold 

strategy was used. First, i), the sinograms were radially trimmed 

by a factor of 3 and accordingly our PET projector was 

modified, and secondly, ii), data minibatch size was set to 1.  

Thirdly, iii), the networks were initialised with OSEM PET  

Reference (HD) OSEM (LD) 

OSEM 
(LD-PSF-4mm)

Reference
(MAPEM) 

OSEM
(140 updates) 

OSEM
(72 updates) 



 

 

TABLE I. THE TRANING/TEST DATASETS, MODEL ARCITECHTTURES AND TRANING PARAMETERS USED IN THIS STUDY.  

EXPERIMENT MODEL 
NO. 

TRAINING 

DATASETS 

NO. TEST 

DATASETS 

NO. 

KERNELS 

IN 1ST
 

LAYER 

KERNEL 

SIZE 
DEPTH 

* 

NO. 

TRAINABLE 

PARAMETERS 

NO. 

BATCHES 

LEARNING 

RATE 

NO. 

EPOCHS 
OPTIMISER 

LOSS 

FUNCTION 

SIMULATION 

UNET-

P(M) 
200 10 32 3×3×3 4 

10,043,073 

(10,043,937) 
1 0.05 100 ADAM MSE 

FBSEM-

P(M) 
" " 16 " 9 

49,636 

(50068) 
" 0.1 100 " " 

IN-VIVO 

UNET-

P(M) 
35 10 70 " 4 

48,039,881 

(48,041,771) 
" 0.005 200 " " 

FBSEM-

P(M) 
" " 37 " 3 

76,261 

(77,260) 
" 0.005 200 " " 

* NUMBER OF DOWN/UP SAMPLING LEVELS FOR THE U-NET, AND NUMBER OF CONOLUTIONAL LAYERS FOR FBSEM NET. 

 
Fig. 3 Reconstruction results of a test simulation dataset with two adjacent hot lesions for different reconstruction methods. The arrow shows 

MAPEM notably suppresses the lesion. 
 

images (10 iterations and 4 subsets), and iv) the networks were 

unrolled for 12 reconstruction states (3 iterations, 4 subsets). 

Nonetheless, it’s important to note that our initial 2D 
simulations (not shown in this paper, see [25]) demonstrated 

that fully-unrolled FBSEM nets initialised by uniform images 

perform well irrespective of the initial estimate. Finally, the 

fifth acceleration strategy to reduce training time: v) validation 

datasets, that are often used to choose an optimal epoch at which 

the model has the minimum generalisation error, were not used 

in this study.   

D. Evaluation  

For each test dataset, six different methods were evaluated 

including conventional OSEM, MR-guided MAPEM, Unet-p, 

Unet-pm, FBSEM-p and FBSEM-pm. For simulations, the 

performance of these methods was evaluated based on i) 

contrast-to-noise ratio (CNR) between GM and WM tissues, 

 
1 https://surfer.nmr.mgh.harvard.edu/ 

that is, the mean activity in GM minus mean activity in WM, 

divided by variance of activity in WM and ii) quantification 

errors of hot lesions and normalised root mean square error 

(NRMSE) across whole brain. For in-vivo datasets, the high-

resolution MR images were parcellated into different cortical 

and subcortical regions using FreeSurfer software suite1. The 

reconstructed low-dose PET images were mapped into the MR 

space for region-wise quantifications with respect to reference 

image in terms of mean (𝜇), standard deviation (SD) and their 

root-sum-square, 𝑅𝑆𝑆 =  √𝜇2 + 𝑆 2. 

III. RESULTS 

Fig. 3 shows the reconstruction results of a test simulation 

dataset for different methods considered in this study, from 

standard OSEM and conventional MAPEM to new deep 

learning image denoising and reconstruction methods. Among 

the methods that only reply on PET data, the results show that 

https://surfer.nmr.mgh.harvard.edu/


 

 

 
Fig. 4 Quantitative performance of different reconstruction methods averaged on test simulation datasets. 

