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Résumé — Système de diagnostic d’un pilote de FCC à base de modèles — Cet article présente le
système de diagnostic ASCO (Aide à la supervision et à la conduite des opérateurs) développé par l'IFP
et testé hors ligne sur un pilote de FCC (Fluid Catalytic Cracking). Il fait successivement appel à quatre
modules complémentaires. Ces derniers permettent, à partir d’un ensemble d’informations, de fournir aux
opérateurs un message indiquant la panne et ses conséquences. Le premier module permet de générer un
modèle causal quantitatif de bon fonctionnement du procédé. Le second module effectue la détection de
défauts : il déclenche des alarmes à partir des observations. Ces alarmes sont ensuite traitées par le
module de localisation (algorithme de hitting set) qui élabore une liste de composants physiques
suspectés défaillants. Enfin, la connaissance des experts sur ces composants est traitée automatiquement
par le module d’identification qui renvoie un message à l’opérateur. Ce message décrit la défaillance, les
actions à entreprendre pour traiter l’opération ou pour la maintenance à effectuer, et les répercussions de
la défaillance sur le procédé. Les résultats obtenus sont illustrés par quatre scénarios réels de mauvais
comportement. Ce travail a été mené dans le cadre du projet européen CHEM.

Abstract — Model Based Diagnostic Module for a FCC Pilot Plant — This paper presents a diagnostic
module developed by IFP and tested off-line on a FCC (Fluid Catalytic Cracking) pilot plant. The
method uses four successive complementary techniques. They enable to go step by step from the
observations to a sentence in natural language describing the faults. First, a quantitative causal model is
elaborated from a quantitative behavioural model. Causality is obtained from the structure of each
equation. Then, global and local alarms are generated using residuals (differences between measures
and outputs of the model) and fuzzy logic reasoning. Then, a hitting set algorithm is applied to determine
sets of components or equipment which are suspected to have an abnormal behaviour. Finally, expert
human operator knowledge about those components is used to identify the fault(s) and produce messages
for the operators. This software is currently tested off-line on the FCC pilot plant at IFP. The
performance of the diagnostic module is illustrated on four practical scenarios of abnormal behaviour.
This work is conducted as part of the CHEM EC funding project.
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NOMENCLATURE

CMS: Causal Model Structure

FCC: Fluid Catalytic Cracking

FDI: Fault Detection and Isolation

SCADA: System of Control And Data Acquisition

SRM: Structural Relation Model.

INTRODUCTION

Nowadays, process supervision is mainly performed by
operators. The process is usually controlled with a SCADA
involving an operator interface and an automatic shut down
emergency system. Due to the increasing size and complexity
of processes, the understanding of faults and their propagation
becomes more and more difficult. Therefore, it is essential to
develop new computer tools that are able to detect faults, to
isolate damaged equipment and to decide on accommodation
and reconfiguration control strategies to deal with altered
situations (Isermann and Ballé, 1997; Travé-Massuyès and
Gentil, 1999; Blanke et al., 2003). As the aim of these tools is
to help operators in their daily decisions, they must be
designed with the scope of human-machine cooperation.

A Fluid Catalytic Cracking (FCC) unit is a refinery
process which receives multiple feeds consisting of low
value, high boiling point feedstocks. The FCC cracks these
streams into valuable components such as gasoline and
diesel. The FCC is extremely efficient with only about 5% of
the feed used as fuel in the process. 

Fluid catalytic cracking continues to play a key role in an
integrated refinery as the primary conversion process. For
many refiners, the cat cracker is the key to profitability in that
the successful operation of the unit determines whether or not
the refiner can remain competitive in today’s market.
Approximately 350 cat crackers are operating worldwide,
with a total processing capacity of over 12.7 Mbbl/d (Raider
and Mari Lyn, 1996).

For this process, reliability is required to allow long-term
operation between maintenance shutdowns (every 3-5 years
typically). As much as 4000 t/h of hot catalyst is transported
in the FCC system at up to 20-30 m/s, thereby requiring a
robust process and mechanical design. Good unit operation
and performance must be achieved to justify the refiner’s
investment and to minimise short payout times imposed by
business aspects. Diagnostic tools must then be developed
in order to improve the reliability and to prevent from
shutdowns.

Normal operating condition models are now commonly
used for fault detection (Frank and Ding, 2000). However,
for complicated processes, obtaining such a model may be
tricky. Two types of models are generally developed for
industrial plants. 

1. Material or energy balances established from process
block diagrams and flowsheets that integrate operator
knowledge of production rules. They are written from a
production management standpoint and thus implement
shop-scales balances. 

2. Complex, partial derivative non-linear analytical equations
that are written by physicists. They are developed to
obtain load diagrams or to build training simulators. They
are not often available for real processes.
These two kinds of models are conceived for purposes

other than supervision. Classic FDI (Fault Detection and
Isolation) used in automatic control—generalised parity
space, dedicated observers scheme or parameter estimation
(Frank, 1990, 1991; Patton and Chen, 1991; Isermann,
1993)—are poorly suited to this type of representation.
Classic diagnostic techniques for industrial processes are
generally based on state variable representation and thus are
not adapted to the supervision of a complete facility because
of their constraining formalism and global analytical
processing.

Moreover, keeping in mind that the objective of the model
is diagnosis, specific modelling methods must be applied. It
is commonly accepted that humans often refer to causal
mental models for supporting explanation tasks and diagnosis
(Rasmussen, 1993). An advantage of causal diagnostic
computer tools to support human based supervision is their
intrinsic explanatory capacity (Evsukoff et al., 2000) related
to the match of the model with human mental representation
structures. The causal model captures the influences between
the variables of a process and supports qualitative and
quantitative knowledge that can be interpreted by a
diagnostic module. In particular, each influence is labelled in
terms of physical component(s) of the process, which
establishes a link between behavioural knowledge and
hardware (Travé-Massuyès et al., 2001). 

In the area of automatic control, change/fault detection
and isolation problems are known as model-based FDI.
Relying on an explicit model of the monitored plant, all
model-based FDI methods (and many of the statistical
diagnostic methods) require two steps. The first step
generates inconsistencies between the actual and expected
behaviour. Such inconsistencies, also called residuals, are
“artificial signals” reflecting the potential faults of the
system. The second step chooses a decision rule for
diagnosis. The check for inconsistency needs some form of
redundancy. There are two types of redundancies, hardware
redundancy and analytical redundancy. The former requires
redundant sensors. It has been utilised in the control of such
safety-critical systems as aircraft space vehicles and nuclear
power plants. However, its applicability is limited due to the
extra-cost and additional space required. On the other hand,
analytical redundancy (also termed functional, inherent or
artificial redundancy) is achieved from the functional
dependence among the process variables and is usually
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provided by a set of algebraic or temporal relationships
among the states, inputs and outputs of the system. The
essence of analytical redundancy in fault diagnosis is to
check the actual system behaviour against the system model
for consistency. Any inconsistency expressed as residuals,
can be used for detection and isolation purposes. The
residuals should be close to zero when no fault occurs but
show “significant” values when the underlying system
changes. The generation of the diagnostic residuals requires
an explicit mathematical model of the system.

This paper presents a method which relies on analytical
redundancy in order to detect, isolate and identify faults in a
FCC pilot plant. This case study is chosen to evaluate the
practical feasibility of the approach in terms of speed,
accuracy, and computational complexity not only because it
is a highly nonlinear, strongly coupled, multivariable system
but also because it has a significant economic impact. 

