
Model-Based Development of Dynamically Adaptive
Software ∗

Ji Zhang and Betty H.C. Cheng
Software Engineering and Network Systems Laboratory

Department of Computer Science and Engineering
Michigan State University

East Lansing, Michigan 48824

{zhangji9,chengb}@cse.msu.edu

ABSTRACT
Increasingly, software should dynamically adapt its behavior
at run-time in response to changing conditions in the sup-
porting computing and communication infrastructure, and
in the surrounding physical environment. In order for an
adaptive program to be trusted, it is important to have
mechanisms to ensure that the program functions correctly
during and after adaptations. Adaptive programs are gen-
erally more difficult to specify, verify, and validate due to
their high complexity. Particularly, when involving multi-
threaded adaptations, the program behavior is the result
of the collaborative behavior of multiple threads and soft-
ware components. This paper introduces an approach to
create formal models for the behavior of adaptive programs.
Our approach separates the adaptation behavior and non-
adaptive behavior specifications of adaptive programs, mak-
ing the models easier to specify and more amenable to auto-
mated analysis and visual inspection. We introduce a pro-
cess to construct adaptation models, automatically generate
adaptive programs from the models, and verify and validate
the models. We illustrate our approach through the develop-
ment of an adaptive GSM-oriented audio streaming protocol
for a mobile computing application.

Categories and Subject Descriptors: D.2.4 [SOFT-
WARE ENGINEERING]: Software/Program Verification -
Formal methods, Model checking, Reliability, Validation

General Terms: Design, Verification, Reliability

Keywords: Dynamic Adaptation, Reliability, Autonomic
Computing, Global Invariants, Formal Specification, Verifi-
cation

1. INTRODUCTION
Increasingly, software needs to dynamically adapt its be-

havior at run-time in response to changing conditions in the

∗This work has been supported in part by NSF grants EIA-
0000433, EIA-0130724, ITR-0313142, and CCR-9901017,
and the Department of the Navy, Office of Naval Research
under Grant No. N00014-01-1-0744, and a Michigan State
University Quality Fund Concept Grant.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’06, May 20–28, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

supporting computing, communication infrastructure, and
in the surrounding physical environment [1]. In order for
an adaptive program to be trusted, it is important to have
mechanisms to ensure that the program functions correctly
during and after adaptations. Adaptive programs are gen-
erally more difficult to specify, verify, and validate due to
their high complexity. Particulary, when involving multi-
threaded adaptations, the program behavior is the result
of the collaborative behavior of multiple threads and soft-
ware components. Adaptations require the adaptive actions
of all the components and threads to be taken in a coor-
dinated fashion. Formal models can be used to mitigate
the complexity. This paper introduces an approach to cre-
ate formal models for the behavior of adaptive programs.
Our approach separates the adaptation behavior and non-
adaptive behavior specifications of adaptive programs, mak-
ing the models easier to specify and amenable to automated
analysis and visual inspection. We introduce a process to
construct adaptation models, automatically generate adap-
tive programs from the models, and verify and validate the
models.

A recent survey [2] described numerous research efforts
that have proposed ways to formally specify dynamically
adaptive programs in the past several years. Graph-based
approaches model the dynamic architectures of adaptive pro-
grams as graph transformations [3, 4, 5]. Architecture De-
scription Language (ADL)-based approaches model adap-
tive programs with connection and reconnection of connec-
tors [6, 7, 8]. Generally, these approaches have focused on
the structural changes of adaptive programs. Few efforts
have formally specified the behavioral changes of adaptive
programs. A few exceptions include those that use process
algebras to specify the behavior of adaptive programs [9, 10,
11]. However, they share the following drawbacks: (1) Por-
tions of the adaptation-specific specifications are entangled
with the non-adaptive behavior specifications; (2) They do
not support the specification of state transfer, so that the
target behavior must start from the initial state, thus mak-
ing adaptations less flexible; (3) These techniques are spe-
cific to the type of formalism (i.e., process algebra), making
them potentially difficult to be extended to other types of
formalisms and the corresponding analysis.

In this paper, we propose a model-driven process to the
development of dynamically adaptive programs. Compared
to existing work, our approach has the following novel fea-
tures: (1) Our approach separates the model specifying the
non-adaptive behavior from the one specifying the adaptive
behavior, thus making the model more amenable to human
inspection and automated analysis; (2) We use global in-
variants to specify properties that should be satisfied by
adaptive programs regardless of adaptations. These prop-

371

erties are ensured throughout the program’s execution by
model checking; (3) Our specification approach supports
state transfer from the source program (i.e., the program be-
fore adaptation) to the target program (i.e., the program af-
ter adaptation), thereby potentially providing more choices
of states in which adaptations may be safely performed; (4)
Our approach is generally applicable to many different state-
based modeling languages. We have successfully applied our
approach to several state-based modeling languages, includ-
ing process algebras (e.g., Petri nets), UML state diagrams,
and model-based languages (e.g., Z); (5) We also introduce a
technique that uses the models as the basis for automatically
generating executable prototypes, and ensures the model’s
consistency with both the high-level requirements and the
adaptive program implementations.

This paper focuses on the behavior of adaptive programs.
We explicitly identify and specify the key properties of adap-
tation behavior that are common to most adaptive pro-
grams, regardless of the application domain, the program-
ming language, or the adaptation mechanism. We define
the quiescent states (i.e., states in which adaptations may
be safely performed) of an adaptive program in the specific
adaptation context, including the program behavior before,
during, and after adaptation, the requirements for the adap-
tive program, and the adaptation mechanism. This defini-
tion leads to precise and flexible adaptation specifications.

We have successfully applied our approach to adaptive
mobile computing applications, including the development
of an adaptive GSM-oriented audio streaming protocol [12].
This protocol had been previously developed without our
technique, where the developers had found the program logic
to be complex and error-prone. Our approach significantly
reduced the developer’s burden by separating different con-
cerns and utilizing automated model construction and anal-
ysis tools, and thus improved both the development process
time and reliability. The remainder of the paper is orga-
nized as follows: Section 2 gives background on Petri nets
and the GSM-oriented audio streaming protocol. Section 3
introduces the formal representation of adaptive programs.
Section 4 describes our approach for constructing and ana-
lyzing models for adaptive programs. Section 5 outlines the
generation of adaptive programs based on the models. Sec-
tion 7 discusses related work, and Section 8 concludes the
paper.

2. BACKGROUND
In this paper, we illustrate our adaptation specification

process by modeling a GSM-Oriented audio streaming pro-
tocol with Petri nets. This section briefly overviews Petri
nets and the GSM-oriented audio streaming protocol.

