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Summary 

Much of the small area estimation literature focuses on population totals and means. 

However, users of survey data are often interested in the finite population distribution of a 

survey variable, and the measures (e.g. medians, quartiles, percentiles) that characterise the 

shape of this distribution at small area level. In this paper we propose a model-based direct 

estimator (MBDE, see Chandra and Chambers, 2009) of the small area distribution function. 

The MBDE is defined as weighted sum of sample data from the area of interest, with weights 

derived from the calibrated spline-based estimate of the finite population distribution function 

introduced by Harms and Duchesne (2006), under an appropriately specified regression 

model with random area effects. We also discuss the mean squared error estimation of the 

MBDE. Monte Carlo simulations based on both simulated and real datasets show that the 

proposed MBDE and its associated mean squared error estimator perform well when 

compared with alternative estimators of the area-specific finite population distribution 

function. 

 

Key words: Indicator function; Model-based direct estimator; Mean squared error estimator; 

Simulation experiments. 
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1. Introduction 

Let U  be the finite population of size N and let y denote a variable of interest 

that takes values over this population. A common target of inference is then the proportion of 

values  that are bounded by a given constant (e.g. the proportion of households whose 

monthly per capita expenditure is below the poverty line). More generally, the target of 

inference is the value of the finite population distribution function for a variable y at a 

specified value t. This is , i.e. the proportion of the population 

whose values for y are less than or equal to t, where 

= 1,2,..., N{

yj

}

FN (t) = N −1 I(yj ≤ t)
j=1

N∑

I (yj ≤ t)  is the indicator function that 

takes the value 1 if  and 0 otherwise and t is a specified constant. Clearly, once we 

obtain an estimator of the finite population distribution function, we can evaluate its inverse 

to obtain the associated estimator of the finite population quantile function. See Chambers 

and Dunstan (1986), Rao et al. (1990), Harms and Duchesne (2006) and Rueda et al. (2007, 

2010). 

yj ≤ t

 Small area estimation (SAE) is an important objective of many surveys. Small areas or 

small domains are subsets of the population with small sample sizes, so standard survey 

estimation methods for these areas, which only use information from the small area samples, 

are unreliable. In this context SAE methods that ‘borrow strength’ via statistical models (Rao, 

2003) can be used to produce reliable small area estimates. However, virtually all of these 

methods focus on estimation of linear parameters, e.g. small area means or totals. In this 

paper we focus on estimation of the small area distribution of a study variable and measures 

(e.g. medians, quartiles, percentiles) that characterise the shape of this distribution. This is 

especially useful if there are extreme values in the small area sample data, or if the small area 

distribution of the variable of interest is highly skewed (Tzavidis et al., 2010). 
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 We propose a model based direct estimator (MBDE) for the small area distribution 

function, extending the MBDE approach (Chandra and Chambers, 2009) to the estimation of 

the small area distribution function. This MBDE estimator is a weighted sum of the sample 

data from the small area of interest, with weights that are derived from a spline-based 

calibrated estimator of the population distribution function (Harms and Duchesne, 2006) 

under a regression model with random area effects. 

 The rest of the article is organized as follows. The following Section describes SAE 

based on the linear mixed model and the nonparametric regression model based on penalized 

splines and then uses these models to motivate estimators of the small area distribution 

function. Section 3 introduces the concept of calibrated sample weights for a finite population 

distribution function and uses these to define the MBDE estimator for this function. A bias-

robust estimator of the mean squared error of the MBDE is also developed, based on the 

approach of Chambers et al. (2009). The empirical performances of the proposed MBDE as 

well as alternative estimators of the small area distribution function are evaluated in Section 

4, using both model-based and design-based simulations, with the design-based simulations 

based on two real data sets. Concluding remarks are set out in Section 5. 

 

2. Estimation of the Small Area Distribution Function 

We assume that a finite population U containing N units can be partitioned into A non-

overlapping domains, referred to from now on as small areas, or simply areas, indexed by 

i = 1,..., A , with area i containing  units, so . Let  denote the value of the 

variable of interest y for unit j 

Ni

( j

N = Nii=1

A∑ yij

= 1,…, Ni )  in area i ( i = 1,…, A ). The area-specific 

distribution function of y for area i is 

  F .   (1) i (t) = Ni
−1 I (yij ≤ t)

j=1

Ni∑
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 Let s denotes a sample of n units drawn from U by some specified sampling design, and 

assume that values of the variable of interest y  are available for each of these n sample units. 

The non-sample component of U, containing N - n units, is denoted by r. In what follows, we 

use a subscript of i to denote quantities specific to area i (i = 1,..., A) . For example,  and  

denote the  sample and  non-sample units respectively for area i. With this notation, 

the conventional estimators of the area i distribution function, , are the Horvitz-

Thompson (HT) estimator  

si ri

ni Ni − ni

Fi (t)

 F̂i
HT (t) = Ni

−1 π j
−1I(yj ≤ t)

j∈si
∑ ,  (2) 

and the Hajek estimator  

 F̂i
Hajek (t) = π j

−1I(yj ≤ t)
j∈si

∑ π j
−1

j∈si
∑ .  (3) 

Here π j  denotes the sample inclusion probability of unit j. Both (2) and (3) are area-specific 

design-based direct estimators and do not depend on an assumed model for their validity 

(Cochran, 1977). Unfortunately, empirical evidence presented in Rueda et al. (2007) shows 

that these estimators can be substantially biased, while the fact that they only use information 

from the area i sample makes them too unstable for SAE. 

