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1. INTRODUCTION

There are 2 billion cellular telephones in use today, and this number is expected
to reach 3 billion in 2008 [DiPrima 2006]. Cell phones are used for more than
making calls; they now include tools for managing contact information, voice
mail, and hardware settings, and often software for playing games, browsing
the Web, and connecting to specialized information services. The market pen-
etration of cell phones is much higher than that of conventional computers,
which raises significant opportunities and challenges for HCI.

This article presents techniques for evaluating and improving cell phone
usability, in particular the usability of the hierarchical menus that provide
access to most functionality aside from dialing and data entry. While cell phone
menu interfaces may appear simple at first glance, they pose a nontrivial design
problem. Consider the menu hierarchy for the Kyocera 2325 cell phone, the first
25 items of which are shown in Table I. If we count as terminals those selections
that open an application (e.g., a game), a list of data (e.g., recent calls), or a
set of choices in the cell phone equivalent of a dialog box (e.g., for setting the
ringer volume), then this hierarchy contains 98 terminals, reachable through
22 intermediate selections. The longest menu contains 12 items–all associated
with the selection of different sounds. The shortest menu contains a single item,
for entering a voice memo. Terminals in the hierarchy are up to four levels deep,
and the mean number of actions to reach an item (scrolling plus selection), over
all 98 terminals, is 13.3, taking on the order of 7 seconds for an experienced
user.

This menu hierarchy is as large as that of a moderately sized desktop ap-
plication (e.g., Eudora 5.2 with 103 items). This is not unusual for cell phones;
the menu hierarchy for the Samsung MM-A800, which includes a digital cam-
era, contains a remarkable 583 items [Pogue 2005]. Designing menu systems
for any platform, including desktop systems, can be challenging, but for cell
phones the problem is made more difficult by several factors:

—Discrete selection actions in the form of button presses1 are usually needed
to move between menu items, because most cell phones lack more direct
selection capabilities (e.g., a mouse or touch screen).

—Cell phone displays are small, allowing only a few menu items to be displayed
at a single time. Many cell phones lack functionality for paging up or down,
making display limitations even more significant.

—There is less standardization in hardware supporting menu traversal for cell
phones than for desktop machines. Some phones have two-way directional
buttons, others four-way; some have a labeled “Menu” button, while others
rely on a button with overloaded functionality. Button placement can vary
significantly, with “Cancel” and “OK” buttons reversed from one phone to
another. If interfaces are developed for the lowest common denominator, in-
dependently of specific hardware (which is common practice at the mobile
application level), then even cell phones with elaborate interaction support
become less efficient.

1We use the terms “button presses” and “key presses” interchangeably.
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Table I. The First 25 of 120 Elements in
the Kyocera 2325 Menu Hierarchy

Menu
Contacts

View All <list>
Add New

Phone Number <entry>

Email Address <entry>

Street Address <entry>

URL <entry>

Find Name <entry>

Add Voice Dial <entry>

Speed Dial List <list>
Voice Dial List <list>
Business List <list>
Personal List <list>
Information <info>

Messages
Voicemail <list>
Send New

Recent List <list>
Enter from Scratch <entry>

Contacts List <list>
Text InBox <list>
Net Alerts <app>

Text OutBox <list>
Filed <list>
Erase Msgs <choices>
. . .

These factors suggest that cell phone menu interfaces deserve close analysis,
and that they need specialized techniques for their development and evaluation,
which this article takes up in two parts.

In Section 2, we describe an empirical study of the traversal of cell phone
menus, along with three models for predicting user performance: a Fitts’
law model [Fitts 1954], a GOMS model [John and Kieras 1996a, 1996b;
Kieras 1999], and an ACT-R model [Anderson et al. 2004]. All the models
give good accounts of qualitative patterns in user behavior, and the latter
two models give good to very good quantitative predictions of behavior, at
both aggregate and detailed levels of analysis. In Section 3, we use our em-
pirical results to define a novel evaluation metric for the efficiency of cell
phone menu traversal. We define a search procedure that generates improve-
ments to a menu hierarchy with respect to a given set of characteristic user
profiles.

This article makes several contributions to the HCI literature: a novel and
timely study of a very common new HCI task (menu use on cell phones), new
models for accurately predicting performance on this task, and a simple, theor-
etically motivated search procedure that generates menu hierarchies that re-
duce traversal time in simulation studies by a third, which should be generally
applicable to all menu-based systems.
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Fig. 1. Kyocera 2325.

2. A PERFORMANCE STUDY

Our interest is in expert (i.e., practiced and error-free) use of cell phone menu
systems. For control purposes, it was not feasible to collect data from expe-
rienced users on their own cell phones, with all the potential differences in
hardware and software. As a compromise, we had users practice a small num-
ber of tasks, so that all tasks could be remembered easily, and then carry them
out on a single cell phone. Though restrictive, these conditions give a reasonable
starting point for an empirical study and model validation.

We used a Kyocera 2325, as shown in Figure 1. At the top level of its internal
menu, the Kyocera display shows a single selectable icon. The OK button se-
lects the current item; on the four-way scrolling button, RIGHT and LEFT move
through the item list horizontally. For lower-level menus, three items are dis-
played at a time, oriented vertically. Each new menu list is displayed with the
top item highlighted. The OK button, on the left, is used to select the currently
highlighted item in these menus, while the CLR button, on the right, returns to
the previous level in the hierarchy. The UP and DOWN regions of the four-way
button move through the menu. Downward scrolling is incremental, with items
appearing one at a time at the bottom of the screen.