 

 
Fig. 5 Reconstruction results of different methods for a 2-min in-vivo dataset in comparison with their reference 30 min scan 

both Unet-p and FBSEM-p improve upon the OSEM 

reconstruction by reducing the noise and contrast to a large 

extent. For those method that utilise the additional MR 

information, Unet-pm and FBSEM-pm both outperform the 

MAPEM algorithm, which suffers from lack of convergence 

and suppression of the PET lesions (see the arrow in the coronal 

view). These results show that Unet-p(m) and FBSEM-p(m) 

perform similarly on most of the anatomical regions except over 

the small lesions, as shown in this example test dataset. The 

performance of the reconstruction methods was the objectively 

evaluated for all simulation test datasets based on CNR between 

GM and WM, quantification errors in hot lesions and NRMSE 

in the whole brain. As shown in Fig. 4, the Unet-pm and 

FBSEM-pm show the highest CNR as these methods reduced 

noise and at the same time improved the convergence. Unet-p 

showed slightly higher CNR than MAPEM and FBSEM-p, 

while as could be expected OSEM method achieved the lowest 

CNR. For hot lesions, the MAPEM and FBSEM-p resulted in 

the highest (-25.7%) and lowest (-7.4%) quantification errors 

with respect to reference images. The results show that Unet-

pm notably outperformed FBSEM-pm net over the lesions by 

achieving errors of 10.0% versus 17.6%.  The NRMSE 

performance of the methods show that Unet-pm and FBSEM-

pm networks result in the lower overall errors.  



 

 

 
Fig. 6 Similar to Fig. 5, but for PET data of another subject.  

 

 
Fig. 7 Quantitative evaluation of different reconstruction methods in terms of mean activity in different regions of the brain averaged across 10 test 

in-vivo datasets. 

For our simulations, training parameters and schedules chosen 

according to Table I, these results show that Unet-p 

outperforms FBSEM-p.  

 Based on these simulation results, in the training of FBSEM 

net for in-vivo datasets, as shown in Table I, we increased the 

number of kernels and reduced its depth (due to GPU memory 

limitations), which resulted in 1.5 times more trainable 

parameters compared to simulations. At the same time, we 

pushed the U-net to its limit of performance, by increasing the 

number of its kernels (based on the capacity of our GPU 

memory), resulting in ~5 time more trainable parameters 

compared to simulations. 

Figs. 5 and 6 compare the reconstruction results of the 

studied methods for two 2-min in-vivo scans in comparison 

with their reference 30-min scans (i.e. 15 times longer scan). As 

shown, the OSEM reconstruction notably suffer from noise,  



 

 

 
Fig. 8 Real-data performance of the studied methods for reconstruction of reduced scan times (2 min, 1 min and 30 sec.) of a subject with respect 

to their reference 30 min scan. Note the Unet-p(m) and FBSEM-p(m) networks are trained only with scan datasets of 2 min duration. 

 

TABLE II. ERROR PERCENTAGE OF MEAN ACTIVITY IN DIFFERENT REGIONS OF IN-VIVO DATASETS TOGETHER WITH THE MEAN, SD AND RSS OF ALL 

REGIONAL ERRORS 

 OSEM MAPEM UNET-P UNET-PM FBSEM-P FBSEM-PM 

WHITE MATTER 3.6 2.2 1.6 –3.4 3.1 2.9 

GREY MATTER -6.6 –3.5 –5.0 –5.3 –4.0 –2.1 

THALAMUS –5.9 –4.0 –3.7 –6.5 –3.3 0.0 

CAUDATE –14.8 –11.6 –7.6 –7.8 –9.4 –4.4 

PUTAMEN –7.5 –6.2 –6.2 –8.7 –4.9 –5.3 

PALLIDUM 5.9 4.1 0.4 –9.1 0.3 0.0 

HIPPOCAMPUS –4.7 –4.6 –4.0 –4.6 –2.9 –1.4 
       

MEAN –4.3 –3.4 –3.5 –6.5 –3.0 –1.5 

SD 6.5 4.8 3.1 2.0 3.6 2.6 

RSS 7.8 5.9 4.7 6.8 4.7 3.0 

 

 

while MAPEM shows lack of convergence, despite its 

regularisation parameter was chosen fairly low; even after 2.5 

mm Gaussian filtering the images show some background 

noise. The results show that Unet-p and FBSEM-p networks 

achieve fairly comparable performance. Likewise, Unet-pm 

and FBSEM-pm networks performed similarly and produced 

images that are visually close to their reference images.  