 Model-based small area estimators based on the linear mixed model are widely used in 

SAE. However, if the functional form of the regression relationship between the variable of 

interest and the available auxiliary variables is unknown or has a complicated functional 

form, then SAE based on the use of a nonparametric regression model can offer significant 

advantages compared with one based on a linear model. In particular, a nonparametric 

regression model based on p-splines is attractive because it represents a relatively 

straightforward extension of a linear regression model (Eliers and Marx, 1996). Opsomer et 

al. (2008) describe the use of a spline-based nonparametric regression model for SAE. See 

also Salvati et al. (2010). In the rest of this Section we therefore summarize the model-based 
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approach to estimation of the small area distribution function under the linear mixed model 

and under a nonparametric regression model. 

2.1 Estimation under the linear mixed model 

SAE theory for this case is now well established, see Rao (2003). We briefly describe it 

below since this allows us to introduce notation that will be used elsewhere in the paper. To 

start, we note that throughout this paper we will assume that we have access to the population 

values of p auxiliary scalar variables that are, to a greater or lesser extent, correlated with y. 

Let   denote the vector of values of these auxiliary variables that are associated with  

and let   denote a vector of auxiliary ‘contextual’ variables whose values are known for all 

units in the population. Let ,  and  denote the population level vector and matrices 

defined by ,   and  , respectively. Then the linear mixed model is 

x ij yij

zij

yU XU ZU

yij x ij zij

  yU = XUβ + ZUu + eU ,  (4) 

where β  is a p vector of regression coefficients, u  is a random vector of area effects and  

is a population N-vector of random individual effects. In general, area effects are vector-

valued, so  and 

eU

( )1 2, ,T T T T
A=u u u u { }; 1, ,diag i A= = …

Ni

U iZ Z , where i indexes the A areas 

that make up the population and   is of dimension Zi × q . The area effects { }; 1,i =u …,i A  

are assumed to be independent and identically distributed realisations of a random vector of 

dimension q with zero mean and covariance matrix Σu

σ e
2

Ik

. Similarly, the scalar individual 

effects making up  are assumed to be independent and identically distributed realisations 

of a random variable with zero mean and variance , with area and individual effects 

mutually independent. The covariance matrix of the vector  is then 

, where  denotes the identity matrix of dimension k. The 

parameters  are typically referred to as the variance components of (4). 

eU

VU = ZUΣuZU
T + σ e

2IN

θ = (Σu ,σ e
2 )

yU

 Var(y =U )
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 We also assume throughout this paper that the method of sampling is non-informative 

given the auxiliary variables, so the model (4) holds for both sampled and non-sampled 

population units. Consequently, we can partition , ,  and  into components 

defined by the n sampled and N – n non-sampled population units, denoted by subscripts of s 

and r respectively, and re-express (4) as follows: 

yU XU ZU eU

 

, yU =
ys

yr

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

Xs

Xr

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
β +

Zs

Zr

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

u +
es

er

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

with the variance of y similarly partitioned, 

 

. VU =
Vss Vsr

Vrs Vrr

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Thus  represents the matrix defined by the n sample values of the auxiliary variable 

vector, while 

Xs

 { } { }2; 1, , ; 1, ,T
ss iss is u is e isdiag i A diag i Aσ= = = Σ + =V V Z Z I… …  

and 

 { } { }; 1, , ; 1, ,T
sr isr is u irdiag i A diag i A= = = Σ =V V Z Z… … . 

Here   and   respectively denote the restriction of  to sampled and non-sampled units 

in area i. 

Zis Zir Zi

 The distribution function for small area i given by (1) can be expressed as 

{ }1( ) ( ) (
i i

i i j jj s j r
)F t N I y t I y t−

∈ ∈
= ≤ +∑ ∑

yj

yj ŷ j
EBLUP = x j

T β̂EBLUE + z j
T ûEBLU

≤ , where the first term on the left is known and 

the second is unknown. The problem of estimating F  therefore reduces to predicting the 

values  for the non-sample units in area i. Given estimated values  of the 

variance components we can define the estimated covariance matrix , and the predicted 

values of  are  , where  is the 

i (t)

β̂

θ̂ = (Σ̂u ,σ̂ e
2 )

U

X s )−1Xs
T V̂ss

−1ys

V̂

ss
−1P EBLUE = (X s

T V̂
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empirical best linear unbiased estimator (EBLUE) of β  and  is 

the empirical best linear unbiased estimator (EBLUP) of . Substituting estimated values for 

the parameters of (4) then allows us to define an estimator for  of the form 

ûEBLUP = Σ̂uZs
T V̂ss

−1(ys − X sβ̂)

Fi (t)

u

  { }1ˆ ( ) ( )EBP EBL
i i jj s j

ˆ( )UP
j

i ir
F t N I y t y−

∈
= ≤∑ ∑ I t

∈
≤

Fi (

+ .  (5) 

We refer to (5) as the empirical best predictor or EBP. An alternative way of predicting  

is via the Chambers and Dunstan (hereafter CD) estimator. See Chambers and Dunstan 

(1986) for details. Since the within area residuals are homoskedastic under (4), the CD 

estimator of  can be written 

t)

Fi (t)

{ ( ){ }}1 1ˆ ( ) ( )
i i

CD P
i i j i jj s j r k s

F t N I y t n I− −
∈ ∈

= ≤ +∑ ∑ ˆ ˆ EBLUP
k ky y t⎡ ⎤+ − ≤⎣ ⎦i

LU
∈

EBy∑ .  (6) 

Note that the CD estimator is asymptotically unbiased if (4) is correctly specified. 