2.1 Procedures

We recruited fourteen experienced cell phone users for our study, students who
took part for course credit. The first two users acted as participants in a pilot
phase of the experiment, in which software for data collection and analysis was
tested and procedures were refined; their data were also used in developing (but
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Table II. Task Duration in s, with Mean (and Standard Deviation) Shown

Task N actions Duration
Menu > > > Settings > > Sounds > Ringer Volume 10 4.954 (1.077)
Menu > > > > Tools & Games > > Tip Calculator 9 4.027 (0.921)
Menu, Contacts, View All 3 1.271 (0.412)
Menu > > > > Tools & Games, Scheduler, View Day 8 4.393 (0.971)
Menu > > > > > > Web Browser 8 3.391 (0.827)

not validating) the models described in later sections. The remaining twelve
users, male undergraduates in computer science, provided the main body of
data for the study. All were right handed. All but one used their right hand to
hold the cell phone, and all used the thumb of the right hand to press keys.

To collect data, we recorded the tone produced by each key press as transmit-
ted through the earphone jack of the cell phone. Collection was initiated by the
first key pressed by the participant and ended with the last key pressed. The
onset of each key press is detectable by a threshold test on the audio output
waveform from the earphone jack, using software we wrote for this purpose.
Each tone lasts approximately 0.095 s, during which time the display changes,
before the key is released. System responses are much faster than key presses
and are treated as occurring within elementary key press actions and not con-
tributing to the duration of user actions.

Participants started with a practice stage, in which they familiarized them-
selves with the cell phone and its menu system. We gave each participant a
paper form describing how five terminal menu items were to be reached, as
shown in the first column of Table II. Each “>” represents a scrolling action,
with commas separating consecutive selection actions. Reaching each of the
terminal items (those at the end of each sequence) constituted a task in the
study. Participants practiced each task until they could carry it out three times
in a row without error.

Each trial in the study required reaching one of the five target terminal
items without access to the paper form. Tasks were presented to participants
in a randomized order. We obtained five correct trials per participant (i.e., with-
out errors or extraneous actions), discarding fewer than 10 trials across all
participants, less than 3% of the data. This means that our cleaned dataset
contains only OK and RIGHT/DOWN key press actions, 2,280 observations in
total (2,280 = 12 users × 5 repetitions × (10 + 9 + 3 + 8 + 8) actions per task).

Table II shows the mean duration per task, over all participants in the study.
User performance is much slower than for single-level menu selection with
a mouse on a standard desktop platform [Byrne 2001], which highlights the
importance of specialized models for this task, as we discuss below.

2.2 Models of User Behavior

We predicted user performance with three models, each supported by a con-
siderable background literature. A Fitts’ law model, a GOMS model, and an
ACT-R model were developed independently of each other, based on data from
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one task carried out by one of the users in the pilot stage of the experiment.2
The three models run in the same software framework that evolved over the
course of this research. The framework provides a common specification of the
Kyocera cell phone, including the sizes and positions of keys and the distances
between them, as measured on the physical device. The framework also sup-
ports a common representation of the menu hierarchy shown in Table I. The
models use the same software environment that includes a simulation of the
cell phone’s interface and produces output in a consistent form.

2.2.1 A Fitts’ Law Model. Our model is based on MacKenzie’s [2003] ver-
sion of Fitts’ Law for one-finger typing for text entry on mobile phones. Move-
ment time in seconds for thumb input is

M T = 0.176 + 0.064 log2 (D/W + 1), (1)

where D represents the distance (amplitude) of the movement and W the width
of the target. The value for D in our study was 14.5 mm, which separates the
OK button and the DOWN button area, with widths W of 6 mm and 10 mm, as
provided by the cell phone specification. This model, as with the other models
described below, makes the simplifying assumption that all scrolling actions can
be represented by DOWN key presses, even though the first action is a RIGHT
key press, with a slightly different size and distance from the OK button.

To execute the Fitts’ law model for each of the five tasks, a path is gener-
ated from the root of the menu hierarchy to the terminal item for the task.
Each step on the path is associated with a movement action or a key press
action. Durations for all the steps are accumulated to produce an overall task
duration.

2.2.2 A GOMS Model. The second model is a GOMS model [Kieras 1999;
John 2003]. GOMS methods for task analysis produce hierarchical descriptions
of methods and operators needed to accomplish goals; some GOMS models have
been strikingly successful in critical HCI domains [Gray et al. 1993]. In our
model, a method is defined for each task in the study. All of the methods are
automatically generated from the menu hierarchy specification, based on the
same path traversals used for the Fitts’ law model. Within a method, each step
corresponds to the selection of a menu item. The GOMS method for selecting
the terminal item Ringer Volume is shown at the top of Figure 2.

Each of the steps in this method in turn decomposes into a selection method,
such as Select Menu or Select Sound, which involves scrolling until a specific
item in the sequence is reached—selection in a menu at a single level. There is
one selection method for each menu item, from Select Settings to Select Ringer
Volume. All of the selection methods have the same form, as shown in the
example at the bottom of Figure 2. Specifications of these lower-level methods
are created automatically from a generic template.

2Preliminary versions of the GOMS and ACT-R models described in an earlier conference pa-
per [St. Amant et al. 2004b] contained minor inconsistencies; these inconsistencies were removed in
revision. Performance was altered by no more than a few percentage points. The qualitative behav-
ior of the models and comparisons between them remain unchanged from their earlier description.
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Fig. 2. The GOMS method for selecting the Ringer Volume item, and a sample single-level menu
selection for the Settings item.

