
Softw Syst Model (2009) 8:551–566
DOI 10.1007/s10270-009-0116-5

EXPERT’S VOICE

Model-based design: a report from the trenches of the DARPA
Urban Challenge

Jonathan Sprinkle · J. Mikael Eklund · Humberto Gonzalez ·
Esten Ingar Grøtli · Ben Upcroft · Alex Makarenko ·
Will Uther · Michael Moser · Robert Fitch ·
Hugh Durrant-Whyte · S. Shankar Sastry

Received: 2 October 2008 / Revised: 8 February 2009 / Accepted: 11 February 2009 / Published online: 5 March 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract The impact of model-based design on the soft-
ware engineering community is impressive, and recent
research in model transformations, and elegant behavioral
specifications of systems has the potential to revolutionize
the way in which systems are designed. Such techniques
aim to raise the level of abstraction at which systems are
specified, to remove the burden of producing application-
specific programs with general-purpose programming. For
complex real-time systems, however, the impact of model-
driven approaches is not nearly so widespread. In this paper,
we present a perspective of model-based design research-
ers who joined with software experts in robotics to enter
the DARPA Urban Challenge, and to what extent model-
based design techniques were used. Further, we speculate
on why, according to our experience and the testimonies
of many teams, the full promises of model-based design
were not widely realized for the competition. Finally, we

Communicated by Bernhard Rumpe.

J. Sprinkle (B)
University of Arizona, Tucson, USA
e-mail: sprinkle@ECE.Arizona.Edu; sprinkle@acm.org

J. M. Eklund
University of Ontario Institute of Technology,
Toronto, Canada
e-mail: Mikael.Eklund@uoit.ca

H. Gonzalez · S. S. Sastry
University of California, Berkeley, USA
e-mail: hgonzale@EECS.Berkeley.Edu

S. S. Sastry
e-mail: sastry@EECS.Berkeley.Edu

E. I. Grøtli
Norwegian University of Science and Technology,
Trondheim, Norway
e-mail: grotli@itk.ntnu.no

present some thoughts for the future of model-based design
in complex systems such as these, and what advancements in
modeling are needed to motivate small-scale projects to use
model-based design in these domains.

1 Introduction

One of the defining challenges in robotics in the last decade
is the series of DARPA Grand Challenges, focusing on the
continued development of theory, techniques, and person-
nel in the domain of autonomous unmanned ground vehi-
cles (UGVs). Of equal importance to the efforts in control
theory, computer vision, and other fields is the importance
of software techniques to deliver a dependable executable
system. The literature of experimental robotics shows that
there are many examples of software-controlled robotics sys-
tems, even autonomous systems. However, many advanced

B. Upcroft
University of Queensland, Brisbane, Australia
e-mail: ben.upcroft@uq.edu.au

A. Makarenko · M. Moser · R. Fitch · H. Durrant-Whyte
University of Sydney, Sydney, Australia
e-mail: a.makarenko@cas.edu.au

M. Moser
e-mail: m.moser@cas.edu.au

R. Fitch
e-mail: r.fitch@cas.edu.au

H. Durrant-Whyte
e-mail: h.durrant-whyte@cas.edu.au

W. Uther
National ICT Australia, Sydney, Australia
e-mail: William.Uther@nicta.com.au

123



552 J. Sprinkle et al.

techniques in software modeling and systems modeling have
continued to mature since the first DARPA Grand Challenge,
and we discuss in this work how our team utilized some of
these techniques in our effort with the Sydney-Berkeley Driv-
ing Team.

1.1 Scope

Given the complexity of the DARPA Urban Challenge com-
petition, we must be careful to describe the scope of this
paper in order that its relevance to the software and systems
modeling community is clear. In particular, this paper leaves
to other disciplines and publications many topics.

– This paper does not present the design of an autonomous
vehicle.

– This paper does not present a description of best-practice
algorithms for autonomous vehicles.

– The purpose of this paper is not to describe sensors or
actuators that streamline system development.

– This paper does not advocate the use of a particular soft-
ware methodology, middleware, or architecture.

– This paper does not give technical insight into why any
particular team completed, or failed to complete, the
DARPA Urban Challenge.

With these notable exceptions to the scientific contribu-
tions of this paper, the complexities of the competition, as
well as the complexities and features of the system, do
provide an intriguing intersection of requirements and
technology upon which many members in the software and
systems modeling community would enjoy testing various
techniques, including theory, software tools, best practices,
etc. The purpose of this paper is to describe the techniques,
tools, issues, and risks of such techniques, as well as provid-
ing some commentary in the analysis section regarding the
competition’s focus and definition, and its role in the appli-
cation of these techniques.

– This paper describes how techniques such as model equiv-
alence were used in our entry for the DARPA Urban Chal-
lenge.

– This paper describes (in brief) the real-time issues that
arise when system components with ill-defined models
of computation (i.e., third-party software) are not well-
understood, but must be integrated.

– This paper discusses how short-term projects, with dead-
lines based on ad hoc systems integration, may reduce
the potential impact of modeling technology.

– This paper describes how disruptive modeling technol-
ogies, with high-risk high-reward use, may be difficult
to apply to an already high-risk high-reward project with
loosely-coupled group cooperation.

Although we describe portions of our system in great
detail, we leave the design justifications to the other papers
[2,7,19], and in this paper we instead provide some reflection
on lessons learnt from the overall integration, and whether
variances in the competition’s rules and regulations would
have provided the opportunity for impact of more disruptive
technologies.

1.2 The DARPA Urban Challenge

The DARPA Urban Challenge was the third race in the series
of Grand Challenge events sponsored by the Defense
Advanced Research Projects Agency (DARPA) to encourage
a groundswell of robotics researchers to build autonomous
ground vehicles. In brief, the Urban Challenge aimed to bring
autonomous ground vehicles to the city streets, while follow-
ing traffic laws as defined in the California Driver’s Hand-
book. A full description of the race is provided at DARPA’s
website, http://www.grandchallenge.mil/grandchallenge,
though for archival purposes the reader may refer to [14].

2 Background and previous work

2.1 Providing the system

Solutions to the system require (roughly) three tiers of effort:
the problems, the technical issues, and the measures of con-
fidence. We will spend much of this paper describing how
modeling aided with the latter two.

The problems to be addressed include localization, sens-
ing, control, obstacle avoidance, path optimization, and oth-
ers. Each of these problems is its own discipline of study
and research, and as such the details of our design is outside
the scope of this paper. Nonetheless, each of these problems
will be solved by a particular functional description, which is
characterized by input/output relationships and an execution
cycle. Thus, an overall design lends itself to componenti-
zation, where various functional components exchange data
and produce updated information for other components.

In Fig. 1, a functional view of a component is provided.
In our context, the function of a component is such that a
component fires based on an input data set, and produces
some output data set. Generically, we state that a compo-
nent’s functional behavior can be expressed as y = f (x),
where y ∈ R

m and x ∈ R
n . Thus, the rank of y and x are

Fig. 1 A functional view of a component

123

http://www.grandchallenge.mil/grandchallenge


Model-based design 553

not necessarily equal. Further, the firing of a component (to
compute a new y) is generally data driven in our applica-
tion. Details of component firing parameters, concretized as
a model of computation, is a well-studied problem in embed-
ded systems design, and readers are referred to the work in
[3,10] for relevant discussions.