Our method uses four successive complementary
techniques (Cauvin and Celse, 2004a, Cauvin and Celse,
2004b). They enable to go step by step from the observations
to a sentence in natural language describing the faults:
– Modelling: A quantitative causal model is elaborated

from a dynamic behavioural model of the process. This
model can be used around one steady state. It describes
quantitatively the influences among process variables. A
possible representation of a causal model is a causal graph
made of nodes and directed arcs. Nodes represent
variables and arcs represent influences among variables.
The information carried by the arcs is quantitative: gains
for a static representation or transfer functions to take time
into consideration (Leyval et al., 1994; Travé-Massuyès
et al., 2001). 

– Detection: The model is used to calculate two references:
given a variable x that influences a variable y, values for y
can be generated either based on a model value for x
(global reference) or based on a measured value for x
(local reference). Values are propagated from node to
node easily. The global reference indicates the consistency
of the variables regarding exogenous variables (set-points,
disturbances, etc.). The local reference indicates the
coherency regarding a local environment. Comparing
measures with these references, the fault detection module
determines whether measured variables have an abnormal
behaviour or not (analytical redundancy). Alarms are
generated using fuzzy logic.

– Isolation: The set of components associated to edges
connected to variables which have an abnormal behaviour,
known as conflicts, are interlined to determine the subsets
of physical components that behave abnormally, i.e. the
diagnoses.

– Identification: Each component is associated with semi-
qualitative models of its abnormal behaviour obtained
from the operator expert knowledge and expressed in the
form of a fault/symptom tree. When a component is

suspected by the isolation module, its fault/symptom tree
is activated, symptoms are qualified by a signal analysis,
faults and possible actions are identified and suggested to
the operators.
The paper is organised as follows.

– Section 1 presents the causal modelling approach;
– Section 2 details the diagnostic module. It can be divided

into three sub-modules for fault detection, isolation and
identification;

– Section 3 presents several scenarios obtained with the
FCC pilot plant.

1 CAUSAL MODELLING 

The aim of this section is to present how to obtain the
quantitative causal graph. This model will be used in order
to calculate references for the process which will be used by
the detection module (cf. 2.1).

1.1 Description of the Modelling Approaches

1.1.1 Principles

The basic structure underlying a causal model is a directed
graph1, named the causal graph. The causal graph is made
up of a set of nodes V and a set of directed arcs I. Nodes
represent variables and arcs represent influences among the
variables. 

Graphs are a powerful mathematical tool (Murota, 1991)
and have been used since the eighties to represent physical
system properties. State-space representations of linear
structured systems, for instance, can be easily transformed
into a graph. The classical system properties, useful for
control, such as controllability, finite and infinite zero
structure, disturbance rejection and so on, can be expressed
in graph theoretic terms. The most important results are
summarised in the recent survey paper (Dion et al., 2003). In
these control approaches, the state-space representation of
the system is given, and the graph is generated easily: nodes
correspond to state variables and edges are associated to the
non zero parameters in the state and input matrices.

The problem which is solved in this paper is different
since the model of the system is not assumed to be structured
as a state-space representation. This work consists precisely
in finding the model’s structure from the set of non ordered
relations, and expressing it as a graph. Even though the
model’s structure is intended to be used for diagnostic
purposes, the model that we consider represents the normal
behaviour. The relations thus describe the normal operating
behaviour of the components. Qualitative digraphs have been
used first by Kramer and Palowitch (1987) and after that by 

(1) Other equivalent representational forms could be used, such as an
incidence matrix.
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other authors (see for instance Maurya et al., 2003, for a
recent work) for fault detection. The arcs contain knowledge
about the signs of the influences, from which propagation of
faults is deduced (too high or too low variables’ values). This
approach was extended to batch processes. Here, the model is
dynamic and quantitative. 

There are various types of knowledge sources that can be
used to obtain a causal graph for a given process. The first is
the empirical knowledge of operators and experts of the pro-
cess behaviour. This type of knowledge is difficult to extract
and to formalise (Heim et al., 2001; Leyval et al., 1994). It is
subjective, as it is related to the experts’ point of view. It is
difficult to guarantee its completeness. The second is related to
the description of the process by a set of differential-algebraic
equations that define its behaviour. Using these equations, the
causal graph is generated automatically (Travé-Massuyès and
Pons, 1997; Travé-Massuyès and Dague, 2003). Obtaining
this kind of knowledge involves all the difficulty of physical
modelling and needs further processing to generate the causal
graph. This point is developed in this section.

1.1.2 Generation of the Causal Graph

In this paper, the causal ordering framework of Iwasaki and
Simon (1986) later extended within a graph theoretic frame-
work (Porte et al., 1988) and in (Travé-Massuyès and Pons,
1997) for multiple mode systems has been adopted, due to its
practical feasibility. This approach makes the most of its
advantage by operating from the equations structure, hence
only requiring a structural relation model (SRM) as initial
knowledge.

In the causal graph, a set of influences from variables
vi, …, vn to variable y mean that a relationship r(vi, …, vn, y)
exists between these variables and that this relationship is
expressed in such a way that y is computed from vi, …, vn
values. A causal model can contain further qualitative and
quantitative information. In the proposed approach, each
influence is labelled with the physical components that
underlie the relationship, called the influence/relation support
(Cordier et al., 2000). This provides the causal model
structure. 

The three following properties are commonly accepted to
characterise causality:
– necessity (effects have unique causes);
– locality (the effect is structurally close from the cause);
– temporality (the cause precedes the effect).

Consequently, causality appears naturally in differential
or difference equations in canonical form (Travé-Massuyès
and Dague, 2003), i.e.:

for which it is commonly accepted that the left-side variable
is causally dependent on the right side variables. This choice
is not arbitrary, but is due to physical considerations. The

same reasoning can be made for relations containing delays.
If a variable V influences a variable Y with a delay d, then Y
is causally dependent on V. The difficulty comes from the
algebraic equations that can give rise to algebraic loops and
lead to non deterministic causal ordering. 

Providing a full presentation of the theory is not the
intention of this section, but rather explaining the different
steps of the method using the following example. 

Let’s consider a set of equations E, of variables V. A
variable is exogenous to a system Σ if it cannot be described
with the help of the other variables of Σ. A variable that is not
exogenous is endogenous and belongs to the set Vendo:

These equations constitute the Structural Relation Model
(SRM). Five steps are necessary to produce the Causal
Model Structure CMS from the previously obtained
structural relation model (SRM). They are illustrated on the
previous example by Figure 1.

The first step consists in generating a preliminary bipartite
graph. A bipartite graph is an undirected graph in which
nodes can be divided into two sets such that no edge connects
nodes within the same set. Here, the two sets are the set of
equations E and the set of variables V. The bipartite graph
G = (V ∪ E, A) is hence defined, in which a non-directed-
edge A(Vi, ej) between Vi and ej exists if, and only if, the
variable Vi is involved in equation ej: Vi ∈ Var(ej) (Fig. 1a).

Figure 1

Bipartite and directed graphs. (a) Bipartite graph; (b) Just-
determined bipartite graph; (c) Edges of (b) belonging to the
perfect matching; (d) Perfect-matching; (e) Directed graph.