Processing in a selection method involves iterating through a sequence of
four exhaustive tests of whether or not the target intermediate or terminal
item is currently highlighted and whether the finger is on the appropriate key
for selection or scrolling. The durations of the steps follow the guidelines es-
tablished by Kieras [1999] in his work on GOMSL and GLEAN3 (including a
version of Fitts Law). Each test in a decision step requires 0.050 s, plus the time
to execute any actions in the body of the decision if the test succeeds. Steps that
involve key presses last 0.280 seconds plus the duration of tests or auxiliary op-
erations (0.330 seconds in total). Moving to the DOWN key lasts 0.083 seconds
(0.133 seconds in total); moving to the OK key lasts 0.113 seconds (0.163 sec-
onds in total). Movement times are based on the movement component of the
Fitts’ law model in the previous section. The model assumes negligible system
response time and that there are no verification steps. Further, the initial visual
action to acquire the first menu item occurs before the first key press (timing
begins at the first key press), and as the highlighted menu item changes no
visual re-acquisition is needed during selection or scrolling activity. Processing
is entirely sequential, with no overlapping of steps.

Modeling results, based on the description above, are generated by a GOMS
interpreter that we implemented specifically for this project. While there would
have been some benefit to using existing GOMS modeling tools and environ-
ments (e.g., GLEAN3 [Kieras 1999]), we judged that the value of a single sim-
ulation and modeling framework (despite its limitations), for the Fitts’ law,
GOMS, and ACT-R models, and the phone simulation would provide a worth-
while degree of consistency across our evaluation.

2.2.3 An ACT-R Model. The third model is based on the ACT-R 5.0 cogni-
tive architecture [Anderson et al. 2004]. We picked ACT-R as a representative
cognitive modeling architecture and as a common choice in HCI work. ACT-R
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integrates theories of cognition, visual attention, and motor movement and has
been the basis for a number of models in HCI (e.g., Ritter and Young [2001]).
ACT-R models simulate the time course and information processing of cognitive
mechanisms, such as changes of attention and memory retrievals, as well as
external actions, such as movement of the fingers. Roughly speaking, ACT-R
models provide details that can explain behavior in cognitive terms at a level
not addressed by the coarser GOMS representation.

In our ACT-R model, a virtual (simulated) display maintains a representation
of the current items in the cell phone’s menu interface hierarchy. Menu items
are presented in a vertical list, and one of the menu items is always highlighted.
All items are presented for each list, independent of the physical display size.
When an item is selected in the virtual display, the list is refreshed with the
appropriate submenu.

The model’s memory is initialized with a set of declarative memory chunks
that represent the parent-child relationships between the intermediate menu
items needed to reach terminal items. For example, for the Ringer Volume task,
pairs of declarative memory chunks for the Menu/Settings, Settings/Sounds,
and Sounds/Ringer Volume relationships are included. Chunks representing
the parent–child relationships are generated automatically via traversal of the
menu hierarchy specification. ACT-R’s model of the hand is initialized with the
thumb on the OK button.

Procedural knowledge in the ACT-R model consists of eleven productions:

—Find-top-item searches the visual field for a highlighted menu item immedi-
ately after a selection action.

—Find-next-item searches for the next item below the one currently attended,
immediately after a scrolling item.

—Attend-item causes the location of the highlighted item to be visually at-
tended.

—Encode-item encodes the text for the attended menu item, so that its content
(i.e., the name of the item in text form) becomes accessible to the model.

—Respond-select-target fires when the currently highlighted item is recognized
as the terminal item.

—Recall-item-association retrieves an association, if it exists, between the cur-
rently highlighted menu item and its subordinate item along the path to the
terminal item.

—Respond-select-ancestor recognizes an intermediate menu item along the
path to the terminal item (i.e., one of its ancestors).

—Respond-continue-down fires when the highlighted item is neither the next
item to be selected nor along the path to the terminal item.

—Move-down causes the motor module to press the Down key.
—Select-target causes the motor module to press the OK key on the terminal

menu item, ending model execution.
—Select-ancestor causes the motor module to press the OK key on an interme-

diate menu item.

ACM Transactions on Computer-Human Interaction, Vol. 14, No. 1, Article 1, Publication date: May 2007.
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The model starts with the goal of selecting a specific terminal menu item.
The simulation environment shows a single highlighted item. The model first
retrieves a target intermediate item to be selected. It then searches for the cur-
rently highlighted menu item in its field of view. Once found, the visible item is
attended and then encoded, so that its text representation becomes accessible.
If the text matches the target item and this is the same as the terminal item,
then the model initiates motor actions to move the thumb to the OK button
(if necessary) and press it. Model execution completes at this point. If the text
matches the target item but it is not the terminal item, then this means that
the currently highlighted item is on the path to the terminal. The OK button is
pressed and another target item is retrieved from memory. Visual processing
repeats as before. If the text of the highlighted item does not match the target
item, then motor actions are initiated to move the thumb to the DOWN but-
ton and press it. Control is transferred to the visual search action, as before.
In the model, manual scrolling actions can trail behind visual processing by
an unspecified amount (determined by processing in the model such as mem-
ory retrievals); the visual and manual modules become synchronized when a
new menu is presented. User errors, such as pressing an incorrect key, are not
modeled. Model execution is deterministic, with no noise parameters used.

Our model is defined in the ACT-R modeling language, but its execution de-
pends on an extension to perceptual-motor processing in the architecture. The
perceptual and motor components of ACT-R 5.0 have some bias toward desktop
activities, such as selecting menu items with the mouse and navigating through
windows and dialog boxes [Anderson et al. 2004; Byrne 2001]. In ACT-R, the
keyboard is represented as an array of locations. Neighboring keys are a unit
distance apart in a rectilinear arrangement, and each key has unit width and
height. Standard key presses are modeled as finger movements from locations
on the home row to the location of a target key. To handle interaction with a
cell phone keypad, more flexibility is needed in models of finger movements and
the keyboard. We extended the ACT-R environment representation to support
a layout-based keypad in which the size and placement of keys can be specified
individually. The new representation allows us to build specifications of differ-
ent cell phone keypads that can be integrated with ACT-R motor processing
in a straightforward way. Fingers are modeled as moving between locations,
which, in the case of this experiment, are key locations, but may be arbitrary
if needed.