Critical-path technical issues to provide answers to the
problems of localization, sensing, etc., include stability anal-
ysis and robustness of controllers and sensors, functional
correctness of algorithms, fault-tolerance, and more. Again,
many of these issues have a dedicated community of research-
ers, but in order to successfully solve these technical issues,
we must accompany the technical implementation of our
solution with measures of confidence.

Measures of confidence are both best-practices, and new
advancements in systems theory, which provide objective
information regarding the system’s behavior. Examples of
these measures are functional equivalence between proto-
types and final implementations, regression tests, system inte-
gration models, and hardware- and software in-the-loop tests.
Critical to our application is the similarity of simulation
engines to the vehicle, as we discuss later.

2.2 Model-based systems integration

Previous work in the integration of complex systems shows
that a model-based approach can be successful even at large
scales. For example, Long and Misra in [11] address the
specific productivity increase using the Saturn Site Produc-
tion Flow (SSPF) modeling language. Since the late 1990s,
Boeing developed several iterations of the Bold Stroke con-
trol system middleware [15], which was a component-based
approach to large-scale systems composition. Using various
modeling languages (see for example, ECSL in [13]), sys-
tems using Bold Stroke as the control system could be con-
figured, and their runtime files generated in a matter of hours.

Large-scale production systems also benefit greatly from
a model-based approach. The Future Combat Systems (FCS)
program, with its complexity and rapidly changing require-
ments, benefits greatly from the use of an integrative strategy
[16]. Some of these benefits include the ability to reconfig-
ure the system easily, and regenerating the “glue” that holds
much of the system together, while others may include the
ability to perform verification or validation of some kind of
the system [4]. Each of these examples details a fielded sys-
tem that utilizes model-based technologies.

3 Understanding the domain

The domain of this application lies jointly in the physical
devices and algorithms necessary to control and sense, and

the software necessary for the computational and communi-
cation aspects of the system.

3.1 Object-oriented modeling

There were various object-oriented modeling tasks to be
performed throughout the project. These data structures are
typically static, and were defined by domain objects such
as the number of data points available from a sensor, its
operational frequency, etc. In order to facilitate a distrib-
uted computational framework, we utilized a middleware
solution. Unfortunately, traditional modeling tools did not
provide a structural modeling and code generation solution,
where here we mean that the generated code would either be
interface definitions, or full software specifications, includ-
ing getter/setter functions and data marshalling.

While it would have been possible to build a domain-
specific solution for the purpose of the project, the amount
of code required to define these data structures was on the
order of 200 lines, and (as we mentioned before), many struc-
tures were statically linked to the hardware in use. We uti-
lized the generative programming features of the middleware
(after building interface definitions by hand) to generate get-
ter/setter functions and data marshaling behaviors from those
human-created interfaces.

3.2 Systems/integrative modeling

Several aspects of the system model, traditionally seen as
“low-hanging fruit” for modeling technology, are not sig-
nificant enough to justify the effort in a project with this
short timeline, as the expected changes are not frequent. For
example, only a few models of behavior could be easily spec-
ified as a state machine. The most common of these was the
behavior of the emergency-stop (E-stop), which was required
for each team’s entry to immediately bring the vehicle to a
stop. However, the behavior of the E-stop was prescribed
by the rules, and thus, once correctly specified would not
be updated. Again, the motivation to formalize this behavior
using a state machine modeling tool and then generate code
for our specific middleware is low, as that would require sig-
nificantly more effort than specification of the state machine
in traditional software.

Large unknowns in system components, such as laser data,
inertial measurement unit (IMU) data, global positioning sys-
tem (GPS) data, all require custom code to integrate into
the system-wide data structures and some component-based
delivery system. A model-based approach is appropriate for
the integration strategy, but the implementation of the various
drivers is best-suited for low-level programming, as mem-
ory management was a key factor in both getting the data,
and maintaining acceptable performance for the real-time
behavior.

123



554 J. Sprinkle et al.

Many of these same components that require advanced
low-level programming also utilize 3rd party software (or
hardware) subject to proprietary restrictions, or are perhaps
even restricted by International Trafficking in Arms Regu-
lations (ITAR). Each of these factors means that black-box
components will be a norm in the system.

3.3 Model-based prototyping

Finally, although algorithms for high-level behavior are often
difficult to express in models, this is not always the case.
For example, Simulink is an excellent design and analysis
tool, but requires specific hardware to use code generation
techniques. Given that the domain of autonomous navigation
and control is itself a research domain, the tools, techniques,
and analysis necessary are not always known in advance,
and thus the development of domain-specific models and
tools requires the knowledge of the structure of the gener-
ated code, or model, a priori. As such, a great portion of the
high-level algorithms were prototyped in software, and while
they may now be ready for model-based approaches based on
an abstraction of the problem and domain, during the time of
the competition they were not. We discuss this tradeoff later
in Sect. 6 .

4 Model-based techniques: what was used

Our system utilized several different kinds of modeling tech-
niques, primarily during the design phase. These included the
ability to test model equivalence, give measures of software
equivalence, to recover models of behavior from data, and
to decouple system interaction from software specification.
Further, using object oriented models of our vehicle we were
able to rapidly simulate the vehicle’s behavior, though the
accuracy of those simulations in comparison to the physical
model was nontrivial to determine. In this section, we discuss
each of these issues.

4.1 Model equivalence

In initial phases of the project, many algorithms were pro-
totyped, and models simulated, using well known modeling

tools. For example, the initial models of the vehicle kinemat-
ics were prototyped in Simulink, and using those models the
initial steering and acceleration controllers were developed
in Simulink as well. Additional behaviors, such as obstacle
avoidance, and waypoint following, were layered upon these
models.

Since our final implementation was not going to use these
Simulink models at runtime, we created software-based ports
of the behaviors of these models, and used the ability of Sim-
ulink to substitute software modules for Simulink blocks.
These software modules were substituted one at a time, and
a set of regression tests run to compare results. This brings
to the forefront a structure for testing these modules and
comparing their results. To discuss this structure, we talk
about a specific component that utilizes several mathematical
models for its behavior: the local navigation function. This
component used model-predictive control to generate con-
trol inputs for velocity and steering angle. The relevance of
this component to our approach is that its development lasted
the entire length of the competition, thus requiring it to go
through the stages of prototype (for proof of concept), anal-
ysis and refinement (to approximate the vehicle’s behavior),
and implementation and rewriting (to move behavior from
the prototype simulator to the actual vehicle). This meant
that the same mathematical models and software might run
in two to three different semantic domains, and definitely
run at more than one level of fidelity. We next discuss how
we tested the gradual migration of this important component
using the technique of model equivalence.

Figure 2 shows a component model of a model predic-
tive controller ( fmpc) and an associated vehicle model ( fv).
Nonlinear model-predictive control (NMPC) problems, in
general, consist of the following steps:

1. solve for the optimal control law starting from the state
xk at time k;

2. implement the optimal input uk, . . . , uk+τ−1 for 1 ≤
τ ≤ N ; and

3. repeat these two steps at time k + τ .

The solution for the optimal control law can be found
by formulating a cost function and considering it when

Fig. 2 Component model of a model predictive controller and an associated vehicle model. Note that the model for the vehicle’s new position,
fv(x, u), is not necessarily the same model used by the predictive controller for the vehicle’s position

123



Model-based design 555

Fig. 3 Run-time choices
allowed easy switching between
various optimization strategies.
An abstraction of the
model-predictive controller
implementation shows that one
of several optimizers might be
chosen to perform the selection
of control inputs

performing the optimization. As described in [1] it is possible
to compose this cost function by using the specific details of
the application, and the designers best knowledge of optimal
performance of the object or trajectory being tracked. We
discuss a software equivalence model for various optimizers
in Sect. 4.2.