2.2 Estimation under a nonparametric mixed model 

The CD estimator (6) will be biased if the functional form of the relationship between the 

response variable and the auxiliary variables (i.e. the regression function) is not linear or the 

variance term in the regression model is misspecified (Tzavidis et al., 2010). This 

susceptibility of parametric model-based methods to misspecification bias provides 

motivation for the use of alternative non-parametric model-based methods. We now 

summarize application of the p-spline nonparametric regression model to SAE (Opsomer et 

al., 2008), and, for simplicity, consider the univariate case. The underlying regression model 

is then , where  are independent random variables with zero means. The 

function m

( )j jy m x e= +

(

j ej

x)  is unknown and assumed to be approximated sufficiently well by 

 0 1( , , ) b
p km x x xβ β β

1

K

( )b
kxγ κ

k
+

=
∑= + + +β γ , (7) + −
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where b is the degree of the spline, ( ) ( )b bc c I c b+ = > , kκ  is a set of fixed constants called 

knots for k = 1, . . . , K, is the coefficient vector of the parametric part of the 

model and  is the vector of spline coefficients. The approximating function 

 in (7) uses truncated polynomial basis functions for simplicity and, if the number 

of knots K is sufficiently large, can approximate most smooth functions. Ruppert et al. (2003, 

Chapter 5) suggest the use of a knot for every four observations, up to a maximum of about 

40 knots for a univariate application. Using a large number of knots in (7) can lead to an 

unstable fit. In order to overcome this problem, an upper limit is usually imposed on the size 

of the spline coefficient vector . Estimating 

β = (β0 ,...,β

K )T

γ

p )T

γ = (γ 1,...,γ

m(x,β, γ )

β  and  by minimizing the squared deviations 

of model (7) from the actual data values subject to this constraint is equivalent to minimizing 

the penalized loss function 

γ

 ( )2
( , , ) T

j jj
y m x λ− +∑ β γ γ γ . (8) 

Here λ is a Lagrange multiplier that controls the level of smoothness of the resulting fit. 

 Wand (2003) and Ruppert et al. (2003, Chapter 4) note the equivalence between 

minimizing (8) and maximizing the likelihood of the response variable under the linear model 

(7) where the spline coefficients are treated as random effects. In particular, let 

, yU = y1, y2 ,..., yN( )T

 
1 11

1

b

U
b

N N

x x

x x

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

X  and 
1 1 1

1

( ) ( )

( ) ( )

p b
K

U
p b

N N

x x

x x

κ κ

κ κ

+ +

K+ +

⎡ ⎤− −
⎢ ⎥= ⎢ ⎥
⎢ ⎥− −⎣ ⎦

Δ . 

The spline approximation (7) can then be written as the linear mixed model 

 yU = XUβ + ΔUγ + eU , (9) 

where  and  are now assumed to be independent Gaussian random vectors of dimension K 

and N respectively. In particular, it is assumed that 

γ e
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  and . γ ~ N(0,σγ
2IK ) eU ~ N(0,σ e

2IN )

Opsomer et al. (2008) adapt p-splines to the SAE context by adding area random effects to 

(9), which then becomes 

  yU = XUβ + ΔUγ + ZUu + eU , (10) 

where, as in Section 2.1,  is a matrix of known covariates of dimension ( 1, , T
U =Z Z Z… )N

N × A  characterising differences among the areas and u is the A-vector of random area 

effects. In the simplest case,   is given by a matrix whose i-th column, for i = 1, …, A, is 

an indicator variable that takes the value 1 if a unit is in area i and is zero otherwise. It is 

assumed that the area effects are distributed independently of the spline effects  and the 

individual effects e, with 

ZU

u ~ N(0,

γ

Σu )

ZUΣuZU
T + σ e

2IN

, so that the covariance matrix of the vector  is 

. The variance components of (10) are then given 

by 

yU

 Var(yU ) = V = σγ
2ΔUΔU

T +

( )2 2, ,u eγθ σ σ= Σ . Note that, as in previous Section, the use of non-informative sampling 

given the auxiliary variables means that (10) also holds at the sample level. 

 When the variance components are known, well-established theory (McCulloch and 

Searle, 2001, Chapter 9) leads to the generalised least squares estimator of β , i.e. 

, and the best linear unbiased predictors (BLUPs) for  and u, i.e. 

 and  . In practice, the variance components 

are unknown and must be estimated from sample data using methods such as maximum 

likelihood or restricted maximum likelihood; see Harville (1977). In what follows we use 

 β̂ = (Xs
T Vss

−1Xs )−1X s
T Vss

−1ys

 γ̂ = σγ
2Δ s

T Vss
−1(ys − Xsβ̂)

( )2 2ˆˆ ˆ, ,u eγ

γ

û = ΣuZs
T Vss

−1(ys − Xsβ̂)

σ σΣ

 V̂ss = σ̂γ
2Δ sΔ s

T + ZsΣ̂uZs
T +

 to denote such estimates, allowing us to define the plug-in estimator 

, where  is the identity matrix of order n. This leads to the 

nonparametric model-based EBLUE for 

σ̂ e
2In In

β , , and to the β̂NPEBLUE = (Xs
T V̂ss

−1Xs )−1 Xs
T V̂ss

−1ys
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corresponding nonparametric EBLUPs (NPEBLUPs) for the spline and area effects in (10), 

 and .  γ̂
NPEBLUP = σ̂γ

2Δ s
T V̂ss

−1(ys − Xsβ̂
NPEBLUE )

{

ûNPEBLUP = Σ̂uZs
T V̂ss

−1(ys − Xsβ̂
NPEBLUE )