2.3 Model Performance

We can describe the performance of the models at two levels: the accuracy with
which the models predict the overall duration of tasks, and the accuracy of their
predictions of the duration of individual actions. These two levels are discussed
in the sections below. Other factors commonly explored by modeling, such as
learning behavior and the occurrence of errors, are excluded by the design of
the experiment.

2.3.1 Task-Level Performance. Table III shows summary model perfor-
mance and user data broken down by task. Figures 3 through 7 show more
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Table III. Model and User Performance Across Tasks, in s. Upper and
Lower 99% Confidence Intervals are Shown in Parentheses for User Data

Task User Performance GOMS ACT-R Fitts’ law
Ringer Volume 4.954 (4.584 5.325) 5.059 5.267 2.173
Tip Calculator 4.027 (3.710 4.343) 4.233 4.482 1.801
View All 1.271 (1.129 1.413) 1.160 1.280 0.352
View Day 4.393 (4.059 4.727) 3.707 3.883 1.428
Web Browser 3.391 (3.107 3.676) 3.407 3.883 1.428

Fig. 3. Model predictions and user data by task: Ringer Volume. Each user data point (shown
with a circle), plus 99% confidence interval, represents the mean of 60 sample points. Confidence
intervals smaller than 200 ms are not shown.

detailed views of the same data in graphical form. Both the GOMS and ACT-R
models give good approximations of user performance. GOMS predictions are
within the 99% confidence interval for mean overall task duration for all target
items except View Day. ACT-R predictions are within this interval for two of
the target items.

The Fitts’ law model does less well, for reasons that are worth discussing.
Many models of cell phone interaction, such as keypad dialing and one-finger
text entry [MacKenzie 2003], have been based on Fitts’ law, which motivated
this aspect of our evaluation. Our Fitts’ law model performs relatively poorly,
despite the success of such models elsewhere. The Fitts’ law model produces
times that are about half of the observed times. This is not surprising—much
of the activity of this menu selection task is outside the scope of the model.
Silfverberg et al. [2000] describe a comparable example of where Fitts’ law
models break down, in a discussion of text entry on mobile phones. For some
cell phones, text entry is aided by lexicon-based word disambiguation. While
typing, the user ordinarily refers to the display in order to decide whether
the system has correctly disambiguated the word being typed. In text entry,
such cognitive processing may not be needed by expert users familiar with the
disambiguation system. In this menu selection task, however, we assume that

ACM Transactions on Computer-Human Interaction, Vol. 14, No. 1, Article 1, Publication date: May 2007.



Evaluation of Expert Cell Phone Menu Interaction • 11

Fig. 4. Model predictions and user data by task: Tip Calculator.

Fig. 5. Model predictions and user data by task: View All.

users confirm their actions. In other words, significant visual and cognitive
processing is necessary at each step in the process, but this is not captured
by the Fitts’ law model (though it is represented in the GOMS and ACT-R
models).

The consistent linearity of user performance across tasks in Figures 3
through 7 suggests a straightforward way to measure the predictive power of
the GOMS and ACT-R models through comparison with a least squares linear
model.

Because the models’ predictions apply to each task, a harsh way to test them
is to compare them to a linear regression model fit to data from each task.
Table IV shows the coefficient of determination, R2, for these linear models
for each button press. The linear model predicts time T by the number of key
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Fig. 6. Model predictions and user data by task: View Day.

Fig. 7. Model predictions and user data by task: Web Browser.

presses k plus a constant. The remaining columns show analogous values for
the ACT-R and GOMS models.

A linear model can also be fit to the aggregation of performance data for all
tasks and all users:

T = −0.500 + 0.531k. (2)

This aggregate linear model has an R2 of 0.834. Although neither the GOMS nor
the ACT-R model accounts for as much variance as a general linear equation,
both are close; the comparable values are 0.809 for the GOMS model and 0.796
for the ACT-R model.

The aggregate linear model has appealing conceptual and computational
simplicity; we use Eq. (2) in Section 3 for just this reason. As a general model
of performance, though, it has several shortcomings in comparison with the

ACM Transactions on Computer-Human Interaction, Vol. 14, No. 1, Article 1, Publication date: May 2007.
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Table IV. Variance Accounted for by a Linear
Least Squares Model, the GOMS Model, and

the ACT-R Model

Task Linear GOMS ACT-R
Ringer Volume 0.846 0.845 0.843
Tip Calculator 0.831 0.832 0.817
View All 0.787 0.768 0.787
View Day 0.836 0.797 0.826
Web Browser 0.800 0.803 0.709

Table V. Mean Key Press Duration Across Tasks, in s. Upper and Lower
99% Confidence Intervals are Shown in Parentheses for User Data

Mean User Performance GOMS ACT-R Fitts’ law
All actions 0.547 (0.532 0.561) 0.532 0.570 0.218
Scrolling 0.515 (0.497 0.533) 0.488 0.558 0.202
Selection 0.610 (0.584 0.634) 0.620 0.592 0.248

GOMS model, the ACT-R model, and even the Fitts’ law model. First, the latter
are a priori models—they were not tuned specifically to the data. Second, as
we discuss later in this section, the models give predictions at a more detailed
level than the linear model can provide, including the ability to carry out actions
to produce this behavior. Third, and most important, the GOMS, ACT-R, and
Fitts’ law models have theoretical underpinnings that give them explanatory
power. In the case of GOMS, performance is explained by the specific tasks that
are represented, the hierarchical structure in which they are combined, and
dependence on a cognitive processing framework that provides specific timing
predictions (e.g., for Fitts’ law movements). The ACT-R model extends the level
of detail in its explanations, in accounting for the interval between actions
by explicit visual processing and memory retrievals, and in modeling visual
processing and motor actions as proceeding in parallel for scrolling actions but
synchronizing with selection actions. This allows performance on multiple tasks
to be based on models of single tasks (e.g., Salvucci [2001]).