4.2 Software equivalence testing

When testing the functional behavior of control algorithms,
Mathworks’s Simulink provides a domain-specific, synchro-
nous execution model in which new algorithms and system
models can be developed and analyzed. Included in the MAT-
LAB Toolbox suite is a library of optimization routines,
which allow for batch-processes optimization (suitable for
synchronous execution of a model).

Such routines1 generally optimize the cost function

J = ϕ(ỹN )+
N−1∑

k = 0

L(xk, ỹk, uk), (1)

where ϕ accounts for the cost associated with the goal at the
end of the time horizon, while L accounts for a the cost at
each time step in the horizon interval. Usually these functions
take quadratic forms as, ϕ(ỹN ) � 1

2

(
ỹT

N P0 ỹN
)
, and,

L(x, ỹ, u) � 1

2
ỹT Qỹ + 1

2
xTSx + 1

2
uT Ru (2)

even though L can also include non-quadratic terms as rep-
resentations of more complex objectives.

The Q, S, and R square matrices (along with additional
terms describing constraints) each serve as weighting fac-
tors in the cost function (see [18] for details). Regardless of
the implementation, there is an outer loop that performs this
optimization:

min
u∈U

(
ϕ(ỹN )+

N−1∑

k = 0

L(xk, ỹk, uk)

)
. (3)

1 The most widely used is fmincon, which is a local minimizer of a
general nonlinear function subject to equality and inequality constraints.

There is, then, an interest to determine whether two opti-
mization schemes produce the same u for the same initial con-
ditions u0, x0, ỹ. Such a software equivalence test can enable
confidence for heuristic searches, or can yield concerns that
such heuristics may need additional effort in development. It
is worth noting that the functional equivalence is tested here,
as the behavior in time is sought to be optimized (i.e., to run
the vehicle in real-time). Nonetheless, most nonlinear opti-
mization schemes are not suitable for real-time execution, as
an upper bound on execution time is difficult to guarantee.

An abstraction of our implementation of the fmpc func-
tion is shown in Fig. 3. In our particular example, we had
two algorithms from which to choose at runtime to cover
the waypoints requested of the vehicle (represented by the
desired trajectory, ỹ), each of which used variations of gra-
dient descent to optimize the control inputs. One algorithm
was more aggressive, as it enabled a wider exploration of the
search space, while the other was more conservative with its
consideration of the geometric properties of the controller
and vehicle behaviors. It is important to note that each of
these predictive algorithms does require a model of xk+1 =
fv(xk, uk) with which to forward-predict the xN that repre-
sents the future state of the system (in our case, a vehicle,
v) to optimize; each predictive algorithm may use a slightly
different model, depending on the fidelity required for rapid
and accurate optimization.

At design time, though, we needed to know whether the
controllers were solving certain problems correctly. In order
to come to this conclusion, we developed a model to check the
equivalence of software-based optimizers on certain regres-
sion problems. Figure 4 shows this methodology, where
rather than selecting one optimizer at runtime, we run all
optimizers and compare their functional output on a static
set of initial conditions. Again, note that each of these opti-
mizers requires a model of f such that xk+1 = f (xk, uk),
but that each optimizer in this figure uses the same predictive
model as the baseline optimization. This tests the behavior of
the optimizer only by keeping constant the predictive vehicle
model. However, many different vehicle models were used in
various portions of the design, and we discuss this in Sect. 4.5.

123



556 J. Sprinkle et al.

Fig. 4 Design-time
methodology allowed
equivalence testing between the
optimizers. This was important
to gain confidence in heuristic
approaches, or in improvements
to the runtime of the optimizer

Our equivalence tests required full equivalence on our
regression tests. That is, fdiff = true (see Fig. 4) meant
that the largest scalar element difference between two control
vectors, max(ui −u j ) = ε, where ε ≈ 0. With such stringent
tests performed offline, we could select an optimizer based
on its runtime performance.

4.3 Recovering models from data

Modeling of the various physical subsystems of the vehicle
was necessary for both simulation and control. In general, the
equations governing these models were assumed and param-
eters were determined to fit the models to the available data.
In some cases, black-box models were also used, but we will
illustrate the process of data collection from the vehicle as
used to fit one particular subsystem model: the steering angle.

The Ackermann vehicle model [12] provides an approx-
imation of vehicle motion for vehicles with four tires, and
steering control for the front two tires. Although the model
allows different angles for the tires, it does not account for
mechanical vehicle stability and wear items, such as the trans-
mission slip, and limited slip differential, when accounting
for motion.

The model is therefore is a good first-order approximation
to vehicle motion: however, for control inputs, and predictive
control, it is sufficient to consider an even simpler model—a
bicycle model—where the left and right tires are combined
into a “virtual” bicycle, with one front and one rear tire at
the center of the vehicle’s longitudinal axis. Figure 5 shows
the Ackermann Model, and bicycle model. The motion equa-
tions of a bicycle model are presented in (4) where (x, y) are
the cartesian coordinates of the front wheel, v is the speed
of the body of the bicycle, ψ is the angle of the body of the
bicycle with respect to a fixed frame, δ is the angle of the
front wheel with respect to the body of the bicycle and b is
the length between front and rear wheels.

ẋ(t) = v(t) cos (ψ(t)+ δ(t))

ẏ(t) = v(t) sin (ψ(t)+ δ(t)) (4)

ψ̇(t) = 1

b
v(t) sin (δ(t))

Fig. 5 The Ackermann Model, with a simplified bicycle model, used
for control, and predictive modeling of the vehicle’s trajectory of motion

The data used to fit the models were obtained from 3
sources: the vehicle’s Controller Area Network (CAN) bus,
a NovAtel SPAN system and the custom actuation system
developed by the Sydney-Berkeley Driving Team. The vehi-
cle’s CAN bus provided measurements of the internal state of
the car such as both pedal positions (accelerator and brake),
the independent speed of each wheel, the revolutions per
minute of the engine and the gear used at each time step.
The NovAtel SPAN system provided accurate measurements
for position, velocities (linear and angular) and accelerations
(linear and angular). The actuation system was used in a
tele-operation mode, eliminating human errors during the
data acquisition process and allowing a fast and continuous
sampling of the steering wheel angle and the signal applied
to both pedals. The time synchronization of all the sources
was performed by a computer running the QNX real-time
operating system.

We use δt as the angle of the tire (relative to the vehi-
cle’s heading angle, ψ), and δsw ∈ [δswmin , δswmax ] as the
angle of the steering wheel. For most four-wheel vehicles,
δswmax − δswmin ≈ 5π .

In order to gather useful and sufficiently rich data, we
put the vehicle through several motion plans, including sev-
eral regular-use scenarios (i.e., road driving by a human). To
illustrate the process, we note that the actual steering angle

123



Model-based design 557

was not available on the vehicle, but a simple model of the
steering was used in which we determine the tire angle from
calculating the difference in tire speed between the front tires,
left and right. This information is captured from the CAN,
as described above.

The estimate is based on the following model:

vl = rlω (5)

vr = rrω (6)

rr = rl + Clr (7)

ω = vr − vl

Clr
(8)

δt = ω

v
(9)

where vl and vr the respective velocities of the left and right
tires, rl and rr are the radii of the left and right tires of the
angle of the vehicle’s turn, Clr is the centerline distance
between the two front tires, ω is the rotational velocity of
the logical middle tire, and δt is the steering angle of the
logical middle tire.