2.1 Petri Nets
Petri nets are a graphical formal modeling language [13,

14], where a Petri net consists of places, transitions, and
arcs. Places may contain zero or more tokens. A state (i.e.,
a marking) of a Petri net is given by the number of tokens
in each place. Places are connected to transitions by input
arcs and output arcs. Input arcs start from places and end
at transitions; output arcs start from transitions and end at
places. The places incident on the input (or output) arcs of a
transition are the input places (or output places) of the tran-
sition. Transitions contain inscriptions describing the guard
conditions and associated actions. A transition is enabled
if the tokens in its input places satisfy the guard condition
of the transition. A transition can be fired if it is enabled,
and firing a transition involves consuming the tokens from
its input places, performing the associated actions, and pro-
ducing new tokens in its output places. An execution of a

Petri net comprises a sequence of transitions. Interactive
executions of Petri nets are called token games.

Since their introduction, Petri nets have been extended
in many ways. Coloured Petri nets allow the tokens to be
distinguished by their colors (or types), making it more con-
venient to model data in software. The inscriptions on arcs
of a coloured Petri net specify the numbers and types of to-
kens to be taken from (or put into) the incident places when
the transitions are fired.

Numerous tool suites have been developed to support graph-
ical net construction, simulations, token games, and analy-
ses. Among these tools, MARIA [15] is a coloured Petri nets
analysis tool that supports model checking for Linear Tem-
poral Logic (LTL) properties. Renew [16] is a coloured Petri
nets tool suite that supports graphical net construction, au-
tomated simulation, and token games. Furthermore, Renew
supports a synchronous communication mechanism that al-
lows Petri net models to communicate with each other and
with other Java applications.

2.2 GSM-Oriented Encoding/Decoding
GSM-oriented audio stream encoding and decoding pro-

tocol is a signal processing-based forward error correction
protocol [17, 12]. The protocol is used to lower delay and
overhead in audio data transfer through lossy network con-
nections, especially in a wireless network environment. In
this protocol, a lossy, compressed data segment of packet i
is piggybacked onto one or more subsequent packets, so that
even if packet i is lost, the receiver still can play the data of
i at a lower quality as long as one of the subsequent encod-
ings of i is received. This protocol takes two parameters, c
and θ. The parameter c describes the number of consecu-
tive packets onto which an encoding of each packet is pig-
gybacked. The parameter θ describes the offset between the
original packet and its first compressed version. Figure 1
shows a GSM-oriented audio streaming protocol example
with θ = 1, c = 2. In order to accommodate packet loss
changes in the network connection, we dynamically switch
among components that implement different θ and c values.

1−idid1+id2+id

Data Flow

Figure 1: GSM-oriented encoding and decoding.

3. STATE-MACHINE REPRESENTATION FOR
ADAPTIVE PROGRAMS

In this section, we introduce a formal representation of
adaptive programs. In general, a program can be repre-
sented by a state machine [18] (finite state automaton) that
exhibits certain behavior and operates in a certain domain
(its input space) [19]. A dynamically adaptive program op-
erates in different domains, changes its behavior at runtime
in response to changes of the domain. An adaptive program
is a program whose state space can be separated into a num-
ber of disjoint regions (programs), each of which exhibits a
different steady-state behavior [9], and operates in a different
domain. The states and transitions connecting one region
to another are adaptation sets.

We term the properties that should be satisfied by the
adaptive program in each individual domain as the local
properties for the domain. The properties that should be
satisfied by the adaptive program throughout its execution,

372

regardless of the adaptations, are called global invariants.
Since global invariants should also be satisfied by adaptive
programs in each individual domain, they must be implied
by local properties.

An adaptive program usually contains multiple programs
and multiple adaptation sets connecting these programs,
making it potentially complex to analyze. To reduce the
complexity, we isolate the adaptation problem by focusing
on the adaptation behavior starting from one program, un-
dergoing one occurrence of adaptation, and reaching a sec-
ond program. This type of adaptation behavior is repre-
sented by simple adaptive programs. A simple adaptive pro-
gram contains a source program, a target program, and an
adaptation set connecting the source program to the target
program. Figure 2 shows a simple adaptive program where
S is the source program, T is the target program, and M is
the adaptation set from S to T . In this paper, we specify
the source program and the target program with a source
model and a target model, respectively, and then specify an
adaptation model, i.e., the model for the adaptation set con-
necting the source model to the target model. A general
adaptive program can be considered as the union of one or
more simple adaptive programs [20].

S M T

adaptation set

program transition

Figure 2: A simple adaptive program

We propose a general specification process for state-based
modeling languages. We also introduce the analyses that
may be performed to ensure the consistency among the mod-
els, high-level requirements, and low-level implementations.
We illustrate the process with Petri nets and a working adap-
tive GSM-oriented protocol example. Although we illustrate
our approach with Petri nets, our approach extends to other
modeling languages.

Assume we are given a problem in terms of a set of high-
level goals [21, 22] and a set of execution domains D. We are
required to develop an adaptive program to solve the prob-
lem, i.e., to achieve the high-level goals, when the inputs of
the program change their domains in D at run time. We
propose the following adaptive program development pro-
cess:

(1) Use a high-level specification languages, e.g.,
temporal logic, to specify global invariants. These
global invariants usually contain safety and live-
ness constraints.

(2) Enumerate the different domains in D. De-
scribe the conditions in which the program is re-
quired to execute in each domain (e.g., data loss
conditions of a communication channel).

(3) Use high-level specification languages, e.g.,
temporal logic, to specify the local properties
(the local requirements) of the program in each
domain. The specifications should satisfy the
high-level goals under the conditions of the do-
main.

(4) Build a state-based model for the program
in each domain. Simulations and verifications
may be applied to verify and validate the models
against the local properties of the domain.

(5) Enumerate possible dynamic changes of do-
mains and build adaptation models for the adap-
tations of the program from one domain to an-
other. Simulations and verifications may be ap-
plied to validate the models against the global in-
variants. Moreover, the adaptations should lead
to the target models eventually.

(6) These state-based models can be further used
to generate rapid prototypes or serve to guide
the development of adaptive programs. They can
also be used to generate test cases and verify ex-
ecution traces.

In this paper, we assume that steps (1) through (3) have
been done properly using existing techniques [19, 20], and
focus on steps (4) through (6). When errors are found in
a given step, developers may be required to go back to an
earlier step to correct the errors.

4. OUR SPECIFICATION APPROACH
In this section, we introduce the general process to model

an adaptive program in a state-based modeling language,
accompanied by a concrete GSM-oriented audio streaming
protocol modeled with Petri Nets.