Like all model-generated explanations, these are provisional and subject
to further testing. In particular, the predictiveness of a linear model raises
a warning flag: because task-level performance accumulates the durations of
actions in sequence, almost any reasonable cumulative function is likely to have
the same qualitative shape. The accuracy of the models over tasks of different
durations suggests that the models have some generality, but this is far from
conclusive. If, as with computing, the purpose of modeling is insight rather than
numbers [Hamming 1962], we should look more closely at our results.

2.3.2 Action-Level Performance. Table V shows the predictions of the mean
time between user key presses that each model makes over all the menu
selection tasks. There are three different categories: all actions aggregated
over all tasks, only selection actions, and only scrolling actions. The ACT-
R and GOMS models both provide good predictions at this level, with dif-
ferences of at most 0.045 s, about 8% error. Although the Fitts’ law model
is qualitatively correct in predicting that selection actions take longer than
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Fig. 8. Differences in the duration of scrolling actions during selection runs of different length,
with model predictions. 99% confidence intervals are shown for user data points. The confidence
interval for Action 2, not shown, is less than 30 ms.

scrolling actions, it underpredicts user reaction time in all categories—our dis-
cussion in this section will therefore mainly focus on the ACT-R and GOMS
models.

The results in Table V are limited in two ways. First, they distinguish only
between classes of actions in the abstract, independent of the task context in
which they are executed. Second, the results neglect the inherent variance in
user performance. Even under identical task conditions, the actions of different
users (or a single user in different trials) may have different durations. We
address these two limitations in the remainder of this section.

One way to describe the execution of a menu navigation task is as a simple
repeated pattern: each task is carried out through a number of scrolling actions
followed by a selection action, repeated until a terminal item is reached. We
define a selection run as a sequence of scrolling actions leading up to a selection
action. As in our per-task analysis, user performance is basically linear for
the overall duration of selection runs and is well predicted by both the GOMS
and ACT-R models with respect to overall duration. What is more interesting
is differences in duration for actions of the same type. In selection runs, the
first scrolling action after a selection action lasts much longer than subsequent
scrolling actions, as shown in Figure 8. A general linear model (see Eq. (2))
would be a straight line at 531 ms per action.

Two factors appear to contribute to the longer duration of the first scrolling
action. One factor is movement time, in that for the first scrolling action, the
thumb must move from the OK key to the DOWN button; movement between
keys is unnecessary for further scrolling. The other factor is visual processing:
each time that a selection action takes place, a new set of menu items appears
on the display and must be read. All of the models include a movement com-
ponent and thus reflect the general qualitative pattern, but they vary in how
they handle visual processing. The ACT-R model carries out an explicit visual
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search, which occurs in parallel with the motor movement. The GOMS model
does not include an explicit visual processing step, but each selection entails
decision-making tests as well as a call to a new method, adding to the duration
of motor movement. Both models produce slight underpredictions of the dura-
tion of the first scrolling action. (An alternative explanation for this pattern is
offered by the EPIC architecture but is based on different low-level cognitive
assumptions [Hornof and Kieras 1997].)

A less obvious pattern is also present in Figure 8. For users, the first scrolling
action lasts the longest, the second the shortest, and all succeeding actions in
between. We believe that three factors explain the increase in duration be-
tween the second and remaining actions. The first factor is an environmental
constraint on users’ visual processing. Because only three menu items are pre-
sented on the display at a time, we can expect the duration of the fourth and
succeeding scrolling actions to be slower than the second and third, because the
items to be traversed are not immediately available for visual processing. The
second factor is a possible strategy that users took in dealing with menus that
are known, via practice, to be long: users may quickly execute several scrolling
actions with less attention to the display, until the approximate region of the
target item is reached. The third factor is parallelism in visual processing and
motor action. Related experiments on menu selection with a mouse [Byrne
2001] suggest that eye movement is not strictly synchronized with motor ac-
tivity in the discrete menu traversal actions of our domain; this means that
the eyes may scan ahead of the items being highlighted by button presses. The
first factor is not reproduced by our simulation environment and the second is
not yet included in the model. The third factor, parallelism in motor and visual
behavior, is represented in the ACT-R model. This parallelism accounts for the
increase in duration after the fourth scrolling action, as the duration of motor
actions dominates that of visual processing. The exact point in the user data at
which the increase occurs is not captured by any of these models; neither is the
remaining variability in the duration of scrolling actions.

Finally, we note that the cognitive and visual processing component of actions
in selection runs is much higher than the movement component. The Fitt’s law
model provides a baseline for movement-only duration, but underpredicts the
duration of user actions by a factor of two to three. The GOMS and ACT-R
models, for reasons discussed above, come much closer to user performance.
Overall, the mean error for mean action duration during all selection runs is
about 14% for the GOMS model, 19% for the ACT-R model, and 60% for the
Fitts’ law model.

Our results so far show that the GOMS and ACT-R models give accurate
predictions of the mean duration of user actions, when actions are grouped into
classes or, as in the analysis of selection runs, associated with a specific task
context. These predictions, however, give no information about the accuracy
of the models for specific instances of actions. In evaluating model predictions
at the action level, the issue of inherent variability in user performance is
perhaps the most important.