IdV1
V1V1

e2

e3

e4

IdV1
V1 IdV1

V1 IdV1
V1

IdV2
V2V2 IdV2

V2 IdV2
V2 IdV2

V2

e1 V3V3e1 e1 V3 e1 V3 e1 V3

e2 V4V4 e2 V4 e2 V4 e2 V4

e3 V6V6 e3 V6 e3 V6 e3 V6

e4 V5V5 e4 V5 e4 V5 e4 V5

IdV5
V7V7

(a) (b) (c) (d) (e)

IdV5
V7 IdV5

V7 IdV5
V7

E

V

Vendo

=



















= { }
=

e e V V V V

e e V V V

e e V V

e e V V V

V ,V ,V ,V ,V3 4 5 6 7

1 1 1 2 3 6

2 2 3 4 5

3 3 4 6

4 4 4 6 7

: ( , , , )

: ( , , )

: ( , )

: ( , , )

V ,V ,V ,V ,V ,V ,V1 2 3 4 5 6 7

{{ }
= { }Vexo V ,V1 2

dx

dt
f(x ,...,x )   or   x =  g(x ,  ...,  x )n 1

1 n t 1
n 1 1 n

t
+

+
+=

664



B Celse et al. / Model Based Diagnostic Module for a FCC Pilot Plant

The objective is then to determine for each equation ej
which variable is causally dependent on the other variables
involved in ej. This means that for instance an equation such
that ej(V1,V2,V3) is rearranged as following equation:

V2 = g(V1, V3...)

In this case, the variables on the right side V1 and V3 are
the direct causes of the variable on the left side V2, which
can also be interpreted as: V2’s values can be computed from
V1 and V3 values.

Causal ordering requires first of all to specify the
exogenous variables of the SRM and moreover, it requires
the SRM to be non degenerated, i.e. nE = nV and self-
contained. A system of n algebraic equations is self-
contained if any proper subset of k (k ≤ n) involves at least k
variables. This notion can be compared to the definition of a
just determined system that was introduced in (Cassar and
Staroswiecki, 1997). This constraint can be understood as
determining the number of endogenous variables that can be
computed with the model. In practice, this can be used to
draw the limits of the system and its environment, which
means that some variables need to be considered as
exogenous even if they are not so in reality. These variables
are referred to as pseudo-exogenous variables in the
following. They constitute the set Vpseudo.exo. This is an
important point for a practical application. More than one
causal graph can be built for the same SRM depending on
the choice of the pseudo-exogenous variables. If the system
is not self contained, the model has to be modified. Unger
et al. (1995) gives a structural method to obtain a feasible
model from a set of Differential Algebraic Equation (DAE).

For each exogenous or pseudo-exogenous variable in Vexo
and Vpseudo.exo, E must be increased with a so-called exoge-
nous equation which affects a constant value to the variable,
meaning that this variable is controlled by the system’s
environment. In the example, (nV = 7) ≠ (nE = 4). For real
applications, practical considerations guide the choice of
pseudo-exogenous variables. In our example, V5 is chosen
arbitrarily as a pseudo-exogenous variable. This choice has
no consequence on the methodology further developed. E is
increased by 3 exogenous equations relative to variables V1,
V2, V5 to obtain a just-determined bipartite graph Gj (see
Fig. 1b). The results presented in Figure 2 are obtained when
V5, V3, V7 (or V4 and V6) are chosen as pseudo-exogenous
variables, respectively. 

Causal ordering results from determining a perfect
matching in Gj. The perfect matching in a bipartite graph is a
set of edges such that each edge is connected to only one
node of each set of the bipartite graph and each node is
connected to only one edge. 

In the just determined bipartite graph (Fig. 1b), some
edges obviously belong to the perfect matching. For instance
when an equation involves only one variable (this is the case
for instance of the pseudo-exogenous equations) and when a 

Figure 2

Causal graph possibilities. Different cases depending on the
choice of exogenous variables.

variable is involved in only one equation (case of variable
V7) (Fig. 1c). This is also the case of dynamic relations, since
their causal interpretation is predefined, as mentioned above.

If the equation set E does not contain any algebraic loop,
then the perfect matching is unique. On the contrary, several
perfect matching exist, which will result in the different
causal interpretations around the loops. In the previous
example, considering e1, V1 and V2 as exogenous variables,
thus e1 matches V3 or V6. Considering e2, V5 is a pseudo-
exogenous variable, thus e2 matches V3 or V4. Considering
e3, e3 matches V4 or V6.

Consequently, two solutions are available. If e1 is matched
to V6, then e3 is matched to V4 and e2 to V3. If e1 is matched
to V3 then e2 is matched to V4 and e3 to V6. If e1 is matched
to V6 and e2 to V4 then no perfect matching can be found.
Figure 1d is an example of perfect matching. The Ford and
Fulkerson algorithm can be used to determine the perfect
matching (Ford and Felkurson, 1956). 

A directed graph G’ is derived from the perfect matching
in G. The edges belonging to the perfect matching are
directed from E to V. The other edges are directed from V
to E (Fig. 1e).

The causal graph Gc = (V, I) is derived from the directed
graph G′′ by aggregating the matched nodes. The causal graph
that corresponds to Figure 1e is shown in Figure 2 case 1.
Other admissible causal graphs are given in Figure 2, cases 2
to 7 (depending on the choice of pseudo-exogenous variables).

1.1.3 Suppression of Unmeasured Variables

It often happens that it is impossible to quantify each
influence of the causal graph. In such cases, the only solution
is to resort to identification methods to determine the
differential or difference relationship, which is only possible
if data are available for the variables. But the causal model
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structure contains known variables (measured variables,
controller set-points, etc.) as well as unknown variables. This
is why a reduction operation is used. It consists of
eliminating unknown variables, keeping influence of physical
components. It provides the reduced causal model (Heim,
2003). This procedure is similar to elimination theory
(Staroswiecki et al., 2001). 

1.1.4 Suppression of Negligible Variables

There may have some physical phenomena represented by
influence relations that are negligible with respect to others,
given the model objectives. The approximation operation
accounts for such situations and results in an approximated
causal model that contains only known process variables
connected by quantified relations (Heim, 2003). These
relations are transfer functions of first or second order in the
FCC case. 

1.1.5 Simulation of the Model 

For simulation purposes, the process is assumed linear
around one steady state. For example (Fig. 3), let:
– Y be an endogenous variable;
– Ui be variables which influence Y;
– Fj be the transfer function between Uj and Y.

Figure 3

Transfer functions associated with a causal graph.

The value of Y is described with the discrete transfer
functions Fj:

From this equation, a difference equation is easily deduced,
with Y 0: value of Y in the steady state and q–1: the shift
operator:

This quantitative causal graph can then be used as a
simulator around the steady state.

1.2 Example of Industrial Application

This methodology is applied on the sub-system illustrated by
Figure 4. It is the stripper and the regulated valve of the
catalyst of an FCC. The aim of the valve is to regulate the
catalyst level in the stripper.

Figure 4

Example: subsection of the FCC pilot plant.
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with:
– Sstripper: section in the stripper;
– f3: non linear function;
– F4: transfer function.

The following physical components are associated to each
equations (Table 3).

