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Abstract—This paper describes a system, referred to as
MESSL, for separating and localizing multiple sound sources
from an underdetermined reverberant two-channel recording.
By clustering individual spectrogram points based on their
interaural phase and level differences, MESSL generates masks
that can be used to isolate individual sound sources. We first
describe a probabilistic model of interaural parameters that can
be evaluated at individual spectrogram points. By creating a
mixture of these models over sources and delays, the multi-source
localization problem is reduced to a collection of single source
problems. We derive an expectation maximization algorithm for
computing the maximum-likelihood parameters of this mixture
model, and show that these parameters correspond well with
interaural parameters measured in isolation. As a byproduct of
fitting this mixture model, the algorithm creates probabilistic
spectrogram masks that can be used for source separation. In
simulated anechoic and reverberant environments, separations
using MESSL produced on average a signal-to-distortion ratio
1.6 dB greater and PESQ results 0.27 mean opinion score units
greater than four comparable algorithms.

I. INTRODUCTION

Humans are very good at focusing their attention on the

speech of a single speaker, even in the presence of other

speakers and background noise [1]. This ability is greatly

diminished, however, when listening with only one ear, espe-

cially in reverberant environments [2]. In order for an automatic

speech recognizer to focus on a speaker of interest, it must

similarly be able to separate that speaker from background

noise and stereo recordings likely contain significantly more

information relevant to this task than monaural recordings. This

paper thus describes a system for simultaneously separating and

localizing multiple sound sources from a stereo mixture made

in a reverberant environment, performing underdetermined,

convolutive source separation.

This system separates sources by modelling each one

probabilistically, thus we call it Model-based EM Source

Separation and Localization (MESSL). Each source in a mixture

is described by a probabilistic model of interaural parameters.

By using models that can be evaluated at each point in the

spectrogram independently, we can successfully learn multiple

models from a broadband mixture and at the same time

identify the regions of the spectrogram that best fit each model.

In Section II we discuss the construction of such models

for individual sources. We then describe in Section III an
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expectation maximization (EM) algorithm for estimating the

parameters of a mixture of these models that reduces the

multi-source parameter estimation problem to a collection of

single-source estimation problems using probabilistic masking.

This EM algorithm iteratively refines both its estimates of the

model parameters and the regions of the spectrogram dominated

by each source. In the expectation step of the algorithm,

spectrogram points are assigned to models probabilistically,

based on the agreement between the observation at that

point and each model’s prediction. In the maximization step,

parameters for each source model are re-estimated from the

set of spectrogram points assigned to that model. Currently,

these models include the interaural time difference (ITD) via

the interaural phase difference (IPD), and the interaural level

difference (ILD), but the flexibility of the framework and its

probabilistic nature allow the addition of other cues such as

source models [3]. This flexibility also lets the system separate

mixtures made with both human-like dummy head recordings

and free field microphones, although in these experiments we

focus on dummy head recordings.

In addition to separating sources well, these models are trans-

parent in their representation of these sources, i.e. the model

parameters are interesting in and of themselves. Estimating

interaural level and time differences for a single source in an

anechoic recording is straightforward, but MESSL estimates

these same parameters from a reverberant recording in the

presence of other sources, a much more difficult task. This

topic is discussed in more detail in Section IV.

Since our system uses spectral masking to separate sources,

it assumes that each point in the spectrogram is dominated

by no more than one source. This assumption, called W-

disjoint orthogonality [4], has been shown generally to hold

for simultaneous speech signals.

In Section V we describe a number of experiments that

measure the performance of various parts of our system and

the system as a whole. We examine the effect of increasing

model flexibility (and hence complexity), the effect of cheating

by replacing different parts of our system with ground truth

parameters, and the use of a “garbage” source to collect

reverberation. We also compare our system to four similar state-

of-the-art source separation systems in a number of conditions.

These experiments indicate that our model parameterization

can separate sources well, but estimating those parameters from

a mixture can be difficult and that our most complex model

is best, especially when using a garbage source. Under the

signal-to-distortion ratio metric [5], MESSL showed an average

advantage of 1.6 dB when compared to similar systems.
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A. Background

MESSL is a synthesis of localization-based clustering and

spectral masking. A number of systems have taken a similar

approach [6]–[10]. Localization in azimuth is a popular cue for

segregating sound sources [11]. Spectral masking, sometimes

called time-frequency masking, binary masking, or ideal binary

masking, allows the separation of an arbitrary number of

sources from a mixture, by assuming that a single source

is active at every time-frequency point. This is in contrast

to independent component analysis [12] and other multi-

microphone techniques [13], which can separate at most as

many sources as there are microphones.

Many models of mammalian auditory localization have

been described in the literature, see [11] for a review. Most

focus on localization within individual critical bands of the

auditory system and are either based on cross-correlation [14]

or the equalization-cancellation model [15], [16]. We are more

concerned in this work with the way in which localization

estimates are combined across bands. The main difficulty in

such combination is that the cross-correlation of bandlimited

signals is multimodal and the correct mode must be selected.