4.1 Motivating Adaptation Scenario
The configuration of the system is shown in Figure 3. A

desktop computer, running a sender program, records and
sends audio streams to hand-held devices (e.g., iPAQ), run-
ning receiver programs, through a lossy wireless network.
We expect the system to operate in two different domains:
the domain with a low loss rate and the domain with a higher
loss rate. The loss rate of the wireless connection changes
over time and the program should adapt its behavior accord-
ingly: When the loss rate is low, the sender/receiver should
use a low loss-tolerance and low bandwidth-consuming en-
coder/decoder; and when the loss rate is high, they should
use a high loss-tolerance and consequently high bandwidth-
consuming protocol. Specifically, in this paper, we describe
the simple adaptive program that initially uses GSM(1,2)
encoding/decoding when the loss rate is low (where θ = 1,
c = 2); when the loss rate becomes high, it dynamically
adapts to using GSM(1,3) encoding/decoding.

`

sender
access
point

wireless
receivers

audio stream

Figure 3: Audio streaming system connection

4.2 Construct Models for Source and Target
This section corresponds to Step (4). Assume that we

already have the local requirements for the source domain
(the source requirements) and for the target domain (the
target requirements). We need to build a model for the

373

source domain (the source model) and a model for the target
domain (the target model). The source and target models
should not include information about each other, or about
the adaptation. The source and target models should be
verified against the local requirements for the source and
target domains, respectively.

This step is illustrated by example as follows. Assume
we have identified the source domain S (the domain with
low loss rate) and the target domain T (the domain with
high loss rate). In this example, we use two LTL temporal
operators: � and ♦. Intuitively, the formula “�P”, where
P is a property, means that the property “P” is always true
during an execution; the formula “♦P” means that “P” is
eventually true in an execution.
The requirements RS for the source domain are:

• Sender liveness:The sender should read packets until
the data source is empty (i.e., the data source is even-
tually empty), and the sender should always eventually
send a packet if it reads a packet. In LTL formula:

♦(dataSource = empty) ∧ �(read(x) → ♦send(x)) 1

• Receiver liveness: The receiver should always de-
code data once a new packet is received. In LTL for-
mula:

�(receive(x) → ♦decode(x))

• Loss tolerance: The sender/receiver should use a
protocol that tolerates 2-packet loss. In LTL formula:

(�lossCount <= 2) → (�¬lose(x))

The requirements RT for the target domain has the same set
of properties except the loss tolerance constraint as follows:

• Loss tolerance: The sender/receiver should use a
protocol that tolerates 3-packet loss. In LTL formula:

(�lossCount <= 3) → �(¬lose(x))

To model the program for S, we build a Petri net for a
GSM(1,2) encoder on the sender side and a Petri net for
GSM(1,2) decoder on the receiver side. Figure 4 shows the
sender net (elided). The circles represent places and boxes
represent transitions. The white circles represent places that
are not part of the sender model, i.e., shared by either the
source and the target sender nets, or by the sender and the
receiver nets, or by both. In the net, the place dataSource
contains a sequence of data tokens. The readData transition
removes a token from the dataSource place, and puts the
original data in the inputData place and a GSM compressed
data in the dataX place. The shiftX and shiftY transitions
shift the encoded data in a buffer represented by the places
dataX, dataY, and dataZ. The encode transition takes the
current input data and two previously compressed data from
the places dataY and dataZ, and outputs a GSM(1,2) data
packet in the encodedData place. The send transition sends
the encoded packet to the network place.

Figure 5 shows the receiver net (elided). The receiveData
transition receives the audio packets from the network and
puts the input packet in the inputData place. The decodeIn-
put transition takes the input packet from the inputData
place, extracts data from the original data segment, and puts

1Strictly speaking, the notations of read(x) and send(x) are
predicates. However, LTL requires the underlying logic to
be propositional. Here we implicitly employ the 2-order data
abstraction introduced by Dwyer and Pasareanu [23], which
converts predicates to propositions by using constant values
to represent arbitrary values.

the data in the bufferedData place. The decodeBuffer transi-
tion extracts the compressed data segments from the input
packet, and updates the data in the bufferedData place. The
outputData transition takes decoded data from the buffered-
Data, and then outputs the data to the sink. In a separate
model (not included in this paper due to space constraints),
we build the Petri net for the network, which is the glue
specification that connects the sender and the receive nets.
We specify two types of networks: lossless and lossy.

gsm(x)

x

x x x x

z

x

y

[i,x,y,z]

dataX

index

dataSource
x[i,x,y,z]

0

i

sendencode

0 network

1

i+1

shiftYdataYshiftX dataZ

encodedData

placetransition shared place arc

readData inputData
x

Figure 4: Sender source net

[k,s]

[k,s]

index seq3

[k,s];[k1,s1]

seq1

[i,x,y,z]

[i,x,y,z]

decodeBuffer

[j,x,y,z]

k+1

[0,x0,y0,z0]
sink

[]

k

[i,x,y,z]

[k,r]

1

guard i >0;

[k,r];[k1,r1]

seq2

guard i>0

receiveData

[i,x,y,z]

inputData outputData

decodeInput bufferedData
[-1,0][0,0]

guard i>=k+2

network

Figure 5: Receiver source net

After building the source models, we first play token games
with the models to visually validate the models. If we find
errors with the models, then we revise the models until the
models pass the visual validation. Then we run model check-
ing to verify these models against the high-level local re-
quirements of the source domain S, including the safety,
liveness, and loss-tolerance constraints. We revise the mod-
els until they pass the model checking analysis.

To model the program for the target domain T , we build
separate Petri nets for a GSM (1,3) encoder on the sender
side and a GSM (1,3) decoder on the receiver side. Figures 6
and 7 show the sender net and the receiver net, respectively.2

The modeling, validation, and verification process is similar
to that used for the source model.

4.3 Construct adaptation models
This section describes Step (5), the process to model the

adaptation behavior from the source domain to the target
domain. Three types of adaptive behavior are usually seen in
adaptive programs [20]: one-point adaptation, guided adap-
tation, and overlap adaptation. We introduce the modeling
technique for each of these types of adaptation. For each
type of adaptation, we first introduce a general specification

2By comparing the source model to the target model, one
can notice that the source model can be systematically ex-
tended to construct target models for GSM-oriented proto-
col of various parameters.

374

GSM(x)

x

x x y y

x

y

[i,x,y,z,t]

inputData

dataX

x[i,x,y,z,t]

z

z z0 0 0

x
encodedData send

1

i+1

network

t

shiftY shiftZdataZ dataTdataYshiftX

encode

i
readData

dataSource

index

Figure 6: Sender target net

[k,s]

index seq3

seq2

seq1

decodeInput

[i,x,y,z,t]

1
k+1

[0,x0,y0,z0,t0]

receiveData

sink

[]

k

[i,x,y,z,t]

[k,r]
[0,0];[-1,0];[-2,0]

guard i >0;

[j,x,y,z,t]
network

[k,s];[k1,s1];[k2,s2]

[k,r];[k1,r1];[k2,r2]
[k,s]

[i,x,y,z,t]

bufferedData

x

guard i>0

inputData outputData

guard i>=k+2[i,x,y,z,t]
decodeBuffer

Figure 7: Receiver target net

approach for state-based modeling languages, then we in-
stantiate the approach with Petri nets and apply it to the
GSM-oriented protocol example.