In using these models, we can derive parameters for the
following approximate model for the tire angle:

δtestimate = �offset +�scaleδsw (10)

where δtestimate is an estimate of the logical center tire’s angle,
�offset and �scale are constants representing the linear off-
set and scaling factor (respectively), and δsw is the mea-
sured steering wheel angle. This methodology is described in
greater detail in [5] and is based on foundational work found
in [9]. Figure 6 shows the accuracy of our models graphically.

To derive the parameters, we use offline optimization rou-
tines to compare the actual value of the vehicle’s position,
with our estimate of the vehicle’s position using this simpli-
fied steering model for steering wheel input control. Mea-
surement errors are minimized by selecting as optimization
inputs the�offset and�scale parameters, to minimize the dif-
ference of the actual measured tire angle and δtestimate over the
entire dataset.

In similar ways, other and more complex subsystem mod-
els were determined and used for simulation and control of
the vehicle. These areas are described in Sects. 4.4 and 4.5.

4.4 Vehicle model and environment simulation

This work relied on open-source software for much of the
physical world simulation, including realistic rigid-body
dynamics of various vehicles in concert with sensors for
those vehicles, and simulated terrain information. We uti-
lized the Gazebo simulation platform, which is part of the
Player/Stage software suite [6]. Gazebo allows three-dimen-
sional physical interaction and control of compositionally
created (i.e., object-oriented) objects in space. Through the

0 10 20 30 40 50 60
−0.5

0
0.5

Rate of turn for figure8_med

0 10 20 30 40 50 60
0

2000
4000

Forward wheel speed, left and right

0 10 20 30 40 50 60
−1
0
1

Steering Wheel angle (measured)

0 10 20 30 40 50 60
−0.1

−0.05

0

0.05

0.1

Time (seconds)

Turning angle (calc by rate of turn/speed)

Turn est
Turn calc
Error

0 10 20 30 40 50 60
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time (seconds)

Turning angle (calc by rate of turn/speed)

Turn est
diff(yaw)

Fig. 6 A model of the car turn angle, based on steering wheel angle
measurements. The top graph shows the rate of turn (calculated in (8)).
The next graph displays the front wheel speeds. Note here that the non-
linearities in the rack and pinion are evident at the most significant
steering wheel angle, even though the wheel is not fully locked. The
next graph shows the measured steering wheel angle, based on CAN
data. The final two graphs compare the estimated value with two calcu-
lated turn angles: that of the values in the top graph divided by the speed,
and the bottom graph reflecting yaw rates gathered from the differential
GPS unit

Open Dynamics Engine (ODE), Gazebo simulates rigid-body
dynamics of the compositionally created models.

What makes Gazebo a particularly interesting—and
applicable—software platform for physical model simula-
tion is its ability to provide alternate perspectives of the
simple models using a suite of included sensors, as well
as provisions for customized sensors. These sensors use ray
tracing from the sensor models to retrieve distance infor-
mation of other objects, thus providing realistic data that
reflected changes to the position, orientation, and velocity of
the simulated vehicle in its simulated environment.

Gazebo provides a mechanism to create vehicles, sen-
sors, environmental features, and visualizations through the
object-oriented composition of various system provided

123



558 J. Sprinkle et al.

Fig. 7 A rendering of the vehicle with both lasers showing their ray
trajectories

objects. Because the software emerged from members of the
robotics community, the software implementations of vari-
ous sensors (such as the Sick LMS) were directly compatible
with the hardware purchased for the vehicle. An example of
how a vehicle is created, and rendered, in Gazebo is presented
in Fig. 7.

The trajectories shown in Fig. 7 represent the configured
laser distance returns for the hardware, so the presence of
obstacles and even other vehicles in the simulation environ-
ment are detected through the rendering of the model. With
specification of exact position/orientation of sensors on the
simulated vehicle, we could test issues of obstacle detection,
vehicle avoidance, etc., without using the physical vehicle.
However, an important question to answer is: is simulation
using Gazebo sufficiently equivalent to driving the physical
hardware? This is appropriate even for kinematic or approx-
imate models we use elsewhere in the design, and such ques-
tions can only be answered with hardware-in-the-loop. We
discuss how to approach such an equivalence question next.

4.5 Physical model: sufficient equivalence

Several models for the motion of the vehicle for given control
inputs (xk+1 = fv(xk, uk)) were used at varying fidelities

throughout the project. As already discussed, a kinematic
model was used for the model predictive controller, rigid-
body dynamics were used in the Gazebo simulation, and of
course the actual vehicle’s model, which is highly nonlin-
ear, dependent on many environmental parameters and non-
linear components (e.g., the torque response of the engine
and transmission at different speeds), and thus unsuitable for
characterization through analysis of its physical construction.

However, many of the functional components rely on the
tuning of parameters, or automatic use-based optimization in
order to operate correctly on the measure of confidence plat-
form—the actual vehicle. Since it is infeasible to perform all
of this tuning on the vehicle due to the number of compo-
nents and vehicle availability, it is important to have some
measure of confidence that the various models for simula-
tion are sufficiently equivalent to the physical platform. This
is described in Fig. 8.

One technique to achieve a measure of confidence is to
use the same techniques used on the optimizer in Sect. 4.2
by providing a known set of inputs to several vehicle simu-
lation models, as well as the actual vehicle, to assess equiva-
lence. The system’s implicit nonlinearity precludes a transfer
function based on impulse-response, though linear approxi-
mations of the model (as discussed in Sect. 4.3) are certainly
an option.

Specifically, the measure of confidence is the array of vec-
tors,�x1, . . ., where each element in the vector is the differ-
ence to the ground truth ( fv). The measure of confidence is
inversely proportional to the magnitude of each vector ele-
ment. Significant errors for particular models will point to a
particular physical model abstraction that is not valid. This
technique is shown in Fig. 9. The ground truth model, which
is the vehicle, is represented by fv . Various models used
throughout the design included kinematic models in Matlab
( fvmat ), rigid body simulation in Gazebo ( fvgaz ), predictive
models used in the controller ( fvmpc ), as well as other models
not shown here. In order to make sense of the comparison of
these functions, it is not enough to do an equivalence check.
Interesting difference functions, which are out of the scope
of this paper, could provide indications that certain models
performed well under velocity inputs, but not steering inputs,
while others performed well vice versa. Thus, the expected
output should be a vector of differences to the ground truth,

Fig. 8 Position of the center of
gravity after time-based
injection of control inputs may
be drastically different,
depending on which model is
used to simulate vehicle
trajectory

Model 1

Model 2

Model 3

123



Model-based design 559

Fig. 9 Comparing several vehicle models with the ground truth (actual
vehicle) to assess sufficient equivalence

subject to further analysis. The smaller these delta functions,
the more confidence in the various vehicle models. We leave
this complex analysis and representation of the actual data
captured in our runs to other publications.

4.6 Software models

We employed a component-based design methodology to
produce our integrated system. This component-based phi-
losophy required all executing software to be housed (or
wrapped) in a software component that required and/or
provided certain interfaces. These interfaces were language-
independent datatypes, and encoded into the Internet Com-
munication Engine (ICE) format.

So, regardless of the language of implementation, or the
philosophy of implementation, the input/output relationships
of any component could be quickly modeled as providing/
requiring relationships. The semantics of the execution of
each component was left up to the component design, and
could not generally be controlled using runtime configura-
tion.

