
Model-Based Design of Embedded Control Software for Hybrid Vehicles

Tizar Rizano
University of Trento

Trento, Italy
tizar.rizano@unitn.it

Roberto Passerone
University of Trento

Trento, Italy
roberto.passerone@unitn.it

David Macii
University of Trento

Trento, Italy
david.macii@unitn.it

Luigi Palopoli
University of Trento

Trento, Italy
luigi.palopoli@unitn.it

Abstract—In the last decades, model based methodologies
have become the mainstay of research on embedded systems
development. The availability of mature computer aided tools
and of well–settled industrial practices has promoted the
adoption of these methodologies in large companies, which are
able to amortize the cost on a large volume of products. On the
contrary, the cost of software licenses and of staff training often
discourages their application in small and medium enterprises.
In this paper, we present a model based methodology entirely
based on the adoption of open source software tools. We have
applied this methodology to a real case study provided by our
industrial partner proving its effectiveness.

Keywords-design methodology; digital control; automotive
engineering;

I. INTRODUCTION
Model-based design methodologies are emerging as some

of the most convincing alternatives for the development of
embedded software compared to the classical methods based
on low-level languages and intense prototyping activities [1],
[2]. In particular, model-based design promises to shorten
the distance between high level control algorithms and their
actual implementation. The idea is to start from abstract
models, closer to those traditionally used by mechanical and
electrical engineers, and to come to the actual code through
automated or semi-automated transformations (refinements)
which preserve already verified properties. Despite the
higher productivity that can be achieved with these methods,
there are large industrial sectors (especially the small and
medium enterprises) whose production volumes do not jus-
tify the significant investment required for tools and training.
This picture can potentially be changed with the emergence
of no/low cost tools, which, if complemented by appropriate
methodologies, could preserve the advantage of model-based
development without its cost. In this paper, we describe
a realistic case study conducted in collaboration with the
Centro Ricerche Ducati (CRD), where the researchers have
undertaken the design of one of the most crucial components
of a vehicle: the Engine Control Unit. The tools employed
are open source and include Scicoslab/Scicos1 for modeling
the system and the control algorithms, and the open source
OSEK-compliant operating system Erika Enterprise2. This

1http://www.scicoslab.org/
2http://erika.tuxfamily.org//

paper describes the modeling phase and shows the simula-
tion results. We are currently conducting the implementation
and test phase with the actual hardware.

A. Problem description
The system considered in this paper is a series hybrid

vehicle. The most evident difference between a hybrid and
a conventional vehicle is the presence of two motors (an
electric motor and an internal combustion motor) instead of
one. In a series hybrid vehicle, the internal combustion motor
is exclusively used to re-charge a battery. The propulsion is
provided by an electrical motor which utilizes the energy
stored in the battery. The advantage of this approach is
that the internal combustion motor control can be optimized
with respect to power consumption and emissions. The
drawback is the efficiency loss in converting the energy twice
(chemical→electrical→mechanical) as opposed to the single
conversion (chemical→mechanical) used in traditional auto-
motive technology.
The problem we present in this paper is to design the

controllers for the hybrid vehicle based on some design goals
and constraints. The controllers that have to be designed
are: a speed controller that sets the electrical motor at
a reference speed, an ignition controller that controls the
torque production and a lambda controller that manages the
gas emission.
The design must satisfy three important constraints:
• low target price of the vehicle, which dictates the
components used in the vehicle and it also influences
the model of the vehicle;

• low production cost for Small Medium Enterprise
(SME), which limits the cost of tool acquisition and
staff training;

• short time to market, which emphasizes the need for
rapid prototyping and/or simulation.

II. METHODOLOGY
Based on the constraints in the previous section, we decide

to use a model-based methodology to design the controller
for the hybrid vehicle. The methodology is inspired by
the general principles of Platform-Based Design [3], [4]. It
has three important phases, which are: functional design,
architectural design and mapping.



Parameter
Identiffication

Plant
Model

Plant
Modeling

Control
Goals

Control
Design

Timing
Requirements

Controller
Model

Simulation

Validation
No Yes

To Mapping Phase

Figure 1. Overview of functional design phase

In the functional design phase we produce a mathematical
model that describes the plant (the hybrid vehicle), the
controllers (speed, ignition and lambda controllers) and the
timing constraints. The mathematical model is normally
called functional model.
For the plant model, we start by constructing a generic

model of each component used in the vehicle (e.g., the
motors, the intake manifold, the battery, etc.) based on
models found in the literature. The next step is to identify
parameters of the actual components for the generic model.
This step is carried out by collecting data from the technical
documentation of the components and by running exper-
iments. The controller models are designed using control
engineering techniques to satisfy certain control goals. To
ensure all control goals are met, we run simulations on
the functional model. Figure 1 shows an overview of the
functional design phase. The boxes represent processes,
whereas the shaded documents represent functional design
artifacts.
In the architectural design phase, we decide on a platform

on which the controllers will run. This phase produces
the architectural model of the hardware and the real time
operating system (real time tasks, timers, semaphores, etc.).
The architectural design phase will not be described in detail
in this paper.
The final phase is the mapping phase (Figure 2) where the

functional model is mapped onto the architectural model.
The non shaded documents represent models produced in
the functional design phase and architectural design phase.
In the mapping phase there are three main steps:

