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Model-Based Estimation for 
Dynamic Cardiac Studies Using ECT 

Ping-Chun Chiao, W. Leslie Rogers, Neal H. Clinthorne, Jeffrey A. Fessler, and Alfred 0. Hero 

Abstract-In this paper, we develop a strategy for joint esti- 
mation of physiological parameters and myocardial boundaries 
using ECT (Emission Computed Tomography). We construct 
an observation model to relate parameters of interest to the 
projection data and to account for limited ECT system resolution 
and measurement noise. We then use a maximum likelihood 
(ML) estimator to jointly estimate all the parameters directly 
from the projection data without reconstruction of intermediate 
images. We also simulate myocardial perfusion studies based on a 
simplified heart model to evaluate the performance of the model- 
based joint ML estimator and compare this performance to the 
Cramer-Rao lower bound. Finally, we discuss model assumptions 
and potential uses of the joint estimation strategy. 
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I. NOMENCLATURE 

detector position index 
time index 
emission position 
time 
observation of detected gamma rays at 
i-th detector position in ,j-th time 
interval 
mean observation at i-th detector 
position in j-th time interval 
j-th time interval 
system response function, i.e. the 
probability of detecting a gamma ray 
at i-th detector position given an 
emission at L 

boundary parameter vector 
emission space defined by left 
ventricular ROI 
emission space defined by myocardial 
ROI 
emission space defined by background 
region 
concentration function of left 
ventricular ROI 
concentration function of myocardial 
ROI 
concentration function of background 
region 

U ,  = JT, u( t )d t  

m ( j )  = JT, m(t)dt  : 1-th time-integral concentration of 

b, = JT, b ( t ) d t  : 3-th time-integral concentration of 

Y : vector concatenation of all yzJ 
Y : vector concatenation of all yzJ 
0 : vector concatenation of compartmental 

H(@) : matrix kernel characterizing the kinetics 

U : vector Concatenation of all U ,  

M : vector concatenation of all m3 
B : vector concatenation of all b, 
A = [aT UT BTIT 
P = [AT S T I T  

: 1-th time-integral concentration of left 
ventricular ROI 

myocardial ROI 

background region 

parameters 

of myocardial ROI 

11. INTRODUCTION 
N ADDITION to providing morphological information I about imaged organs, a more powerful use of ECT (Emis- 

sion Computed Tomography) is to quantify physiological and 
biological processes through dynamic imaging. In dynamic 
tomographic studies, one images an organ of interest over 
time to observe the dynamic behavior of the employed radio- 
tracer. Ideally, the radiotracer is designed to measure specific 
physiological or biochemical processes. In steady state, the 
dynamic behavior of the radiotracer can usually be described 
by a linear compartmental model with constant compartmental 
parameters [ 11. Often, these parameters are directly related to 
the specific process [2]. By tomographically measuring the 
organ tracer concentration (output), one can determine the 
compartmental parameters (system) using measurements of 
plasma tracer concentration (input). Dynamic imaging tech- 
niques have been widely used in PET (Positron Emission 
Tomography) quantification of myocardial blood flow 131, [4] 
and glucose metabolism [5] and have also been investigated 
in SPECT (Single Photon Emission Computed Tomography) 
cardiac studies 161. 

In conventional dynamic data analysis, images indexed by 
time interval are and myocardial regions of 
interest (Rols) are specified from the images 
usually by human operators. A function of detected counts 
versus time index is calculated for each myocardial ROI. 
Along with plasma measurements, a parameter estimation 
algorithm is used to estimate compartmental parameters that 
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underlie the concentration change in each ROI from the count- 
time function [3], [4]. 

Accurate quantification of functional processes with ECT 
is difficult to achieve because of two fundamental difficulties 
associated with ECT: limited system resolution and measure- 
ment noise (a combination of random emission and random 
absorption). In addition to the uncertainty in image values 
propagated from ECT measurement noise, limited system 
resolution results in a systematic error (bias) because of 
cross-contamination of ROI values between any two adjacent 
regions. In cardiac studies, several investigators have tried to 
correct this systematic error in myocardial ROI concentrations 
by assuming the myocardial wall thickness is known and 
precomputing the fraction of spill-over [7 ] ,  or by formulating 
these fractions as unknown parameters [8]. Instead of post- 
reconstruction correction, Carson [9] has generalized the pixel- 
based iterative image reconstruction to an ROI-based estimator 
based on maximum likelihood (ML) criteria. By incorporating 
a system response function to account for resolution blurring 
and by estimating ROI values directly from the projection 
data, he has shown the ROI-based ML estimator can generate 
statistically unbiased ROI concentration estimates (free from 
cross-contamination), if the ROIs are specified exactly. Carson 
[ lo]  further formulated a parametric image model to include 
compartmental parameters. This formulation allows estimation 
of kinetic parameters directly from the projection data and can 
be written as follows 

In ( l ) ,  Y is a vector concatenation of the projection data 
taken over time, W is a system response matrix to account 
for resolution blumng, and X(O), parameterized by a com- 
partmental parameter vector 0, is a pixel-based image vector. 
Snyder [ 1 I ]  and Ollinger [ 121 have also applied ROI-based 
ML estimators to compartmental parameter estimation using 
dynamic PET. Both post-reconstruction correction and ROI- 
based estimators assume that ROI delineation is exactly known 
from reconstructed ECT images. 

In practice, the assumption of perfect ROI delineation 
is never true. The combination of image noise and poor 
resolution impairs one's ability to accurately delineate ROIs. 
Consequently, an extra source of error due to erroneous 
ROI specification is introduced into the estimation of ROI 
parameters. It is highly desirable to develop a strategy to 
reduce this error. 