This gave great flexibility to each component designer.
Some components operated using a dataflow model of com-
putation, where any input was readily transformed into an
output, whenever input tokens came in on the required inter-
face. In this case, the criterion for firing is any new token on
the input. Some components had no interface inputs at all,
as they were passing along data from hardware, or from a
simulation. These components were also dataflow based, in
that they produced new data as soon as they got it.

For components with more than one input, however, the
criteria for firing becomes more interesting. Should the
required interfaces be held to an ordered, blocking read (block
on i1, then block on i2, then fire), or should a new token

on either input allow firing (perhaps with the previous value
from the other input)? Should there be a timeout for this
blocking read, and/or should the timeout be the same for all
required interfaces?

It was these components with more than one input (and
sometimes more than one output) whose specification intro-
duced complexity to understanding the composite model of
computation. After connecting the various data paths, it is
unclear, at best, how the system operates. Is each component
executing when any data value arrives, only at certain data
values, through a complex semaphore, always at a certain
time?

Clearly the composite model of computation emerges from
the model of computation for individual components. This
heterogeneous approach led to significant confusion when
developing new components, as a common model was not
utilized. In defense, however, developing this common model
would detract from efforts in passing competition milestones.

Ongoing research by team members involves the explicit
timing of these components and more orderly operation based
on strict operation of components according to a well-defined
model of computation. For example, periodic timing of com-
ponents, rather than a pure data-driven execution of compo-
nents. Such work promises to reduce the variability of the
entire system when executed on heterogenous distributed
hardware.

Regardless of the implementation of each component, the
interdependency of components on each other plays a key
role in their assembly at runtime, and at design time. In
order to see this interdependency, a metamodel can be used to
describe the various types and associations permitted when
creating a simulation, or a run-time experiment. Notably, our
middleware was robust in that a change in configuration was
all that was required to run with actual data from a sensor,
or data from regression tests, or data from another compo-
nent.

Figure 10a shows a metamodel for a graphical language
allowing composition of various components. This meta-
model is ultimately simple, but provides the ability to create
interconnection diagrams such as those in Fig. 10b to abstract
the overall system integration. It is important to have a high-
level perspective of these models for multiple reasons:

– to explain to new team members the overall structure;
– to see points of “cutting” where new components can be

inserted;
– to verify that all “required” interfaces are provided by

some other component; and
– to understand the startup order of the system, based on its

dependencies.

In fact, the final two points are not as important, because
(as we discuss in Sect. 3) the components are fairly static,

123



560 J. Sprinkle et al.

Provide
<<Atom>>

Experiment
<<Model>>

Connection
<<Connection>>

Require
<<Atom>>

Component
<<Model>>

dst
0..*

src 0..*

0..*

0..*

0..*

0..*

(a)

loc
loc
ogm
pat
dri
lan

tow
tow
lan

highlevelplanner

las
loc
cam

lan
cam
pix

lanedetector

loc
ogm
odo
dri
lan

mpc
pat

dgclocalnav

loc
las

loc
ogm

gridmap

las

laser3

las

laser1

dri
odo

Car

las

laser2

gps
imu
loc
odo

insgps

(b)

Fig. 10 a A metamodel for a graphical language allowing composition of various components. b An example model, where various components
connect the provided and required interfaces

and holistic simulations can be scripted to run without much
user intervention. Despite these mitigating factors, there is
significant potential impact for modeling (especially gen-
erative techniques) in this particular area, as we discuss in
Sect. 7.

Although these models were developed early in the pro-
ject lifecycle, they were not used until after the competi-
tion (in related research). The reason for this, in addition
to the reasons previously mentioned regarding the relatively
static nature of components for the composition, is that effort
required to integrate the models into the methodology of the
team was substantial, and detracted from the necessary tech-
nical work. The tradeoff, then, was that the software was
developed more rapidly (by individuals), but less accessible
to new team members because both its development and inte-
gration were done at a low level. The alternative, to spend
extra time on high-level techniques that would improve new
team members’ ability to contribute in later stages of the
competition, would jeopardize meeting the demanding com-
petition deadlines. To make this point clear, we now move
the discussion to how these deadlines impacted our use of
models in the system.

5 The impact of deadlines

The deadlines in the DGC3 were actually the deadlines for
components of the DGC competition, not for the standalone
medium-scale systems each team could produce. Thus,
DARPA’s primary motivation was not necessarily to produce
the best individual components (i.e., vehicles), but rather to
produce the best collection of components that could operate
within the final competition site. This subtle difference actu-
ally impacts the technical deliverable and confidence mea-
sures of the participants in the competition.

5.1 Team and system requirements

Table 1 details the schedule for a team competing in the
Urban Challenge, and Fig. 11a shows elements of this sched-
ule graphically. The major deadlines for consideration by the
team are the video submission, site visit, and final event. In
each of these deadlines, the measure of confidence is the
performance of the autonomous vehicle. In essence, the full
development of an autonomous platform must be completed
less than 11 months after the project kickoff,2 and rudimen-
tary software performing a small set of tasks must exist by
this time.

DARPA referred to this set of requirements as basic nav-
igation, and the small set of tasks included:

– navigation by waypoints;
– avoidance and passing of a stalled car; and
– demonstration of emergency stop capability.

While these tasks are certainly not trivial, they can be devel-
oped independently from more advanced behavior which
must be shown during the site visit, which was generally
held around 2–3 months after the video was submitted. Some
examples of this advanced behavior, which was called basic
traffic includes:

– items from the video;
– vehicle stays in lane;
– vehicle departs from and returns to lane; and
– vehicle can perform u-turn.

2 For teams who hoped to obtain funding from DARPA for purchasing
a vehicle, this time actually fell to around 8 months to await notification
of funding or not.

123



Model-based design 561

Table 1 Team schedule (from
http://www.darpa.mil/
grandchallenge/)

Date Activity/event Location

May 1, 2006 Urban Challenge Program Announcement

May 20, 2006 Participants Conference Reston, VA

April 13, 2006 Submission of Video Online

May 10, 2007 Site Visit Selection Announcement

June 11–July 20, 2007 Site Visits Performer Site

August 9, 2007 Semifinalist Announcement

Location Announcement DARPATech, Anaheim, CA

October 24–25, 2007 Teams Arrive Victorville, CA

October 26–31, 2007 National Qualification Event Victorville, CA

November 3, 2007 Urban Challenge Final Event Victorville, CA

Year 1
(5/06-5/07)

"Year" 2
(6/07-11/07)

 Kickoff  Video  Site Event
Final Event(s) 

(a) The DARPA Urban Challenge milestones.

IterateVehicle
Development

HWIL
Soft-
ware V

ehicle
D

evelopm
ent

S
oftw

are
D

evelopm
ent

Iterate

V
ehicle

D
evelopm

ent

S
oftw

are
D

evelopm
ent

V
ehicle

Tuning

S
oftw

are
Tuning

(b) A schedule in line with system-integrator contracts.

Vehicle Development HWIL

Code, Generator and Modeling 
Environment Development

Vehicle
Simulator

Simulator
Validation

Vehicle Development 
and Tuning

Regression Testing

Model/Software/
Generator Refinement

(c) A schedule favoring model-based design, but violating mile-
stones.