4.3.1 One-point adaptation
With one-point adaptation, at one state during the source

program’s execution, the source behavior should complete,
and the target behavior should start [20]. The adaptation
process completes after a single transition. The major tasks
for one-point adaptation are to identify the states that are
suitable for adaptation and define adaptive transitions from
those states.

The term quiescent states are commonly used to refer to
those states suitable for adaptations in the literature. They
are usually identified as the “stateless” states of a program,
e.g., states equivalent to initial states. However, in some
programs, reaching such states may not occur in a reason-
ably short period of time, causing the program execution
to block. Thus, this type of definition for quiescent states
is not suitable for changes that require prompt adaptation
responses, such as fault tolerance, error recovery, attack de-
tection, etc. Furthermore, such a quiescent state definition
is not sufficient to ensure the correctness of adaptation in
the absence of the requirements to be achieved by the adap-
tation.

In this paper, we argue that the quiescent states of an
adaptive program should be defined in the context of the
adaptation constrained by the program behavior before, dur-
ing, and after adaptation, and the global invariants that the
adaptive program should satisfy throughout its execution.
A state of the source program, s, is a quiescent state, if and
only if we can define a state transformation function, f , such
that there exists a state, t, in the target program, t = f(s),
and any execution paths that include the s → t adaptive
transition do not violate any global invariants.

The set of quiescent states is determined by the state
transformation from s to t that satisfies the global invari-
ants. Generally speaking, the more quiescent states we can
identify, the more flexible the adaptation is, i.e., the more
states from which we may perform adaptation. Potentially,
all states of the source model can be quiescent states, but
that would require us to define a complex state transforma-
tion function. Therefore, we should balance the complex-

ity of the transformation function and the flexibility of the
adaptation.

We use Petri nets to illustrate this idea. We define an
“adapt” transition to model the set of adaptive transitions.
The “adapt” transition connects the source net to the target
net: All the input places of the transition are from the source
net, and all the output places are from the target net. When
the “adapt” transition is fired, it performs the state trans-
formation by consuming the tokens in the source model and
generating tokens in the target model. The quiescent states
of the Petri net are those markings that enable the “adapt”
transition, which can be restrained by the guard conditions
of the transition. More than one “adapt” transition can be
defined similarly, each identifying a different set of quiescent
states and defining a different state transformation function
upon this set. The source net and the target net, connected
by the “adapt” transition, is the adaptation model. We use
token games and model checking to validate and verify the
adaptation model against the global invariants properties:
If violations are found, then we should revise the models
and/or the properties.

In the GSM-oriented audio streaming protocol example,
the sender or the receiver adaptation alone can be considered
one-point adaptation. The global invariants for the adaptive
sender and receiver are specified as follows:

• Sender global invariant: The sender should read
packets until the data source is empty, and the sender
should always eventually send a packet if it reads a
packet. In LTL,

♦(dataSource = empty) ∧ �(read(x) → ♦send(x))

• Receiver global invariant: The receiver should al-
ways decode data once a new packet is received. In
LTL,

�(receive(x) → ♦decode(x))

The adaptation model for the sender is shown in Fig-
ure 8. The enabling condition of the “adapt” transition of
the sender identifies the quiescent states to be “after encod-
ing a packet and before sending the packet, and after the
data in the compressed data buffer have been shifted to the
next location”. The “adapt” transition directly moves the
tokens from dataY and dataZ to the corresponding places in
the target. The token in dataT in the target model is gener-
ated from the encoded packet in encodedData of the source
by taking the last piggybacked data segment z.

Figure 9 shows the adaptation model for the receiver. The
quiescent states of the receiver are identified by the adapt
transition of the receiver. That is, “after firing the decodeIn-
put transition and before firing the decodeBuffer transition,
and when the upcoming input packet is encoded by the tar-
get encoder”. Upon receiving the packet, the model adapts
to the target receiver net, and the state transformation is
defined by the output places and inscriptions on the arcs.

We ran token games on the sender and receiver adaptation
models, and we validated that they reflect our purpose for
the software. Last, we model checked these models against
the global invariants. Finally, we concluded that these prop-
erties are all satisfied. Therefore, we believe the models have
been constructed correctly.

4.3.2 Guided adaptation
Guided adaptation means that when the source program

receives an adaptation request, it enters a restricted mode,
in which some functionalities of the program are usually
blocked [20]. Entering the restricted mode ensures that the
program will reach a quiescent state, from which a one-
point adaptation takes the program to a target program
state space.

375

dataX dataY

send

network

readData inputData

dataX dataY dataZ dataT

1 network

00

send

y1 z1

1

[i,x,y,z]

zz1
y1

empty

Sender Source Model

Sender Target Model

readData

dataSource

i+1

index

inputData

encode

x

dataSource

adapt

encodedData

dataZ

[i,x,y,z,0]

encodedDataencode

index

Figure 8: Sender adaptation net

To specify a guided adaptation, we should determine the
functionalities that should be blocked in the restricted mode,
and identify the quiescent states of the program in the re-
stricted mode. Blocking functionalities is achieved by re-
moving transitions from the source program. Let the source
model be MS, the target model be MT , and the restricted
source model be M ′

S . M ′
S must share the same set of states

with MS , but M ′
S has only a subset of the transitions of

MS . MS and MT can be constructed in the same way as in
one-point adaptation. M ′

S can be constructed by first copy-
ing MS and then removing transitions or strengthening the
firing conditions of transitions that may otherwise prevent
the program from reaching a quiescent state.

We next define the state transformations from states in
MS to states in M ′

S and from quiescent states in M ′
S to

states in MT . As M ′
S shares all the states with MS , the

state transformation from MS to M ′
S is trivially an identity

function (a function that maps an element to itself) on the
domain of all the states in MS. The approaches to define
quiescent states of M ′

S and the state transformation from
M ′

S to MT are the same as those in one-point adaptation.
The way M ′

S is constructed ensures that any execution
path of M ′

S is also an allowable execution path of MS , which
implies that as long as M ′

S does not cause deadlock, M ′
S

satisfies all safety and liveness constraints that MS does.
The properties we need to verify about M ′

S are that it does
not reach a deadlock state before it eventually reaches a
quiescent state, and that the adaptation model constructed
by MS , M ′

