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Abstract

Elastography is emerging as an imaging modality that can distinguish normal versus diseased

tissues via their biomechanical properties. This article reviews current approaches to elastography

in three areas — quasi-static, harmonic, and transient — and describes inversion schemes for each

elastographic imaging approach. Approaches include: first-order approximation methods; direct

and iterative inversion schemes for linear elastic; isotropic materials; and advanced reconstruction

methods for recovering parameters that characterize complex mechanical behavior. The paper’s

objective is to document efforts to develop elastography within the framework of solving an

inverse problem, so that elastography may provide reliable estimates of shear modulus and other

mechanical parameters. We discuss issues that must be addressed if model-based elastography is

to become the prevailing approach to quasi-static, harmonic, and transient elastography: (1)

developing practical techniques to transform the ill-posed problem with a well-posed one; (2)

devising better forward models to capture the transient behavior of soft tissue; and (3) developing

better test procedures to evaluate the performance of modulus elastograms.

1. Introduction

Elastography is an emerging imaging modality that exploits differences in the biomechanical

properties of normal and diseased tissues (Krouskop et al., 1998; Samani et al., 2007;

Sarvazyan et al., 1995; Parker et al., 2011). Several groups have investigated the diagnostic

value of elastography in various clinical settings; these include detecting and characterizing

atherosclerotic plaques (de Korte et al., 2002; de Korte et al., 2000; Doyley et al., 2001;

Brusseau et al., 2001; Woodrum et al., 2006); guiding minimally invasive therapeutic

techniques (Kallel et al., 1999; Righetti et al., 1999; Varghese et al., 2003); and improving

the differential diagnosis of breast and prostate cancers (Hiltawsky et al., 2001).

Elastography was developed in the late 1980s to early 1990s to improve the diagnostic value

of ultrasonic imaging (Lerner and Parker, 1987; Lerner et al., 1988; O’Donnell et al., 1994;

Ophir et al., 1991), but the success of ultrasonic elastography has inspired other

investigators to develop analogues based on other imaging modalities; these include

magnetic resonance elastography (Muthupillai et al., 1995; Bishop et al., 2000; Weaver et

al., 2001; Sinkus et al., 2000), and optical coherence tomography elastography (Khalil et al.,

2005; Kirkpatrick et al., 2006; Ko et al., 2006).

Although current approaches to elastography vary considerably, we can summarize the

general principles of elastography as follows: (1) perturb the tissue using a quasi-static,

harmonic, or transient mechanical source; (2) measure the internal tissue displacements

using a suitable ultrasound, magnetic resonance, or optical displacement estimation method;
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and (3) infer the mechanical properties from the measured mechanical response, using either

a simplified or continuum mechanical model. Several review articles provide a

comprehensive overview of different approaches to elastography (Bamber et al., 2002;

Greenleaf et al., 2003; Manduca et al., 1998; Ophir et al., 2000; Parker et al., 2011). This

article provides a brief description of current approaches. To simplify our discussion, we

classify current approaches to elastography into three groups: quasi-static, harmonic, and

transient; and review a selection of inverse reconstruction schemes (methods for

reconstructing shear modulus, viscosity, nonlinearity, and anisotropy within soft tissues) that

have been proposed for each elastographic-imaging approach. The primary goal of this

review is to document the efforts made by several groups, including that of the author, to

develop elastography within the framework of solving an inverse problem (i.e., model-based

elastography), a strategy that is beginning to transform elastography from an imaging

modality that provides only an approximate estimate of shear modulus to one that can

provide reliable estimates of shear modulus and other mechanical parameters — namely

viscosity, anisotropy, poro-elasticity, and nonlinearity.

This paper surveys elastographic approaches from the simplest to the most complex and

computationally intensive, and is organized into six sections. Section 2 examines the basic

first-order approximation methods employed in earlier work. Section 3 covers the direct (or

forward) problem in elasticity imaging. Section 4 then considers the major categories of

inversion schemes under linear elastic, isotropic models. Section 5 reviews approaches to

more complex models including viscoelastic, poroelastic, nonlinear, and anisotropic

behaviors. Finally, section 6 describes issues that still remain to be addressed.

2. First order approximation to shear modulus

Several groups have developed approaches for obtaining approximate estimates of shear

modulus, and despite their limited accuracy these techniques are fast and robust — traits that

make them clinically appealing. In this section, we review the methods that have been

proposed for obtaining approximate estimates of shear modulus in quasi-static, harmonic,

and transient elastography. Figure 1 provides a pictorial representation of all three

approaches to elastography.

2.1 Quasi-static elastography based on stress uniformity

Ophir et al. (1991) proposed a quasi-static method that is arguably the most established

approach to elastography. Quasi-static elastography was originally developed as an

ultrasound imaging technique (O’Donnell et al., 1994; Ophir et al., 1991; Bamber and Bush,

1995), but a magnetic resonance (MR) analogue was later described (Plewes et al., 2000;

Fowlkes et al., 1995). Quasi-static elastography measures the axial strain induced within the

tissue using either an external or internal source. A small motion is induced within the tissue

(typically on the order of 2 % of the axial dimension) with a quasi-static mechanical source;

the axial component of the internal tissue displacement is then measured, usually by

performing cross-correlation analysis on pre- and post-deformed radio-frequency (RF) echo

frames in the time or frequency domain; and strain elastograms are produced by spatially

differentiating the axial component of displacement, using either a finite difference or a least

squares strain estimator (Kallel and Ophir, 1997). In quasi-static elastography, soft tissues

are typically envisioned as a series of one-dimensional springs that are arranged in a simple

fashion. For this simple mechanical model, the measured strain (ε ) is related to the internal

stress (σ ) as follows (Hooke’s Law):

(1)
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where E is the Young’s modulus of the tissue. Currently, no method can measure the

internal stress distribution in vivo; consequently, in quasi-static elastography, the internal

stress distribution is typically assumed to be constant (i.e., σ ≈ 1). Using this assumption, an

approximate estimate of Young’s modulus is computed from the reciprocal of the measured

strain, but the disadvantage of computing modulus elastograms in this manner is that stress

concentration and target hardening artifacts (Konofagou et al., 1996; Ponnekanti et al.,

1994) may compromise the diagnostic quality of the ensuing images. In spite of this

limitation, Kallel et al. (1998) demonstrated that this approach can provide a good relative

estimate of the shear modulus of low-contrast focal lesions, in cases for which uniform

stress is induced within the imaging field of view. Several groups have adopted this

approach to obtain reasonable relative estimates of shear modulus for which accurate

quantification of shear modulus is not essential; these include guiding minimally invasive

therapeutic techniques, and detecting abnormalities in several organs such as the breast,

prostate, and liver tissue. Figure 2 shows an example of an approximate modulus elastogram

computed using the assumption of stress uniformity; the strain images were filtered using

the spatial filter described in (Doyley et al., 2005) prior to inversion.

2.2 Harmonic elastography base ed on local frequency estimation

Like its quasi-static counterpart t, harmonic elastography was first proposed as an ultrasound

imaging method (Lerner and Parker, 1987; Lerner et al., 1988; Parker et al., 1990;

Yamakoshi et al., 1990), but was later extended to magnetic c resonance imaging (MRI)

(Muthupillai et al., 1995), and is now the prevailing approach to magnettic resonance

elastography (MRE). In harmonic elastography, a low-frequency acoustic wave (typiccally <

1 kHz) is transmitted within the tisssue using a sinusoidal mechanical source. The phase and

a amplitude of the propagating waves are visuualized using either color Doppler imaging

(Parker et al., 1990; Lerner et al., 1990; Yamakoshi et al., 1990) or phase-contrast MR

imaging (Muthupillai et al., 1995; Sinkus et al., 2000; Weaver et al., 2001). Assuming that

shear waves propagate with plane wavefronts, then an approximate estimate of the local

shear modulus (μ ) may be computed from local estimates of o the wavelength as follows:

(2)

where c2 is the velocity of the shear wave, and ρ is the density of the tissue. Manduca et al.

(2001) showed that in a homogeneous tissue, shear modulus can be estimated from local

estimates of instantaneous frequency, which they computed with a bank of wavelet filters as

described in (Knutsson et al., 1994). Wu et al. (2006) used a similar approach to compute

shear modulus images with sonoelastography (i.e., the ultrasound analogue to MRE).

Although this shear-modulus estimation approach is relatively insensitive to measurement

noise, the spatial resolution of the ensuing modulus elastograms is limited. A further

weakness of the approach is that the plane-wave approximation breaks down in complex

organs, such as the breast and brain, when waves reflected from internal tissue boundaries

interfere constructively and destructively.

2.3 Transient elastography based on arrival time estimation

A major limitation of harmonic elastography is that shear waves attenuate rapidly as they

propagate within soft tissues, which limits the depth of penetration. To overcome this

limitation, Sarvazyan et al. (1998) proposed a transient approach to elastography that uses

the acoustic radiation force (ARF) of an ultrasound transducer to perturb tissue locally.

Nightingale et al. (2003) were the first to implement this technique on a clinical ultrasound

scanner to assess the viscoelastic properties of the liver. A MR analog has been reported in

(McCracken et al., 2004; Souchon et al., 2008). Bercoff et al. (2004) also developed a
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transient approach to elastography that they call supersonic shear-wave imaging (SSI),

which is rapidly becoming the most established approach to ultrasonic elastography. This

elastographic imaging method uses an ultrasound scanner with an ultra-high frame rate (i.e.,

10,000 fps) to track the propagation of shear waves. As in harmonic elastography, local

estimates of shear modulus are estimated from local estimates of wavelength via equation

(2) in transient elastography. However, the reflections of shear waves at internal tissue

boundaries make it difficult to measure shear-wave velocity. Ji et al. (2003) proposed to

overcome this limitation by computing wave speeds directly from the arrival times.

McAleavey et al. (2009) proposed to measure the shear modulus distribution within soft

tissues using a technique known as spatially modulated ultrasound radiation force (SMURF)

imaging. This elastographic imaging technique uses radiation force to generate a shear wave

of known spatial frequency, and then measures the temporal frequency response of the

vibrating tissue as the wave propagates past a point.