• Refinement. In this step, the controller models are re-
fined by adding details about the device. For example, a
direct connection between the controller model and the
plant can be replaced with a particular communication
method (e.g., RS232 or CAN bus)

• Mapping. In this step, the refined model is mapped onto

Refinement
Device
Models

Refined
Controller

Model

Code
Generation

RTOS
Binding

RTOS
Config

Compiler

Executable

RTOS
Code

Performance
Analysis

Task
Code

Schedulable

Computation
Time

No

Yes

back to functional design 
or architectural change

Controller
Model

Timing
Requirements

Figure 2. Overview of mapping phase

the architectural model (real time tasks)
• Code Generation. In this step, the mapped model is
converted into source code that can be compiled and
executed on the target hardware

• Performance and scheduling analysis. In this step, we
run an analysis on the tasks running inside the hardware
to compute performance and scheduling metric (e.g.,
Worst Case Execution Time (WCET))

We need a set of tools that can support our methodology.
The Matlab tool suite is the de facto standard for the
development of mathematical models of hybrid systems,
and can be easily enriched with additional features that
carry out specialized operations required in distinct areas
of application. This makes Matlab/Simulink the preferable
tool suite for our methodology. However, in this paper we
want to emphasize our methodology for SME. Therefore, we
need a different tool suite that has lower acquisition cost.
For the rest of the paper we use Scicoslab/Scicos which

is available as an open source software packages, as a tool
suite for our methodology. This tool is suitable to evaluate
the methodology. While it may have some drawbacks from
a usability point of view, its strength lies in the rigorous
mathematical underpinnings.
One of the challenges of using Scicoslab/Scicos is de-

scribing event-driven dynamics. Commercial tools, such as
Matlab/Simulink, facilitate this task by providing a set of
modeling primitives specialized for hybrid systems (State-
flow tool). In Scicos, we have to explicitly provide a “low
level” modeling of hybrid dynamics. As an example, con-
sider the problem of detecting state switches in a cylinder of
a four-stroke engine. Events have to be generated every time
the piston reaches the dead centers. In Scicos, the events can
be manually generated based on the values of the angular
position of the crankshaft.



III. HYBRID VEHICLE
A very high-level view of the system is shown in Figure 3.

We can recognize four macro-components:
• the internal combustion engine, which consists of the
intake manifold, the bypass valve, and the 1-cylinder
engine;

• the catalyst pipe;
• the electrical power-train, which consists of the alter-
nator, the rectifier, the battery and the electrical motor;

• the vehicle dynamics.
The internal combustion engine receives as an input the
throttle valve angular position and the duty cycle of the
bypass valve and produces the torque on the crankshaft and
the air-to-fuel ratio. The catalyst takes as an input the air-
to-fuel ratio and produces the oxygen storage, which can
be translated into the concentration of exhausted polluting
gases. The torque is an input to the power train consisting
of the alternator, the rectifier and the DC motor. The output
of the electrical power train is the torque applied to the
wheels of the vehicle. The torque, along with load torques
from the environment, is an input to the vehicle dynamics
and determines its motion. Modeling the vehicle dynamics
is not in the scope of this paper.
In this paper we would like to show how to perform the

functional design for a particular component in the system.
We selected the battery as an example since it is one of the
most complex components in our model.
The vehicle uses lead-acid batteries due to their low cost.

The battery pack consists of eight 12V batteries arranged as
two parallel series of 4 batteries each. The total capacity of
the battery pack is about 84Ah, whereas the output voltage
is in the order of 48V. We developed our battery model
based on the model by Ceraolo and Barsali [5], [6]. The
considered battery model describes the dynamics of a lead-
acid battery when it is charged and discharged in different
operating conditions.
One of the most important parameters of a battery is its

State of Charge (SOC). In fact, the SOC is an indicator of
how full the battery is compared to its maximum capacity
at temperature θ. It is given by the following equation:

SOC = 1−Qe/C(0, θ)

where C(I, θ) is the function that computes the battery ca-
pacity and Qe =

∫ t

0
−Im(τ) dτ . Based on the mathematical

model of the battery we construct the Scicos model that is
shown in Figure 4. In the battery model, the charge/discharge
current is regarded as an input (connected to both the
alternator output rectifier and the inverter powering the
electrical motor), whereas the voltage is regarded as an
output (connected to the rectifier). Positive current values
indicate that the battery is being charged and negative current
values indicate that it is discharged. The parameters for the
battery model are identified from the data-sheet of the lead

Figure 4. Scicos Model of the battery

Time (second)