S, and MT should satisfy the global invariants.
The guided adaptation can be illustrated with the GSM-

oriented adaptive sender model. Assume the quiescent states
of the sender are identified by the adapt transition in Fig-
ure 8, which requires the inputData place to be empty and
the encodedData place to be non-empty, and the encoded
data in dataY and dataZ have already shifted one location.
The semantics of Petri nets determines that the order for
firing the send transition and shifting the data in dataY and
dataZ is non-deterministic. It might be the case that the
send transition is always fired before shifting the data, ren-
dering the quiescent states unreachable. To deal with this
problem, we construct a net N by first copying the source

seq3

decodeInput

outputData sink

[]

seq2

seq3

seq2

seq1

outputData

decodeBuffer

sink

1

bufferedData

inputData

index

i

i

receiveData

receiveData

Receiver Target Model

Receiver Source Model

[i,x,y,z,t]

index

adapt

[k,s];[k1,s1]

seq1

[k,s];[k1,s1];[k2,s2]

bufferedData

[i,x,y,z,t]

decodeBuffer

decodeInput

network

network

inputData

Figure 9: Receiver adaptation net

net, then removing the send transition from the net. Fig-
ure 10 illustrates the adaptation from the sender source net
to the sender restricted source net. The restrict transi-
tion represents a total identity function from the source to
the restricted source N . The adapt transition from N to
the target net is similar to that in Figure 8. Given the
verification we have already performed, the only additional
property we need to verify is that N will eventually reach a
quiescent state. (Note, the way N is constructed guarantees
that all other properties verified before are still valid.) We
model checked the model in Figure 10 and concluded that
the property holds.

4.3.3 Overlap adaptation
Overlap adaptation means the source and the target be-

havior overlap [20]. At point A, the target behavior starts,
and at a later point B, the source behavior stops. During
the course between A and B, the system exhibits both the
source and the target behavior. For overlap adaptation, the
source to target adaptations are accomplished by a sequence
of adaptation transitions that are performed one after an-
other. The target program starts to execute after the first
adaptive transition, and the source program completes after
the last adaptive transition. Overlap adaptation is typical
in multi-threaded programs, where different threads adapt
to the target. Each thread performs a one-point adaptation
or guided adaptation at different times, and the combined
result becomes overlap adaptation.

Overlap adaptation is more complex than one-point adap-
tation in the sense that we not only need to determine the
state transformation functions of each one-point or guided
adaptation it comprises, but also the coordination among
these adaptations. Example coordination relationships among
these adaptations include precedence relationship, cause-
effect relationship, parallel relationship, etc. The key task in
modeling overlap adaptations is to define how these multiple
adaptations should coordinate with each other in order to
satisfy global invariants. In addition to satisfying explicitly

376

gsm(x)

x

x x x

z

x

y

[i,x,y,z]

readData inputData

dataX

index

dataSource
x[i,x,y,z]

0

i

encodedData sendencode

0 network

1

i+1

shiftYdataYshiftX dataZ

gsm(x)

x

x x x x

z

x

y

inputData

dataX

dataSource
x[i,x,y,z]

0

i

encodedDataencode

0 network

1

i+1

shiftYdataYshiftX dataZ

Sender Source Model

index

x

x

x

readData

restrict

Sender Restricted Model (N)

Figure 10: Sender restricted source net

specified global invariants, an adaptive program should also
satisfy an adaptation integrity constraint : Once the adap-
tation starts, it should complete, i.e., the adaptation
should finally reach a state of the target program. Viola-
tions of this constraint result in an inconsistent state of the
program that is not designed for the target domain, and we
have no means to ensure its correctness.

The example shown in Figures 8, 9, and 10 is, in fact, an
entire model with overlap adaptation. After the sender has
adapted to the target domain, the receiver still remains in
its source domain. The adaptation starts when the sender
adapt transition is fired, and ends when the receiver adapt
transition is fired. The adaptation of the sender and the
receiver has a cause-effect relationship: The receiver’s adap-
tive transition is triggered by a packet sent by the adapted
sender. By composing the sender and the receiver adapta-
tion as an overlap adaptation, we are able to specify the
following two additional constraints:

• GSM example loss-tolerance global invariant:
The adaptive program should tolerate 2-packet loss
throughout its execution. In LTL,

(�lossCount <= 2) → (�¬lose(x))

We used model checking to verify this property successfully.

• GSM example adaptation integrity constraint:
If the sender adaptive transition is fired, then the re-
ceivers’s adaptive transition will also eventually be fired.
In LTL,

�(senderAdapted → ♦receiverAdapted)

We found errors when model checking the adaptation in-
tegrity constraint. By inspecting the counter example, we
realized that in a rare case, if all the packets after the
sender’s adaptation are lost, then the receiver will not re-
ceive any packet encoded by the target sender, and thus the
receiver will not adapt. We revised the model by using a re-
liable communication channel to send the first packet after
sender adaptation, so that the receiver will be guaranteed

to receive the packet. Note that it is generally possible to
build a reliable communication channel on top of unreliable
underlying infrastructure by using acknowledgement-based
protocols. Using it to send audio-stream would incur a per-
formance penalty. However, the penalty is negligible, if we
use it to send only critical packets occasionally. We reran the
model checking for the revised model against the adaptation
integrity constraint and the result showed that the adapta-
tion indeed runs to completion with the revised model.

4.4 Discussion
As described in Section 3, depending on the perspective

and the level of abstraction in which the developers are inter-
ested, a source program, a target program, or an adaptation
set may be adaptive itself. The above specification technique
may be applied recursively to specify the internal structure
of a program or an adaptation set. For the GSM-oriented
protocol example, we may apply guided adaptation for the
sender and one-point adaptation for the receiver, resulting
in a more complex adaptation scenario.

For a general adaptive program with multiple programs
and adaptation sets, we first divide the program into a num-
ber of simple adaptive programs, then specify each simple
adaptive program individually. In our approach, we ver-
ify the global invariants for each simple adaptive program.
We expect the global invariants to hold for all executions,
including those with multiple occurrences of adaptations.
We can prove that this is the case for all point safety and
point liveness LTL formulae and their propositional compo-
sitions [24]. A point safety formula has the form �¬η where
η is a point formula [25], i.e., a formula without temporal op-
erators. A point liveness formula has the form �(α → ♦β),
where both α and β are point formulae. The global in-
variants discussed in this paper are all point liveness, point
safety properties, or their propositional compositions.

5. REIFYING THE MODELS
An adaptive model is an abstraction of an adaptive pro-

gram in the sense that a model is a projection of the pro-
gram behavior on an interesting alphabet (i.e., transitions);
it represents a partial view of a program in which we are in-
terested. We explain this idea with the GSM-oriented audio
streaming example. From the models we have built, we can
identify four different programs (Figure 11): the source and
the target programs PS and PT , and two intermediate pro-
grams P1 and P2. The model in Figure 8 describes the adapt
sender adaptation projected onto the sender. The model in
Figure 9 describes the adapt receiver adaptation projected
onto the receiver. The model in Figure 10 describes the
restrict sender adaptation projected onto the sender.

source
sender

source
receiver

restricted
sender

source
receiver

target
sender

source
receiver

target
sender

target
receiver

restrict
sender

adapt
sender

adapt
receiver

TP1P 2PSP

Figure 11: An adaptive program state machine

This section introduces Step (6), the approach to generate
executable prototypes and develop code based on the models
constructed in the previous section with the assistance of the
Renew tool suite [16].