Fatemi and Greenleaf (1998) proposed a technique known as vibroacoustography that uses

radiation force to vibrate tissues in the kHZ range, by using two overlapping ultrasound

beams with slightly different frequencies. The resulting tissue mechanical response is

dependent on the local acoustic mechanical properties of tissue that are obtained using a

hydrophone. Using this technique, Fatemi and Greenleaf demonstrated that

vibroacoustography could visualize microcalcification with high contrast resolution.

3. Solving the direct elasticity problem

To solve the inverse elasticity problem, we need an accurate model to predict the strains

and/or displacements incurred when a tissue of known biomechanical properties and

boundary conditions is perturbed using a pseudo-static, harmonic or transient mechanical

source (i.e., solving the direct problem). Solving the direct problem provides the

computational basis for solving the inverse problem: estimating the mechanical properties

(i.e., the unknowns) from the measured mechanical responses. The advantage of this

approach to elastography is that both the direct and inverse problems are formulated from

well-established physical laws, which provide equations that relate the biomechanical

properties (namely shear modulus, Poisson’s ratio, anisotropy, viscosity, non-linearity, and

poroelasticity) to the measured mechanical response.

3.1 Equations of motion

We can derive a system of partial differential equations (PDEs) from the conservation of

linear momentum to describe the direct elasticity problem. These equations are given in

compact form by (Timoshenko and Goodier, 1970; Fung, 1981):

(3)

where σij is the three-dimensional stress tensor (i.e., a vector of vectors), fi is the deforming

force, and ▽ is the del operator. Assuming that soft tissues exhibit linear elastic behavior,

which is valid for infinitesimal deformations, then we can relate the strain tensor (εkl ) to the

stress tensor (σij) as follows (Landau et al., 1986):

(4)

where the tensor C is the Christoffel rank-four tensor consisting of 21 independent elastic

constants (Greenleaf et al., 2003; Ophir et al., 1999; Fung, 1981). Developing methods to

estimate all 21 elastic parameters is not trivial; therefore, several assumptions are used to

reduce the number of independent elastic constants. The most common assumption, and
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perhaps the simplest, is that soft tissues exhibit linear, purely elastic isotropic mechanical

behavior (i.e., that soft tissues behave like Hookian material). In this case, only two

independent constants, λ ( the second Lamé constant) and μ (shear modulus), are required to

describe the mechanical behavior of soft tissues. However, this assumption is clearly not

true for some tissues, as discussed in Section 5. The constitutive relation that describes the

relationship between stress and strain for linear isotropic elastic materials is given by:

(5)

where δij is the Kronecker delta, Δ = △ ·u = ε11 +ε22 +ε33 is the compressibility relation,

and the components of the strain tensor are defined as:

(6)

where and uj are the displacement components in the Cartesian coordinates xi Lamé

constants (i.e., λ and μ ) are related to traditional engineering constants, such as Young’s

modulus (E) and Poisson’s ratio (v), as follows (Timoshenko and Goodier, 1970; Fung,

1981):

(7)

Since stress cannot be measured in vivo, it is typically eliminated from the equilibrium

equations (i.e., equation (3)) using equation (5), and the strain components can be expressed

in terms of displacements, using equation (6). The resulting equations of equilibrium (i.e.,

the Navier-Stokes equations) are given by:

(8)

where ρ is density is the density of the material, and t is time. For quasi-static deformations,

equation (8) reduces to:

(9)

For harmonic deformations, the displacement field is assumed to have a time harmonic form

that is given by (Sinkus et al., 2000; Van Houten et al., 2001):

(10)

where 𝕽is the real component of the time harmonic displacement. The time-independent

(steady-state) equations in the frequency domain give:

(11)

where ω is the angular frequency of the sinusoidal excitation. For transient deformations, the

wave equation is derived by differentiating equation (8) with respect to x,y,z, which gives

the following result (Timoshenko and Goodier, 1970):
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(12)

where the velocity of the propagating compressional wave, C1, is given by:

(13)

To derive the wave equation for the propagating shear wave, an operation of curl is

peformed on equation (8), which gives:

(14)

where ζ = △ × u /2 is the rotational vector, and the shear-wave velocity, c2, is given by:

(15)

3.2 Numerical solution of governing equations

The equations that describe the direct problem for quasi-static, harmonic and transient

elastographic imaging methods have been solved using analytical methods (Bilgen and

Insana, 1998; Kallel et al., 1996; Love, 1929; Sumi et al., 1995a) for simple geometries and

boundary conditions. However, it is more useful to solve these equations on irregular

domains for elastically heterogeneous tissue, which is difficult to perform using analytical

methods. Consequently, investigators have employed numerical methods — namely, the

finite-element method (McLaughlin and Renzi, 2006; Parker et al., 1990; Ponnekanti et al.,

1994; Van Houten et al., 2001; Samani et al., 2001; Miga, 2003; Konofagou et al., 1996;

Hall et al., 1997; Brigham et al., 2007), and the finite-difference method (Raghavan and

Yagle, 1994; Sinkus et al., 2000; O’Donnell et al., 1994) — to solve the governing equations

for all three approaches to elastography. However, the finite element method (FEM) is

currently the most popular approach for solving PDEs, which is not surprising because: (1) it

analyzes structures with complex geometries and boundary conditions more easily than

other numerical methods; and (2) several powerful FEM packages are commercially

available (such as ANSYS, MARC, COMSOL, Abaqcus, and NASTRAN).

A finite-element representation of the governing PDEs involves four steps. First, the

geometry of the tissue is segmented into a series of finite elements, through a process known

as mesh generation. The design of efficient, two- and three-dimensional mesh generators is

an area of active research (Geuzaine and Remacle, 2009; Pinheiro et al., 2008;

Triantafyllidis and Labridis, 2002). However, the main requirement for an efficient mesh

generator is that it should be capable of meshing an object that is composed of both smooth

and irregular surfaces (Lionheart, 2004). Second, a weak form of the governing PDEs is

derived, using either the variational or the weighted residual method (Reddy, 1993; Cook et

al., 1989). Third, a basis or shape function is substituted in the derived equation to produce a

system of linear algebraic equations, which has the following form:

(16)
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where the matrix [K] is the global stiffness or coefficient matrix, f is the global force vector,

and u is the vector of unknown displacements. The final step involves imposing the external

boundary conditions associated with equation (16) before solving the resulting equations.

3.2.1 Weak form—The weak form is a weighted-integral statement that is equivalent to

the governing partial differential equation and the natural boundary conditions of the

problem. The weak form of the governing elasticity equation for each approach to

elastographic imaging can be derived as described in (Reddy, 1993). For simplicity, we will

describe only the finite element implementation for the harmonic case (i.e., equation (8)),

since the procedure is identical for the quasi-static and transient cases. The weak form of

equation (8) with a scalar weighting function ϕi(x, y, z) is given by:

(17)

where  represents an integration over the boundary ( Γ) of the element, ϕi is a scalar basis

associated Γ with the element, n ̂ represents the outward-pointing normal vector, and t ̂
represents the Nuemann boundary condition. If the scalar components of the displacement

vector, u, are u(x, y, z),v,(x, y, z),w(x, y, z) in the x,y, and z directions, respectively, then the

Galerkin approximation of the displacement may be derived by expanding the scalar

components in the ϕ basis to give:

(18)

where N is the number of nodes associated with each element in the finite element mesh and

uj ,vj , wj are the axial, lateral, and elevational displacement components at each element

node. The Galerkin weak-form finite element model is obtained by substituting equation

(18) into equation (17):

(19)

where f is the 3N × 1 global force vector and K(μ,λ,ρ ) that is given by

(20)

where the coefficients of the global stiffness matrix are determined by the basis function and

the material properties (i.e., μ and λ ).

3.2.2 Dimensionality reduction using the plane-strain and plane-stress

approximation—Despite the technological advances in 3D ultrasound imaging, ultrasound

is predominately a two-dimensional imaging modality. Thus, most investigators in

ultrasonic imaging typically reduce the 3D elasticity problem to a two-dimensional problem,

using either a plane-strain or plane-stress approximation. To illustrate the differences

between the two approximations, let’s consider a linear elastic 1 1 solid, Ω, of uniform
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thickness, h , bounded by two parallel planes (  and ) and a closed 2 2

boundary, Γ. If the thickness of h≫Ω, then the problem can be considered a plane-strain

problem. In this case, we assume thatε13 = ε23 = ε33 = 0. The plane-strain approximation is

typically used when structures above and below the ultrasound scan plane have motion

confined to the elevation (z) direction (Kallel et al., 2001; Doyley et al., 2000; Skovoroda et

al., 1995; Barbone and Bamber, 2002). However, when h≪Ω, the problem is considered a

plane-stress problem. In this case, we assume that σ13 = σ23 = σ33 = 0). The plane-stress

approximation generally applies to thin plates; however, (Sumi et al., 1995b) used a plane-

stress approximation to reduce the 3D elasticity problem to 2D. In reality, the plane-strain

and plane-stress assumptions are valid only for special cases such as phantoms with

cylindrical inclusions, or when elastography is performed using the constrained imaging

method described in (Kallel and Ophir, 1997). Therefore, errors are typically incurred when

the 3D elasticity problem is modeled using either approximation.

4. Computing shear modulus by solving the inverse elasticity problem

Several groups have proposed inversion schemes for computing the mechanical properties

within soft tissues. Figure 3 summarizes the inversion schemes proposed for the three

different approaches to elastography. These inversion schemes were formulated based on the

premise that soft tissue behaves like an Hookian material (i.e., it behaves like a linear, purely

isotropic material).

4.1 Quasi-static elastographic inversion schemes

4.1.1 Direct inversion—Raghavan and Yagle (1994) proposed a direct inversion scheme

for recovering shear modulus. They derived a linear system of equations by re-arranging the

PDEs that describe the direct problem for the plane-strain condition. The PDEs that

(Raghavan and Yagle, 1994) derived are given by:

(21)

where , the unknowns are shear modulus (μ ) and hydrostatic pressure ( p)1, and the

coefficients are functions of the internal tissue strains that are related to the measured

displacements (see equation (6)). The weakness of this approach is that both the shear

modulus (μ ) and the hydrostatic pressure ( p ) on the boundary must be known to solve

equation (21).