 Under (10), the nonparametric empirical best predictor of the distribution function for 

area i  (denoted by NPEBP) is 

}1ˆ ( )NPEBP
i iF t N −

ŷ j
NPEBLUP = x j

T β̂NPEBLUE + δ j
T γ̂ NP

XU ΔU

ˆ ( ) ( )NPCD
i i

j s
F t N I y= ≤

ˆ( ) ( )
i i

NPEBLUP
j jj r

I y t I y t
∈ ∈

= ≤ + ≤∑ ∑

+ z j
T ûNPEBLUP x j

T δ j
T

(1 1 ˆ ˆ
i i i

NPEBLUP NPEBLUP
i j k k

j r k s
n I y y y

∈ ∈ ∈

⎡ ⎤+ + −⎣ ⎦∑ ∑∑

 
j s

, (11) 

where , and ,  and   denote 

respectively the rows of ,  and  that correspond to unit j in area i. Similarly, under 

(10), the nonparametric version of the CD estimator of the distribution function for area i is 

EBLUP

ZU

z j
T

 .   (12) ){ }j t t− −⎡ ⎤
⎢ ⎥
⎣ ⎦

≤

 

3. The Model-Based Direct Estimator for the Small Area Distribution Function 

A direct estimate for a small area is simple to interpret, since the estimated value of the 

variable of interest for the area is just a weighted average of the sample data from the same 

area. This is not true of an indirect estimator like the EBLUP, which is a weighted sum over 

the entire sample. Unfortunately, when weights are the inverses of sample inclusion 

probabilities, conventional direct estimators like (2) and (3) can be quite inefficient. The 

Model-Based Direct Estimator (MBDE) of a small area mean improves upon the efficiency 

of these conventional direct estimators by using the weights that define the EBLUP for the 

population total under a model with random area effects. See Chandra and Chambers (2009) 

and Salvati et al. (2010). MBDEs for the population mean of y using weights based on the 

linear model (4) as well as those based on the non-parametric model (10) are therefore 

possible. However, the finite population distribution function is the population mean of an 

indicator variable, which does not satisfy either (4) or (10). Consequently, 'standard' EBLUP 
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weights are not appropriate for defining the MBDE of this function. Instead, we use sample 

weights that are calibrated to the known finite population distribution of the auxiliary 

variables in x and are based on a model with random area effects. 

 For simplicity, we restrict our discussion below to a single scalar covariate x, noting 

that the extension to multiple scalar covariates is straightforward. The calibrated estimator of 

a finite population distribution function  was defined in Harms and Duchesne (2006) as 

a weighted empirical distribution function 

FN (t)

 F̂N
HD (t) = N −1 wj I (yj ≤ t)

j∈s∑  (13) 

where the sample weights w  in (13) are calibrated to the known finite population 

distribution of x. In particular, let 

j

1 20 K 1α α α< < < < <

1,k

 denote an ordered set of 

constants. Then the weights used in (13) sum to N and, for , K= … , also satisfy 

 { }( )j j x kj s
w I x Q N kα α

∈
≤ =∑ , (14) 

where Qx (α k )  is the known α k -quantile of the finite population distribution of x . That is, 

the weights used in (13) are calibrated to both the population size N and to the population 

totals of the auxiliary variables defined by the indicators { }( )j x kI x Q α≤ .  

 Standard results from calibration theory (Deville and Särndal, 1992; Chambers, 1996) 

can be used to show that if these calibrated weights  are then chosen to minimise their chi-

square distance from the weights used in Horvitz-Thompson estimator (2), as is commonly 

done, then (13) is a regression estimator of  under the linear model 

wj

FN (t)

 { }0
1

( ) ( )
K

j t kt j x k
k

I y t I x Q jtβ β α
=

≤ = + ≤ +∑ ε , (15) 

where the ε jt  are uncorrelated errors with zero expectation and variance  (Chambers, 

2005). However, (15) is also easily seen to be a p-spline model with knots at the 

σεt
2

α k -th 
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quantiles of the finite population distribution of x. That is, is actually a p-spline 

estimator of . Define 

F̂N
HD (t)

FN (t) { }( )jk j x kg I x Q α= ≤  and let ( ); 1,....,g j N= =gUk jk  be the 

corresponding population N-vector, so [ ]1, , ,Ug g…U N=G 1

N

dUt

U

d

K  denotes the population level 

matrix of values of these variables, where 1  denotes a N-vector of ones. Also, define 

 and put   equal to the N-vector of population values of the . The 

population level version of model (15) is then 

djt = I (yj ≤ t) dUt jt

= GUβt + εUt . (16)  

Given the appropriate sample and non-sample components of d ,  and the covariance 

matrix  of 

Ut GU

VUt = σεt
2 IU εUt

jt

, the vector of sample weights w  that define the EBLUP of the 

population total of the  under (16) is then 

jt
DF

d

( ); (T T T 1ˆ)ˆ ˆ) ( T T ˆDF DF st jt n st U N ss = +w 1 H G n n− +1 G st s−I sst srt N n
−

−1 Hw j= ∈ g V V 1 ,  (17) 

(ˆ ˆ )T 11 1ˆT
st = s sstH Gwhere sV G s

−
−

sst
−G V V̂sst

( )

. Under (16),  and , so these weights 

simplify to 

= σ̂εt
2 In V̂srt = 0

 ( ) ( )1 1
) T T; (T TDF DF T

s jw j n s s s U= +G G G G 1

 dUt

N s n−G 1 n= +1 G Gs s s N

− −
G G n− −1N= ∈ s 1w n . 