Fig. 11 Various schedules to complete the DARPA Urban Challenge.
a The timelines for completing the DGC, as required by DARPA (these
are provided in more detail in Table 1). b If work was contracted to a
system integrator, regular checkpoints for progress are used to guaran-
tee that development is making regular progress. However, in order to
show progress in timelines, suboptimal decisions must be made, and
then undone in later stages of delivery. c An approach that is decoupled
from the physical platform provides parallel development of software,
models (or modeling environments), but at the cost of delaying vehicle
delivery, thus delaying progress milestones

Clearly, performance based on these criteria would also sat-
isfy that of the video. The proximity of the deadlines, how-
ever, and the fact that failure to pass the video portion results
in removal from the competition, may incline teams to focus
on those details without regard to those of the site event.

5.2 Solved and unsolved problems: erosion of motivation

The tasks for the video (basic navigation) are essentially
solved problems, where little if any research is necessary. The

problems for the site event, though, represent an opportunity
to develop new and innovative approaches to these problems,
which (by their definition) subsume the video requirements.

What motivation exists, then, to develop innovative tech-
niques either in the algorithms for system behavior, or model-
ing and analysis tools to build such systems? The risk is great,
in that the deadline for basic navigation is based on known
deadlines and capabilities, so there is a tendency to continue
to approach the problem by looking at the new requirements
at each phase, and introducing new software. This iterative
approach is generally scalable, except that the measure of
confidence is a single vehicle, and thus testing is limited by
physical constraints.

5.3 Deadline inversion

Again, this is quite a subtle issue, but it can mean that the
immediacy of the next deadline to show measures of confi-
dence will trump a systematic approach to providing mea-
sures of confidence for the most important issue at hand:
correct functional behavior of the scientific advancements
of the problems. In other words, immediate deadlines focus
work on the functional behavior at all times and with the
vehicle as the primary testbed since the vehicle’s behavior
is the measure of confidence. This comes at the cost of a
principled system integration strategy, since the development
of such strategies—although they have many advantages in
rapidly reconfiguring the system, allowing untrained users to
experiment with the system, and formalizing the interactions
of system components—will replace efforts that could have
been spent on the functional behavior.

5.4 Responsibility by the organizers

We acknowledge that in order to put together a competi-
tion, DARPA must put together a running system (of many
vehicles) where individual components behave properly.

123

http://www.darpa.mil/grandchallenge/
http://www.darpa.mil/grandchallenge/


562 J. Sprinkle et al.

Although many of our above points are critical to the orga-
nization of the competition, the alternative is to either

a. allow vehicles with no (realistic) hope of winning to con-
tinue in the competition out of courtesy, but eliminating
them just before they appear in the final event, thus wast-
ing the time and efforts of those teams, or

b. allow any vehicle (including perhaps vehicles that are
unsafe) to participate in the final event, perhaps endan-
gering the efforts of others.

It is clear, then, that the organizers have amortized the
selection process out of a genuine desire to have a safe compe-
tition, where objective measures are used to determine com-
petition. However, we believe that in order to provide that
safe and fair venue, one cost was a decreased motivation for
the development of innovative techniques for system inte-
gration. These techniques tend to mature later in the design
cycle, though with a proven record for rapid configuration
(see [8,18,20] and [17] for examples where high-level auton-
omous software operated correctly on a testbed with which
the developers had no physical contact, but only a reliable
simulator).

6 Reflections

Upon completion of this project, and discussions with other
researchers in model-based technologies, it is clear that some
of the foundational research currently underway in the com-
munity deserves some mention.

6.1 Philosophies of modeling and our effort

There are several design philosophies that are radical new
approaches to developing systems. We address each of these
with respect to this application.

Everything is a model. This is a natural outgrowth of the
philosophy “everything is an object” from object-oriented
techniques, and to some degree this materialized for our
effort, in the same way that it materialized in OO. To the
greatest extent, we developed several component models for
the behavior of our system, and those models interacted with
one another through message and data passing. However, we
did not continue a model-based refinement past the specifi-
cation of the component interface, and instead depended on
general-purpose languages to provide the functional behav-
ior of those components. We address this next.

Model everything. This philosophy does not quite restate that
of “everything is a model,” as in this case we (the developers)
are called to create a model of everything, not treat every-
thing as if it has some model. As we pointed out previously,

our implementation was not carried out through widespread
modeling, and there are a few reasons for this:

– the diverse team of experts in robotics, computer vision,
software, and control were not all familiar with even soft-
ware modeling techniques;

– the operating environment of real-time behaviors required
many components to run on a real-time operating system
with limited tool support;

– the behavior of many components is best-specified using
general-purpose techniques, especially the advanced con-
trol algorithms used.

In addition to these reasons, there was the issue of third
party hardware and software, which ran as a black-box for
many devices. This means that we had many behaviors
which we understood functionally, but had no control over
its behavior.

If I did not model it, it is not in the system. For small-scale
systems, such as a simulation of a system, or even medium-
scale systems where specialized hardware is available to
interface with modeling tools, this approach is quite appro-
priate. In our case, our budget did not permit an integrated
modeling and hardware solution for various sensor devices
and computational devices. This implied that various hard-
ware used to acquire data (such as serial cards for the laser
rangefinders) would need to be interfaced via low-level driv-
ers. The complexity of using a software modeling technique
to make vendor-specific calls to a device on the bus of a com-
puter running a real-time operating system is tremendous.

While it is not impossible to produce this as a model-
based solution, we argue that in our case such investment in
labor would not be well spent. Thus, we had to accept that
major portions of our system would require low-level soft-
ware interaction. We were able to abstract this interaction on
the highest level as functional components, but there was no
escaping the effort to write the drivers.

All code used is generated code. Many integrated systems
follow this philosophy, and it is common for middleware
implementations to follow it as well. To some degree, we
used this philosophy to produce our data structures and rel-
evant getter/setter methods. However, as we mentioned pre-
viously, we eventually had to provide some functionality not
easily produced using state charts or sequence diagrams.

Again, this is not to say that with a solution in hand, we
could not provide a model-based tool that synthesized code
to perform these duties: the issue was that we did not know
what the code needed to look like in the first place. Having
written it once, spending time to make a generic interpreter
to synthesize code for similar scenarios would have been an
interesting solution, but would have endangered continued

123



Model-based design 563

participation in the competition. However, it does provide a
useful perspective for future work, as we discuss later.

6.2 The promise of model-based methodologies

Since the inception of model-based methodologies and
domain-specific languages, several advantages have been put
forth, including:

– rapid redeployment after a design change;
– verification and analysis using models;
– domain users building models, not programming experts;

and
– raising the abstraction of specification.

Even with solid effort by modeling experts, however, most
of these promises failed to materialize. The question then,
is: does this failure to materialize speak to limitations of the
model-based methodologies, limitations of the domain, or
perhaps some other factor?

Our perspective is that each of these promises faced almost
certain failure in this competition, though not necessarily in
this domain. For example, most teams in the competition
had a fairly static design due to the rigorous platform-based
proofs required by the organizers. This meant that the like-
lihood of major design changes was fairly low compared to,
say, a website design. For the design changes that did occur in
our project, we absorbed each of these by using a component
model for system functionality, allowing rapid reconfigura-
tion by connecting various component interfaces at runtime.

We next address a major promise of domain-specific mod-
eling: that domain users, rather than software experts, create
system implementations through modeling. For some por-
tions of our implementation, this did materialize (e.g., using
Simulink, as discussed in Sect. 4.1). In the end, our imple-
mentation platform did not support such executable models
(and we did not use compatible hardware with MATLAB’s
Real-Time Workshop), and to create a model-integrated pro-
gram synthesis solution might have jeopardized further par-
ticipation in the competition.