In this paper, we establish such a strategy through jointly 
estimating object boundaries as well as compartmental param- 
eters. We construct an observation model to relate parameters 
of interest to the projection data and measurement noise. We 
then use an ML estimator to jointly estimate all the parameters 
directly from the projection data without reconstruction of 
intermediate images. Using a geometric model to characterize 
heart shape, we can parameterize not only compartmental pa- 
rameters but also myocardial boundaries, left ventricular input 
function, and background concentration (lung, liver ... etc.). The 
observation model we propose is more general than that in (1)  

and can be described as 

Y w Poisson{9(S). ~(0)) (2) 

where 9 characterizes imaging degradation factors and also 
depends on boundary parameters S, and C is an ROI-based 
concentration vector and is parameterized by compartmental 
parameters 0. 

In Section 111 below, we describe the observation model and 
a geometric model for the heart. In Section IV, we implement 
an ML estimator for use with these models. In Sections V 
and VI, we describe simulated myocardial perfusion studies 
using a polygonal heart model and a synthetic ECT system 
and show simulation results to demonstrate the performance of 
the model-based joint ML estimator (MJMLE). In Section VI1 
we discuss simulation results and model assumptions. Finally, 
we conclude in Section VIII. 

111. OBSERVATION MODEL 

To simplify the following presentation, we make two as- 
sumptions. ( 1 )  On a short axis section the object model consists 
of three homogeneous regions: left ventricle, myocardium, and 
background. (2) The heart is stationary. These assumptions 
are further discussed in Section VII. This model is easily 
generalized to include multiple ROIs within the myocardium 
[ 131. We start with a simple observation model as follows 

Y w Poisson{Y(P, System Response function)} (3 )  

where P includes compartmental parameters 0, myocardial 
boundaries S, left ventricular concentrations U, and back- 
ground concentrations B, and the system response function 
can account for resolution blurring, attenuation, random coin- 
cidence, deadtime, and scatter. We now describe the structure 
of Y by decomposing its element yij at detector position i 
and time j as follows 

(4) 

Notice that in (4) the three integrals of the system response 
function are individually defined for the three assumed ho- 
mogeneous regions. Similar to Huesman's approach [ 141, we 
approximate the myocardial concentrations M as functions 
of the left ventricular concentrations U and compartmental 
parameters 0 

M Z  [ ( l - a ) H ( O ) + a I ] . U = G ( @ , a ) . U  ( 5 )  

where I denotes identity matrix and a (0 < cy < 1) character- 
izes vascular space due to capillary bed in the myocardium. 
Although a can be jointly estimated with other parameters, for 
simplicity, we assume a is a known constant in the following 
discussions. From (4) and ( 5 ) ,  a more compact formulation 
can be derived in a matrix form by collecting all the integrals 
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in (4) in a matrix, Q, and concatenating all the concentration 
parameters as follows 

Y ( P )  = "(S) G ( O ) . U  . (6) [ : I  
In searching for parameterization of the heart boundaries, we 

have been inspired by a procedure commonly used in cardiac 
ROI analysis. In most dynamic ECT cardiac studies, cross- 
sectional, short-axis images are obtained by slicing a 3D heart 
image (constructed by interpolating a stack of reconstructed 
2D heart images) perpendicular to the long axis of the heart. 
On these sliced images, the imagcd heart is annulus-shaped 
and consists of a central region of left ventricle surrounded 
by myocardium. The right ventricular wall is thinner and 
tends not to show up on short-axis heart images. For this 
reason, we have treated the right ventricle wall as part of 
the background region. ROI analysis based on short-axis 
heart images always involves separation of the myocardial 
region from the left ventricular cavity, typically by drawing 
two closed curves around epicardium and endocardium. The 
shapes of the two curves are specified by multiple nodes with 
pre-specified angular separation. The nodes are individually 
allowed to move radially toward or away from the center of 
the curves. The final shapes of the two curves are individually 
obtained by connecting the two sets of nodes with piecewise 
smooth curves or straight lines (in this case, the heart shape 
is described by a polygon). 

For simplicity, we choose to use a polygonal heart model. 
Generalization of this model is discussed in Section VII. By 
fixing a stationary point (the centroid) within the heart model, 
we formulate a linear combination of node radii as myocardial 
boundary parameters. Two node radii (for epicardial and 
endocardial nodes) are defined at each pre-specified angle with 
respect to the stationary point. In this manner, the position 
of each node in space is defined and, consequently, the 
backbone of the heart model is constructed by the epicardial 
and endocardial nodes. We subtract the epicardial radius 
from the endocardial radius at each angle and consider this 
difference as angular myocardial thickness. As a result, we 
parameterize the heart model by a set of epicardial radii and 
a set of angular thicknesses (both sets are concatenated in S) 
with respect to a stationary point. The stationary point needs to 
be specified before estimation so that the boundary parameters 
can be defined. If the point is not appropriately chosen the 
first time. one can always adjust this stationary point after 
estimation and restart estimation with a new point. 

We now explain in an intuitive way how these boundary pa- 
rameters can be estimated. Careful examination of (6) reveals 
a simple relation as follows 

mass(Y) = volume (e )  x concentration((=). (7) 

If one considers the mean measurements Y as mass quanti- 
ties then 9 must contain volume information. In particular, 
this volume information is characterized by the boundary 
parameters, and it specifies a portion from each ROI for 
each mass measurement to which this ROI contributes. Thus, 
boundary estimation is eventually accomplished through fitting 

a set of volumes and concentration parameters to the mass 
measurements. 