Although Rhagavan and Yagle’s computer simulation demonstrated that this inversion

scheme could produce very encouraging displacements, they observed that the performance

of the reconstructed elastograms degraded rapidly with increasing measurement noise.

Another weakness of this inversion scheme is that no imaging system to date can measure

hydrostatic pressure. To overcome this limitation, (Skovoroda et al., 1995) used an

analytical method to eliminate the pressure term from equation (21). Eliminating the

pressure term gives:

(22)

As in equation (21), the shear modulus must be known on the boundary of the region of

interest (ROI) to solve equation (22). Skovoroda et al. (Skovoroda et al., 1995) were the first

1Rhagavan (1994) used the form of Hooke’s law (i.e., σij = pδij + 2μεij), which includes a hydrostatic pressure term, p .
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to demonstrate that this information could be obtained by exploiting the stress-continuity

properties of soft tissues. They demonstrated that contours of small shear modulus variations

could easily be defined, and that the modulus along the boundary could be computed by

processing axial strain elastograms as follows:

(23)

where μr is the relative shear modulus, and  and  are the axial strains within and

outside the boundary of ROI. Equation (22) contains high-order derivatives that will amplify

measurement noise, which could compromise the quality of ensuing modulus elastograms as

demonstrated in figure 4. Despite this potential limitation,, the viability of this inversion

scheme has been demonstrated in gelatin and ex vivo kidney phantoms (Skovoroda et al.,

1999; Skovoroda and Aglyamovv, 1995; Chenevert et al., 1998). Skovoroda et al. (1999)

cast the inverse problem as an integral rather than a differential form — an approach that

was first described in (Sumi et al., 1995b) — to make the technique less susceptible to

measurement noise. To bolster performance further, they computed lateral displacement

using the incompressible method described in (Lubinski et al., 1996).

Bishop et al. (2000) proposed to eliminate the pressure term appearing in equation (21) by

partitioning the matrix, rather than by doing this analytically as described in (Skovoroda et

al., 1995). But the resulting formulation proved to be ill-conditioned. Consequently, (Bishop

et al. a , 2000) constrained the solution by employing the Tikhonov regularization method.

Sumi et al. (1995b) also proposed a direct inversion scheme; however, they solved the

inverse problem for the plane-stress case, using the following PDEs:

(24)

where the unknowns are spatial derivatives of relative Young’s modulus, and the

coefficients are strains and their spatial derivatives. They computed the shear modulus at a

given point (x, y) within the tissue relative to a reference point —let’s say: (A, B) — by

employing a line integral. The feasibility of this inversion scheme has been demonstrated in

phantoms and excised tissues (Sumi, 2007; Sumi and Nakayama, 1998); nevertheless, the

plane-stress condition is typically not relevant for most clinical applications. To make the

technique more clinically relevant, (Le Floc’h et al., 2009) extended the concept to the

plane-strain case. The equations they derived for solving the inverse problem for the plane-

strain condition are given in compact form as follows:

(25)

Although theoretically feasible, equation (28) is difficult to solve, because  cannot be

measured in practice. However, (Le Floc’h et al., 2009) demonstrated that the second term

could be used to highlight the boundaries of different tissue types.

4.1.2 Iterative Inversion—The inverse problem can also be viewed as a parameter-

optimization problem, where the goal is to find the shear modulus that minimizes the error

between measured displacement or strain fields, and those computed by solving the direct

problem. This inversion approach has been successfully used in several emerging medical
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imaging modalities, as discussed in (Paulsen et al., 2005; Yorkey et al., 1987), and was

applied to elastography by (Kallel and Bertrand, 1996; Doyley et al., 1996). The objective

function that is minimized typically has the following form:

(26)

where u is the solution to the direct problem computed from the shear modulus distribution,

μ , by solving equation (9). Minimizing equation (29) with respect to shear modulus

variations is a nonlinear process; however, we can do this iteratively using a variety of

techniques as discussed in (Vogel, 2002). Proposed optimization techniques can be

classified into three broad categories: (1) those that require only the value of the functional

π for different values of the parameters μ (i.e., non-gradient approaches); (2) those that

require the value of the functional and its derivative with respect to the material parameters

(called the gradient vector); and (3) those that require the first and second derivative of the

functional with respect to the material parameters (called the Hessian matrix). All three

optimization methods are illustrated below.

(a) Hessian-based optimization method: The Gauss-Newton method is perhaps one of the

most established optimization methods. Minimizing equation (26) using the Gauss-Newton

method produces a matrix solution at the (i+1) iteration that has the general form:

(27)

where T denotes the transpose; I denotes an Identity matrix; Δμi is a vector of shear

modulus updates at all coordinates in the reconstruction field; and J(μ i ) is the Jacobian, or

sensitivity, matrix. The Hessian matrix, [J(μ i )T J(μ i )], is usually ill conditioned; therefore,

to stabilize performance in the presence of measurement noise, the matrix is regularized

using one of three variational methods: the Tikhonov (Kallel and Bertrand, 1996), the

Marquardt (Doyley et al., 2000), or the total variational method (Richards et al., 2009; Jiang

et al., 2009).

Moulton et al. (1995) computed the JacobIan matrix [J ] column-wise, where each column

represents the difference between displacement computed when the direct problem was

solved, once for a given shear modulus distribution and then again when the shear modulus

of a single node, or element, was perturbed by unity. However, computing the Jacobian

matrix in this fashion is very demanding. Kallel and Bertrand (1996) proposed a more

efficient approach, which involved computing the derivative of the forward problem with

respect to shear modulus at a given node — let’s say j — as follows:

(28)

The global stiffness matrix on the left-hand side of equation (28) requires factorization, and

is the same matrix used to solve the direct problem at the previous iteration. Therefore, all

that is required to compute each  is a simple matrix back-substitution.

Solving the inverse problem using displacement boundary conditions (DBC) will provide

only relative estimates of shear modulus. Doyley et al. (2000) demonstrated that to recover

absolute values the pressure on the boundary must be known.
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Rather than developing a custom optimization code, an increasing number of investigators

have demonstrated that clinically useful elastograms can be computed using the FMINCON

algorithm, which is part of MATLAB optimization toolbox (Jiang et al., 2009; Baldewsing

et al., 2005a; Le Floc’h et al., 2009). The advantage of using FMINCON is that it doesn’t

require the global stiffness matrix and force vector, and thus, allows the implementation of

the inverse problem based on commercially available finite-element codes. Jiang et al.

(2009) developed an edge-preserving, iterative, inverse-reconstruction approach based on

FMINCON. They used this algorithm to demonstrate the feasibility of using model-based

elastography to guide and monitor radio-frequency (RF) ablation. Figure 5 shows an

example of modulus elastograms computed using this reconstruction approach.

The boundary between the ablated and normal tissue was better delinated in the modulus

elastograms than the strain elastograms, which provided a better estimate of the extent of the

thermal zone.

Miga et al. (2003) proposed a novel approach to elastography that they refer to as modality

independent elastography (MIEE) which is based on a combination of the finite element

method, the Gauss-Newton iterative scheme, and image similarity. In this technique the

objective function that is minimized has the following form:

(29)

where STRUEis similarity values computed when the target image is compared to itself,

S(E)EST is the similarity between the target and model-deformed source image using the

current estimate of Young’s. Minimizing equation (29) with the Gauss Newton iteration

scheme gives the following property updates:

(30)

where the Jacobian matrix. 

Ou et al. (2008) demonstrated that 3D MIE was able to successfully reconstruct modulus

elastograms using data obtained from magnetic resonance and x-ray computed systems.

(b) Gradient-based optimization method: Although the gradient can be computed using

the method described in (Kallel and Bertrand, 1996), the computational expense required to

compute the Jacobian matrix (i.e., the gradient) increases in proportion to the number of

parameters. Oberai et al. (2003) were the first to demonstrate that this limitation could be

circumvented by using the adjoint method to compute the gradient of the objective function.

To do this, they added a scalar, L, (i.e., the Lagrangian) to equation (26) to produce a new

objective function, which was defined as:

(31)

where w is the adjoint displacement field (i.e., a vector of Lagrangian multipliers). Note that

L is a function of u, w and . Equations (26) and (31) are equivalent (i.e., when wT (Ku –

f )=0 is satisfied for an arbitrary value of w. The change in L denoted by δ L , due to small

changes in u, w and , denoted by δ u,δ w and , is given by:
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(32)

Since equation (32) is valid for any u and w, these vectors were chosen so that the terms

multiplying δ u and δ w were zero, which gives:

(33)

With these choices, δ L reduces to:

(34)

Since δπ = δL this yields:

(35)

where the terms in the parentheses are equal to the gradient vector, G . Computing the

gradient vector requires only two forward solves: (1) to compute w i.e., solving equation

(33), and (2) to compute u.

(c) Gradient-free optimization methods: In principle, we can use the generalized Hooke’s

law to compute shear modulus directly from the axial strain; however, the principal stress

components cannot be measured in vivo, an issue that (Ponnekanti et al., 1995) attempted to

solve using the analytic method described in (Love, 1929). Given the limitations of

computing stress using analytical models, Doyley et al. (1996) and then later Samani et al.

(2001), used the finite-element method to compute the principal components of the stress

tensors iteratively as follows (Samani et al., 2001; Doyley et al., 1996; Ponnekanti et al.,

1995):

(36)

where  is the measured strain, ν is Poisson’s ratio, and σ11, σ22, and σ33 are normal stress

tensors. More specifically, modulus is assumed to be constant at the start of the

reconstructive process. The modulus is updated by combining the measured axial strain 

with the principal stress components (i.e., σ11, σ22, and σ33) that were computed by solving

the direct problem with the current estimate of Young’s modulus. Samani et al. (2001) were

the first group to demonstrate that imposing geometrical constraints enhanced the

performance of modulus elastograms. More specifically, they showed that dividing the

reconstruction field of view (ROI) into segments based on anatomical features, then

computing the average Young’s modulus over each segmented region, produced more stable

elastograms.

Baldewsing et al. (2006) applied this technique to reconstructive intravascular ultrasound

elastography. More specificially, they segmented strain elastograms into different segments

using deformable curves, and reconstructed the shear modulus within each segment using a

combination of FMINCON and Sepran (Sepra Analysis, Technical Univeristy Deflft, The

Netherlands)(Baldewsing et al., 2005b) finite element packages. They demonstrated the
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feasibility of their technique using simulated and thin-cap fibroatheromas (TCFAs) as well

as to in vivo and in vitro human coronary plaques (Baldewsing et al., 2005b).