Two common measures of error that give insight into this issue are root mean
squared error (RMSE) and mean absolute error (MAE). Table VI shows RMSE
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Table VI. Model Prediction Errors for Action Duration, in Seconds, for the Three Models and for
a Mean Duration Model

Root Mean Squared Error Mean Absolute Error

GOMS ACT-R Fitts’ law MD GOMS ACT-R Fitts’ law MD
All actions 0.230 0.228 0.411 0.192 0.175 0.177 0.330 0.142
Scrolling 0.218 0.215 0.390 0.188 0.159 0.170 0.313 0.138
Selection 0.248 0.261 0.452 0.208 0.205 0.190 0.362 0.151

and MAE for the three models, for all actions and for the categories of scrolling
and selection actions. The prediction error for the GOMS and ACT-R models,
per action duration, is much higher than for mean duration, about 42% of the
mean action duration (as given in Table V) for the RMSE measure and 32%
for MAE. The values are similar for the subcategories of scrolling and selection
actions. By these measures, the models are very close in performance, with
neither GOMS or ACT-R having an obvious advantage.

While these values of RMSE and MAE are disappointingly high for the
GOMS and ACT-R models, it is worth asking how much they might be improved.
As in our task-level analysis, we can define a post hoc model, based on the user
data, for comparison with the models we have built. We begin by observing that
the predictions of the models abstract away performance differences between
individual users and across trials. For example, a model will give the same pre-
dicted duration for the sixth action in the Ringer Volume task, regardless of
which of the twelve users or which of their five trials is involved. The variance
in the 60 data points per unique action, in context, gives rise to the error mea-
sured in Table VI. How well would an optimal model perform? For a sample of
data points, the best estimator with respect to mean squared error is simply
the mean of the sample. The best post hoc model (with respect to least squares
error) thus returns the mean duration for each unique action, over users and
trials. The error for this model is shown in the MD (Mean Duration) columns of
Table VI. These errors are lower than but still relatively close to those produced
by the GOMS and ACT-R models. As percentages of mean action duration, the
models might improve from 42% to 35% with respect to RMSE and from 32%
to 26% for MAE. This comparison suggests that the GOMS and ACT-R models
are performing almost as well as is possible in predicting user behavior at the
action level, given the variance in the user data.

2.4 Discussion

All of the models we have presented have proved robust in our analysis, though
at a sufficiently detailed level they break down (as all models do). Our results
indicate that detailed, rigorous models of low-level interaction with cell phones
is possible, and that such models make good predictions. Aside from the use
of this work as a possible exemplar of the application of cognitive modeling
techniques to HCI evaluation, we can note a few observations.

Modelers need to consider the trade-off between modeling effort and the value
of increasingly veridical results. The GOMS model developed here is as good as
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or better than the ACT-R model, and was much cheaper to build. For modeling
efficiency, a reasonable heuristic is to apply simple formalisms to model simple
procedures. This is especially relevant if the simple formalism can predict all
the observable information or all the needed behavior. All the data we have in
this study (keystroke times by expert users) can be predicted by both ACT-R
and GOMS, though in other situations (e.g., if we had eye-tracking data and
wanted to predict eye movements or to model concurrent tasks), GOMS would
be at a distinct disadvantage.

Further, GOMS offers considerable flexibility in modeling. A coarser formal-
ism does not necessarily imply stricter constraints on modeling, which is per-
haps an unintuitive observation; rather, the reverse can be the case. In our
GOMS model, for example, the specific ordering of decision steps, as shown in
Figure 2, is not governed by cognitive constraints. A different ordering (e.g.,
one that tested whether an OK key press was appropriate before rather than
after scrolling) would have produced different predictions. It turns out, in our
case, that user behavior is sufficiently regular that the GOMS model we de-
veloped for a single user’s behavior generalized very well to a larger sample; if
this had not been the case, the modeling flexibility we describe would not have
been helpful. Our ACT-R model, for the same task, does not allow such direct
fine-tuning to be carried out in the same way, because of tighter architectural
constraints on the interactions between visual and motor actions.

The remaining differences between the models’ predictions and the data
suggest further improvements to the models are possible. Most importantly,
the comparison in Figure 8 shows that only the ACT-R model starts to account
for the faster second keystroke, and none of the models predict this (or the later
changes) very well.

There are limitations to this work so far, aside from model performance.
For example, many cell phones have additional interaction features, such as
shortcut menus and non-linear graphical icon displays, that are not captured
by the models we have built. Further studies, perhaps extending to include
novice users, could take error types and error distributions into account, to
help extend the range of application of these models. We believe, nevertheless,
that our work lays out clear directions for future research. One issue we have
begun to explore is the performance differences between the GOMS and ACT-
R models. As can be seen in the evolution of cognitive modeling architectures
such as ACT-R and EPIC [Kieras and Meyer 1997], there is considerable overlap
in basic assumptions about the way that perceptual-motor constraints should
be modeled [Byrne 2001; Kieras 2002], and so it is not unreasonable that the
models produce similar predictions.

Nevertheless, because ACT-R represents behavior at a greater level of de-
tail than GOMS, the ACT-R model is capable of more detailed performance
predictions than the GOMS model. That GOMS outperforms ACT-R in some
areas of our study is disappointing from a cognitive modeling standpoint, but
not entirely unexpected, for the reasons described above. Further, the models
were developed independently of each other, and different modeling paradigms
and modelers can lead to different opportunities for errors in modeling to oc-
cur [Ritter 1991]. There has been recent work toward automatically translating
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between models at different levels of abstraction, which would help reduce or
at least formalize such errors, but this research is in its early stages [John et al.
2004; St. Amant et al. 2004a; Ritter et al. 2006; Salvucci and Lee 2003].