 Fig. 7 compares the performance of these methods based on 

mean FDG uptake in WM, cortical GM and subcortical GM 

regions averaged over all in-vivo test datasets. Table II 

summarises the error percentage of mean activity in each 

anatomical region averaged over the test datasets, reporting the 

mean, SD and RSS of mean and SD for all regions. As seen in 

Fig. 7, all methods underestimated the mean activity in cortical 

and subcortical GM regions, except for the pallidum. For these 

datasets, FBSEM-p(m) nets achieve the closet mean activity to 

reference scans in most of GM regions. The results in Table II 

shows that Unet-p and FBSEM-p both achieve RSS errors of 

4.7%, with slight difference in mean and SD errors, and 

outperform the OSEM method. Among the methods using MR 

side information, FBSEM-pm shows the lowest RSS (3.0%) 

compared to Unet-pm (6.8%) and MAPEM (5.9%). 

 In this work, the DL methods were trained for mapping 2-

min data to their reference 30-min data. In order to evaluate 

their generalisation and performance for shorter scan durations, 

we applied them to an in-vivo dataset with scan durations of 2 

min, 1 min and 30 sec (i.e. 15×, 30× and 60× shorter than their 

reference scan, respectively). Fig. 8 compares the results for all 

methods. Note the regularisation parameters of the FBSEM-

p(m) nets were not modified despite they have been trained for 

2-min datasets. Likewise, the regularisation parameters of 

MAPEM for 1-min and 30-sec datasets was set to the one 

chosen for 2-min dataset of this subject. As seen, with 

shortening scan duration, noise notably dominates OSEM and 

MAPEM reconstructions. The Unet-p and FBSEM-p both show 

similar qualitative performance for 2- and 1-min datasets, 

however for 30-sec one, FBSEM-p tends to show less residual 

noise. For this subject, both Unet-pm and FBSEM-pm nets 



 

 

demonstrate a consistent performance across all three scan 

durations, which shows their ability to generalise to datasets 

that they have never been trained for. 

IV. DISCUSSION 

In this study, we applied a proximal splitting technique for 

MAPEM reconstruction. For a specific regularisation 

parameter (𝛽) and step size (𝛾), the resulting optimisation 

algorithm reduces to De Pierro’s MAPEM algorithm which is 

known to be monotonically convergent. However similar to 

Green’s one-step-late algorithm [26], for an arbitrarily large 𝛽 

this algorithm may not converge to a global maximum. A 

possible solution could be imposing a non-negativity constrain 

on Eq. (7). In fact, as shown in Fig.1, the residual learning unit 

used in our FBSEM net applies a ReLU activation function to 

the sum of the input image and the output of the CNN layers in 

order to explicitly ensure the non-negativity of the output. 

Moreover, our proposed FBSEM algorithm makes use of 

ordered subsets for acceleration which is known to cycle over a 

number of image estimates, especially for unbalanced subsets. 

A possible solution is to upgrade the OSEM update in Eq. (8) 

by a row-action maximum likelihood algorithm (RAMLA) 

[27], which is a convergent OS algorithm. Moreover, since the 

FBSEM algorithm is based on an optimisation transfer 

approach, convergence can be slow. In this study, we used a 

CNN-based prior for regularisation in the FBSEM net. 

Depending on whether the learned prior is convex or not, the 

trained FBSEM net can be convergent (if 𝑁𝑠𝑢𝑏 = 1) or non-

convergent. The convexity of the learned priors which do not 

have an explicit functional form can potentially be tested using 

non-parametric techniques [28], which is behind the scope of 

this paper.  

 Our proposed reconstruction network has a number of 

advantages. Compared to the recently proposed BCD net [17] 

or EM net [29], which alternate between a MLEM 

reconstruction and a CNN-based image denoising module, 

model parameters in FBSEM net are shared across all 

reconstruction states (similar to RNNs), while BCD and EM 

nets employ separate networks for each reconstruction states. 

Sharing model parameters not only notably reduces the number 

of trainable parameters but also allows the trained network to 

be used with different number of iterations during inference 

[22]. Unlike BCD net and Gong et al [13], the regularization 

(penalty) parameter is learned from the data and the network 

can be initialised with a uniform image estimate. Unlike EM net 

and similar to BCD net, the data-fidelity based EM update and 

the CNN-based regularisation operations are performed in 

parallel in our network, and during training the backpropagation 

was set to pass only through the regularisation and fusion steps 

eliminating the need for computationally intensive 

differentiation of PET forward- and back-projections. In 

addition, our proposed network operates in PET-only and PET-

MR modes.  