Finally, we ask whether we were able to raise the abstrac-
tion of our specification. In fact, this was our most obvious
success, in that the high-level behavior of the system could
be succinctly expressed as functional components operating
with data dependencies. As such, the system design resem-
bled a large block diagram (as seen in Fig. 10b). However,
we spent very little of our time specifying the system on
this high level, and almost all of it in the low-level functional
behaviors of each component. Nonetheless, without the high-
level specification of the system, we would have lost time in
design, testing, and runtime, if we did not have the flexibility
to reorganize the system rapidly.

7 Outlook to the future

As we look to the future of model-based design for heterog-
enous systems, we believe that this domain is ripe for impact
by the modeling community. Many system specifications are
never made, and their behavior emerges from ad hoc integra-
tion strategies. Many functional behaviors are re-expressed
time and again by new users who are unable to take advantage
of code reuse techniques. Many control and robotics experts
are comfortable with low-level software, but cannot perform
any rigorous analysis or verification of their integrated sys-
tem as there is no high level specification or model. Many
experts in this domain lose tremendous time struggling with
the integration of heterogenous tools, where the semantics
are unclear or data transformations are required.

Each of these areas of impact, as well as others not men-
tioned, present a clear benefit that can be addressed by those
in the modeling community by better understanding the
domain of these kinds of problems. However, there is the
substantial barrier of demonstrating that model-based
approaches will in the end provide some benefit.
Some domain power users will be reticent to abandon their
techniques for new ones that have not yet proved themselves.
Such is a reasonable goal for model-based design researchers:
to demonstrate that the benefit of using model-based design
is not always enhanced productivity, but may include allow-
ing rapid reuse by others, or reducing investment by a new
user of learning to use their software or system, or providing
analysis and simulation capabilities that did not yet exist.

Acknowledgments This work was due to the tremendous effort of
the Sydney-Berkeley Driving Team, which entered the DARPA Urban
Challenge in 2006. Team members who performed work tangential to
that described in this paper include Alen Alempijevic, Ashod Donikian,
Todd Templeton, Eric Chang, Pannag R. Sanketi, David Johnson, Jan
Biermeyer, Vason P. Srini, Christopher Brooks, Mark Godwin, and
many others who donated their time and efforts. The Sydney-Berkeley
Driving Team was supported in part by Rio Tinto, Komatsu, Chess at
UC Berkeley, Toyota, ZeroC, and Advantech. Additional in-kind sup-
port was provided in the form of discounts on equipment from the
following manufacturers: SICK, NovAtel, and Honeywell. NICTA is
funded by the Australian Government as represented by the Depart-
ment of Broadband, Communications and the Digital Economy and
the Australian Research Council through the ICT Centre of Excellence
program.

Open Access This article is distributed under the terms of the Creative
Commons Attribution Noncommercial License which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Allgöwer, F., Zheng, A.: Nonlinear Model Predictive Control.
Progress in Systems and Control Theory, vol. 26. Birkhäuser
Verlag, Basel (2000)

123



564 J. Sprinkle et al.

2. Basarke, C., Berger, C., Rumpe, B.: Software and systems engi-
neering process and tools for the development of autonomous
driving intelligence. J. Aerosp. Comput. Inf. Commun. 4(12),
1158–1174 (2007)

3. Brooks, C., Lee, E.A., Liu, X., Neuendorffer, S., Zhao, Y., Zheng,
H.: Heterogeneous concurrent modeling and design in java (Vol-
ume 1: Introduction to Ptolemy II). Technical Report UCB/EECS-
2008-28, EECS Department, University of California, Berkeley
(2008)

4. Dubey, A., Nordstrom, S., Keskinpala, T., Neema, S., Bapty, T.,
Karsai, G.: Towards a verifiable real-time, autonomic, fault mit-
igation framework for large scale real-time systems. Innov. Syst.
Softw. Eng. 3(1), 33–52 (2007)

5. Eklund, J.M., Korenberg, M., McLellan, P.: Nonlinear system iden-
tification and control of chemical processes using fast orthogonal
search. J. Process Control 17(9), 742–754 (2007)

6. Gerkey, B., Vaughan, R.T., Howard, A.: The player/stage project:
Tools for multi-robot and distributed sensor systems. In: Proceed-
ings of the 11th International Conference on Advanced Robotics,
pp 317–323. ICAR 2003

7. Herpin, J., Fekih, A., Golconda, S., Lakhotia, A.: Steering con-
trol of the autonomous vehicle: Cajunbot. J. Aerosp. Comput. Inf.
Commun. 4(12), 1134–1142 (2007)

8. Keviczky, T., Borrelli, F., Balas, G.J.: Decentralized receding
horizon control for large scale dynamically decoupled systems.
Automatica 42(12), 2105–2115 (2006)

9. Korenberg, M.J.: A robust orthogonal algorithm for system identi-
fication and time-series analysis. Biol. Cybern. 60, 267–276 (1989)

10. Lee, E.A., Zheng, H.: Operational semantics of hybrid systems.
In: Proceedings of Hybrid Systems: Computation and Control
(HSCC), LNCS, vol. 3414, pp. 25–53. Springer, Berlin, 2005
(Invited Paper)

11. Long, E., Misra, A., Sztipanovits, J.: Increasing productivity at
Saturn. Computer 31(8), 35–43 (1998)

12. Nebot, E.: Navigation system design. Lecture Notes, May 2005.
Center of Excellence for Autonomous Systems, University of
Sydney, Australia

13. Neema, S., Karsai, G.: Embedded control systems language for
distributed processing. Technical Report ISIS-04-505, Vanderbilt
University, Institute for Software Integrated Systems, 2004

14. Seetharaman, G., Lakhotia, A., Blasch, E.: Unmanned vehicles
come of age: the DARPA Grand Challenge. Computer 39(12), 26–
29 (2006)

15. Sharp, D.: Avionics product line software architecture flow
policies. In: Proceedings of the 18th Digital Avionics Systems
Conference, vol. 2, pp. 9.C.4-1–9.C.4-8, 1999

16. Sharp, D.: Hybrid and embedded software technologies for pro-
duction large-scale systems. In HSCC ’02: Proceedings of the 5th
International Workshop on Hybrid Systems: Computation and Con-
trol, pp. 1–2. Springer, London (2002)

17. Sprinkle, J., Ames, A.D., Eklund, J.M., Mitchell, I., Sastry, S.S.:
Online safety calculations for glideslope recapture. Innov. Syst.
Softw. Eng. 1(2), 157–175 (2005)

18. Sprinkle, J., Eklund, J.M., Kim, H.J., Sastry, S.: Encoding aer-
ial pursuit/evasion games with fixed wing aircraft into a nonlinear
model predictive tracking controller. In: Conference on Decision
and Control, 2004

19. Upcroft, B., Makarenko, A., Moser, M., Alempijevic, A., Donikian,
A., Uther, W., Fitch, R.: Empirical evaluation of an autonomous
vehicle in an urban environment. J. Aerosp. Comput. Inf. Com-
mun. 4(12), 1086–1107 (2007)

20. Waydo, S., Hauser, J., Bailey, R., Klavins, E., Murray, R: UAV as
a reliable wingman: a flight demonstration. IEEE Trans. Control
Syst. Technol. 15(4), 680–688 (2007)