Vo
lta

ge
 (V

ol
t)

charging

discharging

discharging

Figure 5. Simulation of charging and discharging the battery. The battery
is discharged at -25.2 A and charged at 7.14A for 500 minutes and finally
discharged at -25.4A

acid battery and by running experiments. Figure 5 shows
simulation results for charging and discharging the battery.
Even though we only presented the battery as an example,

we have built the complete model describing the hybrid
vehicle and the three controllers. Having a complete model
of the system and the controllers gives us flexibility of
simulating the complete system or only parts of the system.
Experiments shows that the simulation of the complete
system for 10 seconds requires 1.4 hours. However, the
simulation of the internal combustion engine model for 60
seconds requires around 5 seconds. The long experiment
time for the complete model is due to the complexity in
the electrical model, especially the alternator and rectifier
that requires very frequent switches. We can improve this
by selecting simpler models for the alternator and rectifier
with the drawback of lowering the quality of the models.
Figure 6 shows the simulation results of the electrical

motor model and the battery model. The motor is set to
run at 590 RPM for 9 seconds and at 300 RPM afterwards.



Intake
Manifold

Cylinder Alternator Battery DC Motor

Bypass
Valve

Throttle Valve 
Position

Engine Rotation Speed

Torque

Air / Fuel Mass

Voltage Torque

Bypass Time

Engine Position

Spark Advance

Current
Air massPressure

Tail Pipe

Vehicle

External Forces

Speed

Position

Relative Oxygen Level

Internal Combustion
Engine

Electrical Power Train

Catalyst Pipe

Figure 3. Overview of The Model

Figure 6. Scicos Simulation of The Motor and The Battery. Initially, the
motor is set to run at 590 RPM. After 9 seconds, the motor will run at 300
RPM

To
rq

ue

RP
M

 (d
eg

/s
ec

)

Figure 7. Comparison of Scicos simulation result between two control
algorithms. The RPM set point is set at 4000 RPM

In the bottom figure we observe the current drain of the
battery. Negative current means that the current is flowing
out of the battery, i.e. into the electrical motor. Reducing
the motor speed also reduces the current required to run the
motor.
The model based methodology gives us flexibility in de-

signing and testing different control algorithms and choosing
a control strategy based on the simulation of the system. Fig-
ure 7 shows a comparison between two control algorithms.
Algorithm 1 is provided from CRD whereas algorithm 2 is a
non-linear control scheme proposed by Balluchi et. al. [7].
As we can see in Figure 7, the steady state precision of
the latter scheme is better and the transient is more regular.
However, the price to pay is the use of additional sensors
(i.e., the pressure sensor in the intake manifold), which for
the considered application is not an affordable cost.

IV. CONCLUSIONS
In this paper we have presented a model based methodol-

ogy for embedded systems development. The methodology
is based on the use of open source software tools, and it
holds the promise of being applicable by small and medium
enterprises for its limited cost. In order to show the concrete
applicability of the methodology, we have modelled the
electromechanical components of a hybrid vehicle and the
digital controller for the RPM control and for emission
control. This model was of challenging complexity for its
hybrid dynamics and for the different time constants. The
next steps of this case study will be to generate the code
and map it onto different architectures. This step is crucial to
show the ability of our methodology to perform architectural
exploration and to port a project to a different architecture
with a very small effort.

REFERENCES
[1] B. Selic, “The pragmatics of model-driven development,” Soft-

ware, IEEE, vol. 20, no. 5, pp. 19–25, 2003.

[2] S. Edwards, L. Lavagno, E. Lee, and A. Sangiovanni-
Vincentelli, “Design of embedded systems: Formal models,
validation, and synthesis,” Proceedings of the IEEE, vol. 85,
no. 3, pp. 366–390, 1997.

[3] A. L. Sangiovanni-Vincentelli, “Defining platform-based de-
sign,” EE Design of EE Times, February 2002.

[4] K. Keutzer, S. Malik, A. Newton, J. Rabaey, and
A. Sangiovanni-Vincentelli, “System-level design: Orthogonal-
ization of concerns and platform-based design,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 19, no. 12, pp. 1523–1543, Dec. 2000.

[5] M. Ceraolo, “New dynamical models of lead-acid batteries,”
IEEE Transactions on Power Systems, vol. 15, no. 4, pp. 1184–
1190, 2000.

[6] S. Barsali and M. Ceraolo, “Dynamical models of lead-acid
batteries: Implementation issues,” IEEE Transaction on Energy
Conversion, vol. 17, no. 1, pp. 16–23, 2002.

[7] A. Balluchi, L. Benvenuti, M. Di Benedetto, T. Villa, and
A. Sangiovanni-Vincentelli, “Idle speed control–A benchmark
for hybrid system research,” in Proc. of the 2nd IFAC Con-
ference on Analysis and Design of Hybrid System (ADHS06),
Alghero, Italy, 2006.