 Following the proposal and implementation of the FBSEM 

net, which can potentially improve upon prior networks owning 

to the above advantages, our next goal was to compare its 

performance with the best of post-reconstruction DL-based 

denoising. In this work, U-Net was chosen as a widely used 

encoder-decoder CNN. In [30], Lu et al recently showed that an  

 

 
Fig. 9 Physiology mismatches in thalamus between a reference 30-min 

scan and a 2 min scan (obtained by the replay of 30 min list-mode 

data). Deep learning methods (second row) have increased the 

thalamus’ 2-min uptake toward its 30-min reference uptake.  

 

optimised 3D U-Net could outperform a convolutional 

autoencoder network and a generative adversarial net for lung 

nodule quantification in reduced dose scans. Our results in Fig. 

4 showed that Unet-p(m) net has a relatively comparable 

performance to FBSEM-p(m) net, even in its PET-MR mode, 

Unet-pm outperformed FBSEM-pm in preserving PET lesions 

in our simulations, despite their NRMSE over whole brain was 

comparable. This can be attributed to the fact that U-Net 

extracts and captures features at a multi-resolution level, and 

that the employed Unet-pm in our simulations has ~200 times 

more trainable parameters that the FBSEM-pm net. For in-vivo 

datasets, we increased the number of convolution kernels and 

decreased the number of reconstruction states and learning rate 

of FBSEM-p(m) net. At the same time, we increased the 

number of kernels for Unet-p(m) nets to potentially improve its 

performance even further, which resulted in ~600 times more 

trainable parameters compared to FBSEM nets. The in-vivo 

results showed that FBSEM-p and Unet-p perform 

comparatively for PET mode, however for PET-MR mode, 

FBSEM-pm outperforms Unet-pm on average. 

The results in Fig. 4 have been averaged across 10 test 

datasets; since the reference HD images have fairly low noise 

(see Fig. 2 and 3), the variability of CNR for HD images 

represents the fact that our phantoms were generated from MR 

images of patients suspected of epilepsy and dementia, for 

which there may be  cortical atrophy and partial volume effects 

of differing degrees. The results in Fig.4 show that the networks 

that used MR images (i.e. FBSEM-pm and Unet-pm) are able 

to capture that variability to some extent despite their mean 

CNRs being notably lower. 

Similar to EM net, a residual U-Net could be used as the 

regularisation module in FBSEM net. However since U-Net 

usually employs a large number of trainable parameters the 

training of the resulting FBSEM network would be 

tremendously memory demanding. Note that the inference of 

FBSEM net or generally any network is notably less memory 

demanding, as automatic differentiation (autograd) will be 

inactive and hence tensors’ gradient will not be tracked and 
stored in memory. Our initial 2D simulation results presented 

in [25] showed that FBSEM net with the smaller residual 

learning unit (RLU) architecture achieves a comparable 



 

 

performance to when a residual U-Net is used inside FBSEM 

net. Hence, in this study, we opted for the less memory 

demanding RLU network, on the understanding that the 

FBSEM net results would be representative also of the case of 

when a U-Net is used instead of a RLU. Furthermore, our 

previous 2D results showed that post-reconstruction denoising 

using a U-Net outperforms a residual learning unit. Therefore, 

given these initial results, and furthermore also those reported 

in literature (e.g. [30]), we chose a U-Net to best represent 

performance of post-reconstruction denoising networks, just as 

using a RLU in FBSEM net best represents its performance as 

well. 

The number of parameters in our U-Net trained for in-vivo 

datasets is nearly 48 M parameters, which is in the range used 

in modern CNNs; from ~40 M in Inception-v4 to ~140 M in 

VGG net. However, for a fixed amount of training data, the 

large number of parameters can increase the chance of 

overfitting and generalisation error. In Fig. 8, we used the 

models trained on only 2-min data for testing on even shorter 

scans, to assess performance on a domain different to that of the 

training data. Given that the Unet-p model achieves a 

comparable performance to FBSEM-p for a 2-min test dataset 

and that these models have not been trained for 1-min and 30-

sec scans, the slightly poorer performance of the Unet-p for 30-

sec scan should not be interpreted as overfitting but better 

domain adaptation capabilities of FBSEM net.  This can be 

attributed to the fact that noise is iteratively amplified during 

OSEM reconstruction, whereas FBSEM net can suppress the 

noise from early stages. 