TABLE 3

Association of physical components to each equation

Equation Components

a1 Stripper pressure sensor: PT20

a2 Stripper level sensor: LT20

a3 Stripper level sensor: LT20

a4 Stripper

a5 Stripper, valve

a6 Valve, pressure drop sensor in the valve: DPT24

a7 Valve

a8 Pressure drop sensor in the valve: DPT24;

pressure sensor in the stripper: PT30

a9 Controller of the valve

The causal graph in Figure 5 is obtained (variables in a
rectangle (for example Qe_cata_stripper) are exogenous
variables, variables in an ellipse (for example DP_stripper)
are endogenous variables, measured variables (for example
L_cata_stripper) are in bold, non measured variables (for
example DP_stripper) are in white):

Non measured variables are then suppressed (cf. 1.1.3)
except exogenous variables. The causal graph in Figure 6 is
then obtained :

The following components are associated to each
influence:
– {Qe_cata_stripper → L_cata_stripper}={Stripper, Stripper

level sensor: LT20}
– {Cons_L_stripper → LV_vanne_cata}={Controller of the

valve}
– {L_cata_stripper → LV_vanne_cata}={Controller of the

valve}
– {L_cata_stripper → DP_vanne_cata}={Stripper level

sensor: LT20, Stripper pressure sensor: PT20, pressure
drop sensor in the valve: DPT24, pressure sensor in the
stripper: PT30}

– {P_reg1 → DP_vanne_cata}={pressure drop sensor in the
valve: DPT24, pressure sensor in the stripper: PT30}

– {P_stripper → DP_vanne_cata}={Stripper pressure sensor:
PT20, pressure drop sensor in the valve: DPT24, pressure
sensor in the stripper: PT30}

– {LV_vanne_cata → Qs_cata_stripper}={valve, pressure
drop sensor in the valve: DPT24, Stripper}

– {DP_vanne_cata → Qs_cata_stripper}={valve, pressure
drop sensor in the valve: DPT24, Stripper}

– {Qs_cata_stripper → L_cata_stripper}={Stripper, Stripper
level sensor: LT20}.

667

TABLE 1

Variables describing the stripper

Variable Meaning Unit Sensor

M_cata_stripper Catalyst mass in the stripper kg –

P_fond_stripper Pressure in the bottom of the stripper Pa –

P_stripper Sky pressure in the stripper Pa pt20

Qe_cata_stripper Mass catalyst flow in the input of the striper kg/s –

Qs_cata_stripper Mass catalyst flow in the output of the striper kg/s –

L_cata_stripper Catalyst level in the striper m lt20

ρ_cata Catalyst density kg/m3 –

TABLE 2

Variables describing the valve

Variable Meaning Unit Sensor

DP_vanne_cata Pressure drop in the valve Pa DPT24

LV_vanne_cata Aperture of the valve % LV20

P_fond_stripper Pressure in he bottom of the stripper Pa –

P_reg1 Sky pressure in the first regenerator Pa pt30

Qe_cata_vanne Mass catalyst flow in the input of the valve kg/s –

Qs_cata_vanne Mass catalyst flow in the output of the valve Kg/s

Cons_L_stripper Set point of the level of the stripper M lt20
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Figure 5

Causal graph obtained for the system presented in Figure 4.

Figure 6

Causal graph without non measured variables.

1.3 Practical issues

The causal ordering algorithm needs choices to be made
by an expert:
– some endogenous variables have to be considered as

pseudo-exogenous (in the case where the number of equa-
tions is less than the number of endogenous variables);

– if there are algebraic loops, a choice has to be made
referring to the causal interpretation around the loops.
The presence of pseudo-exogenous variables is due to the

lack of formal relations for describing the process. This
means that the causality driven simulation is guided by the
measurements of these variables, which cannot be computed
otherwise. Thus a first constraint is that pseudo-exogenous
variables are measured variables. Further, in practice, the
choice of a pseudo-exogenous variables is guided by:
– The different time scale dynamics of the variables. As we

cannot detect fault on these variables, for safety reasons, it
is better to chose variables with slow dynamics. 

– The confidence in each sensor. It is better to chose
pseudo-exogenous variables with robust sensor. If pseudo-
exogenous error measures are very high, each threshold on
father nodes will be high. The detection method will then
be less sensitive.

– The choice of the pseudo-exogenous variables may
influence the presence or the absence of loops in the
quantitative causal graph. In our methods, loops (system
of n algebraic equations with n measured variables
without delays) are redhibitory for causal simulation, so
are loops with less than two measured variables for local
causal simulation2. Pseudo-exogenous variables can be
used to avoid such situations.
In the application to a FCC pilot plant, the choices were

made using the two first guidelines (variables with slow time
dynamics and sensitivity of each relation). The influence of
the pseudo exogenous choices to the presence or not of loops
or more generally to the sensitivity of the fault detection
method is not studied yet.

2 DIAGNOSTIC METHODOLOGY

This section presents a method for managing residuals based
on the causal graph generated in the previous step. 

First the detection module (Section 2.1) generates alarms.
The causal graph provides references characterising the
normal behaviour of the process. Comparing measures with
these references, the fault detection module determines
whether measured variables have an abnormal behaviour or
not (analytical redundancy), and generates alarms. 

For each variable, the fault detection module generates
two references considering a local environment and a global 

(2) When a loop includes two measured variables, the measured value of
one can be used to predict the value of the other.
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Qs_cata_stripper

DP_vanne_cataLV_vanne_cata
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Qe_cata_stripper
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one (given by exogenous variables). This is important for
detection of incipient faults and for safety which absolutely
requires to check critical variables in regards to their set
points.

Additionally, each influence of the causal model is
associated with a set of physical components. The isolation
module (Section 2.2) applies a hitting set algorithm on the list
of components associated to edges connected to variables
which have an abnormal behaviour. This allows determining
a subset of physical components that behave abnormally, the
diagnoses. 

Finally, the fault identification module (Section 2.3)
generates more information and provides a final message to
the operator. Each component is associated with semi-
qualitative models of its abnormal behaviour. These models
are obtained from the operator expert knowledge and
expressed in the form of a fault/symptom tree. When a
component is suspected by the isolation module, its fault/
symptom tree is activated. Symptoms are qualified by a
signal analysis, faults and possible actions are identified and
suggested to the operators. 

2.1 Fault Detection 

The aim of this module is to determine if the state of each
variable is correct or not. Let yi(t) represent the measured
value of each node of the causal graph. The causal model
provides a global reference yi(t)* and a local one ŷi(t).
Thanks to these values, two residuals are defined.

ρ(t) = yi(t) – yi(t)* = εi: global residual

λ(t) = yi(t) – ŷi = εp
i : local residual

The causal diagnostic methodology consists in deciding
for each node if the fault is local (and thus explains all the
other observed discrepancies) or if the fault is upstream (and
thus explained by the fault on another variable).

2.1.1 Global Residual

A global residual is the difference between measures and
references calculated from the global reference of father
nodes. It indicates the consistency of a measure regarding
exogenous variables. Let Y be a variable and Uj the variables
which influence Y (cf. Fig. 3). The global reference of Y is
calculated by:

(where Uj
global stand for the global reference of Uj).

This global reference is computed from exogenous
variables acting on the process (nominal value). The
simulator outputs are compared with the process sensor
outputs. The global residual alone allows only detection: it is
clear that εi is excited either by a local discrepancy or by a

discrepancy in an upstream variable Uj. Using this residual, it
is then not possible to isolate the fault (Montmain and Gentil,
2000).