Le Floc’h et al. (2009) also constrained their inversion approach using structural information

which they obtained by segmenting radial strain obtained from coronary arteries using

equation (25). Figure 6 shows examples of modulus elastograms recovered from excised

tissues using their technique.

Stochastic methods, such as with genetic algorithms (GA) have also been proposed for

solving the inverse problem (Zhang et al., 2006; Khalil et al., 2005). Stochastic methods can

find the global minimum of the objective function without imposing any additional

constraints; therefore, this reconstruction approach strategy may prove useful.

4.2 Harmonic elastography inversion schemes

Harmonic elastography can produce absolute modulus elastograms when all components of

internal tissue motion are readily available. Consequently, this method is the most

established MR elastographic imaging approach. Like their quasi-static counterpart,

modulus elastograms are reconstructed using either direct or iterative inversion schemes.

Harmonic elastography can measure modulus directly from shear speed estimates via

equation (2). However, measuring shear speed in organs with complex geometries or when

the propagating wave is reflected internally is challenging as discussed in section 2.2.

Nevertheless using equation (8), we can properly account for complex geometries and edge

reflection given appropriate discretization of the solution domain. Consequently, a variety of

model-based inversion methods have been propose for harmonic MRE.

4.2.1 Direct inversion—Skinus et al. (2000) solved the inverse harmonic elastography

problem using a linear system of PDE that they derived by solving the wave propagation

model described in (Landau et al., 1986) in the frequency domain, and expressed Young’s

modulus as a symmetric tensor. Lorenzen et al. (2003) used this inversion scheme to

demonstrate that MRE can detect changes in breast tissue elasticity during the monthly

hormonal cycle. Using the medical standard, the first day of menses is counted as day 1 in

the woman’s cycle. Using MRE, (Lorenzen et al., 2003) showed that on day 5, the median

value of elasticity for fibroglandular adipose tissue declined significantly, but at day 14, the

same tissue’s elasticity increased noticeably.

Manduca et al. (2001) proposed to solve the inverse harmonic elastography problem using a

direct inversion scheme, which they referred to as algebraic inversion of differential

equation (AIDE). By assuming local homogeneity, the equations were solved separately at

each pixel using only data from a local neighborhood to estimate local derivatives as

described in (Oliphant et al., 2001). Very encouraging phantoms and patient results have

been obtained using this technique. However, the large difference in magnitude of shear

modulus and the second Lamé coefficient (i.e., kPa for shear modulus and GPa)prevents

simultaneous estimation ofμ and λ , Manduca et al. (2001) assumed that the divergence of

the displacement vector in equation (8) was negligible (i.e., ∇ · u ≈ 0). Using this

assumption, μ was estimated from a single component of motion as follows:

(37)

Romano et al. (1998) developed a direct-inversion method by using the variational or weak-

form of equation (8), and appropriately chosen test functions to estimate both Lamé

constants. The advantage of using the weak form of equation (8) is that the derivative is

calculated not from the measured data, but rather from a smooth test function.
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Park and Maniatty (2006) also described a direct-inversion scheme for reconstructing shear

modulus from displacements measured during time-harmonic excitation. Their approach

assumed that the time-harmonic displacements were divergence-free, which reduces the

governing equation to:

(38)

If the gradient of the shear modulus is also neglected, equation (38) reduces to the

Helmholtz equation.

4.2.2 Iterative inversion method—Like its quasi-static counterpart, shear modulus can

also be computed by treating the image-reconstruction problem as a parameter-optimization

problem. However, to accosmplish this all component of the internal tissue displacement

must be known. Using computer simulation, Van Houten et al. (2001) demonstrated that the

displacement fields of an oscillating, 3D, isotropic, linear elastic body was not acurately

characterized using 2D plane approximation. Consequently, no ultrasonic methods have

been proposed to solve the inverse-harmonic-elastographic problem because without

symmetries, the three dimensional case cannot be approximated.

The objective function to be minimized is identical to that used in the quasi-static

elastography equation (29). However, the computational overhead required to solve the full

3D elasticity problem at the resolution MR data set with the Hessian method would make

the computations infeasible on contemporary processors. For example, if a typical MR

displacement data set were discretized to 16 × 256 × 256 image slices, the corresponding

parameter set matching the MR resolution would have over a million elements (assuming a

description based on single parameter of elasticity). Each parameter update for this large

property description would require over ≈ 1e18 floating-point operations to invert the

Hessian matrix, and an additional 1e18 operations to generate the matrix beforehand. Van

Houten et al. (2001) demonstrated that this issue can be circumvented by dividing the

reconstruction field-of-view into a series of overlapping subzones, and expanding equation

(29) as a sum over all the subzones as follows:

(39)

where uz (μz ) represents the displacements on the zth subzone computed by solving the

direct problem from the shear modulus (μz ), and  represents the corresponding MR

measured tissue displacements. They assumed that minimizing the sum in equation (39) was

equivalent to the sum of minimization of the individual subzones:

(40)

which involves equating derivatives of displacements with respect to subzone shear modulus

to zero, and solving the resulting set of nonlinear equations with the Gauss-Newton method.

The resulting matrix solution at iteration ( i+1 ) has the form:

(41)

where represents the Jacobian matrix for a given subzone, and αz is the regularization

parameter on the subzone level. Van Houten et al. (2001) deployed the subzones in a
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random and overlapping manner from a diminishing list of seed points that corresponded to

locations in the computational domain that had n not been previously updated; however the

manner in which the subzones are deployed is not essential as demonstrated in (Doyley et

al., 2007). When the shear modulus at all locations is updated, a global sweep is concluded

and the process is repeated. Doyley et al. (2007) demonstrated that the computatiional load

of this inversion technique increased linearly with increasing subzones — a limitation that

they circumvented by reducing the size of the reconstruction field of view and the overlap

between subzones. Doyley et al. (2005) also demonstrated that the spatial resolution of

elastograms computed using this technique was on the order of 5 mm. Figure 7 shows a

representative example of an elastogram obtained from a health volunteer using the

subzone-inversion technique, which illustrates that the resolution of the elastograms was

sufficiently high to visualize fibroglandular tissue from the adipose tissue. The advantage of

this inversion scheme is that it is ideally suited for a parallel-computing platform, because

the sub-domain discretizations are computationally independent as demonstrated in (Doyley

et al., 2005).

Van Houten et al. (2003) reported results of a pre-clinical study that they performed on five

healthy volunteers. Their results demonstrated that the elastic properties of the breast fibro-

glandular and fatty breast tissues, measured in in vivo with the subzone inversion technique,

were comparable to those reported in literature.

5. Advanced reconstruction methods

Soft tissues display several biomechanical properties, including viscosity, nonlinearity,

porosity, anisotropy and permeability, which may improve the diagnostic value of

elastography when visualized alone or in combination with shear modulus. Krouskop et al.

(1998) demonstrated that clinicians could use mechanical nonlinearity to differentiate

between benign and malignant breast tumors. They performed mechanical tests on excised

breast tissue, which revealed that benign breast tumors displayed linear mechanical

behavior, while malignant breast tumors exhibited nonlinear mechanical tendencies. There is

mounting evidence that other mechanical parameters, namely viscosity (Qiu et al., 2008;

Sinkus et al., 2005b), anisotropy (Sinkus et al., 2005a), and porosity can also differentiate

between benign and malignant tissues – similar claims have also been made for shear

modulus (Sinkus et al., 2005a). Not only can these mechanical parameters discriminate

between different tissue types, but they may provide value in other clinical areas, including

brain imaging (Hamhaber et al., 2010; Sack et al., 2009), distinguishing the mechanical

properties of active and passive muscle groups (Asbach et al., 2008; Hoyt et al., 2008;

Perrinez et al., 2009), characterizing blood clots (Schmitt et al., 2007), and diagnosing

edema (Righetti et al., 2007a). Several investigators are actively developing model-based

techniques to visualize different mechanical properties, either alone or in combination, using

quasi-static, harmonic, and transient elastographic imaging approaches.

In the proceeding subsections, we review several promising model-based, elastographic

imaging approaches that have been proposed for visualizing other biomechanical parameters

besides shear modulus.

5.1 Viscoelasticity

In most approaches to model-based elastography, the mechanical behavior of soft tissues is

modeled using the theory of linear elasticity (Hooke’s law), which is an appropriate model

for linear elastic materials (i.e., Hookian materials). However, it is well known that most

materials, including soft tissues, deviate from Hooke’s law in various ways. Materials that

exhibit both fluid-like and elastic (i.e., viscoelastic) mechanical behavior deviate from

Hooke’s law (Fung, 1981). For viscoelastic materials, the relationship between stress and
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strain is dependent on time. Viscoelastic materials exhibit three unique mechanical

behaviors: (1) strain increases with time when stress (externally applied load) is sustained

over a period of time, a phenomenon that is known as viscoelastic creep; (2) stress decreases

with time when strain is held constant, a phenomenon known as viscoelastic relaxation; (3)

during cyclic loading, mechanical energy is dissipated in the form of heat.

Viscoelastic materials are usually characterized by suddenly applying a uniform stress or

strain that is sustained over a period of time. Several investigators have proposed

elastographic imaging methods as a way to visualize the mechanical parameters that

characterize linear viscoelastic materials (i.e., viscosity, shear modulus, Poision’s ratio).

Such methods usually involve fitting dispersive shear-wave speed and attenuation

coefficients to a rheological model, such as the Voigt, Kelvin or Maxwell model.

5.1.1 Quasi-static methods—Sridhar et al. (2007a, b) developed an elastographic

imaging approach for characterizing viscoelastic materials. More specifically, they acquired

time-varying axial strain elastograms when a viscoelastic material was subjected to a

constant stress, and constructed a creep curve at each pixel from the time-varying strain

elastograms. They computed the creep compliance from the the ratio of the time-varying

strain, ε (t) , to the applied stress; and computed the complex compliance, D*(s) , from the

Laplace transform of the creep compliance:

(42)

where D’(s) and D” (s) represent the storage and loss compliance, respectively. Sridhar et al.