MESSL’s localization facility is based on the insight that this

multimodality is an artifact of bottom-up processing and that a

top-down approach that tests a set of candidate interaural time

differences yields an unambiguous answer at all frequencies.

In this bottom-up paradigm, a single source can be localized

using the “straightness” of cross-correlations across frequency

[17], [18] and simultaneous sources can be localized using

a “stencil” filter that embraces multimodality [19]. Other

systems localize the source in each band probabilistically

and then combine probabilities across frequency by assuming

statistical independence. Nonparametric modeling in this vein

[9], [20], [21] employs histograms of interaural parameters

collected over a large amount of training data, which can

be compared to the observation and to one another when

normalized properly. While [9], [21] collect histograms of per-

band interaural time differences, [20] collects histograms of

interaural phase difference, which avoids multimodality and

facilitates the analysis of moments. This is the general approach

that MESSL takes, although it uses a parametric model of both

the noise in interaural parameters and the connection between

ITD and frequency, avoiding the need for training data, making

it more robust to reverberation, and making it easier to deploy

in unfamiliar environments.

When using localization to separate multiple sources in a

sound mixture, it is important to be able to localize, in some

way, individual time-frequency points. The simplification made

by DUET [4], [6] is to ignore high frequencies in which the

cross-correlation is multimodal and to convert interaural phase

differences to interaural time differences only for frequencies in

which the cross-correlation is unimodal. DUET combines these

ITD estimates with similar ILD estimates at individual time-

frequency points in the spectrogram and then identifies sources

as peaks in the two dimensional ILD-ITD histogram. The

localization subsystem in [7] aggregates its cross-correlation

across frequency and time to estimate the ITD of multiple

sources. It then selects the mode in each frequency band’s

Fig. 1. A caricature of our probabilistic model of interaural phase difference
(IPD) as a function of frequency, eq (5). On the left are the probability density
functions (PDFs) of two competing model predictions, eq (3), where the IPDs
are centered around their respective ωτ values. On the right, those PDFs are
constrained to the interval (−π, π] so that the likelihood of the observation,
eq (2), the dotted line, can be evaluated under each.

cross-correlation that is closest to one of these global ITD

estimates. The localization subsystems of [8], [10] both use

ILD to resolve local ITD ambiguities. Using a model of the

relationship between ILD and azimuth, they map ILDs to

a given direction, then choose the ITD mode that is most

consistent with this direction.

Given the localization of each time-frequency point, most

algorithms perform separation through some kind of clustering

[10] or histogram peak picking [6], [8], although when the

locations are known in advance, classification is also a popular

technique [7], [9], [21]. MESSL uses a clustering approach, but

simultaneously learns the interaural parameters of each source.

This allows it to jointly localize and separate the sources,

making it more noise robust than approaches that first commit

to azimuth estimates based on noisy observations and then

perform clustering in azimuth space [10].

A separation system that shares many similarities with these

systems, but does not explicitly use localization is two-source,

frequency-domain, blind source separation [22]. It performs an

ICA-like clustering in each frequency band separately and then

clusters the separation masks across frequency to unpermute

them. In the two-microphone case, the per-frequency clustering

uses features that are similar to MESSL’s, containing the same

information as IPD and ILD, but more easily generalizing to

multiple microphones. This system is purely for separation, no

correspondence is enforced between the parameters estimated at

each frequency, as would be implied by a model of localization.

While MESSL jointly localizes and separates sound sources,

the current paper only evaluates its separation performance.

Localization results are similar to those reported previously

[23] and are highly dependent on, if not indistinguishable from,

the localization algorithm used to initialize it. We therefore

believe that separation is a more challenging and discriminative

task for comparing these systems.

II. THE INTERAURAL SPECTROGRAM OF A SINGLE SOURCE

For the purposes of deriving this model we will examine

the situation where one sound source arrives at two spatially

distinct microphones or ears. We then generalize this to the

assumption that at most one source is present at each time-

frequency point in a spectrogram, but that different sources
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could be present at different points.

Denote the sound source as s(t) and the signals received

at the left and right ears as ℓ(t) and r(t), respectively. For a

sufficiently narrowband source, the two received signals relate

to the source by some delay and gain, in addition to a disruption

due to noise. For a wideband source, this delay and gain can

vary with frequency, which, in the time domain, manifests

as a short impulse response at each ear. In the experiments

in Section V-B, we compare models assuming frequency

dependence to those assuming frequency-independence.

For analytical convenience, we assume a noise process that is

convolutive in the time domain, making it additive in both the

log-magnitude and phase domains. Thus the transfer function is

modeled as a single large, deterministic coefficient at a certain

delay and small, randomly changing coefficients at all other

delays. We have found [24] that a reverberant noise model is

still able to localize sources in the presence of additive noise,

the noise model typically chosen by other authors.