 The model (16) is easily adapted to small area estimation by including random area 

effects. That is, we replace (16) by 

= GUβt + ZUut + εUt

(0,

 (18)  

where  was defined following (4) and  ZU ut ~ N Ω t )  is an A-vector of random area 

effects. As usual, we assume that  and ut εUt

εt
2 IN

 are independently distributed, so that 

. The sample weights w  that define the EBLUP of the 

population total of the d  under (18) are then still given by (17), but now with 

U
T + σ

jt

jt
DF

 Var(dUt ) = VUt = ZUΩ tΖ
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 V̂sst = ZsΩ̂ t Zs
T + σ̂εt

2 In

1 20 K

 and  , where  and  are the estimated values of the 

variance components of (18). 

V̂srt = ZsΩ̂ t Zr
T

1

Ω̂ t σ̂ εt
2

 In practice, one first needs to decide on the calibration constraints (14) before (18) can 

be fitted and (17) calculated. This in turn requires that one has chosen the values 

α α< < < <

α t
opt

α <

{

. We adapt the ordered half-sample cross validation procedure 

described in Chambers (2005) for this purpose. In particular, we fix K = 1 and then search for 

the value  that maximises the concordance between the sample values of  and the 

sample values of 

djt

}( )j j xx Qg I α= ≤

x(1), x(2), x

{

. The steps in this procedure are as follows: 

1. Order the sample x-values: 1), x(n) ; (3),......, x(n−

}(1) (3), ,.....E x x { }(2) , (4) ,.....V x x ; ==  and 2. Create two sets 

3. For given α  and t, fit the model (18) and then compute the weights (17), treating E as 

the 'sample' and V as the 'nonsample'. Denote the corresponding value of (13) based 

on these weights by ; F̂N
HD(n) (t,α )

4. The optimal value α t
opt  then satisfies 

  { } { }2 2
( ) 1

0 1
min ( )n

N jj s
t F n I y t

α

− −
∈ ∈< <

−∑ ∑( ) ( , )HD n opt
N tF t

Qx (

1 ( )jj s
n I y− ≤ˆ ˆ HD= ( , )tα α ≤ . 

We note that although this procedure only identifies a single 'most concordant' calibration 

constraint to use in (14), there is nothing to stop it being extended to identification of multiple 

calibration constraints. However, some care must then be taken to ensure that the resulting 

values of α )  are separated sufficiently in the interval spanned by the sample values of the 

auxiliary x. Failure to do this could result in the sample design matrix defined by (18) not 

being of full rank. 

 Finally, given the weights (17), we write down the MBDE for the area i distribution 

function F  as i (t)
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 F̂i
MBDE (t) = wjt

DF I(yj ≤ t)
j∈si

∑ wjt
DF

j∈si
∑ . (19) 

 We refer (19) as a direct estimator because it is a weighted average of the sample data 

from the area of interest. However, this does not mean that it can be calculated from these 

data alone. The weights (17) are a function of the data from the entire sample. That is, they 

‘borrow strength’ from other areas via the model (18). 

 It should also be pointed out that since the weights (17) depend on t, there is no 

guarantee that (19) defines a monotone function of t, i.e. one where  implies 

. This issue will usually not be relevant when one wishes to estimate 

the distribution of interest at points that are well separated, but can be a problem when the 

aim is to invert (19) as a function of t in order to estimate quantiles. In such a situation we 

recommend that (19) be first transformed to be monotone in t, e.g. using the approach 

described in He (1997). 

t1 < t2

F̂i
MBDE (t1) ≤ F̂i

MBDE (t2 )

3.1    Mean squared error estimation for the MBDE 

A bias-robust estimator of the mean squared error (MSE) of the MBDE is described in 

Chandra and Chambers (2009), see also Chambers et al. (2009), and we use this approach 

here to define a corresponding MSE estimator for (19). This is the estimator 

 { } 2ˆ ˆ ˆ ˆ( )MBDE
i it itM F t V B= +  (20) 

where  is a heteroskedasticity-robust estimator of the conditional prediction variance of 

 (Royall and Cumberland, 1978),  is an estimator of the corresponding 

conditional prediction bias, and the conditioning is with respect to the value of the area effect. 

In particular, we use 

V̂it

(t)F̂i
MBDE B̂it

 ( ){ }22 ( ) 1ˆ ˆ1 ( ) ( )
i

DF i
it i i jt i i jt jtj s

V N N w N n n d μ−
∈

= − + −∑ 2− − , (21) 
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where wjt
DF (i ) = wjt

DF wkt
DF

k∈si
∑  and μ̂ jt  is an unbiased linear estimator of the conditional 

expected value 
 
μ jt = E(djt gj ,ut ) . Chambers et al. (2009) recommend that μ̂ jt  be computed 

as the ‘unshrunken’ version of the EBLUP for μ jt , i.e.  

 ( ) ( )1

0 1
ˆ ˆ ˆˆ

TT T T T T
jt t j t j s s s s st s ngμ β β

−
= + + −z Z Z Z I H g l . 

For the conditional bias of the MBDE, we use a simple ‘plug-in’ estimator of the form 

 B̂it = wjt
DF (i )μ̂ jtj∈si

∑ − Ni
−1 μ̂ jtj∈Ui
∑ . (22) 

 Note that the MSE estimator (20) ignores the extra variability associated with 

estimation of the variance components, and is therefore a heteroskedasticity-robust first order 

approximation to the actual conditional MSE of the MBDE. Also, (20) treats the weights (17) 

as fixed, i.e. it ignores the contribution to the MSE from the estimated variance components. 

Chambers et al. (2009) refer to this as a pseudo-linearization assumption since for large 

overall sample sizes the contribution to the overall MSE of (19) arising from the variability of 

variance components will be of smaller order of magnitude then the fixed weights prediction 

variance estimated by (21). However, the extent of this underestimation will depend on the 

small area sample sizes and the characteristics of the population of interest, particularly the 

strength of the small area effects. Finally, we note that (22) is a conservative estimator of the 

squared bias, since 2ˆ ˆ( ) ( ) ( )it it it
2 ˆE B Var B E B= + . However, the extent of this overestimation is 

typically very small. 