377

5.1 Rapid Prototyping
Renew [16] supports the specification of implementation-

specific (Java) code in its transition inscriptions. When a
transition is fired, the code associated with the transition
will be executed. Model-driven approaches make the model
in charge of the sequence in which the transitions are fired.
By using this mechanism, we can generate rapid prototypes
directly from the adaptive models, whose behavior has been
verified. We map each transition to a Java function call,
whose functionality is manually generated based on the in-
put/output places, guard conditions, and other inscriptions
of the transition. The adapt transition is mapped to an
adapt function, which implements the necessary state trans-
formation. The transition does not put any constraint on
how the adapt function should be implemented. It could
replace an old object representing the source program with
a new object representing the target program, and transfer
the state from the old object to the new object. Or alter-
natively, it could directly update the state of the object for
the source program. In our implementation, we chose to use
replacement of objects to achieve the adaptation.

Following the procedure introduced above, we have built
the rapid prototype for the adaptive sender and adaptive
receiver in Java, and executed the application. The trans-
formation from the model to the prototype required a small
amount of effort when compared to the time we spent to
specify and verify the models. We have tested the execution
results, and the rapid prototype executed as expected.

5.2 Model-Based Testing
Given the rapid prototype generated previously, the adap-

tive program can be easily designed and implemented. After
the program is carefully implemented, we should ensure that
the program is implemented correctly, i.e., it is a refinement
of the models. The program should satisfy the following
conformance constraints with the models:

1. Each transition in the model should have a correspond-
ing handler function in the implementation.

2. The sequence in which the handler functions are called
should be an allowable transition sequence (i.e., an ex-
ecution) of the Petri nets model.

The first constraint can be easily verified syntactically. The
second conformance constraint can be ensured by model-
based testing techniques [26]. We use the synchronous com-
munication channel mechanism for Java provided by Renew
to invoke transitions in Petri nets: A transition is fired when
it is invoked through the communication channel and it is
enabled. We add an invocation of each transition of the Petri
nets to the Java handler function of that transition. When
the Java function is executed, the corresponding Petri net
transition will be invoked as well. If the transition is also
enabled at the time it is invoked , then the transition will
be successfully fired, otherwise, deadlock will occur. When
the Java program is executed, if the sequence in which these
handler functions are invoked is an allowable sequence of
the Petri nets, then the execution will complete successfully,
otherwise, it will deadlock. With this approach we can test
the conformance between the executions of the Java imple-
mentation and that of the Petri net models.

6. MODELING WITH OTHER LANGUAGES
Each different modeling language is more suitable for cer-

tain types of tasks than others. Based on the target tasks
at hand, we may choose one language over another. For
example, we chose Petri nets as the modeling language in

this paper because it is most suitable to model the GSM-
oriented audio streaming protocol, and that it has good tool
support. Our proposed modeling approach is intended to
be generally applicable to other state-based modeling lan-
guages. In this section, we briefly introduce the key steps
to apply our technique to two other representative modeling
languages: Z and UML state diagrams.

Z [27] is a model-based language that is well-suited for
modeling abstract data. We can consider a Z model as a
state machine where states are specified by schemas that
describe abstract states, and transitions are specified by
schemas that describe operations. Z can model adaptive
programs that involve complex data operations, especially
complex state transformation functions. To apply our mod-
eling approach to Z, we first build a Z model for each exe-
cution domain of the program that satisfies the given high-
level requirements. Then we define the adaptation from one
domain to another with a set of “adapt” schemas, each of
which defines a set of quiescent states and a state transfor-
mation function from these states. We have applied Z to
the specification of the buffer operations of the sender and
the receiver during adaptation in the GSM-oriented audio
streaming protocol.

UML [28] is widely considered the de facto modeling lan-
guages in software industry due to its intuitive representa-
tion. We also applied our approach to UML state diagrams
to specify the behavior of programs. We use a state dia-
gram to specify the program behavior in each domain. Note
that for a state diagram comprising concurrent partitions,
a program state is represented by a set of states in the di-
agram. Therefore, we define the notion of quiescent state
cut to represent a set of states that identify the program
state in a state diagram suitable for adaptation. Then we
define “adapt” transitions that connect a set of state cuts of
one diagram to a set of state cuts of another to specify the
adaptations among two different domains.

After the models are created, we can use existing tools
to reason about the models for correctness properties. The
analyses and model reification introduced in this paper may
or may not apply to a specific modeling language of choice
because they are supported and limited by available tool
suites, which is beyond the scope of this paper.

7. RELATED WORK
The work presented in this paper has been significantly

influenced by several related projects on formally specify-
ing adaptive program behavior with process algebraic lan-
guages. For example, Kramer and Magee [10] have used
Darwin to describe the architectural view and used FSP (a
process algebraic language) to model the behavioral view of
an adaptive program. They used property automata to spec-
ify the properties to be held by the adaptive program and
used LTSA to verify these properties. A quiescent state in
their approach refers to the state in which the component to
be changed is in a passive state, and all communication with
the component initiated by other components have com-
pleted. Their work highlighted the importance of identifying
the states in which adaptation may be correctly performed,
and it provided insight into how to use model checking to
verify adaptation correctness. Allen et al [9] integrated the
specifications for both the architectural and the behavioral
aspects of dynamic programs using the Wright ADL. They
use two separate component specifications to describe the
behavior of a component before and after adaptation and
encapsulate the dynamic changes in the “glue” specifica-
tion of a connector, achieving separation of concerns. The
Wright specification can be converted into the process alge-
braic language, CSP [29], which can then be statically ver-

378

ified. Canal et al [11] used LEDA, an ADL that supports
inheritance and dynamic reconfiguration, to specify dynamic
programs. LEDA is based on the π-calculus, a simple, but
powerful process algebra. The richer, more expressive na-
ture of the π-calculus enables modelers to express dynamic
component connections more easily when compared to CSP-
based approaches. It is also possible to derive prototypes
and interfaces from the specification automatically.