In this work, we considered DL image enhancement and 

reconstruction of reduced-duration and full-dose scans instead 

of reduced-dose and full-duration ones. Because we believe the 

immediate clinical test of DL methods will be for reduced 

duration studies as they can be done retrospectively and will 

have less complications for ethics approval compared to 

reduced dose studies which are prospective and require 

modification to clinical acquisition protocols. Hence, in this 

study, the 30-min list-mode FDG data were resampled to 

emulate 2-min scans and DL networks were trained to reduce 

noise in the 2-min PET images and improve their image quality 

towards their reference 30-min images. However, since a 15× 

scan-time reduction was considered in order to make noise 

vividly dominant, there is a chance for physiological 

mismatches between the two scans over brain regions with 

rapid/delayed glucose metabolism in some patients. For these 

cases, the DL networks will not only reduce noise but also 

predict what the physiology of those regions could be if the scan 

time had been prolonged for another 28 min. Fig. 9 illustrates 

this for the thalamus in a subject. As shown, there is a 

physiology mismatch between thalamus’ uptake after 2- and 

30-min scans. MAPEM reconstruction flattens uptake in the 

thalamus by reducing noise or PSF artefacts, but the DL 

methods not only flatten the uptake but also increase it towards 

its reference 30-min uptake. Another physiology mismatch can 

be seen in Fig. 6, sagittal view, where the tracer’s uptake has 

been washed out in the caudate during the 30-min course of 

scan compared the 2-min scan. As seen in the transverse view, 

this patient has hypometabolism in their right hemisphere. It 

should be noted that for whole-body scans with 3-4 min 

acquisition per bed, scan-time reductions up to 4 will make 

noise vividly dominant, hence the chance of physiology 

changes will be relatively lower.   

In our FBSEM networks, the number of kernels of all D 

layers is the same. As summarized in Table I, for in-vivo 

datasets we chose a taller and shallower network (37 kernels 

and 3 layers) whereas for simulated datasets we chose a shorter 

and deeper one (16 kernels and 9 layers). The reason is that our 

simulations in Fig. 4 showed that the FBSEM-p(m) nets are not 

quantitatively as good as the Unet-p(m) networks. Given that 

these networks operate on 3D images, our intuition was that the 

16 kernels in the first layer of an FBSEM net might not be 

sufficient to capture 3D edges, hence we opted for a taller 

network at the compromise of making the network shallower 

due to GPU memory limitations. Since our simulations were 

made as realistic as possible, the improved quantitative 

performance of the FBSEM nets for in-vivo datasets compared 

to simulations implies that our intuition might be correct. In 

general, for a specific deep learning task, a network’s 
hyperparameters can be chosen based on the network’s 
performance on validation datasets. As mentioned earlier, we 

could not afford the computational load of the validation 

process, nonetheless our results for unseen test datasets were 

acceptable. Had we included the validation; FBSEM net’s 
performance could have been potentially even better.  

The in-vivo brain PET and MR images are often well aligned, 

nonetheless there is chance of head drift between the different 

PET and MR acquisition time windows, therefore in this study 

we assured their alignment using SPM co-registration. In regard 

to misalignments, our simulation results with lesion 

mismatches between PET and MR showed that Unet-pm and 

FBSEM-pm nets outperformed the conventional Bowsher 

MAPEM algorithm in lesion quantification, which indicates the 

potential ability of DL methods in dealing with mismatches. 

This can be investigated in a future work. Future work would 

also include evaluation of the number of reconstruction states 

and depth of the FBSEM net on its performance and 

investigation of memory-efficient reconstruction algorithms 

and strategies to train a fully unrolled FBSEM net for 3D 

whole-body PET-MR image reconstruction. 

V. CONCLUSION 

A model-based deep learning reconstruction network was 

designed by unrolling an optimisation algorithm that we 

proposed in this study for MAPEM image reconstruction. The 

proposed FBSEM net was evaluated in PET-only and PET-MR 

modes in comparison with the state-of-the-art U-Net denoising 

and conventional MR-guided MAPEM and standard OSEM 

methods. Our simulation and in-vivo results showed that both 

DL based techniques outperform the conventional methods. It 

was found that for the chosen network parameters and training 

schedules the Unet-p and FBSEM-p net achieve a fairly 

comparable performance for both simulation and in-vivo 

datasets. For simulations, Unet-pm net showed lower 

quantification errors for PET unique lesions while achieving a 

similar NRMSE to FBSEM-pm net. Whereas for in-vivo 

datasets, the FBSEM-pm outperformed Unet-pm and achieved 

the lowest quantification error amongst all reconstruction 

methods. It can be concluded that DL-based post-reconstruction 

denoising methods can potentially perform as good as DL-

based reconstruction methods. 
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