 

4. Empirical Evaluations 

In this Section we report the results from model-based and design-based simulation studies 

that illustrate the performance of the different estimators of the small area distribution 

function defined in the preceding two Sections. These estimators are set out in Table 1. Their 
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performance in the simulation studies is evaluated by computing for each small area the 

absolute relative bias (ARB), the relative root mean squared error (RRMSE) and coverage rate 

(CR) of nominal 95 per cent confidence intervals defined as follows: 

 ( ) ( ){ }1
1 1

1 1
ˆ 100R R

i ir ir irr r
ARB R F R F F

−
− −

= =
= −∑ ∑ × , 

 ( ) ( )
1 21 1

1 1
ˆ 100R R

i ir ir irr r
RRMSE R F R F F

−
− −

= =

⎧ ⎫
= −⎨ ⎬

⎩ ⎭
∑ ∑ × , and 

 ( )
1

1 ˆ ˆ2 100
R

i ir ir ir
r

CR I F F M
R =

= − ≤∑ ×

)

. 

Here R denotes the number of simulations,  denotes the true value of the area i distribution 

function at simulation r,  denotes an estimate of this value, and  denotes an estimate of 

the MSE of . The value of the true MSE for  is calculated as 

Fir

F̂ir M̂ ir

1F̂ir F̂ir ( 2

1
ˆR
ir irr

R F F
=

−∑− . Note 

that in the design-based simulations Fir = Fi . 

4.1 Model-based simulations 

In the model-based simulations we set A = 30 and use two types of models to generate the 

population values of y . The first is a linear model, yij = 500 +1.5xij + ui + eij

ui

eij N 0,

, where 

,  and , with random area effects  are generated as 

independent realizations from a  distribution and  distributed as , 

corresponding to an intra-area correlation of 

xij ~ χ 2 (20) j = 1,...., Ni i = 1,..., A

N 0,23.52( ) 94.09( )

σ u
2 σ u

2 + σε
2( )= 0.2 . Simulations based on this 

model are referred to as set 1 simulations. The second model is a multiplicative 

model, , where the values of  are independently drawn from the lognormal 

distribution 

 yij =

l

5xij
βuieij

og( )ijx N

xij

( 2, x )6 σ∼

()ije N

, and the individual effects and area effects are independently 

drawn as )2
elog( 0,σ∼  and ( )20,iu Nlog( ) uσ∼  respectively. We use two sets of 

parameters for this model, defined by β (1 or 2), σ u (0.4 or 0.6), σ e (0.7 or 1.0) and σ x (2.25 
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or 1.20). These are referred to from now on as set 2a and set 2b. Data values for y generated 

under set 2a are almost linear in x while those generated under set 2b are quite non-linear in 

x. The small area population sizes  are randomly drawn from a uniform distribution on 

[450,550] and kept fixed over the simulations. The small area sample sizes n  are determined 

by first selecting a simple random sample of size n =600 from the population and noting the 

resulting sample sizes in each small area. These area specific sample sizes n  are then fixed 

in the simulations by treating the small areas as strata and carrying out stratified random 

sampling. A total of R = 1000 simulations are then carried out for each combination of model 

and individual error distribution, with each simulation corresponding to first generating the 

population values and then drawing a sample. The average ARB values and the average 

RRMSE values of the different small area distribution function estimators are shown in Table 

2 and 3 respectively. These values are in percentage terms, and the averages are over the 30 

small areas. All estimators are evaluated at the 0.1, 0.25, 0.5, 0.75 and 0.9 quantiles of y. 

Ni

i

i

4.2 Design-based simulations 

The design-based simulations are based on two real survey data sets. The first survey data set 

is based on data collected in the 1995-96 Australian Agricultural Grazing Industry Survey 

(AAGIS) conducted by the Australian Bureau of Agricultural and Resource Economics. In 

the original sample there were 759 farms from 12 regions (the small areas of interest), which 

make up the wheat-sheep zone for Australian broadacre agriculture. We used these sample 

data to generate a synthetic population of size N = 39,562  farms by re-sampling the original 

AAGIS sample of n = 759  farms with probability proportional to a farm’s sample weight. 

This fixed population was then repeatedly sampled using stratified random sampling with 

regions corresponding to strata and with stratum sample sizes the same as in the original 

sample. The variable of interest is total cash costs (TCC) and the auxiliary variable is land 

area. Based on the original AAGIS sample data, the fit of the linear mixed model (AIC = 

 17



20012.32) and the fit of the nonparametric p-spline regression model (AIC = 19998.02) were 

essentially the same, indicating that addition of the nonparametric spline component does not 

improve the fit of the mixed model. We therefore do not expect to see much difference 

between the distribution function estimates generated by these two models. The aim is to 

estimate the values of the regional distribution functions at the 0.1, 0.25, 0.5, 0.75 and 0.9 

quantiles of the finite population distribution of TCC. 