IV. ESTIMATOR 
Given the observation model and model parameters defined 

in Section 111, we can construct an ML estimator by imple- 
menting Fisher scoring, positivity constraints, and Marquardt's 
method [ 151 to jointly estimate all the parameters. Fisher 
scoring has been widely used in ML estimation in many 
situations. A thorough review of use of Fisher scoring in 
statistics can be found in [16]. It is similar in principle 
to Newton's method, which is an iterative process and is 
often used in solving nonlinear equations. Since the elements 
of P (compartmental parameters, concentrations, myocardial 
thicknesses, and endocardial radii) are physically positive, the 
ML estimate P\IL of P is defined as 

P,,, = a r g m a x l n f ( Y ; P ) ,  P P > 0. (8) 

With the Poisson assumption for the measurement noise, the 
log-likelihood In  f (Y :  P) is given by 

l n f ( Y ; P )  = C(lilJ . lny, ,(P) - Yq(P)) + (9) 

where IC is a constant independent of P. Obviously, I n  f (Y;  P )  
is not linear in P ,  and P,,, cannot be solved directly. Fisher 
scoring suggests the following successive approximation 

t J  

Pn+' = P" + AP". n = 0 , l . .  . (10) 

where 

A P "  J - ' (P )  . V p I n f ( Y : P ) l p , p n .  (11) 

When (10) converges in the 71-th iteration based on prescribed 
criteria, the resulting P"+l is considered as an approximation 
to P L ~ L .  In ( I l ) ,  J, the Fisher information matrix, approxi- 
mates the Hessian matrix used in Newton's method [17] and 
can be derived for Poisson measurements as 

= V p Y ( P ) .  Diag-l{Y(P)}.  [VpY(P) lT  

(12) 

where Diag{Y(P)} is a diagonal matrix containing the ele- 
ments of Y ( P )  as its diagonal elements (see Appendix A for 
computation of-the gradients). 

To enforce P,,IL > 0, we impose positivity constraints 
on each intermediate estimate P". We choose to use the 
log transformation method [ 181 mainly because it provides 
computational convenience and is easy to implement. It can be 
shown that the log transformation gives the following iterative 
procedure 

Pn+' =P".exp(Diag-'{Pn}.AP"),n=O,l . . .  (13) 

In (13), P" is now forced to take on positive values for any 
positive initial estimate Po. Comparing (13) with (IO), one 
can see that enforcing a positivity constraint using (13) only 
slightly increases computational complexity. 
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TABLE I 
MODEL CONFIGURATIONS. A SYTHETIC ECT SYSTEM. AND DATA SAMPLING SCHEMES 

Objectmodel 
2 concentric polygons (each has 16 nodes connected by straight lines) and 1 large 
ellipse, forming 3 uniform ROIs: left ventricle, myocardium, and the rest of 
body. 
Radius of endocardial nodes = 4 cm. 
Radius of epicardial nodes = 5 cm. 
Elliptical body outline dimension = 14 cm x 17 cm. 
10% vascular space in myocardium. 
Nominal plasma concentrations were generated from analytical functions [141. 
Concentration of the rest of body = 1/10 plasma concentration. 
No attenuation, random coincidence, deadtime, and scatter. 

Compartmental modeling 
Kety's 2-compartment model. 
Tissue-blood partition coefficient p = 0.9 (mVgm). 
k l  = 1.2 (mVgm/min). 
k2  = k l / p  = 1.33 (bin). 

ECT system and data sampling schemes 
64 detectors, parallel ray collimation. 
System resolution = 10 mm (FWHM). 
Total counts in entirc study vary from 0.4 million to 10 million. 
10 time intervals: 6x10 sec, 3x1 min, and 1x4 min; total time = 8 min. 
8 angular projections per 180' in most simulations except for some simulations 

32 angular projections per 180' for generating FBP images, 
shown in Table 4. 

Using Fisher scoring alone may fail to converge to the 
maximum for the following reasons: (1) Iterative schemes 
based on Newton's method usually perform poorly and may 
not even converge, if they start in regions remote from the 
solution. ( 2 )  The approximation of the Hessian matrix by the 
Fisher information matrix may not be successful even in the 
neighborhood of the maximum, especially in case that the 
signal to noise ratio is low. We choose to implement a more 
general successive approximation scheme to optimally update 
AP", as suggested by Marquardt [15]. This method chooses 
the update direction AP" to lie in between the direction given 
by the Newton's iterative procedure and that given by the 
steepest ascent method. The latter is considered when the 
Newton's iterative procedure fails to increase the objective 
function (log-likelihood in our case). 

v. SIMULATION STUDY 

We have simulated myocardial perfusion studies for a 
freely diffusible tracer using a polygonal heart model and 
a synthetic ECT system in order to evaluate the perfor- 
mance of MJMLE, to quantify the improvement in accuracy 
of myocardial perfusion estimation over a fixed ROI anal- 
ysis method in which myocardial boundaries are fixed at 

inaccurate values, and to determine the effects of model 
mismatches. In the fixed ROI analysis method, myocardial 
boundary (node radii) delineation errors were simulated from 
independent and identically distributed (IID) Gaussian dis- 
tributions with 1.5 mm standard deviation (SD), and the 
perfusion and left ventricular input function were estimated 
directly from projection data. We show MJMLE is practically 
unbiased for count levels exceeding 1 million. We evaluate 
the performance by comparing the root-mean-square (RMS) 
error of MJMLE estimates with the Cramer-Rao (CR) lower 
bound defined by the diagonal elements of the inverse of 
the Fisher information matrix. When the RMS error of the 
estimates is close to the square root of the lower bound, 
we claim the estimator practically achicves the lower bound. 
We also present a set of boundary estimates in image format 
to demonstrate the robustness of the estimator for a variety 
of initial boundary conditions and to show the convergence 
pattern of boundary estimates. To address the issue of model 
mismatches, we simulate projection data based on a circu- 
lar heart model and estimate perfusion using a polygonal 
model. 