Below are some of the key differences when comparing
the above approaches to the one presented in this paper.
(1) The above approaches do not take into consideration
the impact of adaptation mechanisms when defining qui-
escent states, nor do they evaluate the quiescent states in
the contex of global, high-level requirements. (2) None of
the above approaches support state transfer, which makes it
necessary for the programs to wait or even be blocked until
a quiescent state is reached. (3) The specifications for adap-
tive behavior are still entangled with the specifications for
non-adaptive behavior in the sense that the quiescent states
for adaptations are specified as part of the source specifi-
cations, instead of as part of the adaptation specifications.
(4) The adaptive actions in all three approaches are simple
actions. None of the above approaches has considered the
coordination among concurrent adaptive actions. (5) The
above techniques are specific to the type of formalism being
used (process algebra), making them potentially difficult to
be generalized to other types of formalisms.

Many efforts in the Software Engineering and Network
Systems (SENS) Laboratory at Michigan State University
have explicitly addressed the correctness issue of software
adaptation. As part of the RAPIDware project [30], we
recently introduced a general, efficient, algorithm [31] that
manages a safe dynamic adaptation process and handles fail-
ures that might occur during the adaptation with a rollback
mechanism. Also, as part of the RAPIDware project, Kulka-
rni et al. [32] proposed an approach to safely compose dis-
tributed fault-tolerance components at run time. In more
recent work [33], they introduced a transitional-invariant
lattice technique. They used theorem proving techniques
to show that during and after an adaptation, the adaptive
program is always in correct states in terms of satisfying the
transitional-invariants.

Other dynamic adaptation techniques have also explicitly
addressed correctness issues. C2 [7] is an architectural style
proposed by Taylor et al. They also developed ArchStu-
dio [6], a management tool for dynamic C2 style software
evolution. Cactus [34] is a system for constructing highly
configurable distributed services and protocols. In Cactus,
a host is organized hierarchically into layers where each layer
includes many adaptive components. Chen et al. [34] pro-
posed a graceful adaptation protocol that allows adaptations
to be coordinated across hosts transparently to the appli-
cation. Appavoo et al. [35] proposed a hot-swapping tech-
nique, which refers to run-time object replacement. In their
approach, a quiescent state of an object is the state in which
no other process is currently using any function of the ob-
ject.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed a model-driven software

development process for dynamic programs. The process
focuses on behavioral modeling. We described the rela-
tionships among three different levels of system abstrac-
tion: high-level requirements, state-based models for adap-
tive components, and low-level implementation. We intro-
duced a technique for creating adaptive models based on
high-level requirements, as well as verifying and validating
the adaptive models. Furthermore, we described how to use
these models to generate executable adaptive programs.

Compared to other process algebra-based approaches [9,
10, 11], our approach has several advantages. First, we de-
fine the quiescent states in the context of the source/target
behavior, adaptation state transformation function, and the
global invariants. Second, our approach is capable of ex-
pressing adaptations with state transformation, allowing more
flexible adaptations. In our approach, we analyze the speci-
fication for different adaptation semantics, including overlap
adaptation, which specifically deals with the coordinations
among parallel adaptations. Third, we specify separately
the program behavior before, during, and after adaptation.
Also, as we believe that quiescent states should be a feature
of adaptation, rather than a feature of the source program,
we allow the adaptation specification to select the source
states from which to adapt and to which target states to
adapt. Finally, our approach is fairly general and can be
instantiated in terms of several different formalisms.

The running adaptive example had been originally devel-
oped in our lab without the proposed approach. After ap-
plying our approach to the example, we found the problem
to be significantly better understood by the developers and
the design to be clearer. Our approach significantly reduced
the developer’s burden by separating different concerns and
utilizing automated model construction and analysis tools,
thereby improving both the development time and reliabil-
ity.

Several issues require further investigations. (1) An adap-
tive program with N different steady-state behaviors poten-
tially has N2 different ways of adaptation. Our approach
requires each adaptation to be individually modeled and
verified, which may be expensive when N is large. This
problem is shared by the other three process algebra-based
approaches. We are investigating approaches to reduce the
verification cost by reuse and modularization [36, 37, 38].
(2) Unlike the other three process algebra-based approaches,
our approach only focuses on the behavioral aspect of adap-
tive programs. We also realize the importance of expressing
adaptations at the architectural level. We believe an in-
tegration of our approach with an appropriate ADL repre-
sentation will provide a more comprehensive solution to the
structural and behavioral development of dynamic adaptive
programs. (3) The features of our approach are supported
by different tool suites. We would like to build an integrated
environment that coordinates different tools to support our
approach.

Acknowledgements
The authors gratefully acknowledge members of the Soft-
ware Engineering and Network Systems Laboratory at Michi-
gan State University who contributed to this work. We espe-
cially appreciate the feedback on this paper from Philip K.
McKinley, Min Deng, Kurt Stirewalt, and Ali Ebnenasir.
In addition, we appreciate Zhinan Zhou’s efforts in pro-
viding the motivating example and helping to validate our
technique. This work has been supported in part by NSF
grants EIA-0000433, EIA-0130724, ITR-0313142, and CCR-
9901017, and the Department of the Navy, Office of Naval
Research under Grant No. N00014-01-1-0744.

9. REFERENCES
[1] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. C.

Cheng, “Composing adaptive software,” IEEE Computer,
vol. 37, no. 7, pp. 56–64, 2004.

[2] J. Bradbury, J. Cordy, J. Dingel, and M. Wermelinger, “A
survey of self management in dynamic software architecture
specifications,” in Proc. of the ACM SIGSOFT
International Workshop on Self-Managed Systems
(WOSS’04), (Newport Beach, California), pp. 28–33,
October/November 2004.

379

[3] D. L. Métayer, “Software architecture styles as graph
grammars,” in Proceedings of the 4th ACM SIGSOFT
symposium on Foundations of software engineering,
pp. 15–23, ACM Press, 1996.

[4] G. Taentzer, M. Goedicke, and T. Meyer, “Dynamic change
management by distributed graph transformation: Towards
configurable distributed systems,” in Selected papers from
the 6th International Workshop on Theory and Application
of Graph Transformations, pp. 179–193, Springer-Verlag,
2000.

[5] D. Hirsch, P. Inverardi, and U. Montanari, “Graph
grammars and constraint solving for software architecture
styles,” in Proceedings of the third international workshop
on Software architecture, pp. 69–72, ACM Press, 1998.

[6] P. Oreizy, N. Medvidovic, and R. N. Taylor,
“Architecture-based runtime software evolution,” in
Proceedings of the 20th international conference on
Software engineering, pp. 177–186, IEEE Computer
Society, 1998.

[7] R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J.
Whitehead, Jr., and J. E. Robbins, “A component- and
message-based architectural style for GUI software,” in
Proceedings of the 17th international conference on
Software engineering, pp. 295–304, ACM Press, 1995.

[8] J. Kramer, J. Magee, and M. Sloman, “Configuring
distributed systems,” in Proceedings of the 5th workshop on
ACM SIGOPS European workshop, pp. 1–5, ACM Press,
1992.