3. USER PROFILES AND SEARCH

Once models of menu traversal have been built, the models can be applied to-
ward improving menu hierarchies so that end users can traverse menus more
quickly. This is a key concern for developers who may be less interested in mod-
eling theory or model development than in the pragmatic issues of increasing
usability.

An evaluation of a menu hierarchy independent of usage patterns would
be uninformative: different users choose different items, and items are chosen
with varying frequency. In other words, different usage patterns favor different
designs. We define a user profile to be a probability distribution over the set of
terminal items in a menu hierarchy that specifies the probability of each termi-
nal being chosen, relative to the entire set. Each user profile is also associated
with the frequency that the menu system is accessed. For the entire population
of users of the menu hierarchy, there may be many different user profiles, some
more common than others, a distribution captured by the coverage of individ-
ual profiles. As an example, imagine that 20% of the users of a given cell phone
access only two items, Recent Calls and View All Contacts, each on average
twice a day. In the probability distribution of the profile for this set of users,
these two items have probability 0.5 and all others have 0.0; the coverage of
the profile is 0.20; and its frequency is 4 (a value that becomes meaningful in
the context of the per-day usage values of other profiles).

In formal terms, the design problem involves the construction of a mapping
(in the form of a hierarchical ordering h) between T , the set of terminal menu
items, and U , the set of all user profiles defined on T . A reasonable evaluation
measure for a given menu hierarchy h is its efficiency: the expected cost of
reaching a terminal item. This turns out to be straightforward to represent.
Expected cost is given by

EC(h) =
∑

t∈T
p(t)ch(t), (3)

where p(t) is the probability of the occurrence of a specific terminal t, and ch(t)
is the cost of reaching terminal t in hierarchy h.

In some situations, it may be possible to estimate p(t) directly through usage
statistics across user profiles. This would mean maintaining a local log of menu
selections on individual cell phones, to be uploaded opportunistically to a central
repository, or making these local actions visible remotely as they are carried out.
If this is not practical due to storage or bandwidth constraints, an alternative
is possible. We can express the probability p(t) as follows:

p(t) =
∑

u∈U
p(t|u)p(u). (4)

That is, the probability of the occurrence of t is the conditional probability of
its occurrence in a specific user profile u, scaled by the probability of u and
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summed over all user profiles. The conditional probability p(t|u) is given by the
distribution associated with each user profile as described above. Values for
p(u) can be estimated from the coverage and frequency of a profile at the time
the profile is assigned to a user. In practice, we can imagine individual users
being asked questions about their cell phone usage when they are assigned to a
specific user profile: how often they will access their cell phone’s menu system
and the types of functions they expect to use. The trade-off, compared with
direct sampling of p(t), is between accuracy and resource demands.

All that remains is to define a specific cost function ch, which we can do with
our study results. For pragmatic reasons, we use the easiest metric available
to compute cost, the linear regression given in Eq. (2) (the GOMS or ACT-R
model could have been used, with comparable accuracy but with a significant
increase in processing time). The factors that make the linear regression less
appropriate for modeling do not apply here. Our choice for ch means that EC(h)
produces the expected duration of choosing an arbitrary terminal menu item
in hierarchy h.

This measure can be used by an automated search algorithm to identify
alternative designs of the menu hierarchy that improve user performance. A
complication is that the automated modification of a menu hierarchy cannot
arbitrarily rearrange structure purely for efficiency. Changes should respect
the semantic relationships between the items. That is, the item Ringer Volume
is under the Settings category rather than vice-versa for good reason. To avoid
the difficulties of representing and reasoning about menu item semantics (we
leave this for future work), we rely on two search operators that produce only
small changes. For a terminal item with non-zero probability, these operators
can be applied:

—Promote item moves an item to the beginning of its menu list, to reduce
scrolling time.

—Promote subtree moves an ancestor of the item up one level in the hierarchy,
to reduce the number of intermediate items that must be selected to reach
the terminal.

An item or subtree rooted at an ancestor may only be promoted once. Even
with these constraints, the search space size is exponential in the number of
target items with non-zero probability in any profile (e.g., if all non-zero items
in a user profile are in one menu list, then all permutations of these items will
be considered). Exhaustive search is thus impractical for the phone hierarchy
shown in Table I; for just the menu containing 12 items mentioned in Section 1,
half a billion permutations are possible. A best-first search algorithm, however,
gives good results after as few as 100 steps.

3.1 Results

Ideally, we would be able to validate the search procedure based on real user
profiles found in the most commonly used cell phones. We have been unable to
acquire such data, unfortunately. Lacking real cell phone user profiles, we can
only illustrate the search procedure in practice, but our results are promising.
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Table VII. Menu Traversal Times, in Seconds,
Showing the Effect of the Optimization of Menu

Structure

Profile Size Initial Cost Final Cost Savings
20 7.325 4.530 37.5%
30 6.962 4.762 31.5%
40 7.009 4.940 29.4%

Based on the Kyocera menu hierarchy, we defined random profiles of differ-
ent sizes, where size refers to the number of non-zero probability menu items
contained in the profile. The probabilities for each profile were drawn from
a uniform random distribution and normalized. Because these profiles were
randomly generated, we used only a single profile for the search, rather than
composing arbitrary probabilities from different random profiles. These profiles
approximate profiles for spreadsheet usage [Napier et al. 1992] and modeling
languages [Nichols and Ritter 1995].

Table VII shows the results for user profiles of size 20, 30, and 40 terminals.
In each case, 10 different random profiles were generated for each size, and a
best-first search, bounded at 500 steps, was applied to produce improvements.
The cost values are means of the time estimates produced by the linear model.
The last column gives the time savings in traversing the reordered menus, as
a percentage of the duration of the traversals in the original menu hierarchy.