Table I summarizes model configurations, a synthetic ECT 
system, and data sampling schemes. We have used an object 
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Fig. I. A set of boundary estimates superimposed on FBP images corresponding to two different time intervals. The first column shows initial boundary 
estimates that either underestimate (upper image) or overestimate (lower image) myocardial thickness. The second column illustrates final boundary estimates 
that are visually identical despite the dramatically different initial conditions. The four identical images in the first two columns are from the second time 
interval, in which left ventricular counts dominate the signal (showing low contrast at the epicardial boundary). The images in the last two columns, 
superimposed on the same set of boundary estimates, are from the last time interval, in which left ventricular concentrations and myocardial concentrations 
have similar magnitudes (showing lower contrast at the endocardial boundary). 

model that consists of two parts: a heart, and the rest of 
body. The body contour was assumed known. We modeled 
the heart using a stationary polygonal model (the issue of 
heart motion is discussed in Section VU). Heart boundaries 
were parameterized by a set of epicardial node radii and a 
set of angular thicknesses of the myocardium with respect 
to the centroid of the model. Myocardial perfusion ( k l )  was 
modeled by Kety's 2-compartment model [ 191, [20]. Estimates 
of the left ventricular concentrations were used to estimate the 
input function using a linear interpolator [14]. To facilitate 
computation, we have chosen to use a depth-independent 
system response function so that a convenient convolution 
operation can be applied to rapidly compute projection data, 
as described in [21]. To reduce the total computation time 
for the multiple realizations, we have simulated data sets with 
only eight projections over 180'. To demonstrate the validity 
of this small system approximation, we have also compared 
the CR lower bound for using sampling schemes with more 
projections (Table IV). 

The statistics of parameter estimates were computed using 
200 to 300 realizations. Counting noise was generated using 
a Poisson distribution based on mean projection data. In 
most simulations, mean projection data were computed based 
on the same polygonal model that was used in estimation, 
except when examining the effects of model mismatches, 
where a circular model was used. In all simulations, initial 
boundary estimates (node radii with respect to the centroid) 
were randomly generated from IID Gaussian distributions 
with 1.5 mm SD. Other initial parameter estimates were also 
generated from independent Gaussian distributions with SD 
of 10% of their nominal values. 

Iterations were stopped when the following conditions were 
satisfied: 

In f n + l  - In f" 
In fn 

< lop6 and 0 5  

where f" is the log-likelihood and pa is the i-th parameter 
estimate during the n-th iteration. The estimation process 
usually converges within 10 iterations at 1 million counts or 
above. Each iteration takes less than a minute to complete on 
a micro VAX 111 workstation. 

VI. RESULTS 

A. Estimation Performance 

Table I1 lists the statistics of a set of simulation results 
for every parameter in P except background concentration 
parameters. The total counts in this entire study equal 0.4 
million. Overall, the RMS error of the estimates is close to 
the lower bound in each case. While the RMS errors of input 
estimates vary with time, those of boundary estimates are quite 
uniform. The estimated bias values in k l  and k2 are less than 
0.7% and those in boundary parameters are less than 0.3 mm. 

B .  Robustness 
Fig. 1 presents a set of boundary estimates superimposed 

on filtered-back projection (FBP) images corresponding to 
2 different time intervals. The first column shows initial 
boundary estimates that either underestimate (upper image) or 
overestimate (lower image) myocardial thickness. The second 
column illustrates final boundary estimates that are visually 
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TABLE I1 
STATISTICS OF A SET OF SIMULATION RESULTS (TOTAL COUNTS IN ENTIRE STUDY = 0.4 MILLION. NUMBER OF REALIZATIONS = 228) 

Parameter Bias SD RMS Lower bound 
kl -.68f.41(%) 6.19+.15(%) 6.23+.15(%) 6.23(%) 
k2 -.63+1.42 6.29k. 15 6.32f.15 6.18 