(2007a) used a three-parameter Kelvin-Vogit rheological model to predict the strain

response at each pixel within the time-varying strain elastogram. In the time domain, the

resulting strain response is given by:

(43)

where εo is the instantaneous strain, i.e., the strain incurred immediately after compression;

ε1 is the viscoelastic strain amplitude; and t1 is the retardation time, i.e., the time required

for the tissue to become fully deformed. They estimated the three model pameters by fitting

the rheological model to the measured creep response at each pixel. Using this tecnique, this

group demonstated that t1 is the most useful parameter for discriminating between malignant

and benign breast tumors (Qiu et al., 2008). More specifically, t1 values measured from

malignant tissue were smaller than those measured from the surrounding healthy breast

tissue; whereas, the converse was observed for benign tumors.

5.1.2 Harmonic methods—Hoyt et al. (2008) proposed a viscoelastic approach based on

sonoelastography imaging. They measured the visoelastic properties of gelatin and muscle

samples, by fitting a Voigt model to the dispersive shear speed obtained using the crawling-

wave method described in (Wu et al., 2006). These authors validated their technique by

conducting simulations, phantom studies, and human studies. The simulation studies

revealed a 2.3 % difference in the computed and true shear speeds under ideal measurement

conditions. The phantom studies revealed a 1 % error in shear modulus that had been

computed using the proposed technique, relative to that measured using a mechanical testing

system. They also observed a slight increase in shear speed with increased frequency.

Statistically significant differences were observed in the shear and loss moduli of relaxed

and volunteered contracted muscles. The authors also observed a slight increase in shear

speed with frequency. To minimize any anisotropic effects, they obtained data parallel to the

muscle fiber.
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Asbach et al. (2008) used their multifrequency MR elastography method to measure the

viscoelastic properties of normal liver tissue versus diseased liver tissue taken from patients

with grade 3 and 4 liver fibrosis. Like Hoyt et al. (2008), they measured shear-wave and

shear-attenuation dispersion; but, rather than using ultrasound, they computed shear wave

and shear attenuation from the Fourier transform of the complex MR displacement fields.

They computed the shear modulus and viscosity variations within the tissue by fitting a

Maxwell rheological model to the measured data, by solving the linear viscoelastic wave

equation in the frequency domain. They observed that fibrotic liver tissue had a higher

viscosity (14.4 ± 6.6 Pa s) and elastic modulus (μ1 = 2.91 ± 0.84kPa and μ2 = 4.83 ±

1.77kPa) than normal liver tissue. Their results revealed that although liver tissue is

dispersive, it appeared as non-dispersive between the frequency range of 25 — 50 Hz. This

research group has also measured the viscoelastic properties of brain tissues (Hamhaber et

al., 2010; Sack et al., 2009), but in that case, they characterized the viscous properties of the

brain by fitting a Voigts model to measured complex modulus. They also observed that the

viscosity didn’t agree with the predictions of the Kramers-Kronig relation (Klatt et al. ,

2010; Madsen et al., 2008; Urban and Greenleaf, 2009). Klatt et al. (2010) also measured the

viscoelastic properties of the liver. In this case, the spring-pot model was used to study the

dispersive behavior of the viscoelastic properties between frequency ranges of 25, 37.5, 50

and 62.5 Hz. Like Hoyt et al. (2008), they observed that the stiffness and viscosity of muscle

increased with voluntary contraction.

5.1.3 Transient methods—Catheline et al. (2004) were the first to propose a method to

visualize the viscoelastic properties of soft tissues. Using transient elastography, they

measured the spatial variation of the time-harmonic displacement field, and used a plane-

wave approximation to compute the complex wave number ( k = k’ + iαT ) of the

propagating waves, as follows:

(44)

where uz(x) is the measured displacement, and FT is the Fourier Transform. The wave speed

and attenuation coefficients of the propagating shear wave relate to the complex wave

number as follows:

(45)

where 𝕽 and  represents the real and imaginary component of the complex wave number,

respectively.

Catheline et al. (2004) used Agar-gelatin phantoms to demonstrate that the shear wave speed

( c2 ) and attenuation coefficient (αT ) computed using equation (45) were comparable to

those measured independently from phase and amplitude measurements. They computed the

shear modulus (μ ) and viscosity (η ) by fitting the measured speed of sound and attenuation

to Voigt’s and Maxwell’s rheological models, whose wave speed and attenuation were given

by:

(46)

and similarly, the attenuation was given by:
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(47)

where the superscripts V and M represent the Voigt and Maxwell models, respectively. The

recovered shear modulus values were independent of the rheological model employed, but

researchers observed an order of magnitude difference in viscosity values recovered with the

two models. This was not surprising, because the goodness of fit of the wave-speed

dispersion data to both rheological models were comparable, but Catheline et al. (2004) had

demonstrated that the Voigt model provided a better fit to the attenuation-dispersion data

than the Maxwell model, which proved that attenuation coefficents were independent of

frequency despite the strong frequency dependency that was apparent in the data. Catheline

et al. (2004) also had conducted studies on excised bovine muscles, which revealed two

apparent wave speeds: either a fast or a slow wave was observed, depending on the

polarization. They obtained a good estimate of both wave speeds using equation (46), but

there was an overestimation of attenuation, because the model assumed the displacement

field arose solely from transverse waves.

Sinkus et al. (2005b) developed a direct-inversion scheme to visualize the mechanical

properties of visocelastic materials, in which a curl operation was performed on the time-

harmonic displacement field u(x, y,z,t) = u(x, y,z)ejωt to remove the displacement

contribution of the compressional wave. They dervived the governing equation that

describes the motion incurred in an isotropic, viscoelastic medium by computing the curl of

the PDEs that describe the motion incurred by both transverse and compressional shear

waves. The resulting PDEs for transverse waves are given in compact form by:

(48)

Sinkus et al. (2005b) developed a direct-inversion scheme from equation (48), in which μ
and η (viscosity) were the unknowns. They evaluated the inversion scheme using (a)

computer simulations, (b) phantom studies, and (c) patient studies. Their simulation studies

revealed that the proposed algorithm could accurately recover shear modulus and viscosity

from ideal displacement data. However, with noisy displacements, a good estimate of shear

modulus was obtained only when the shear modulus of the simulated tissue was < 8 kPa; the

inversion scheme overestimated the shear modulus values when actual stiffness of the tissue

was larger than 8 kPa. A similar effect was observed when estimating viscosity, albeit much

earlier (i.e., the algorithm provided good estimates of of viscosity when μ < 5 kPa).

Although the shear modulus affected the bias in the viscosity measurement, the authors

demonstrated that the converse did not occur; i.e., the viscosity did not affect the bias in

shear modulus. Despite these issues, their phantom studies revealed that inclusions were

discernible in both μ and η -elastograms, and the viscosity values agreed with previously

reported values for gelatin (0.21 Pa s). The patient studies revealed that the shear modulus

values of malignant breast tumors were noticeably higher than those of benign

fibroadenomas, but there was no significant difference observed in the viscosity of the tumor

types, a result that would appear to contradict those reported in (Qiu et al., 2008).

Vappou et al. (2009) proposed a two-step approach for quantifying the viscoelastic

properties of tissue. They measured the real component of the wave number (k’) from the

phase ( ϕ) of the Fourier transform of the time-varying displacement at the excitation

frequency:
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(49)

They also measured the ratio of the real to the imaginary component of the complex shear

modulus, from the phase between shear strain images and radiation force:

(50)

From R and k’ , they computed the k” (the imaginary component of the complex wave

number) using the following relation:

(51)

Using this relation, they computed the storage ( G’(ω ) ) and the loss ( G”(ω )) as follows:

(52)

They validated their technique by performing phantom studies, and observed good

agreement between the storage moduli that had been computed with the proposed technique,

and those that had been measured with a commercially available rheometer. However, there

was large discrepancy between the loss moduli.

Schmitt et al. (2010) used a similar approach to characterize the viscoelastic properties of

vascular tissues. In their approach, they computed the real and imaginary components of the

complex wave number from the Fourier transform of the real component of the complex

time-harmonic displacement (i.e., u(x, y,t) = u ei(k’+jαT) o eiϕ ). They computed the

attenuation coefficient by fitting a line to the natural log of the absolute value of the

complex time-harmonic displacement. Storage and loss moduli were computed using using

equation (60) as described in (Vappou et al., 2009), where k” = α . For materials with

vascular geometries, they fitted the complex modulus that was computed using an analytic

model to the measured data, using MATLAB’s nonlinear solver. They measured the

dispersion of G’ and G” in aortic samples between 540-670 Hz, and conducted experiments

on rat liver where G’(ω ) and G”(ω ) were 119.24 ± 61.6 Pa and 96.7 ± 7.9 Pa, respectively,

at 250 Hz. The group also demonstrated that the viscoelastic properties of blood clots could

be characterized using the proposed technique. However, in these studies of complex

moduli, they estimated the storage and loss moduli by fitting a rheological model to the

measured data. More specifically, they compared the goodness of fit of five rheological

models—Maxwell, Kelvin-Voigt, Jeffery, Zener, and a third-order Maxwell—and observed

that the Zener model gave the best fit to the data. G’ had the maximum chang at the

beginning, and stabilized after 120 minutes; whereas G” was constant, with a spike between

38 and 81 Hz, followed by a gradual decrease in amplitude.

5.2 Poroelasticity

Poroelastic materials also display a transient mechanical response (i.e., they display creep

and stress relaxation when a load is applied and is held constant for a while). This is a

phenomenon that occurs because the matrix of poroelastic materials is porous, and

interstitial fluid may flow through the pores when a load is applied. Multi-phasic mechanical

models are typically used to predict the temporal mechanical response of poroelastic

Doyley Page 19

Phys Med Biol. Author manuscript; available in PMC 2013 February 07.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



materials. These mechanical models assume that poroelastic materials consist of two or

more distinct phases. For example, the biphasic mechanical model described in Armstrong

et al. (1984) assumes that poroelastic materials consist of both a solid and a fluid phase, and

that the material’s transient behavior is governed by the interaction of the two phases, i.e.,

the mechanical properties of the solid matrix and the permeability of the matrix to fluid.