2.1.2 Local Residual

A local residual is the difference between measures and
references calculated from the measures of father nodes
(using the same transfer function as global residual). It
indicates the coherency of the measure regarding a local
environment. The local reference is calculated by:

(where Uj
mes stand for the measure of Uj).

In this equation, the simulated evaluation of Uj has been
replaced by its measured evolution to obtain the predicted
evolution. The predicted value represents the value computed
from the measured values of the antecedent nodes. As Um

j
stands for the measure of Uj, this residual is only affected by
the fault on the components related to the entering arcs in Y
or to Y and Uj sensors. It enables local reasoning (i.e. cutting
the influence of propagated faults). It enables to focus on
relations that have be shown to be sufficient to allow fault
isolation (Gentil et al., 2004). This avoids the combinatorial
explosion that could be feared when dealing with industrial
plants. 

2.1.3 Alarm Generation

The results of the Boolean reasoning on the residuals (global
and local ones) are shown in Table 4. The number 1 sym-
bolises that the value of the residual is greater than a threshold
and 0 that the residual is smaller than this threshold. 

TABLE 4

Boolean reasoning on residuals

λi(t) ρi(t) Fault

1 0 Local

0 1 Upstream

Table 4 could be used for process diagnosis, but using
Boolean reasoning implies choosing very carefully the
thresholds. Moreover, in case of a drift fault, there is a delay
between the fault appearance and its detection. The operator
is informed of the fault after its value is higher than the
threshold. A way to cope with this problem is to use a fuzzy
reasoning approach. The fuzzy approach described in this
paper uses inferences extracted from Table 4 to analyse the
residuals. Moreover, the residual variations are used in order
to take into account residual tendencies In order to take into
account the measurement noise, memberships of past
residuals and their variations to respective labels are
computed (Evsukoff et al., 2000).

Y  =  Y  +  f(...,  U ,...)local 0
j
mes

Y  =  Y  +  f(...,  U ,...)global 0
j
global
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Five fuzzy sets are used to describe the residual values
(Fig. 7). The linguistic labels of these sets are the usual ones:
negative high NN, negative medium N, zero Z, positive
medium P, positive high PP.

Three fuzzy sets (N*, Z* and P*) are used to describe the
variation of residual (Fig. 8). 

The fuzzy sets form 15 combinations (Tables 5 and 6).
The linguistic label OK means that the situation is normal
and AL that the situation is abnormal (alarm). Symbolic
fuzzy sets are used to express the meaning of these labels.
µ/label expresses a membership of value µ to the label.
Obviously AL and OK are complementary. For instance, if
the residual is positive medium with a negative variation, this
means that it is decreasing, so the situation is not so bad
(0.6/OK). On the other hand, for positive variations, the
situation is bad and worsening (1.0/AL). A similar table is
based on λ(t) in order to isolate the faults, with a symbolic
reasoning concluding that the fault is local to a variable (LO)
or upstream (UP) in the graph. For instance, if the residual
λ(t) is medium positive with a positive variation, this means
that it is increasing, there is a local fault that is increasing
(0.8/LO) and (0.2/UP).

Fuzzy reasoning provides three membership functions
between 0 and 1. The first function informs about the state of
the variable, OK/AL. The gradual evolution between 0 and 1
characterises the evolution of the variable from a normal state
to an undesirable one (detection). This transition is used in
the supervision interface representing the causal graph for the
operators—in terms of a colour code. The value that
characterises the state of the variable is used to colour the
contour of the nodes. The contour of the node is red when
a fault is surely detected (µ/AL = 1) and green when
not (µ/OK = 1). In between, it evolves through yellow,
orange, etc.

The average value of the two other membership functions
informing on the localisation of the fault (LO/UP) is used to
colour the arcs of the graph. The input arrows are green for a
surely local fault and red for a surely upstream one. 

The use of transition colours shows that fuzzy logic is
useful to follow the variable gradual evolutions. Moreover
this approach is close to human thinking and is well adapted
to real processes with model uncertainties and measurement
imprecision.

TABLE 5

Detection decision table for ρ

Derivative

N* Z* P*

NN 0/OK 0/OK 0.2/OK

1/AL 1/AL 0.8/AL

N 0/OK 0.4/OK 0.6/OK

1/AL 0.6/AL 0.4/AL

Residual Z 0.8/OK 1/OK 0.8/OK

0.2 AL 0/AL 0.2 AL

P 0.6/OK 0.4/OK 0/OK

0.4/AL 0.6/AL 1/AL

PP 0.2/OK 0/OK 0/OK

0.8/AL 1/AL 1/AL

TABLE 6

Detection decision table for λ

Derivative

N* Z* P*

NN 0/UP 0/UP 0.2/UP

1/LO 1/LO 0.8/LO

N 0/UP 0.4/UP 0.6/ UP

1/LO 0.6/ LO 0.4/LO

Residual Z 0.8/UP 1/UP 0.8/UP

0.2 LO 0/LO 0.2 LO

P 0.6/UP 0.4/UP 0/UP

0.4/LO 0.6/LO 1/LO

PP 0.2/UP 0/UP 0/UP

0.8/LO 1/LO 1/LO

2.1.4 Application to the FCC Pilot Plant

In the FCC application, the model that is used contains
29 components, 40 variables and 25 causal relations. It was
derived from a larger model containing 323 variables and
282 causal relations following the methodology presented in
Section 1.
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Figure 7

Fuzzy partition of residuals.

Figure 8

Fuzzy partition of variation of residuals.
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The causal graph can be displayed on the operator
interface and used as a visual tool for fault detection and
isolation on variables as well as for explanation. A node is
green when no discrepancy is detected (for example, pc30 in
Figure 9) and red when a discrepancy is detected (for
example pt20), arcs influencing a variable are red for a local
fault (for example between pt20 and pc20) and green
otherwise (for example between pc30 and pt30) (cf. Figure 9
where red arcs appear in bold and red nodes in grey circles).

Figure 9 presents the causal graph which is used for
development purposes. Figure 10 presents the alarms and
synoptic which are given to operators.

Figure 9

Example of the causal graph used in development.

Figure 10

Visualisation of alarms in the FCC synoptic.

2.2 Fault Isolation on Physical Components

Having detected a discrepancy between predictions and
observations, the aim of the isolation process is to search
for the original possible cause(s) and to elaborate of a list
of potential diagnoses. A diagnosis is a minimal set of
components for which the invalidation of the normal
behaviour assumptions yields (SD, COMP, OBS) consistent,
where:
– SD is a formal description of the system including

assumptions of normal behaviour for the set COMP;
– COMP: set of components;
– OBS: set of observations.

In the proposed approach, the causal graph acts as the SD
and the influences attached to the edges are the elements of
COMP. 

The diagnostic process is initiated as soon as a variable is
isolated as being the source of the detected misbehaviour
(deduced from the local residual). For this variable (i.e. a
node in the causal graph), conflict generation procedure
traces the causal graph, following the intuition that the
influences which may be at the origin of the misbehaviour of
variable X are those related to the edges entering into X (and
only those ones). 

The diagnostic generation is based on generating the
minimal hitting sets of the collection of conflicts generated
by the above algorithm (Cordier et al., 2000) (a set S that has
a non-empty intersection with every set in a collection of sets
C is called a hitting set of C; if no element can be removed
from S without violating the hitting set property, S is
considered to be minimal). A diagnosis is hence a set of
components such that its intersection with each conflict set is
not empty.