lOsec Input function .56f. 13(%) 1.92f.05(%) 2.0M.05(%) 1.88(%) 
20% estimated from .44f.09 1.36f.03 1.43k.03 1.35 
30sec left ventricular .49k. 1 1.47f.03 1 S5f.04 1.53 
40sec concentrations -. 16f. 15 2.3 lf.05 2.32f.05 2.16 
50% in 10time -.06+. 18 2.6 5f.0 6 2.65f.06 2.66 
60% intervals -. 18k. 19 2.82f.07 2.83f.07 2.78 
120sec -. 15f.07 1.12f.03 1.13f.03 1.14 
180sec -.20+.07 1.05f.02 1.07f.03 1.09 
240sec .10f.07 1.12f.03 1.13k.03 1.05 
480sec .01k.04 .61+.01 .61+.01 6 
1 Radii for 16 -.14f.l5(mm) 2.2M.O5(mm) 2.21f.O5(mm) 2.43(mm) 
2 endocardial .05+. 15 2.26k.05 2.26k.05 2.43 
3 nodes -. 16f. 16 2.475.06 2.48k.06 2.43 
4 -.20+. 15 2.21f.05 2.22f.05 2.44 
5 .24+. 17 2.50k.06 2.51k.06 2.44 
6 -.17+.17 2.58k.06 2.59f.06 2.45 
7 -.13+.16 2.46f.06 2.46f.06 2.45 
8 .04f. 17 2.52f.06 2.52f.06 2.45 
9 -. 13f. 17 2.48f.06 2.485.06 2.46 
10 -.22t.16 2.45f.06 2.46f.06 2.46 
11 .10*.16 2.45k.06 2.46f.06 2.46 
12 -.11+.17 2.5 1k.06 2.51f.06 2.47 
13 -. 1 I f .  15 2.2 8k. 05 2.28k.05 2.48 
14 -.17+.15 2.26f.05 2.26k.05 2.46 
15 .22f. 16 2.34f.05 2.35k.06 2.46 
16 -.06+.15 2.22f.05 2.22k.05 2.44 
1 Myocardial .2M.I6(mm) 2.39f.O6(mm) 2.40+.06(mm) 2.56(mm) 
2 thicknesses -.04+. 16 2.4 1f.06 2.41f.06 2.56 
3 measured .17+.17 2.63k.06 2.63f.06 2.55 
4 along 16 2.34k.05 2.34f.05 2.57 .20+.16 
5 node radii -. 2 I f .  18 2.64+.06 2.65f.06 2.57 
6 .164.18 2.7 1k.06 2.7 lf.06 2.58 
7 .22f. 17 2.6 1f.06 2.62k.06 2.58 
8 -.091.18 2.70k.06 2.7 1k.06 2.58 
9 ,204.17 2.61k.06 2.62k.06 2.59 
10 .25+.17 2.59f.06 2.60k.06 2.59 
11 -.08+. 17 2.55k.06 2.55k.06 2.59 
12 .09+.17 2.61k.06 2.6 lf.06 2.6 1 
13 .16+. 16 2.43f.06 2.43f.06 2.6 1 
14 .20+.16 2.4 lf.06 2.42f.06 2.59 
15 -.304.17 2.5 lf .06 2.53f.06 2.58 
16 .09+. 16 2.34f.05 2.34505 2.57 

and numerically identical despite the dramatically different 
initial conditions. In fact, perfusion and other parameter es- 
timates are also numerically identical in this case. The four 
identical images in the first two columns are from the second 
time interval, in which left ventricular counts dominate the 
signal (showing low contrast at the epicardial boundary). The 
images in the last two columns, superimposed on the same set 
of boundary estimates, are from the last time interval, in which 
left ventricular concentrations and myocardial concentrations 
have similar magnitudes (showing lower contrast at the endo- 
cardial boundary). Fig. 2 shows the iteration sequence (from 
left to right, top to bottom) that takes the initial boundary 
estimates illustrated in the lower first image in Fig. 1, which 
overestimate the thickness by roughly 2 cm, to the final 
estimates shown in the lower second image in Fig. 1. 

C. Perfusion Estimation 

slice). The bias in perfusion estimates decreases from 0.7%) 
to near 0.0% as the number of counts increases from 0.4 
to 10 million counts. Fig. 4 compares the performance of 
MJMLE and the fixed ROI analysis method with the lower 
bound for k l .  MJMLE nearly achieves the lower bound for 
k l  over a range of signal strength between 0.4 and 10 million 
counts. The fixed ROI analysis method, on the other hand, 
gives worse performance in comparison with the lower bound 
as the number of counts increases; the RMS error of k l  
estimates is 4 times higher than the lower bound at 10 million 
counts. 

D. Model Mismatch 
Table 111 compares the systematic error associated with 

boundary model mismatches. The oversimplified 8-node model 
used for data generated from a circular model introduces 
4% bias in k l  estimates, while the 16-node model (used in 

Fig. 3 plots percent-bias in myocardial perfusion estimates 
as a function of total counts in the entire study (for a single 

most of our simulations) shows no significant increase in the 
bias in comparison with the case where the data model and 
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Fig. 2. 
overestimate the thickness by roughly 2 cm, to the final estimates shown in the lower second image in Fig. I .  

The iteration sequence (from left to right, top to bottom) that takes the initial boundary estimates illustrated in the lower first image in Fig. 1, which 

0.2 

0.0 

-0.2 
T- 
Y 
c -0.4 .- 
cn 
.- a -0.6 
a 

-0.8 8 

.1.0 

.1.2 

I 

I 

1 1 1 0  

total counts (million) 

Fig. 3. Percent-bias in myocardial perfusion estimates as a function of total 
counts (number of realizations = 22X. 213, or 200 at 0.4, 1, or 10 million 
counts, respectively). The percent-bias in estimates decreases as the number 
of counts increases. 

Lowerbound 

Joint ML 
ML-ROI 

0 . 4  1 1 0  

total counts (million) 
Fig. 4. Performance comparison of MJMLE and the fixed ROI analysis 
method with the lower bound for k l  (number of realizations = 228, 213, or 
200 for MJMLE and 200. 210, or 200 for fixed ROI method at 0.4, 1,  or 10 
million counts). MJMLE nearly achieves the lower bound for perfusion over 
a range of signal strength between 0.4 and I O  million counts. The fixed ROI 
analysis method, on the other hand. gives worse performance in comparison 
with the lower bound as the number of counts increases: the RMS error of 
k l  estimates is four times higher than the lower bound at 10 million counts. 
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TABLE 111 

NUMBER OF REALIZATIONS = 300, 222, OR 213 FOR THE FOLLOWING THREE CASES. RESPECTIVELY) 
COMPARISON OF BIAS ASSOCIATED WITH MODEL MISMATCHES (TOTAL COUNTS IN ENTIRE STUDY = 1 MILLION. 

observation model -> 8-node 16-node 16-node 
data mode 1 -> circular circular 16-node polveonal 

kl -3.90f.214%) -.35f.26(%) -.28+.28(%) 
Radii of 1.95f.O4(mm) .48+.l(mm) -.15+.l(mm) 
endocardial 2.04f.04 .57+. 1 .12+.09 
nodes 2.0of.04 .37+. 1 -.05rt. 1 
(actual value 1.98+.04 .37 f .  1 - .03f.  1 
4 cm) 1.96f.04 .55 f .  1 -.04+. 1 I 