Although porous and viscoelastic materials both exhibit transient mechanical behavior, the

porous material is compressible, whereas the viscoelastic material is incompressible. More

specifically, volume is conserved when viscoelastic materials are deformed, but this is not

the case for poroelastic materials.

Poroelastic models, such as the biphasic model described in Armstrong et al. (1984) and the

consolidation mechanical model described in (Miga et al., 2000), have been used to model

the transient response of brain tissue, cartilage, and other soft tissues. It has also been

demonstrated that the mechanical behavior of pathological conditions, such as edema, may

be described with a poroelastic model, and elastography could be extended to allow

visualization of the poroelastic mechanical parameters — important information that may be

used to characterize and monitor the treatment of edema (Righetti et al., 2007a).

Consequently, several groups are now actively developing methods to extend both

ultrasound and MR elastography to poroelastic materials.

5.2.1 Quasi-static methods—Konofagou et al. (2001) introduced poroelastography.

Using the finite-element method, they studied the temporal behavior of the radial-to-axial

strain ratio within a homogenous, cylindrically shaped poroelastic material during stress

relaxation. They predicted that three mechanical responses would be seen in poroelastic

materials; specifically, that:

• (a) The radial-to-axial strain ratio elastograms would have a uniform value of 0.5

immediately after compression, which was consistent with the theoretical

predictions made earlier by Armstrong et al. (1984) using an analytical model.

• (b) The radial-to-axial strain ratio within the sample would tend towards an

equilibrium value that was equal to the Poisson’s ratio of the solid matrix (νs )

when the compression was sustained.

• (c) The time taken to reach equilibrium (the time constant) would depend on

permeability of the solid matrix and the length of the fluid path — i.e., that

materials with a high permeability would reach equilibrium more quickly than

materials with a low permeability.

Righetti et al. (2004) demonstrated the feasibility of poroelastography experimentally. By

studying the transient mechanical behavior of drained and undrained tofu samples (Wu,

2001), Righetti and colleagues demonstrated the following transient mechanical behaviors:

(1) the mean radial-to-axial strain ratio of undrained tofu samples was approximately 0.5

immediately after compression, which was consistent with the numerical predictions of

Konofagou et al. (2001); (2) the mean radial-to-axial strain ratios of drained and undrained

tofu samples were noticeably different, but no significant difference was observed in

rehydrated and undrained tofu samples; (3) the mean radial-to-axial strain ratio of undrained

tofu samples decayed from 0.5 towards an equilibrium value that was slightly higher than

Poisson’s ratio measured for the drained state; however, the rate of decay of the measured

radial-to-axial strain ratio was noticeably slower than that predicted by the analytical model

described in (Armstrong et al., 1984); and finally, (4) the mean radial-to-axial strain ratio of

drained tofu samples displayed some transient mechanical behavior, albeit only slight, which

suggests that besides being porous, the tofu samples were also viscoelastic.
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Berry et al. (2006a) derived analytical expressions to predict the internal strain field of

cylindrically shaped poroelastic materials that are undergoing stress relaxation. By

extending the analytical model described in (Armstrong et al., 1984), they derived analytical

expressions for predicting the spatio-temporal behavior of radial strain, axial strain, and

radial-to-axial strain ratio elastograms. Using the derived equations, they predicted that

immediately after compression, the radial-to-axial strain ratio would be equivalent to 0.5,

and both the radial-to-axial ratio would decay to towards an equilibrium value that is equal

to the Poisson’s ratio of the solid matrix when compression is sustained. This theoretical

prediction was consistent with that predicted by Konofagou et al. (2001) using the finite-

element method. They also demonstrated that there was good agreement between the mean

radial-to-axial strain ratio predicted using the derived equation and those computed using

either the analytical model described in (Armstrong et al., 1984), or the finite-element

method. Using the modified analytical model, Berry et al. (2006a) predicted two mechanical

behaviors that were not previously reported. More specifically, they predicted that (1) a

plateau would be present in the radial-to-axial strain ratio profile in the early stages of stress

relaxation, because fluid flow does not begin simultaneously throughout poroelastic

materials; and that (2) near the surface, the radial-to-axial strain ratio would overshoot the

Poisson’s ratio of the matrix analytical model to the time-dependent strain elastograms.

In a companion paper, Berry et al. (2006b) reported the results of experiments that they had

performed to corroborate both the theoretical predictions reported in Berry et al. (2006a),

and predictions made using the finite-element method concerning the effect of non-slip

boundary conditions on the strain response within a poroelastic material undergoing stress

relaxation. Using the finite-element method, they predicted that the transient strain response

of cylindrically shaped poroelastic materials with slip boundary conditions would be

noticeably different from those observed in samples with non-slip boundary conditions.

More specifically, they predicted that: (1) immediately after compression and at equilibrium,

region variations would be present in the radial, axial, and radial-to-axial strain elastograms

obtained from poroelastic materials with non-slip boundary conditions; (2) axial strain

elastograms would be time-dependent and spatially varying, because during stress

relaxation, the axial strain in the central region would transfer to regions near non-slip

boundaries; and (3) radial-to-axial strain profiles acquired from regions far away from the

nonslip boundaries would be similar to those acquired for samples with slip boundary

conditions. Berry et al. (2006b) also introduced a new elastogram known as the volumetric

strain elastogram, which was the most useful elastogram for studying the transient

mechanical behavior of poroelastic materials. They showed that, immediately after

compression, this parameter was zero (incompressible) for samples with slip and non-slip

boundary conditions. Although their experimental results departed from the theoretical

predictions, they demonstrated that useful parametric images could be obtained

experimentally using their model-based reconstruction approach. However, this approach

was not without problems; local variations were observed in the parametric images obtained

from a homogeneous sample, but the results were sufficiently encouraging to warrant further

investigation.

The main limitations of stress-relaxation studies are that temporal variation is not typically

observed in the axial direction during unconfined testing, and that the poor lateral resolution

of current ultrasound systems compromises the quality of radial-to-axial strain elastograms.

To address this issue, Righetti et al. (2007b) studied the temporal behavior of porous

materials during creep. They demonstrated that the quality of transient axial strain

elastograms was sufficiently high to differentiate between various grades of tofu samples.

They generated time-constant elastograms by fitting an exponential function to each pixel in

the time-sequence axial-strain elastogram. Using this technique, they demonstrated that they
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could detect focal poroelastic inclusions embedded in a poroelastic background with a

contrast-to-noise ratio.

5.2.2 Harmonic Methods—Poroelasticity has also been explored using steady-state

harmonic magnetic resonance elastography (Perrinez et al., 2010). More specifically,

Perrinez et al. (2010) described a novel, 3D inversion scheme for recovering the mechanical

parameters from volumetric displacement data obtained with MR in a porous media. They

formulated the inverse-elasticity problem by treating it as a parameter-optimization problem,

in which the goal was to minimize the difference between (1) measured displacements and

(2) those computed by solving the partial differential equations that describe time-harmonic

behavior of a poroelastic medium, which is composed of a porous, compressible, linear

elastic solid matrix and a viscous, incompressible fluid. The resulting system of PDEs that

describes the forward problem is given by:

(53)

The parameter β is defined as:

(54)

where p is the time-harmonic pore pressure; κ is the hydraulic conductivity; ϕ is the matrix

porosity; and ρf and ρa represent the pore-fluid density and the apparent mass density,

respectively.

Minimizing the objective function with respect to Lamé constants is a nonlinear process that

can be solved using the Gauss-Newton iterative scheme. At each iteration, updates to the

mechanical parameters are computed as follows:

(55)

where {δδ } = {δμ,δλ, δp}, J*T J is the self-adjoint Hessian matrix, α is the regularization

parameter, J* is the complex Jacobian or sensitivity matrix, and um and uc are the measured

and computed displacement fields, respectively.

Perrinez et al. (2010) solved equation (55) using the sub-zone inversion approach described

in (Van Houten et al., 2001; Van Houten et al., 1999), which they implemented on a

parallel-computing platform as described in (Doyley et al., 2004). They performed

simulation and phantom studies to assess the performance of the proposed algorithm. The

simulation study revealed that the algorithm could recover good elastograms (i.e., shear

modulus, the second Lamé constant, and pore-pressure amplitude) in the presence of 5%

additive noise, and that hydraulic conductivity influenced the performance of the

reconstruction method. More specifically, the reconstruction method overestimated shear

modulus when image reconstructions were performed using hydraulic conductivity less than

1×10−9, and considerable variability was observed in recovered images when hydraulic

conductivities were greater than the true values. Perrinez et al. also performed a phantom

study to assess the performance of the poroelastic reconstruction method relative to the

linear-elastic reconstruction method described in (Van Houten et al., 2001; Van Houten et

al., 1999; Doyley et al., 2004) . In this study, they perfoormed MR elastographic imaging on

a phantom that contained a cylindrically shaped gelatin inclusion that was embedded in a
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block of tofu. Elastograms recovered with the linear -elastic inversion scheme showed high

variations of the recovered shear modulus in both the surrounding poroelastic background

and the linear elastic inclusion; whereas, the poroelastic-inversion scheme produced

noticeably better images.

The advantage of the poroelastic inversion scheme as a reconstruction method is that it

produces images of the pore-pressure that could prove useful in studying edema or

hydrocephalus. Figure 8 shows examples of poroelastic elastograms obtained from the brain

of a healthy volunteer using the poroelastic inversion scheme described in (Perrinez et al.,

2010).

5.3 Nonlinearity

Soft tissues display nonlinear mechanical behavior because of geometric and/or material

nonlinearity as discussed in (Taber, 2004).

5.3.1 Geometric nonlinearity—When soft tissues deform by a small amount (an

infinitesimal deformation), their geometry in the undeformed and deformed states is similar,

and thus the deformation is characterized using engineering strain. However, when soft

tissues experience a finite deformation, their geometries are noiceably different in the

undeformed and deformed states. In such cases, errors are incurred when deformations are

significantly different; thus, engineering strain provides an accurate measure of the

deformation. To characterize finite deformation, we first have to define a reference

configuration, which is the geometry of the tissue under investigation in either the deformed

or undeformed state. The Green-Lagrangian strain tensor can be used to characterize the

deformation incurred during finite deformations, which is defined as:

(56)

The nonlinear term is neglected when the magnitude of the spatial derivative is small, to

produce the linear strain tensor as defined in equation (6). The relationship between stress

and strain is nonlinear even for a linearly elastic material when it is undergoing finite

deformations. Conseqently, Skovoroda et al. (1999) proposed an iterative technique to

compute shear modulus for materials undergoing finite deformations.They performed

studies using a linear elastic phantom that was undergoing finite deformation, to evaluate the

quality of the ensuring elastograms relative to those produced using equation (22). The

results of this investigation revealed that a smaller standard deviation was incurred in

elastograms computed using the nonlinear reconstruction method for large deformations,

versus elastograms computed using the linear-elastic reconstruction method (i.e., based on

equation (22)).