Author Biographies

Jonathan Sprinkle is an Assistant
Professor of Electrical and Computer
Engineering at the University of Ari-
zona. Until June 2007, he was the Exec-
utive Director of the Center for Hybrid
and Embedded Software Systems at the
University of California, Berkeley. In
2006–2007, he was the co-Team Leader
of the Sydney-Berkeley Driving Team,
a collaborative entry into the DARPA
Urban Challenge with partners Sydney
University, University of Technology,
Sydney, and National ICT Australia
(NICTA). His research interests and
experience are in systems control and

engineering, through modeling and metamodeling, and he teaches in
controls and systems modeling. Dr. Sprinkle is a graduate of Vanderbilt
University (PhD, MS) and Tennessee Technological University (BSEE).
e-mail: sprinkle@ECE.Arizona.Edu

J. Mikael Eklund is the Direc-
tor of Electrical and Software Engi-
neering Programs and an Assistant
Professor on the Faculty of Engi-
neering and Applied Science at the
University of Ontario Institute of
Technology. He received his Ph.D.
from Queen’s University in 2003 in
Electrical and Computer Engineer-
ing. His research areas include Auton-
omous Systems (Robotic vehicles,
smart sensors for assisted living), non-
linear system identification and con-
trol, and medical image processing.
From 2003–2006 he was a Visiting

Postdoctoral Scholar at the University of California, Berkeley. e-mail:
Mikael.Eklund@uoit.ca

Humberto Gonzalez was born in
Chile in 1981. He received the B.S.
and M.S. degrees in electrical engi-
neering from the University of Chile,
in 2005. Currently he is a graduate
student in the department of Electri-
cal Engineering and Computer Sci-
ences at University of California,
Berkeley. His research interests are
in applications to robotics of non-
linear and optimal control. e-mail:
hgonzale@EECS.Berkeley.Edu

123



Model-based design 565

Esten Ingar Grøtli received his
MSc degree from Department of
Engineering Cybernetics at Nor-
wegian University of Science and
Technology in 2005, and is cur-
rently pursuing a PhD degree at
the same department. The mas-
ter program included one year
at the Institute for Systems The-
ory and Automatic Control, Uni-
versity of Stuttgart (2003/2004).
In 2006/2007 he visited Profes-
sor Shankar Sastry’s group at UC
Berkeley. His research interests
include control of mechanical sys-
tems in theory and applications.
e-mail: grotli@itk.ntnu.no

Ben Upcroft is a Senior Lecturer
in Mechatronics at the University of
Queensland. He completed his under-
graduate degree in Science with Hon-
ours and continued a PhD in ultracold
atomic physics in 2003. Throughout
his PhD, Ben had a keen interest in
robotics, which led him to a Post-
doctoral position (2003) at the ARC
Centre of Excellence for Autono-
mous Systems, School of Aerospace,
Mechatronics, and Mechanical Engi-
neering, University of Sydney. He has
run major industrial projects involv-
ing autonomous aircraft, offroad and

urban vehicles, and network communications. Ben currently focuses
on computer vision aided localization and navigation for autonomous
ground vehicles. e-mail: ben.upcroft@uq.edu.au

Alex Makarenko is currently the
ARC Postdoctoral Fellow at the Aus-
tralian Centre for Field Robotics. He
received his Ph.D. in Mechanical,
Aeronautical and Mechatronic Engi-
neering from the University of Syd-
ney, the M.Sc. in Aeronautics and
Astronautics from MIT, and B.S. in
Mechanical Engineering from Rens-
selaer Polytechnic Institute. His cur-
rent interests lie in the areas of
distributed inference in human and
sensor networks, robust vehicle oper-
ation, and reusable robotic software.
e-mail: a.makarenko@cas.edu.au

Will Uther received his B.Sc.
in 1995 from the Uni-
versity of Sydney, and his Ph.D.
in 2002 from Carnegie Mellon
University. He joined National
ICT Australia in 2003 and is
currently a senior researcher
there with a conjoint appoint-
ment at the University of New
South Wales. Before working
with autonomous urban vehicles,
Dr. Uther was heavily involved
in the Four-Legged League
of the RoboCup international
robotic soccer competition. e-mail:
William.Uther@nicta.com.au

Michael Moser is currently pur-
suing a M.Sc. in Mechatronics at
University of Sydney. He received
a degree as Dipl. Ing. (FH) (com-
parable to a B.Sc. with Honours)
in Applied Physics from Univer-
sity of Applied Sciences Weingar-
ten in 2001. During 2006-2007 he
was employed as a Technical Offi-
cer at the Australian Centre for Field
Robotics. He was the lead techni-
cal engineer of the Sydney-Berkeley
Driving Team. His current research
interests are in automated multi-
sensor registration and data fusion.
e-mail: m.moser@cas.edu.au

Robert Fitch is a research fellow
with the Australian Centre for Field
Robotics at the University of Syd-
ney, Australia. Previously, he held
a research position at National ICT
Australia (NICTA) in Sydney. He
received the Ph.D. in Computer Sci-
ence from Dartmouth College in 2004
and the B.A. from Oberlin College in
1996. His research interests include
motion planning, distributed planning
and control, hierarchical reinforcement
learning, and modular robots. e-mail:
r.fitch@cas.edu.au

123



566 J. Sprinkle et al.

Hugh Durrant-Whyte received the
B.Sc. in Nuclear Engineering from the
University of London, U.K., in 1983,
and the M.S.E. and Ph.D. degrees,
both in Systems Engineering, from the
University of Pennsylvania, U.S.A.,
in 1985 and 1986, respectively. From
1987 to 1995, he was a University Lec-
turer in Engineering Science, the Uni-
versity of Oxford, U.K. and a Fellow
of Oriel College Oxford. Since 1995
he has been Professor of Mechatronic
Engineering at University of Sydney.
His research work focuses on robotics
and sensor networks. He has published

over 350 research papers and has won numerous awards and prizes for
his work. e-mail: hugh@acfr.usyd.edu.au

S. Shankar Sastry is cur-
rently the Dean of Engineer-
ing at University of California,
Berkeley. He received his Ph.D.
degree in 1981 from the Uni-
versity of California, Berkeley.
He was on the faculty of MIT
as Asst. Professor from 1980–
1982 and Harvard University as
a chaired Gordon McKay pro-
fessor in 1994. His areas of
personal research are embed-
ded and autonomous software for
unmanned systems (especially
aerial vehicles), computer vision,

computation in novel substrates such as quantum computing, nonlinear
and adaptive control, robotic telesurgery, control of hybrid and embed-
ded systems, network embedded systems and software. He has coau-
thored over 400 technical papers and 9 books, and is a member of the
National Academy of Engineering and the American Academy of Arts
and Sciences (AAAS). e-mail: sastry@EECS.Berkeley.Edu

123


	Abstract
	1 Introduction
	1.1 Scope
	1.2 The DARPA Urban Challenge

	2 Background and previous work
	2.1 Providing the system
	2.2 Model-based systems integration

	3 Understanding the domain
	3.1 Object-oriented modeling
	3.2 Systems/integrative modeling
	3.3 Model-based prototyping

	4 Model-based techniques: what was used
	4.1 Model equivalence
	4.2 Software equivalence testing
	4.3 Recovering models from data
	4.4 Vehicle model and environment simulation
	4.5 Physical model: sufficient equivalence
	4.6 Software models

	5 The impact of deadlines
	5.1 Team and system requirements
	5.2 Solved and unsolved problems: erosion of motivation
	5.3 Deadline inversion
	5.4 Responsibility by the organizers

	6 Reflections
	6.1 Philosophies of modeling and our effort
	6.2 The promise of model-based methodologies

	7 Outlook to the future
	Acknowledgments