1.98f.04 .59+. 1 -. 12f. 1 1 
1.9 lf.04 .62+. 1 .15+.1 
1.96f.04 .39+. 1 -.08f. 1 

.52+. 1 .oo+. 1 1 

.46+. 1 -.01+. 1 

.49f.  1 .06+. 1 
-. 18f . I  .73+. 1 

.45f. 1 1 . O O f  . 1 

.52+. 1 . l O f . l  

.40f.  1 .01+. 1 

Angular 1.15f.O4(mm) 
thicknesses of 1.04f.04 
myocardium 1.09f.04 
(actual value 1.13f.04 
1 cm) 1.15f.04 

1.12k.05 
1.2W.04 
1.14f.04 

.61+ .1 

. I  6f.  1 (mm) 

. lOf.l l  

. 23 f .  1 

.36+. 1 

.06+. 1 1 

.07f. 1 1 

.Olf . 1 

.25+. 1 1 

.12+.11 

.17_+. 1 1 

.09+. 11 
-.02+. 1 1 
.19+.11 
.08+. 1 1 
.30+. 1 1 
. O O f  . 1 

-.o I f .  11 
.16+. 1 l(mm) 

-.13f.  1 
.03+. 1 1 
.02+.11 
.04+. 12 
.08f. 1 1 

.04+. 1 1 

.06f. 1 1 
-.02+. 1 1 
-.06f. 1 1 
.22f. 11 

-.02+. I 
-. 12+ . 1 
-.02f. 11 
.04+. 1 1 

-.09f. 1 1 

TABLE IV 
COMPARISON OF SQUARE-ROOT LOWER BOUNDS FOR DIFFERENT SAMPLING SCHEMES (TOTAL COUNTS IN ENTIRE STUDY = 1 MILLION) 

8 angular prqiections 16 angular projections 32 aneular project ions 
k l  3.94 (%) 3.94 r%) 3.94 (%) 
Mean radius of 
endocardid 1.55 (mm) 1.5 (mm) 1.5 (mm) 

Mean angular 
thickness 1.63 (mm) 1.59 (mm) 1.59 (mm) 
of myocardium 
(mean) 

VII. DISCUSSION observation model are consistent (fourth column). In both 
inconsistent cases (8-node and 16-node), MJMLE tends to 
overestimate boundary parameters to compensate for smaller 
regions that are enclosed by observation models with the same 
radii as used in data models. 

E. Sampling 

Table IV compares the lower bounds for different tomo- 
graphic sampling schemes. Eight angular projections, which 
are used in most of our simulations, result in nearly identical 
lower bounds as compared to the other much better sampling 
schemes. This is due to the low dimensional parameterization 
of the parameters of interest. 

Results in Table I1 demonstrate that MJMLE nearly achieves 
the lower bounds at 0.4 million counts, with biases in all 
parameters less than 1%. This count density (for a single 
slice) is usually considered a low signal to noise situation 
in ECT measurements. Thus, the results imply that MJMLE 
may be very useful in dynamic cardiac studies. The percent- 
bias plot in Fig. 3 shows that MJMLE is also asymptotically 
unbiased in perfusion estimation and that acceptably small 
biases are achieved at experimentally achievable count rates. 
The randomness in initial boundary estimates (SD = 1.5 mm) 
is perhaps an optimistic characterization of ROI delineation 
error. Even so, as shown in Fig. 4, joint estimation of perfusion 
and boundaries clearly shows significant improvement over 



CHIAO et al.: MODEL-BASED ESTIMATION FOR DYNAMIC CARDIAC STUDIES USING ECT 225 

the fixed ROI analysis method, especially in high count rate 
situations. 

From Table 111, one sees that a 16-node heart model is 
adequate for describing a circular 2D short axis heart slice. The 
polygonal model is easy to use and can be easily upgraded for 
better precision simply by increasing the number of nodes. 
Furthermore, the polygonal structure can be conveniently 
extended to model a 3D heart. Thus, for cardiac studies, i t  may 
not be necessary to use more complicated surface interpolators 
such as splines [22] and Fourier descriptors [23], [24]. 

More nodes mean more parameters and, therefore, more 
degrees of freedom in parameter estimates. Thus, one expects 
to see higher variance in node radius estimates with an 
increase in the number of nodes. In fact, if one wants to 
estimate more than 16 nodes at 0.4 million counts, boundary 
regularization methods should be included [ 131. We have 
occasionally obtained angular thickness estimates near zero 
using a 16-node model at 0.2 million counts. This is not hard 
to understand from a predicted SD of almost 4 mm in angular 
thickness estimates at 0.2 million counts. 

Using Kety's 2-compartment model, we have simulated a 
situation similar to a PET H i 5 0  perfusion study, in which 
contrast is so poor that additional measurements are usually 
required to delineate the left ventricular region [3]. The images 
shown in Fig. 1 have typical characteristics of low contrast as 
often seen on Hi"O perfusion images. It is evident from the 
boundary estimates shown in Fig. 1 that the joint estimation 
strategy outperforms what can possibly be done by visual 
delineation. It is also apparent from an average RMS error 
of 1.6 mm in myocardial boundary estimates at 1 million 
counts and 0.5 mm at 10 million counts that the model-based 
estimation has exceeded the limit of system resolution (10 mm 
FWHM in this case). This should not be surprising because 
MJMLE has in fact included system blurring, counting sta- 
tistics, geometric modeling, and input-output (left ventricular 
input function-myocardial concentrations) modeling. 