Different hypotheses referring to exoneration assump-
tions may be considered (Travé-Massuyès et al., 2001).
Exoneration implies that a fault always manifests itself,
which depends on the existence or absence of compensatory
effects within the system as well as on the sensitivity of
the fault detector. In the FCC application, practical con-
siderations led us to assess that the exoneration assumption
is valid for sensors. We assess that sensors are reliable
components, i.e. the sensors associated with the arcs directly
influencing a non-misbehaving variable are considered to be
normal. 

Figure 11 is an example of a list of components of the
FCC pilot plant associated to a colour code. The following
abbreviations are used: 
– C: component; 
– ∪ C: union of conflicts; 
– ∩C: intersection of conflicts; 
– FAM: fault always manifested; 
– AWF: arc without faults.

Table 5 gives the algorithm computing the colour code.
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Figure 11

Visualisation of faulty and non-faulty components.

TABLE 7

Colour code displayed in the squares in Figure 11

a) Initially all the components are represented by a green square 

b) IF C ∈ ∪ C THEN “external part of square” = red 

c) If FAM = true for the current component C

IF C ∉ ∩ C THEN “internal part of  square” = green

IF C ∈ ∩ C and C ∉ AWF THEN “internal part of square” = red

d) If FAM = false

IF C ∈ ∩ C THEN “internal part of square” = red

e) (Multiples faults)

IF C ∉ ∩ C AND C ∈ ∪ C THEN “internal part of square” = orange

The square colour ranges from red for incriminated single
fault components to green for non incriminated components,
and can be orange when the component can take part in a
multiple fault.

2.3 Fault Identification

Having estimated the list of physical components which have
an abnormal behaviour, the aim of fault identification is to
generate a message in natural language describing the
particular fault on a suspected component to the operator.

To complete this task, each physical component is
associated with semi quantitative models of its abnormal
behaviour. These models (Heim et al., 2001), obtained from
human operator knowledge (Hazop analysis), take the form
of AND/OR fault/symptom tree (cf. Fig. 12). They are
activated only when the component is suspected to have an
abnormal behaviour. 

Symptoms take the form of signal analysis: increases
, decreases , pulse and , oscillation , steps 

and . 

When there exists negligible and complicated phenomena
that are not modelled with the causal model, the abnormal
behaviour model allows refining the diagnosis concerning

those phenomena. It gives also a list of actions in order to
verify and to counteract the fault.

Figure 13 is an example of an expert graph obtained for
the stripper. It indicates that if the pressure stripper is low and
the valve opening that regulates the pressure is 0%, then there
is a leakage between the riser and stripper. In order to
confirm this diagnosis, the operator has to verify that the
pressure set-point is different from the measure. The
repercussions are then defined. They depend on the type of
regulation used (cascade 1 or 2).

Figure 12

Semi-quantitative abnormal model structure.

Figure 13

Riser expert graph.

3 IMPLEMENTATION

This approach was implemented using Gensym’s G2 soft-
ware. G2 allows object oriented and graphical programming
of real time application. Causal graph nodes and directed
arcs are represented by objects. Causal graph can easily be
modified adding a node and connecting it with other nodes.
Selecting any arc enables to change its transfer function
parameters, and to modify its associated components list.
In the fault/symptom tree associated to each physical
component, symptoms and messages delivered to the
operator are represented by objects. Relationships between
symptoms and faults are symbolised by directed arcs.
Parameters can be changed (variable identity, amplitude,
frequency, etc.) to change the sensitivity of the signal
analysis. This allows to tune an application and to apply it to
different processes or sites. 

Symptom 1

Logical
operations

Fault
identification

Symptom n

•••
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4 FCC APPLICATION

4.1 FCC Process

FCC process includes many subsystems (two regenerators, a
reactor, a separation column, pipes, valves, etc.). The reactor
riser temperature is very close to the metallurgical limits for
optimum production. As a result of cracking, carbonaceous
products (called coke) get deposited on the catalyst, which
decreases the effectiveness and the lifetime of the expensive
catalyst. This one is continuously regenerated in the
regenerator by blowing in air. Coke is combusted to CO,
CO2, and H2O. The amount of CO vented out through the
stack gas is very crucial from an environment point of view,
and one of the challenges for our application is not to violate
the environmental threshold and to achieve an optimum
performance in the face of disturbances. There is a constant
flow of regenerated and spent catalyst between the reactor
and the regenerator. This flow is partly driven by the pressure
differential between the reactor and regenerator, and the
remaining momentum is supplied by the lift air blower. The
fractionator’s section separates the product hydrocarbons for
further processing. A feed system consisting of low-level
flow controllers and a preheating furnace pre-processes the
feed for cracking.

The FCC chosen is a pilot plant. Table 8 describes order
of magnitudes of the physical variables in a real FCC and in a
FCC pilot plant.

TABLE 8

Differences between an industrial FCC and the FCC pilot plant

Characteristics Industrial FCC pilot 
FCC plant

Capacity 40 000 bbl/d 2 bbl/d

Regenerator long 15 m 1 m

Regenerator diameter 8 m 20 cm

Riser long 35 m 7 m

Riser diameter 1 m 2 cm

Feed flow 245 t/h 6 kg/h

Catalyst flow 1500 t/h 40 kg/h

Total mass of catalyst 300 t 40 kg

Contact time in the riser 2 à 4 s 1 s

Contact time in the stripper 1 min 15 min

Contact time in each regenerator riser 5 min 20 min

In the FCC pilot plant (Fig. 14), the catalyst circulates in a
physical closed loop: it goes from the stripper (R3), to the 1st
regenerator (R1) then to the 2nd regenerator (R2) then to the
riser (R1) and finally comes back to the stripper (R3).
Catalyst circulation is ensured by pipes: the lift (T2), the
stand pipe (T3) and the riser (T1). Riser is also a reaction
zone. The feed is put in contact (via V6) with the catalyst in
the riser during few seconds and immediately catalyst and 

Figure 14

FCC pilot plant process variables.

reaction products fall in the stripper. The stripper R3
separates valuable components and low boiling point
molecules from the catalyst and the coke. Coke is a reaction
secondary product composed of high boiling point
molecules. Valuable components are separated from low
boiling point molecules by a separation column (C1). A filter
(F1) between the column and the stripper prevents catalyst
from going in the separation column. The catalyst and the
coke are driven to the first regenerator R1 through a valve
V4. Coke is partially burnt in the first regenerator. The
second regenerator R2 finishes this combustion. At the
output of the second regenerator, the hot regenerated catalyst
that is driven to the bottom of the riser rapidly reacts with the
feed. Three pressure control valves V1, V2, V3 are used to
control respectively the stripper, 1st regenerator and 2nd
regenerator pressures. Nitrogen flows are controlled to ensure
the catalyst circulation (V7 to V12). Air flows are controlled
to ensure the coke combustion (V13 and V14). Catalyst
levels in stripper and separation column are controlled
respectively by valves V4 and V5. Filters F2 and F3
respectively prevent catalyst from going into V2 and V3.