[9] R. Allen, R. Douence, and D. Garlan, “Specifying and
analyzing dynamic software architectures,” in Proceedings
of the 1998 Conference on Fundamental Approaches to
Software Engineering (FASE’98), (Lisbon, Portugal),
March 1998.

[10] J. Kramer and J. Magee, “Analysing dynamic change in
software architectures: a case study,” in Proc. of 4th IEEE
international conference on configuratble distributed
systems, (Annapolis), May 1998.

[11] C. Canal, E. Pimentel, and J. M. Troya, “Specification and
refinement of dynamic software architectures,” in
Proceedings of the TC2 First Working IFIP Conference on
Software Architecture (WICSA1), pp. 107–126, Kluwer,
B.V., 1999.

[12] Z. Zhou, P. K. McKinley, and S. M. Sadjadi, “On
quality-of-service and energy consumption tradeoffs in
fec-encoded wireless audio streaming,” in Proceedings of the
12th IEEE International Workshop on Quality of Service
(IWQoS 2004), (Montreal, Canada), June 2004. best paper
award.

[13] C. A. Petri, Kommunikation mit A utomaten. PhD thesis,
Sehriften des Institutes fiir instrumentelle Mathematik,
Bonn, Germany, 1962.

[14] J. L. Peterson, “Petri nets,” ACM Comput. Surv., vol. 9,
no. 3, pp. 223–252, 1977.

[15] M. Mäkelä, “Maria: Modular reachability analyser for
algebraic system nets,” in ICATPN ’02: Proceedings of the
23rd International Conference on Applications and Theory
of Petri Nets, (London, UK), pp. 434–444, Springer-Verlag,
2002.

[16] O. Kummer and F. Wienberg, “Renew - the reference net
workshop,” in In Tool Demonstrations, 21st International
Conference on Application and Theory of Petri Nets,
(Aarhus, Denmark), pp. 28–30, 2000.

[17] J.-C. Bolot and A. Vega-Garcia, “Control mechanisms for
packet audio in the internet,” in Proceedings of IEEE
INFO-COM96, (San Francisco, California), pp. 232–239,
1996.

[18] O. Lichtenstein and A. Pnueli, “Checking that finite state
concurrent programs satisfy their linear specification,” in
Proceedings of the 12th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages,
pp. 97–107, ACM Press, 1985.

[19] D. M. Berry, B. H. Cheng, and J. Zhang, “The four levels
of requirements engineering for and in dynamic adaptive
systems,” in Proc. of 11th International Workshop on
Requirements Engineering: Foundation for Software
Quality, (Porto, Portugal), June 2005.

[20] J. Zhang and B. H. Cheng, “Specifying adaptation
semantics,” in Proceedings of ICSE 2005 Workshop on

Architecting Dependable Systems, (St. Louis, Missouri),
May 2005.

[21] A. Lapouchnian, S. Liaskos, J. Mylopoulos, and Y. Yu,
“Towards requirements-driven autonomic systems design,”
in Proceedings of ICSE 2005 Workshop on Design and
Evolution of Autonomic Application Software, (St. Louis,
Missouri), May 2005.

[22] A. van Lamsweerde, “Goal-oriented requirements
engineering: A guided tour,” in Proceedings of the 5th
IEEE International Symposium on Requirements
Engineering, p. 249, IEEE Computer Society, 2001.

[23] M. B. Dwyer and C. S. Pasareanu, “Filter-based model
checking of partial systems,” in SIGSOFT ’98/FSE-6:
Proceedings of the 6th ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
pp. 189–202, ACM Press, 1998.

[24] J. Zhang and B. H. Cheng, “Model-based development of
dynamically adaptive software,” Tech. Rep.
MSU-CSE-05-24, Computer Science and Engineering,
Michigan State University, East Lansing, Michigan,
September 2005.

[25] H. Bowman and S. J. Thompson, “A tableaux method for
Interval Temporal Logic with projection,” in
TABLEAUX’98, International Conference on Analytic
Tableaux and Related Methods, no. 1397 in Lecture Notes
in AI, pp. 108–123, Springer-Verlag, May 1998.

[26] A. Pretschner, “Model-based testing,” in ICSE ’05:
Proceedings of the 27th international conference on
Software engineering, (New York, NY, USA), pp. 722–723,
ACM Press, 2005.

[27] B. Potter, J. Sinclair, and D. Till, An introduction to
Formal Specification and Z. Prentice Hall International
(UK) Ltd, 1991.

[28] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified
Modeling Language reference manual. Addison-Wesley,
1999.

[29] C. A. R. Hoare, Communicating sequential processes.
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1985.

[30] “RAPIDware.” http://www.cse.msu.edu/rapidware/.
[31] J. Zhang, Z. Yang, B. H. Cheng, and P. K. McKinley,

“Adding safeness to dynamic adaptation techniques,” in
Proceedings of ICSE 2004 Workshop on Architecting
Dependable Systems, (Edinburgh, Scotland, UK), May
2004.

[32] S. S. Kulkarni, K. N. Biyani, and U. Arumugam,
“Composing distributed fault-tolerance components,” in
Proccedings of the International Conference on Dependable
Systems and Networks (DSN), Supplemental Volume,
Workshop on Principles of Dependable Systems,
pp. W127–W136, June 2003.

[33] S. Kulkarni and K. Biyani, “Correctness of
component-based adaptation,” in Proceedings of
International Symposium on Component-based Software
Engineering, May 2004.

[34] W.-K. Chen, M. A. Hiltunen, and R. D. Schlichting,
“Constructing adaptive software in distributed systems,” in
Proc. of the 21st International Conference on Distributed
Computing Systems, (Mesa, AZ), April 16 - 19 2001.

[35] J. Appavoo, K. Hui, C. A. N. Soules, et al., “Enabling
autonomic behavior in systems software with hot
swapping,” IBM System Journal, vol. 42, no. 1, p. 60, 2003.

[36] S. Krishnamurthi, K. Fisler, and M. Greenberg, “Verifying
aspect advice modularly,” in SIGSOFT ’04/FSE-12:
Proceedings of the 12th ACM SIGSOFT twelfth
international symposium on Foundations of software
engineering, (New York, NY, USA), pp. 137–146, ACM
Press, 2004.

[37] T. A. Henzinger, R. Jhala, R. Majumdar, and M. A.
Sanvido, “Extreme model checking,” Verification: Theory
and Practice, Lecture Notes in Computer Science 2772,
Springer-Verlag, pp. 332–358, 2004.

[38] M. Mäkelä, “Model checking safety properties in modular
high-level nets,” in Application and Theory of Petri Nets
2003, 24th International Conference, ICATPN 2003
(volume 2679 of Lecture Notes in Computer Science),
(Eindhoven, The Netherlands), pp. 201–220,
Springer-Verlag, June 2003.

380