Although our model is based on two simplified assumptions 
(homogeneous regions and stationary heart), the model can be 
readily extended to account for regional inhomogeneity and 
cardiac motion. One can segment the myocardial ROI into a 
number of smaller ROIs in which the homogeneity assumption 
is more appropriate. For the usually large background region, 
since it is not of primary interest, instead of further segmenta- 
tion, one may introduce a set of weights to account for regional 
inhomogeneity. It can be shown [21] that such weights take 
the following form 

I/b(S) . J & ( : I : ,  t ) d t  
dlr: (15) p(Z I 2 ) d x  . T, 

* I Eb(S)  , [ E E b ( S )  JT1 Xb(lr!, t ')dt'dz' 

where Xb(a:, t )  is the radiotracer distribution function of the 
background region at emission position :E and time t and 
vb(s) is the total volume of the background region. The idea 
of using such weights, although formulated differently, has 
been proposed by Ollinger [25]. Although X b ( x ,  t )  is unknown 
in practice, one can conceivably approximate X b ( Z ,  t )  by a 
series of reconstructed emission images. In fact, Ollinger has 
suggested such an approximation [25] as in his words: "The 

tracer activity distribution, which, being both unknown and 
nonstationary, must be approximated by a series of recon- 
structed images ..... These time intervals must be long enough 
to ensure that the images contain enough counts to be a good 
estimate of the tracer activity distribution, but short enough to 
compensate for the nonstationarity of the underlying process." 
Altematively, one can also introduce a set of low order basis 
functions (sinusoidal functions, for instance) to characterize 
the regional inhomogeneity and jointly estimate the coefficient 
for each basis function. 

Our model-based approach directly applies to gated studies, 
which have been proposed to deal with cardiac motion [26]. 
In gated studies, each cardiac cycle is timed and divided into 
K time frames and counting measurements are acquired and 
partitioned into these K gated groups. For such studies, one 
simply introduces additional boundary parameters for each set 
of gated measurements. Of course, in these situations, the data 
in each time interval are much noisier and additional model 
constraints on boundaries will likely be required. 

Applying the joint estimation strategy to other organs will 
require appropriate boundary models that are clearly task- 
dependent. The model-based joint estimator can potentially 
be configured for tumor studies and studies of other organs 
where ROIs are isolated and have simple shapes. One key 
requirement for successful use of a geometric model is to 
prevent the model from degenerating in each estimation it- 
eration. This degeneration, if not carefully considered, could 
happen, for instance, in an estimation iteration in which 
epicardial and endocardial boundaries cross each other. As 
demonstrated in our polygonal heart model, we have proposed 
to use a stationary point and to define boundary parameters 
that are physically positive with respect to this point. In this 
manner, we have successfully overcome model degeneration 
by enforcing the constraint P" > 0 in each estimation 
iteration. 

In general, the iteration processes defined in either (10) or 
( 13) do not guarantee convergence to the global maximum for 
a nonlinear model as in (6). In the simplified simulations, we 
have found that MJMLE is fairly robust against the random 
initialization tested ( 1.5 mm SD for the initial boundary 
estimates and SD of 10% of the nominal values for other 
parameters). In practice, one can randomize initial estimates 
over a physiological range of parameter values to verify the 
local behavior of the estimation processes. 

Although the simulations do not include attenuation, random 
coincidence, deadtime, and scatter, these effects can be readily 
accounted for in the system response function in (3) and (4) 
by using measured survival probability, random coincidence 
rates, deadtime compensation, and scatter response function, 
respectively. Due to the random nature of these measure- 
ments, we expect a loss in estimation performance when the 
measurements are used in MJMLE. 

VIII. CONCLUSION 

We have developed a model-based strategy for joint estima- 
tion of compartmental parameters and myocardial boundaries 
and have constructed a MJMLE for use with this strategy. 
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We have also demonstrated in simplified simulation studies [4] G. D. Hutchins, M. Schwaiger, K. C. Rosenspire, J. Krivokapich, H. 
that MJMLE is almost statistically efficient for the various 
experimental conditions tested. Although the simulations show 
promising results, further experimental verifications and in- 
vestigations on issues such as geometric modeling, regional 
inhomogeneity, and cardiac motion are required before this 
estimation strategy can be used in clinical applications. 

APPENDIX A 

The iterative estimation processes defined in (10) and (13) 
require computing the gradient of the log-likelihood. In par- 
ticular, as shown in (1  I )  and (12), this computation involves 
computing the following term 

Usually, V A Y  ( P )  can be analytically derived. However, 
VSY (P) cannot be obtained analytically. Using (7) V s Y  (P) 
is given as 

where n is equal to 2 x number of nodes, s, is the mth 
element of S, and the nonzero elements of &@(S) have the 
form 

(A.3) 

If a pixelated system response p ( i ( l )  = hth pix,,p(ilz)dz is 
available, (A.3) can be approximated by 

where e ,  is the rn-th unit vector and Ik(S:l) denotes an 
indicator function that is 0 for pixels not in the k-th region, 1 
for pixels totally in the region, and between 0 and 1 for pixels 
partially in the region. 

REFERENCES 

[ I ]  J. A. Jacquez, Compartmental Analysis in Biology and Medicine. 2nd 
ed. Ann Arbor: The University of Michigan Press, 1988. 

[2] M. E. Phelps, J. C. Mazziotta, and H. R. Schelhert, Positron Emission 
Tomography anti Autoradiography Principles and Applications for the 
Bruin and Heart. New York: Raven Press, 1986. 