Problems that occur in a industrial FCC are (Sadeghbeigi,
2000):
– catalyst circulation;
– catalyst loss;
– coking/fouling;
– flow reversal;
– high regenerator temperature;
– afterburn;
– hydrogen blistering;
– hot gas expander;
– products quality and quantity.

Problems that occur on the FCC pilot process have been
classified in 6 types: 
– blockage (pipe, valve, etc., cf. scenario 1);
– leakage;
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– change in the material properties (catalyst, etc.);
– bad operation (operator, etc., cf. scenario 2);
– sensor faults (cf. scenario 3);
– utilities (gas, electricity, etc., cf. scenario 4).

4.2 Scenarios Description

This paragraph presents scenarios that happened on the FCC
pilot plant.

In the application, the assumption is made that a sensor
fault always manifests (Section 2.2). Therefore, in the
following sections, sensors are exonerable components.

Table 9 presents the detection time obtained using the
presented method, named ASCO, with the one an operator
would obtain (ASCO stands fo: Aide à la Supervision et à la
Conduite pour les Opérateurs). Theses times are suggestive,
and are obtained from historical data.
– column 1 describes the type of fault;
– column 2 describes the failure;
– column 3 gives the detection time for ASCO;
– column 4 gives the detection time for an operator.

The following sections present four scenarios of abnormal
situation.

4.2.1 Scenario 1

This scenario corresponds to a blockage between stripper
(R3) and separation column (C1). Catalyst is carried in this
line by gas flow from stripper (R3) toward the separation
column (C1). Figure 15 shows influences provided by the
causal graph in this scenario (without sensors). For example,
RV3 component (controller of valve V3) is in the support
(list of physical components) of influences SPS->OPPS and
OPPS->PS.

Figure 15

Influences and their underlying components.

Faults are detected on variables PS (R3 pressure), OPPS
(V1 opening value), DPR (Riser pressure drop), DPL (lift
pressure drop), DPS (cocker pressure drop), FS (V1 effluent
flow), LR2 (second regenerator level), LR1 (first regenerator
level), PC (Separation column sky pressure), DPC (V4
pressure drop) and OPLS (V4 opening value). These
variables are grey in Figure 16. 

Faults are isolated on variables FS (V1 effluent flow) and
PS (R3 pressure). Arcs influencing these variables appear in
bold in Figure 16.

Figure 17 presents global and local residuals of stripper
(R3) pressure: rPS(t) (left), λPS(t) (right). Figure 18 presents
global and local residuals of V4 pressure drop: rDPC(t) (left)
and λDPC(t) (right). Thresholds aPS and aDPC are symbolised
by horizontal lines.

∆

∆

SPS->OPPSPS->OPPSOPPS->PSOPPS->F
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TABLE 9

Time detection in practical scenarios

Faults Description
Time for detection

ASCO Operator

Blockage 1. Blockage of pipes between stripper and column 5 min 50 min

2. Blockage of valve on the first regenerator 5 min 15 min

8. Gas bubbles in the pump circuit 20 min 1 h

5. Filters in the first regenerator 1 min 15 min

6. Filters in the second regenerator blocked 1 min 15 min

Sensor faults 3. Abnormal level in the first regenerator 1 min 20 min

Operator faults 4. Bad operator actions creating disturbances in the process 1 min 5 min

8. Gas bubbles in the pump circuit 1 min 10 min

11. Gas present between the first and second regenerator 5 min 10 min

Utilities 7. Lack of air to operates the regulation valves in two regenerators 5 min Not detected

Process 9. Stand pipe drain 1 min 10 min

10. Catalyst present between the striper and the separation-column 55 min 1 h

Wear 12. Abnormal behaviour of level regulation valve in the stripper 55 min 20 min
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Figure 16

Causal graph in scenario 1.

T1 T2

Figure 17

rPS(t), λPS(t) (variation of local and global residuals of PS).

T3

Figure 18

rDPC(t)_and λDPC(t) (variation of local and global residuals of DPC).
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A fault is detected on PS (R3 pressure) because rPS(t) is
greater than aPS for t > T1. This fault is local because λPS(t) is
greater than aPS for t > T2. A fault is detected on DPC (V4
pressure drop) because rDPC(t) is greater than aDPC for t > T3.
But this fault is upstream because λPS(t) is always inferior
to aDPC.

The set of components associated with the arcs
influencing FS (V1 effluent flow) defines a conflict because
λ(FS)> 0. This conflict is {C1, F1, V1, V5, FSt, OPPSt, PSt}
where the notation Yt refers to the component that transmits
the value of Y. The set of components associated with the
arcs influencing PS (R3 pressure) defines a conflict because
λ(PS)> 0. This conflict is {C1, F1, R3, T1, V1, V5, OPPSt,
FNSt, FFRt, FNRt, PSt}.

Knowing these two conflicts, minimal diagnoses are
{C1}, {F1}, {V1}, {V5}, {OPPSt}, {PSt}, {FSt, R3},
{FSt, T1}, {FSt, FNSt}, {FSt, FFRt}, and {FSt, FNRt} (simple
and multiple faults without exoneration). Theses sets of
components intersect both conflicts. If we consider only
simple faults, following diagnoses are obtained: {C1}, {F1},
{V1}, {V5}, {OPPSt}, {PSt}.

Sensors are considered as exonerable components.
Therefore when the local residual of a variable is lower than
its threshold, sensors measuring upstream variables are
removed from diagnoses. In this scenario, the local residual
of LR2 (second regenerator level) is lower than aLR2.
Consequently, sensor PSt that is associated with this residual
is removed from  diagnoses.

Sensor OPPSt (V1 opening value) is also considered not
faulty because its local residual is also lower than aOPPS.
Therefore, sensor minimal diagnosis is Ø, thus, no single
sensor fault is suspected.

Following diagnoses are then obtained: {F1}, {C1},
{V1},{V5}. Fault/symptom tree of F1, C1, V1 and V5 are
activated. The signal analysis generates two symptoms: PS
(R3 pressure) , OPPS (V1 opening value) . A qualitative
expert rule (cf. Fig. 19) is launched and the following
message is delivered to the operator: “Fault: Blockage of

Figure 19

Expert graph activated for scenario 1.

V1 or C1. Confirmation: By pass C1. If pressure PS (R3
pressure) decreases then C1 abnormal else V1 abnormal.”

V1, F1, C1 and V5 fault/symptom trees are made of
several other rules but no other combination of symptoms is
observed . Therefore, no other conclusion can be considered.

Without any diagnostic module, operators may not detect
the fault before security systems automatically halt the
process, after 40 min. With the diagnostic module, the fault
is isolated 5 min after its inception, allowing 35 min for
operators to act on the process. 

V1 is composed of two parallel valves V1a and V1b. If
only one valve (V1a for instance) is blocked then operation
can be maintained controlling PS (R3 pressure) only with
V1b. The operator has time to change V1a.