Because these results are based on random probabilities of accessing menu
items, rather than actual user experiences, they can only be viewed as sug-
gestive. Anecdotal evidence from industry contacts indicates that performing
usability studies on menu hierarchies is not common practice. We expect that
with improvements in data collection, however, this approach may help to make
cell phones more efficient in the future. Targets for future research include ex-
amining the plausibility of a uniform distribution for selectable menu items
in user profiles, more efficient search to optimize menu layouts, application to
other types of menu layouts, and the inclusion of other factors (e.g., profile size)
in cost computations.

3.2 Discussion

We have presented formulas and a search algorithm to show how menu effi-
ciency can be improved by about a third. The modifications to the menu hierar-
chy produced by the search have the effect of reducing the depth of the hierarchy
and increasing the length of individual menus. This was a simple change, but
clearly one that could be applied to at least one commercially available phone.
It could plausibly be applied to other systems with similar menu structures.

The general approach laid out in this section is related to two areas of HCI
other than cognitive modeling, both of which provide opportunities for further
research. The first area is adaptive user interfaces. The issue of finding the
best menu hierarchy for a given user profile is separate from that of deciding
when the menu structure should be put in place. Our discussion in this section
assumes that a static hierarchy is associated with each user profile, even if new
usage data were to become available over time. If such data were recorded over
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time for individual users, then a new search could be carried out incremen-
tally to find improved menu hierarchies. This function should not be performed
lightly, but one now quite real possibility is to treat the automated adaptation
of the menu hierarchy as a customization option that users can select at their
own discretion, whenever they choose. It should also be possible to incorporate
a theory of learning that could predict when to do this and the costs involved
in learning the new menu structure.

The second related area is support for navigation. A menu hierarchy is a
small, restricted information space in comparison with other spaces such as
the World Wide Web. The modifications explored by the search procedure are
only a small subset of possible transformations that might be applied to an in-
terface. Nevertheless, some of the same conceptual issues apply to the analysis
of navigation in general. For example, usage frequency could be used for improv-
ing navigation on a web site by promoting links upward toward the site entry
page and move specific links closer to the top of their pages [Ritter et al. 2005].

In practice, the most effective approach to navigation redesign addresses the
semantics of the information space rather than focusing only on its surface orga-
nization and presentation [Young 1998]. For menu hierarchy modification, this
implies that greater potential benefits can be gained from examining the seman-
tic relationships between menu categories and menu items than their ordering.

The most relevant research along these lines is Pirolli’s work on optimal-
foraging theory and information scent [Pirolli 1997, 2003]. Optimal-foraging
theory explains behavior adaptations in terms of resource availability and con-
straints. In its application to menu navigation, information scent is a metaphor
for visible semantic cues that lead users to information they seek. Pirolli has
developed an extension of ACT-R, called ACT-IF, to evaluate a foraging model of
information navigation. ACT-IF relies on a spreading activation network to cap-
ture associations in memory processing. The models described in our article are
based on the assumption that associations between menu items such as Sounds
and Ringer Volume can be directly retrieved from memory by an expert user. A
more general model, based on ACT-IF, might be able to explain the strength of
these associations, based on measures of semantic distance. With such flexibil-
ity in representation, it would be possible to explore additional modeling issues,
such as how novice users might traverse an unfamiliar menu hierarchy, which
paths through the hierarchy are more likely to result in errors, and how re-
naming or recategorizing menu items could influence navigation performance
more than just reordering.

4. CONCLUSION

In this article we have described a set of evaluation concepts and tools to support
cell phone menu design. The GOMS model is able to predict user performance
very well. The ACT-R model performs almost as well. It took more effort to
create, but also provide more detailed predictions and could be used for a wider
range of analyses. Although our work has relied on a simpler performance
model, both of these models could be used by a simple, efficient algorithm to
optimize the redesign of cell phone menus. The redesign could let users on
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average perform their tasks about 30% faster, based on plausible assumptions
about usage.

This menu redesign approach is simple; we believe it is simple enough to
be taught to and used by designers. This approach is based on knowing users
(through the models) and knowing their tasks. In its simplest form, the ap-
proach is to reorder the menu items to put the most commonly used tasks ear-
lier and higher in the hierarchy. Where users’ task frequencies are not known or
vary widely between users, it appears reasonable to allow the system to reorder
itself upon a user’s request after a sufficient break-in period. Of course, the se-
mantics of the task and the semantics of the task titles will have a role to play
as well, which we did not explore here. Others are working with ACT-R to create
models that start to take account of this aspect of interaction [Pirolli 2003].

These models and the optimization algorithm bring together several inter-
esting aspects of human behavior and show how a simple AI algorithm can
help in HCI design. It also gives rise to both theoretical and practical
implications.

Theoretically, novice user actions, learning, error recovery behavior, perfor-
mance under stress, and generality across different devices are now areas ripe
for further exploration. Having the models in hand also let us explore and ex-
plain new regularities in user behavior, such as the variations in key press time
shown in Figure 8.

From a practical standpoint, developers have models that are ready for use—
these models are general enough that they do not require cognitive modeling
expertise or programming skill to apply them to different traversal tasks, in
different menu hierarchies, or on different cell phones. Our longer-term goals for
this research include the application of modeling techniques to provide insights
into usability issues [Nichols and Ritter 1995] and the development of better
cognitive modeling tools for evaluating and designing more general classes of
user interfaces [Ritter et al. 2006; St. Amant et al. 2004a].

We believe that as modeling concepts and techniques become more accessible
to HCI developers, they will become increasingly significant in their contribu-
tion to improving user interfaces. Wide application of the menu design approach
in this article could, for example, save significant amounts of time. If 2 billion
users were to use their cell phone menus every day for just three seconds, our
improvements could save almost 30 years of user time per day.
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