5.3.2 Material nonlinearity—Some materials exhibit nonlinear material properties that

are typically described using a strain energy density function. Among the strain engery

functions proposed in the literature, the most widely used for modeling tissues are (a) the

Neo-Hookean hyperelastic model, and (b) the Neo-Hookean model with anexponential term.

Oberari et al. (2009) used a different model, the Veronoda-Westman strain energy density

function, to describe the finite displacement of a hyperelastic solid that is undergoing finite

deformation, which is defined by:

(57)
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where the terms I1 and I2 are the first and second invariants of the Cauchy-Green strain

tensor, μ0 is the shear modulus, andΓ denotes the nonlinearity. The authors proposed to

produce a secant modulus elastogram, by minimizing the following function:

(58)

Where ϑ is the total variation diminishing (TVD) regularization functional. For the

nonlinear case, they proposed to reconstruct a nonlinear parameter, and the shear modulus at

zero strain by minimizing the following functional:

(59)

In this case, there were two displacements: one obtained at small strain value, denoted by 

and the other obtained at larger strain, denoted by ; the corresponding predicated axial

displacements were denoted by u1 and u2, respectively. The weighting factors w1 and w2

were selected to ensure that both the large deformation data and the small deformation data

contribute in roughly equal measures.

Equations (58) and (59) were minimized using the quasi-Newton methods (.i.e., the

Broyden-Fletcher-Goldfarg-Shanno method). They compared the performance of modulus

elastograms computed using the secant and nonlinear iteriative inversion techniques, using

data obtained from voluteer breast-cancer patients, one with a benign fibroadenoma tumor

and the other with an invasive ductal carcinoma(IDC). For the fibroadenoma case, the tumor

was visible in modulus elastograms that had been computed using small strain and large

strain (12 %), although the contrast of the elastograms computed at large strain (7:1) was

lower than that computed at smaller strain (10:1). The fibroadenoma tumor was not visible

in nonlinear-parameter elastograms. The inclusion in the patient with IDC was discerible in

shear modulus elastograms recovered using small and larger strains; however, the stiffness

contrast of the modulus elastograms recovered at both small and high strains were

comparable, and the IDC tumor was visible in nonliear-parameter elastograms. This result is

one of several that have demonstrated the clinical value of nonlinear elastographic imaging.

Specifically, model-based elastography can characterize the nonlinear behavior of soft

tissues and may be used to differentiate between benign and malignant tumors. Figure 9

shows examples of shear modulus and nonlinear parameter images of the breast that were

computed using the nonlinear reconstruction technique.

5.4 Anisotropy

The stiffness tensor given in equation (4) contains 21 independent coefficients; however,

neither ultrasound nor MR elastography imaging technology allows us to measure all these

parameters in a practical manner. Consequently, to solve this dilemma, we can use

simplified mechanical models whose stiffness matrices contains fewer independent

coefficients. The stiffness matrix of the simplest mechanical model currently used in

elastography — a model that is valid for an elastically isotropic material — contains two

independent coefficients: shear modulus (μ ), and the second Lamé’s coefficient (λ ). This

model has been adequate for most tissues with the exception of muscle, however all tissues

will exhibit anisotropic mechanical behavior when they are probed deeply enough, which

also emphasizes the need for exploring the anisotropic model.

Several anisotropic models have been proposed to describe the mechanical behavior of

polymers, in which the models depend both on the material’s crystalline morphology and the

molecular orientation. The transversely anisotropic model is perhaps the simplest anisotropic
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model; it assumes the mechanical properties are isotropic in the plane orthogonal to the

molecular orientation. The stiffness matrix of the transversely anisotropic model contains

five independent coefficients; it is ideally suited for tissues containing parallel fibers, such

as muscles.

Papazoglou et al. (2005) developed an analytical tool to compute the coefficients for a

transversely anisotropic medium. Several groups have observed that shear waves patterns of

isotropic material are concentric, while those of muscle and tendons (anisotropic materials)

have V-shaped patterns (Dresner et al., 2001; Sack et al., 2002; Uffmann et al., 2004).

Papazoglou et al. (2005) used an elliptical approximation of the shear waves to model the V-

shape wave patten, which they derived by assuming incompressiblity from a transversely

anisotropic elasticity model. Using this anlytical tool, they characterized the V-shaped

wavefront in terms of its straightness, slope, and interference; they used these results to

estimate the coefficient of the transverely anisotropic models. They analyzed 2-D shear

wave patterns from images of human biceps, obtained via MR elastographic imaging using

the proposed technique, and demonstrated that shear-wave speeds parallel to the muscle

fibers were approximately four times faster than those perpendicular to the fibers.

Sinkus et al. (2005a) developed a direct inversion scheme for reconstructing the mechanical

parameters of transversely anisotropic materials from time-harmonic displacement estimates

obtained using MRE. They removed the dependence of Poisson’s ratio on the reconstruction

procedure by applying the Helmholtz-Hodge decomposition, which states that every vector

field can be written as a sum of the divergence-free part, the curl-free part, and the harmonic

part. Using computer simulations, they demonstrated that the proposed inversion scheme

produced good modulus elastograms in the presence of 10 % additive noise, albeit the

modulus elastograms were biased. Sinkus and colleagues also conducted phantom studies to

evaluate the performance of the method. They observed that they could discern hard

inclusion in the shear modulus elastograms, but the magnitude of anisotropy elastograms

was low owing to the absence of anisotropy in the phantom. When Sinkus and colleagues

applied this technique and took images in volunteers with benign and malignant tumors,

they observed enhanced anisotropic and viscous properties within the tumors.

6. Discussion

Developing elastography within the framework of solving an inverse problem should

provide more accurate estimates of the mechanical parameters of human tissues than the

simple approaches described in section 2 of this article. However, several concerns remain

to be resolved before model-based elastography could become the prevailing approach to

quasi-static, harmonic, and transient elastography. These concerns include: (1) developing

practical techniques to transform ill-posed problems into a well-posed ones; (2) minimizing

model-data mismatch; and (3) developing better test procedures to evaluate and optimize the

performance of advanced reconstruction methods.

6.1 Transforming the reconstruction problem to a well-posed one

Solving the inverse elasticity problem may produce a non-unique solution. More

specifically, both valid and invalid modulus distributions could yield identical mechanical

responses. We can recognize invalid modulus distributions in cases when the truth is known

(as in simulation and phantom studies), but misdiagnosis could occur if invalid modulus

distributions were to masquerade as the truth. Several researchers have applied the

uniqueness theorem to elastography. Barbone and Bamber (2002) found that solving the

quasi-static inverse elasticity problem with one displacement field did not produce unique

modulus elastograms. McLaughlin and Yoon (2004) found that transient elastography could

provide unique modulus elastograms when the full 3D displacement field is available.
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Although the uniqueness theorem has not been applied to harmonic elastography, accurate

estimates of shear modulus have been recovered with steady state harmonic elastography

(Doyley et al., 2003). The author would like to caution the reader that though solving the

transient elastography problem yields a unique solution for simple materials (i.e., linear,

purely elastic, isotropic), there is no guarantee that this method will provide a unique

solution when it is applied to soft tissues, which exhibit complex mechanical behavior

(McLaughlin and Yoon, 2004). In the proceeding sub-sections, we describe strategies for

introducing a priori information into the image reconstruction process that is applicable to

all approaches to elastography.

(a) Regularization—The ill-pose issue occurs when pertinent information about the

solution is not available; therefore, the goal of regularization is to introduce a priori

information, such as smoothness, in the reconstruction process. The two challenges we may

encounter when using regularization are (i) selecting the most appropriate method, and (ii)

deciding the optimum value of the regularization parameter. Too little regularization

produces unusable modulus elastograms, while excessive regularization typically produces

low-resolution modulus elastograms.

Discovering the most appropriate regularization technique for elastography is still an open

research question, but the Tikhonov regularization is currently the most commonly used

method. From our experience, elastograms produced with the total variation diminishing

(TVD) regularization method usually possess better (contrast recovery and contrast-to-noise

ratio) than elastograms computed using the Tikhonov regularization method, although the

TVD regularization method typically does produces blotchy images (Richards and Doyley,

2011). The H1-seminorm regularization method could prove to be a better choice, since this

regularization method typically produces elastograms that do not contain “blotchy” artifacts,

its performance is comparable to modulus elastograms produced with the TVD method.

However, before settling on any given regularization method more detailed studies must be

conducted.

Developing objective methods to select the optimum value of the regularization parameter is

another concern. To avoid the temptation of “tweaking”, the regularization parameter should

be selected objectively using either the L-curve or the generalized cross-validation method

(Vogel, 2002). However, since the L-curve and the generalized cross valiation methods are

not appropriate for clinical applications, the author recommends that a statistical approach to

the image reconstuction problem be employed, since statistical-based reconstruction

methods provide a precise description of the regularization parameter (Van Houten et al.

2003).

(b) Spatial priors—In addition to regularization, other methods could transform the ill

posed inverse elasticity problem to a well-posed one. For example, Barbone and Bamber

(2002) suggested that model-based elastography be performed with multiple, independent

displacement fields. Although feasible for quasi-static breast elastography, this method

would be difficult to implement in other approaches to elastography. An alternate approach

is to incorporate structural information in the image reconstruction process (Richards et al.,

2010; Baldewsing et al., 2006; Baldewsing et al., 2005b; Le Floc’h et al., 2009; Le Floc’h et

al., 2010). Structural information can be obtained by segmenting images obtained from

ultrasound, MR, or other sources. In quasi-static elastography, spatial priors are typically

used to impose hard constraint on the reconstruction process through a procedure known as

parameter reduction (referred to here as “hard prior reconstruction”). More specifically, the

shear moduli of all pixels in a given region as defined by the spatial prior are lumped

together. Hard-prior reconstruction methods do not require regularization because the

reconstruction problem is well conditioned; however, the technique is prone to errors

Doyley Page 26

Phys Med Biol. Author manuscript; available in PMC 2013 February 07.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



because the segmentation of congruent features may contain classification errors. The author

recommends that spatial prior should be used to impose soft constraints but not hard

constraints, since this should minimize the effect of segmentation errors on the

reconstruction process.