 The data for the second design-based simulation come from the Environmental 

Monitoring and Assessment Program (EMAP) survey carried out by the Space Time Aquatic 

Resources Modelling and Analysis Program (STARMAP) at Colorado State University, and 

we replicate the design-based simulation experiment carried out by Salvati et al. (2010). The 

background to this data set is that EMAP conducted a survey of lakes in the North-Eastern 

states of the United States of America between 1991 and 1996. The data collected in this 

survey included 551 measurements of Acid Neutralizing Capacity (ANC) - an indicator of the 

acidification risk of water bodies in water resource surveys - from a sample of 349 of the 

21,028 lakes located in this area. Here we define lakes grouped by 6-digit Hydrologic Unit 

Code (HUC) as our small areas of interest. Since three HUCs have sample sizes of one, these 

are combined with adjacent HUCS, leading to a total of 23 small areas. Sample sizes in these 

23 areas vary from 2 to 45. A (fixed) pseudo-population of N = 21,028 lakes is defined by 

sampling N times with replacement and with probability proportional to a lake's sample 

weight from the original sample of 349 lakes. A total of R = 1000 independent stratified 

random samples of the same size as the original sample are selected from this pseudo-

population, with HUCs corresponding to strata and stratum sample sizes fixed to be the same 

as in the original sample. The survey variable of interest is the ANC value of a lake, with its 

elevation defining the auxiliary variable. Using the original EMAP data, the fit of the linear 

mixed model (AIC = 6714.31) is worse than that of the nonparametric regression model (AIC 
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= 6580.2). In this case, therefore, there are gains from including the spline component in the 

mixed model, and so we expect that estimates of the distribution function based on the 

nonparametric regression model will perform better than those based on the linear mixed 

model. Again, the aim is to estimate the values of the individual HUC distribution functions 

at the 0.1, 0.25, 0.5, 0.75 and 0.9 quantiles of the finite population distribution of ANC. 

 Tables 4 and 5 show the average over small areas of the ARB and RRMSE values of 

the different distribution function estimators based on the R = 1000 independent stratified 

samples taken from the AAGIS and EMAP populations respectively. Similarly, Table 6 

shows the corresponding averages over the areas of the true RMSEs and estimated RMSEs, 

and the actual coverage rates of nominal 95 percent confidence intervals for the true area-

specific distribution function values based on the MBDE estimator (19) and its associated 

MSE estimator (20). Figures 1 and 2 show the area-specific values of the true RMSE and 

estimated RMSE of the MBDE (19) for the design-based simulations of the AAGIS and 

EMAP data. 

4.3 Discussion 

Two things stand out in Tables 2 and 3. The first is that the MBDE offers substantial bias 

gains over the other DF estimators, at all quantiles, when the relationship between the study 

variable and the covariate is complicated and/or the usual mixed model distributional 

assumptions are invalid (sets 2a and 2b). If the underlying population structure is linear and 

the usual mixed model assumptions hold (set 1) the CD and NPCD estimators have slightly 

smaller absolute biases than the MBDE. The larger biases of the 'plug-in' EBP and NPEBP 

estimators are not unexpected in set 1 because these estimators ignore unit level variability in 

y. Second, the NPCD estimator generally records the lowest RRMSE among the alternatives 

to the MBDE, but when the relationship between y and x is complicated, as under sets 2a and 

2b, the RRMSE values recorded by the MBDE are comparable, and sometimes lower, than 

 19



those recorded by the NPCD estimator. On the other hand, under the linear specification (set 

1), the MBDE is clearly less efficient than its alternatives.  

 Design-based simulations serve to complement model-based simulations for SAE, 

providing evidence of comparative performance and robustness in realistic data scenarios. 

Table 4 shows the results for the design-based simulations using the AAGIS data. Here we 

see that the MBDE has lower bias and RMSE than the other predictors at all quantiles. As 

expected, given the linear relationship between y and x, the CD-based estimators of the DF 

based on the linear mixed model are generally more efficient than those based on the 

nonparametric spline regression model. However, the reverse is true for the EBP-based 

estimators, perhaps reflecting the lower (but still substantial) biases of the NPEBP. Table 5 

reports the design-based simulation results for EMAP data. These again indicate that the 

MBDE dominates the other estimators in terms of bias. The results for RRMSE are not as 

clear-cut as in the AAGIS simulations, but still show that the performance of the MBDE is 

comparable with the performance of the NPCD estimator, which was consistently the best of 

the alternative estimators in terms of RRMSE. 

 We now turn to an examination of the performance of the MSE estimator (20) for the 

MBDE. Figures 1 and 2 show that this estimator accurately tracks the simulation (i.e. 

repeated sampling) area-specific MSEs of the MBDE at all five target quantiles for y. This 

good performance is confirmed by the results in Table 6, which shows that the area averages 

of the true RMSEs and the estimated RMSEs obtained using (20) are very close. Finally, we 

note that one can combine the MBDE estimator (19) with the MSE estimator (20) to generate 

‘normal theory’ confidence intervals for the area-specific value of the distribution function, 

i.e. as the small area estimate plus or minus twice its corresponding estimated RMSE. Table 6 

shows that the actual coverage rates achieved by these intervals, though generally less than 

95 per cent, are still close enough to their target value to be practically useful. 
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Finally, we note that an alternative to the CD estimator that is both model-consistent and 

design-consistent, has been proposed by Rao et al. (1990). Although the relevant results are 

not reported here, we also explored the performance of both parametric and nonparametric 

versions of this estimator in our simulations. In all cases, this performance was almost 

identical to that of the parametric and nonparametric versions of the CD predictor. 

 

5.   Conclusions 

This paper develops an MBDE estimator for the value of the area-specific finite population 

distribution of a response variable y. This estimator is based on sample weights that are 

calibrated to the finite population distribution of an auxiliary variable x, and also allow for 

random area effects. We then compare the performance of this MBDE estimator with two 

competing estimators based on either a linear mixed model or a nonparametric mixed model 

for y. Our results indicate that the proposed MBDE can sometimes be much better than these 

alternatives, particularly in realistic applications where fitted models are approximations at 

best. On the other hand, if the model assumptions are valid (e.g. set 1 in the model-based 

simulations), then area-specific distribution function estimators based on the CD 

representation are preferable. We also provide a method for estimating the MSE of the 

MBDE and demonstrate empirically that it performs well. 
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 Table 1. Description of the estimators considered in the simulation studies. 