4.2.2 Scenario 2

This scenario corresponds to the formation of bubble of gas
in the feeding pump because the valve V6 temperature, TV6,
is too high. The variables directly affected are FFR (V6 feed
flow) and OPFFR (V6 opening value). Faults are detected on
{OPFFR, FFR, PS, OPPS, FS, DPS, PC, DPR, DPL, LR2,
LR1}. Faults are isolated on {FFR,OPFFR}. Components
associated with the arcs influencing FFR (V6 feed flow)
define a conflict. This conflict is {V6, RV6, FNT, OPFFRt,
FFRt}. Components associated with the arcs influencing
OPFFR (V6 opening value) define a conflict. This conflict is
{V6, RV6, FNT, OPFFRt}. Minimal diagnoses are {V6},
{RV6}, {FNT} and {OPFFR}.
The operator is informed that sensor OPFFRt is suspected to
be faulty. In fact this sensor is not faulty. Having more
knowledge on sensors will enable to exonerate this sensor.
Fault symptom trees of V6, RV6 and FNT are activated. The
qualitative model associated with SC2 fault is given by:

[(F1 ) or (F1 )] and [TV6>]

(F1 ) and TV6> are observed making signal analysis. The
qualitative rule (F1 ) and (TV6>) is observed therefore this
message is delivered:

Temperature TV6 is a variable that has not been introduced
in the model but that is interpreted in the fault identification
module.

In this scenario, the only delivered message is Message 2.
The time of abnormal behaviour occurrence is 50 minutes.

10 minutes are necessary to the operator to isolate the fault
without the diagnostic module. The diagnostic module
instantaneously generates the message.

The operator has to stop feeding and to wait until TV6
decreases. Feed can then be reactivated. If the operator does
not react rapidly enough the FCC pilot can go into a

Message 2: “Gas bubbles in the feeding pump V6.
Stop feeding and wait until TV6 decreases”.
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OPV3

OPV3

OR Message
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AND
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>
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not permitted state that activates automatically security
monitoring functions.

4.2.3 Scenario 3

This scenario corresponds to a fault on sensor LR1 (first
regenerator level). The variable which is directly affected is
LR1. A fault is detected and isolated on LR1. Components
associated with the arcs influencing LR1 are {T1, T2, T3, T4,
R1, R2, R3, V4, LR1t, LR2t, LSt}. Therefore, conflicts are
{T1}, {T2}, {T3}, {T4}, {R1}, {R2}, {R3}, {V4}, {LR1t},
{LR2t} and {LSt}. 

Sensor LR2t (second regenerator level) is not faulty
because λ(LR2) = 0. Sensor LSt is not faulty because
λ(LS) = 0. The operator is informed that sensor LR1t (first
regenerator level) is suspected.

Fault symptom tree of T1, T2, T3, T4, R1, R2, R3 and V4
are activated. The identification module does not deliver any
message because the FCC behaves normally.

The time of abnormal behaviour occurrence is approxi-
mately 40 min. 5 min are necessary for the operator to isolate
the fault without the diagnostic module. Fault isolation is
instantaneous with the diagnostic module. LR1 sensor (first
regenerator level) is blocked with catalyst. The operator has
to create a gas stream inside the sensor to repair it.

4.2.4 Scenario 4

This scenario corresponds to a decrease of the air network
pressure. The variables directly affected are OPFOR1 and
OPFOR2. This network pressure is not transmitted to the
diagnostic module. Faults are compensated by control loops
(RV13 and RV14) and do not propagate in the causal graph.
Faults are detected and isolated on OPFOR1 and OPFOR2. 

Conflicts are {RV13, V13, ONT, OPFOR1t} because
λ(OPFOR1)> 0 and {RV14, V14, ONT, OPFOR2t} because
λ(OPFOR2)> 0. A minimal diagnosis is {ONT}, so, ONT
fault symptom tree is activated. Symptoms (OPPR1<) and
(OPPR2<) are observed. Therefore, the following message is
delivered to the operator: “Decrease of the air pressure
network. Check if this measure is low”. Symptom/trees
associated to other diagnosis do not provide any other
conclusion.

The qualitative model associated with SC4 fault is:

[(OPPR1 ) or (OPPR1<)] or [(OPPR2 ) and (OPPR2<)]

(OPPR1<) and (OPPR2<) are observed, therefore, the
following message is therefore delivered to the operator: 

In this scenario, the only delivered message is Message 4.

The time of abnormal behaviour occurrence is approxi-
mately 15 min. This fault was not detected by the operator

because the gas flows were maintained at their set point. The
diagnostic module generates the message 3 min after the fault
occurrence. Thanks to this information, the operator can
engage actions on the air pressure network before its pressure
is too low.

CONCLUSION

This paper presents a methodology to apply a diagnostic
method to an industrial size process. The combination of
complementary techniques (modelling, fault detection, fault
isolation and fault identification) is used. 

Modelling is carried out using a causal model which
describes the normal influences among process variables and
supports qualitative and quantitative information. The initial
knowledge consists in the process variables (endogenous and
exogenous variables), and the set of formal relations, related
to physical components, that describe the variables. This
knowledge constitutes the structural relation model. The
application of a causal ordering algorithm to the structural
relation model provides the causal graph, which exhibits the
causality underlying the set of relations in the form of a set
of directed influences between variables. Other operations
are further necessary, due to the practical difficulty in
quantifying the relations involved in the causal graph with
theoretical knowledge. Model identification and parameter
estimation is generally used, which is only possible if data
are available for the variables. A reduction operation consists
in eliminating unknown variables from the graph. An
approximation operation results in an approximated causal
model that contains only known process variables connected
by quantified relations. At this step the model is ready for
causal simulation which is to say for computing the
endogenous variables from the measured values of the
exogenous ones. As the influences are associated to specific
physical components, the approximated causal model is also
suitable for supporting diagnosis, i.e. fault isolation. 

Fault detection is carried out using classical analytical
redundancy. The quantitative causal model provides refer-
ences characterising the normal behaviour of the process.
Comparing measures with these references, the fault
detection module determines whether measured variables
have an abnormal behaviour or not, and generates alarms.
For each variable, the fault detection module generates two
references considering a local environment and a global one
(given by process set points and measured external
disturbances). This is important for detection of incipient
faults and for safety which absolutely requires checking
critical variables in regards to their set points.

Isolation is carried out applying a hitting set algorithm on
the list of components associated to edges connected to
variables which have an abnormal behaviour. This allows

Message 4: “Decrease the air pressure network.
Check if this measure is low.”
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determining a subset of physical components, the diagnoses,
that behave abnormally. 

Identification is carried out generating more information
and provides a final message to the operator. Each
component is associated with semi-qualitative models of its
abnormal behaviour obtained from the operator expert
knowledge and expressed in the form of a fault/symptom
tree. When a component is suspected by the isolation
module, its fault/symptom tree is activated, symptoms are
qualified by a signal analysis, faults and possible actions are
identified and suggested to the operators. 

The methodology presented in the paper has been proven
feasible on a FCC pilot plant. A FCC plays a key role in an
integrated refinery as the primary conversion process. For this
process, reliability is required to allow long-term operation
between maintenance shutdowns (every 3-5 years typically).
The faults to be detected on the FCC pilot plant are leakages
(on pipes, tanks, valves, etc.), blockages (on pipes, actuators,
injections, etc.), abnormal process behaviour (wrong PID
parameters, abnormal gas bubbles inside the process, empty
tanks, etc.), problems on sensors, regulators, and external
services (such as electricity, gas network, etc.). ASCO was
tested off-line on 13 scenarios containing faults and succeeded
in identifying the faults a long time before the operators
(10 min to 1 h) with robustness. For doing so, it uses a model
containing 29 components, 40 variables and 25 directed
relations that was derived from a model containing
323 variables and 282 directed relations. The software always
isolates the faults much faster than the operator.
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