[3] S.  R. Bergmann, P. Herrero, J. Markham, C. J. Weinheimer. and 
M. N. Walsh, “Noninvasive quantitation of myocardial blood flow in 
human whjects with oxygen- IS-laheled water and positron emission 
tomography,” J .  Anrer-. Col/. Car-diol., vol. 14, pp. 639-652, 1989. 

Schelbert, and D. E. Kuhl, “Noninvasive quantification of regional blood 
flow in the human heart using N-I3 ammonia and dynamic positron 
emission tomographic imaging,” J .  Amer. Col/. Cardiol., vol. 15, pp. 
1032-1042, 1990. 

[ 5 ]  S. S. Gambhir, M. Schwaiger, S. C. Huang. J.  Krivokapich, H. R. 
Schelbert, C. A. Nienaher, and M. E. Phelps, “Simple noninvasive 
quantification method for measuring myocardial glucose utilization 
in humans employing positron emission tomography and fluorine-1 8 
deoxyglucose,” J .  Nucl. Med., vol. 30, pp. 359-366, 1989. 

[6] A. M. Smith, G. T. Gullberg, F. L. Datz, and P. E. Christian, “Kinetic 
modeling of tehoroxime using dynamic SPECT imaging.”J. Nucl. Med., 
vol. 33, p. 878, 1992. 

[7] E. Henze, S. C. Huang, 0. Ratih, E. Hoffman, M. E. Phelps, and H. R. 
Schelhert, “Measurements of regional tissue and blood-pool radiotracer 
concentrations from serial tomographic images of the heart,” J .  Nucl. 
Med., vol. 24, pp. 987-996. 1983. 

[8] P. Herrero, J. Markham, and S. R. Bergmann. “Quantitation of my- 
ocardial blood flow with H2 I S 0  and positron emission tomography: 
assessment and error analysis of a mathematical approach,” J .  Comput. 
Assist. Tomogr., vol. 13, pp. 862-873, 1989. 

191 R. E. Carson, “A maximum likelihood method for region-of-interest 
evaluation in emission tomography,” J .  Comput. Assist. Tomogr., vol. 
IO, pp. 65&663, 1986. 

[ IO]  R. E. Carson and K. Lange. “The EM parametric image reconstruction 
algorithm,” J .  Amer. Statist. Assoc., vol. 80, pp. 2C-22, 1985. 

[ I  I ]  D. L. Snyder, “Parameter estimation for dynamic studies in emission- 
tomography systems having list-mode data,” lEEE Trans. Nucl. Sci., 
vol. NS-31, pp. 925-931, 1984. 

[I21 J. M. Ollinger, “Estimation algorithms for dynamic tracer studies using 
positron-emission tomography,” lEEE Trans. Med. /mag., vol. 6,  pp. 
115-125. 1987. 

[I31 P. Chiao, W. L. Rogers, J. A. Fessler, N. H. Clinthome, and A. 
0. Hero, “Model-based estimation with boundary side information or 
regularization,” lEEE Trans. Med. Imag., vol. 13. no. 2, pp. 227-234, 
June 1994. 

1141 R. H. Huesman and B. M. Mazoyer, “Kinetic data analysis with a noisy 
input function,” Pkys. Med. B i d ,  vol. 32. pp. 1569-79, 1987. 

[I51 D. W. Marquardt, “An algorithm for least-squares estimation of non- 
linear parameters,’’ J .  Soc. Indust. Appl. Marh., vol. 1 1.  pp. 43 1-44 I ,  
1963. 

1161 P. J. Green, “Iteratively reweighted least squares for maximum like- 
lihood estimation and some robust and resistant altematives,” J .  Roy. 
Statist. Soc.. vol. 46, pp. 149-192, 1984. 

[I71 W. H. Press, B. P. Flannery, S. T. Teukolsky, and W. T. Vetterling, 
Numerical Recipes. Cambridge, U.K.: Cambridge University Press, 
1988. 

[ 181 R. Fletcher, Practical Merhods of Optimization. 2nd. ed. New York: 
John Wiley & Sons, 1987. 

[I91 S. S. Kety, “Theory of blood-tissue exchange and its application to 
measurement of blood flow.” Methods Med. Res., vol. 8. pp. 223-236, 
1960. 

[ZOJ S. S. Kety, “Measurement of local blood flow by the exchange of an 
inert, duffusihle substance,” Methods Med. Res., vol. 8. pp. 228-236, 
1960. 

12 I] P. Chiao, “Parameter estimation strategies for dynamic cardiac studies 
using emission computed tomography.” Ph.D. dissertation, University 
of Michigan, 1991. 

[22] R. H. Bartels, H. C. Beatty, and B. A. Barsky, An 1ntoduc.tion to Splines 
for Use in Computer Gi-aphics and Geomerric Modeling. New York: 
Morgan Kaufmdnn Publishers, 1987. 

[23] A. Jouan, “Analysis of sequences of cardiac contours by Fourier 
descriptors for plane closed curves,” lEEE Trans. Med. Imag., vol. 6, 
pp. 176180,  1987. 

1241 C. T. Zahn and R. Z. Roskies, “Fourier descriptors for plane closed 
curves.” IEEE Trans. Compur.. vol. C-21. pp. 269-281, 1972. 

1251 J. M. Ollinger and D. L. Snyder, “An evaluation of an improved method 
for computing histograms in dynamic tracer studies using positron- 
emission tomography,” IEEE Trans Nucl. Sri., vol. NS-29, pp. 474478 ,  
1986. 

1261 E. J. Hoffman, M. E. Phelps, G. Wisenherg, H. R. Schelhert, and D. 
E. Kuhl, “Electrocardiographic gating in positron emission computed 
tomography,” J .  Comput. Assist. Tomogr.. vol. 3, pp. 733-9, 1979. 