Estimator Description 

MBDE MBDE (19) with sample weights (17) based on model (18) 

EBP EBLUP-based EBP estimator (5) under linear mixed model (4) 

CD EBLUP-based CD estimator (6) under linear mixed model (4) 

NPEBP NPEBLUP-based EBP estimator (11) under spline-based mixed model (10) 

NPCD NPEBLUP-based CD estimator (12) under spline-based mixed model (10) 

 
 
Table 2. Area averages of absolute relative bias (ARB, %) generated by model-based 
simulations. 
 
Set Population quantile MBDE EBP CD NPEBP NPCD
1 0.10 2.41 71.94 1.24 71.83 1.28
 0.25 1.29 30.92 0.61 30.83 0.62
 0.50 0.84 2.61 0.40 2.65 0.39
 0.75 0.52 9.17 0.26 9.14 0.25
 0.90 0.27 5.46 0.15 5.43 0.15
2a 0.10 2.40 127.28 141.01 114.80 160.20
 0.25 1.30 3.13 17.97 4.57 24.39
 0.50 0.80 39.42 10.49 16.33 8.94
 0.75 0.51 19.18 9.05 7.42 8.97
 0.90 0.28 1.12 4.00 1.35 3.92
2b 0.10 2.18 444.41 344.70 175.30 202.23
 0.25 1.38 120.62 80.84 21.72 33.14
 0.50 0.79 13.75 5.82 17.00 10.75
 0.75 0.53 17.62 29.28 12.20 11.48
 0.90 0.29 17.36 23.47 3.30 5.67
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Table 3. Area averages of relative root mean squared error (RRMSE, %) generated by model-
based simulations. 
 
Set Population quantile MBDE EBP CD NPEBP NPCD
1 0.10 63.22 82.54 38.12 82.52 38.21
 0.25 36.55 39.05 22.35 39.21 22.40
 0.50 21.17 15.25 12.76 15.45 12.78
 0.75 12.38 11.23 6.93 11.22 6.92
 0.90 7.16 6.46 3.61 6.43 3.60
2a 0.10 65.17 314.20 179.08 242.08 180.82
 0.25 37.57 115.75 41.11 80.16 36.71
 0.50 21.66 71.40 16.70 39.96 14.19
 0.75 12.54 37.44 11.32 18.98 10.97
 0.90 7.23 6.43 6.04 5.81 5.67
2b 0.10 64.88 455.68 351.48 297.19 218.47
 0.25 37.30 128.20 86.91 92.85 43.29
 0.50 21.53 26.30 18.50 44.63 16.34
 0.75 12.43 21.17 30.80 26.43 13.67
 0.90 7.19 18.70 24.98 10.84 7.47
 
 
Table 4. Average values over 12 regions of absolute relative bias (ARB, %) and relative root 
mean squared error (RRMSE, %) for the AAGIS data. 
 

Population quantile MBDE EBP CD NPEBP NPCD
 ARB (%) 
0.10 1.51 97.14 87.92 95.03 143.74
0.25 0.92 94.18 50.74 64.10 53.45
0.50 0.35 67.99 13.96 38.27 16.34
0.75 0.30 24.39 3.97 15.34 10.70
0.90 0.15 10.26 1.83 6.76 2.69
 RRMSE (%) 
0.10 47.75 131.26 108.26 117.60 155.65
0.25 23.40 114.07 59.25 81.29 58.53
0.50 14.48 81.50 19.17 45.62 19.06
0.75 7.59 29.43 8.53 20.23 12.26
0.90 3.81 10.67 4.20 8.51 4.36
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 Table 5. Average values over 23 HUCs of absolute relative bias (ARB,%) and relative root 
mean squared error (RRMSE,%) for the EMAP data. 
 

Population quantile MBDE EBP CD NPEBP NPCD
 ARB (%) 
0.10 2.10 71.13 32.37 50.85 21.14
0.25 0.74 51.53 17.20 42.38 18.74
0.50 0.67 43.44 13.83 33.09 11.86
0.75 0.43 21.92 6.22 18.12 9.17
0.90 0.25 11.55 2.23 11.92 3.61
 RRMSE (%) 
0.10 46.76 72.02 47.71 58.38 43.91
0.25 28.41 58.93 32.64 47.92 29.02
0.50 30.51 52.17 25.18 36.83 21.60
0.75 14.76 27.94 16.04 21.70 15.21
0.90 5.30 14.13 6.29 13.57 6.06

 
 

Table 6. Average values of true RMSE and estimated RMSE and actual coverage rate (CR, 
%) of nominal 95 per cent confidence intervals generated by the MBDE (19) and associated 
MSE estimator (20) for the AAGIS and EMAP data. Averages are over regions. 
 

AAGIS EMAP 
Population quantile 

True RMSE Estimated RMSE CR True 
RMSE 

Estimated 
RMSE CR 

0.10 0.034 0.034 89 0.018 0.021 95 
0.25 0.051 0.052 91 0.041 0.041 92 
0.50 0.061 0.061 95 0.054 0.055 93 
0.75 0.051 0.051 94 0.052 0.058 93 
0.90 0.031 0.032 90 0.028 0.034 93 
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Figure 1. Region-specific values of actual repeated sampling RMSE (solid line) and average 
estimated RMSE (dashed line) of MBDE (19) for the AAGIS data.  
 

 

 
 
 
Figure 2. HUC-specific values of actual repeated sampling RMSE (solid line) and average 
estimated RMSE (dashed line) of MBDE (19) for the EMAP data. 
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