6.2 The consequence of modeling errors

Errors are guaranteed to occur in model-based elastography because of (a) measurement

noise, and (b) discrepancy between the model and reality. However, without additional

information, we cannot distinguish between errors due to measurement noise, and errors due

to a limited model. Nonetheless, if we were to consider a hypothetical case in which

modeling errors exceeded the measurement noise, an important question to ask is: “how

would modeling errors impact the resulting modulus elastograms?” The short answer to this

question would be that it depend on the severity of the error. More specifically, the

reconstruction process would produce erroneous modulus elastograms if the modeling error

were severe; however, it would provide plausible modulus elastograms that might contains

artifacts if the the modeling error were small, yet significant. Another important question to

ask would be: “what is the consequence of using the plane strain approximation to

approximate a 3D elasticity problem?” In quasi-static elastography, the plain-strain

approximation does not represent a major challenge, because the motion of the tissue can be

confined in the in-plane direction during imaging (Kallel et al. 1997b) — which should be

consistent with the motion predicted with the plane strain elasticity model. Unfortunately, in

transient and harmonic elastography, it is difficult to confine the propagation of shear waves

to the in-plane direction; therefore, erroneous elastograms would be produced if image

reconstruction were performed using an approximate mechanical model. Another question to

ask would be “what would happen if linear elastic reconstruction methods were used to

reconstruct the shear modulus of tissues that exhibit complex mechanical behavior (i.e.,

viscous, nonlinear, anisotropic materials)?” We have observed, when using steady state

harmonic elastography (Perreard et al., 2010), that when linear elastic reconstruction was

applied to frequency-dependent phantoms, the shear modulus estimates were consistently

less accurate — in somewhat unpredictable ways that resulted from a complex interplay

between multiple factors (i.e., size, shape and contrast of inclusions). The author expects

that a similar behavior to occur if linear elastic reconstruction methods were applied to

materials that exhibits strong poroelastic, anisotropic or nonlinear elastic behavior.

There is recent considerable interest in using elastography to visualize the viscoelastic

behavior of soft tissues. It is also clear that if viscoelastic elastography is to become a viable

clinical approach, then better mechanical models must be employed to accurately capture the

viscoelastic behavior of soft tissues. The author agrees that transient and harmonic

elastographic imaging is perhaps the most natural approach for viscoelastic elastography,

because the harmonic solution of the wave equation can easily be transformed into a

dispersive relation. By fitting a rheological model to wave-speed data and attenuation

dispersion data, viscosity and shear modulus can be estimated. The problem with this

approach is that although most rheological models provide good estimates of wave-speed

dispersion, there is often a large discrepancy between the measured attenuation dispersion

and computed attenuation dispersion. An alternative approach could be to develop a

reconstruction method based on a viscoelastic continuum mechanical model, since this

might provide a more accurate prediction of wave-speed and attenuation dispersion over the

small frequency range employed in elastography.

Poroelasticity is another rapidly developing imaging modality. However, there is

disagreement concerning the most appropriate models for poroelastic imaging of the brain

and cartilage. Some researchers prefer biphasic models, while others other researchers prefer

consolidation models — such as those employed in soil mechanics. Still other researchers
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suggests that neither biphasic nor consolidation models suffice; they believe that viscoelastic

models should be used. As with viscoelastic elastography, in poroelasticity, there also needs

to be consensus among the elastographic imaging community about which is the most

appropriate model.

6.3 Evaluating performance

Several research groups are developing model-based elastographic imaging systems to

characterize the different mechanical properties within soft tissues (i.e., shear modulus,

viscosity, Poisson’s ratio, anisotropy, nonlinearity). The ability to compare image quality

based upon spatial and contrast resolution must be addressed if model-based elastography is

to progress beyond simple anecdotal reports. One approach towards achieving this objective

is to adopt a method of x-ray mammography system characterization. The low contrast

performance of modulus elastograms computed with different model-based elastographic

approaches could be assessed using studies similar to those described in (Doyley et al.,

2003). However, to facilitate such studies, new materials must be developed to fabricate

more complex phantoms. More specifically, fabrication techniques should be developed to

allow the investigators to vary each mechanical parameter over a wide dynamic range. In

addition, efforts should be made to develop better mechanical testing devices – especially

for harmonic and transient elastography – similar to those described in (Madsen et al.,

2008). Alternatively, techniques such as time-temperature superposition could be used to

extend the useful range of commercial dynamic mechanical analyzers as discussed in

(Doyley et al., 2010).
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Appendix

Appendix A:

Abbreviations & Symbols

α regularization parameter

αr regularization parameter applied to nonlinearity

αμ regularization parameter applied to shear modulus

αT absorption or attenuation coefficient

attenuation coefficient of the Maxwell model

attenuation coefficient of the Voigt model

αz regularization parameter applied to a zone

Cijkl the Christoffel rank-four tensor

c1 velocity of the compressional wave

c2 velocity of the shear wave

shear wave speed of the Maxwell model
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shear wave speed of the Voigt model

D *(s) complex compliance

D ’(s) storage compliance

D ”(s) loss compliance

Δ del operator

δij Kronecker delta

E Young’s modulus

ε0 instantaneous strain

ε1 viscoelastic strain amplitude

ε strain tensor

ε0 axial strain

ε (t ) time-varying strain

f force vector

ʒ imaginary component of a complex number

G gradient vector

G ’ real component of complex shear modulus (storage modulus)

G ” imaginary component of complex shear modulus (loss modulus)

Γ boundary of element

γ nonlinearity

HA aggregate modulus

HA
k product of aggregate modulus and permeability

h thickness

I identity matrix

I1 first variant of the Cauchy-Green strain tensor

I2 second variant of the Cauchy-Green strain tensor

i iteration number

J Jacobian or sensitivity matrix

j complex number

j ” imaginary component of the wave number

J *T complex Jacobian matrix

J *TJ complex Hessian matrix

K global stiffness or coefficient matrix

k complex wave number

k ’ real component of the wave number

κ hydraulic conductivity

L Lagrangian scalar
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λ second Lamé’s coefficient

μ shear modulus

μr relative shear modulus

μz shear modulus in a zone

N number of nodes

n ̂ outward pointing normal vector

η viscosity

Ω area of finite element

Ω angular frequency

p hydrostatic pressure

p time-harmonic pore pressure

Φ phase of time harmonic displacement

ϕ basis function associated with element

π objective function

πz objective function within a zone

K real component of a complex number

ρ density

ρf pore-fluid density

ρa apparent mass density

σ three dimensional stress tensor

T transpose

t time

t̂ Neumann boundary condition

t1 retardation time

um measured displacement field

u computed displacement field

uz calculated displacement within a zone

measured displacement within a zone

v Poisson’s ratio

ϑ TVD regularization functional

vs Poisson’s ratio of the solid matrix

W Veronoda-Westman strain energy density function

w adjoint displacement field

wj displacement component

w1 weighting factor

w2 weighting factor
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ζ rotational vector
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Figure 1.
Schematic representation of current approaches to elastographic imaging: quasi-static

elastography (left), harmonic elastography (middle), and transient elastography (right).
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Figure 2.
Modulus elastogram obtained from a phantom containing a single 10 mm diameter inclusion

whose modulus contrast was approximately 6.03 dB. The modulus elastogram was derived

by taking the reciprocal off the strain elastogram after spatial filtering.
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Figure 3.
Hierarchical diagram of proposed approaches to shear modulus estimation for harmonic,

transient, and quasi-static elastography, assuming linear elastic isotropic mechanical

behavior.
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Figure 4.
Modulus elastograms computed from (a) ideal axial and lateral strain estimates and (b) strain

estimates that were corrupted with 4 % additive white noise. The simulated phantom m

contained an inclusion with a Gaussian modulus distribution that had a peak contrast of 4:1.

Courtesy off Dr. P. Barbone, Boston University Department of Mechanical and Aeronautical

Engineering.
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Figure 5.
Sonogram (a), strain elastogram (b), and modulus elastogram (c) of RF ex vivo ablated

bovine liver. Courtesy of Drs. T. J. Hall H , T. Varghese, and J. Jiang (University of

Wisconsin -Madison).
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Figure 6.
caption. Sonograms, radial strain, and modulus elastgraphy obtained from homogenous and

heterogenous vessel phantoms. The modulus elastgrams were reconstructed with a

constrained inversion scheme. Courtesy of Drs. S. Le Floc’h, J. Ohayon, and G. Cloutier,

University of Montreal Department of Radiology.
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Figure 7.
Montage of MR magnitude images (A) and shear modulus elastograms (B) recovered from a

healthy volunteer using the subzone inversion scheme. Courtesy of Drs. J. B. Weaver and K.

D. Paulsen, Dartmouth College, Thayer School of Engineering.
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Figure 8.
Shear images (a) and pore-pressure images (b) showing 16 coronal slices through the brain.

Images cover most of the ventricles, which are depicted by the lower shear modulus (blue

inn image 10a). Voxel size was 3.0 mm3. Courtesy of Drs. J. B. Weaver and K. D. Paulsen,

Dartmouth College, Thayer School of Engineering.
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Figure 9.
Reconstructions of the shear modulus (Mu) and the nonlinear parameter (Gamma) for breast

tissue using in vivo free-hand compression data. The tissue behavior is governed by an

exponential stress-strain law, where the parameter Mu represents the shear modulus at small

strain, and the nonlinear parameter, Gamma, represents the exponential increase in stiffness

with increasing strain. (A) and (B) are the images for a Fibroadenoma (FA), and (C) and (D)

are the images for an Invasive Ductal Carcinoma (IDC). Courtesy of Dr. A. Oberai,

Rensselaer Polytechnic Institute.
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