If we combine the frequency-dependent gains and delays

into two short impulse responses, hℓ(t) and hr(t), the various

signals are related by:

ℓ(t) = s(t− τℓ) ∗ hℓ(t) ∗ nℓ(t)

r(t) = s(t− τr) ∗ hr(t) ∗ nr(t). (1)

The ratio of the short-time Fourier transforms, F{·}, of both

equations is the interaural spectrogram,

L(ω, t)

R(ω, t)
= 10α(ω,t)/20ejφ(ω,t) (2)

≈ 10a(ω)/20e−jωτ(ω)N(ω, t) (3)

where N(ω, t) = Nℓ(ω,t)
Nr(ω,t) = F{nℓ(t)}

F{nr(t)} , τ(ω) = τℓ−τr+ 6 H(ω),

a(ω) = 20 log10 |H(ω)|, and H(ω) = F{hℓ(t)}
F{hr(t)} . Equation (2)

is the ratio of the actual observations at both ears, while (3) is

our model of that ratio. For this model to hold, τ must be much

smaller than the window over which the Fourier transform is

taken. Our experiments used a dummy-head microphone where

position-dependent delay differences were limited to about

0.75ms, while the window length was 64ms (1024 samples at a

sampling rate of 16 kHz). Similarly, h(t) must be smaller than

the window, but because distinguishing between h(t) and n(t)
is an ill-posed problem, parts of h(t) beyond one window’s

length can be considered part of n(t), with a corresponding

increase in the noise variance.

The interaural spectrogram is parameterized by φ(ω, t), the

interaural phase difference (IPD) at frequency ω and time t, and

α(ω, t), the interaural level difference (ILD) measured in dB.

We model these with the frequency-dependent interaural time

difference (ITD), τ(ω), and the frequency-dependent interaural

level difference, a(ω). All IPD observations are constrained

to the interval (−π, π], and spatial aliasing prevents IPD from

being mapped directly to a unique τ . Every τ , however, maps

unambiguously to a phase difference at every frequency. Using

a top-down approach, then, it is possible to test how well any

τ fits an observed IPD, even when multiple sources are present

and even at only a subset of frequencies.

Figure 1 shows a caricature of this top-down process. The

two shaded bars correspond to two competing τ predictions and

the dotted line to the actual observation. On the left hand side

of the figure is the model predictions of (3), on the right hand

side are the observations of (2), the dotted line. Even though

the phase wrapping makes the bottom-up observed-IPD-to-ITD

mapping ambiguous, the top-down ITD-to-IPD mapping is

unambiguous and it can be seen that the observation is much

more likely under one of the predictions than the other. Note,

however, that the phase wrapping does cause ambiguity at

certain frequencies, where the two τs predict the same IPD,

as can be seen in the right half of the figure, where the bars

cross. A similar effect can be seen in the horizontal lines of

lower probability in the example masks of Figure 5(b)–(f).

To measure the difference between the IPD predicted by a

delay of τ samples and the observed IPD, we define the phase

residual φ̂ as

φ̂(ω, t; τ) = arg
(

ejφ(ω,t)e−jωτ(ω)
)

(4)

which is always in the interval (−π, π]. Without this calculation,

phase circularity becomes a problem when observations origi-

nate from delays that are not close to 0. With this calculation,

phase circularity is no longer a problem for delays that are

close to the observations’ true delay, but only for those that are

farther away. The residual error can be modeled with a circular

probability distribution like the von Mises distribution [24], or

approximated as a linear distribution using a Gaussian scale

mixture model [23]. We have found, however, that a single

Gaussian works well enough in practice

p(φ(ω, t) | τ(ω), σ(ω)) = N
(

φ̂(ω, t; τ(ω)) | 0, σ2(ω)
)

(5)

≈ N
(

φ(ω, t) |ωτ(ω), σ2(ω)
)

. (6)

The equality is approximate because it only holds when the

standard deviation σ is small relative to 2π, in which case the

linear Gaussian is very similar to a von Mises distribution. Even

when the standard deviation is small, though, the distribution

of the IPD can be thought of as a Gaussian with mean ωτ(ω)
only if the mean is subtracted from samples in a way that

respects phase wrapping, hence the need for (4).

From observations measured in dB, the interaural level

difference similarly appears to be well modeled by a single

Gaussian with frequency-dependent mean and variance

p(α(ω, t) |µ(ω), η2(ω)) = N
(

α(ω, t) |µ(ω), η2(ω)
)

. (7)

We combine the ILD and IPD models by assuming that they

are conditionally independent, given their respective parameters

p(φ(ω, t), α(ω, t) |Θ) =

N
(

φ̂(ω, t) | ξ(ω), σ2(ω)
)

· N
(

α(ω, t) |µ(ω), η2(ω)
)

, (8)

where Θ represents all of the model parameters. Note that this

assumption of conditional independence applies only to the

noise that corrupts the measurements, it does not contradict the

well known correlation between ILD and ITD in actual head-

related transfer functions, which should be enforced instead in

the means of these Gaussians, ξ(ω) and µ(ω). In this work, we

model this correlation by enforcing a prior on the ILD based

on the initialization of the ITD. Because the ILD is modeled

with a Gaussian, we use the normal-Wishart distribution, its
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conjugate, as the prior [25]. The mean of this normal-Wishart

is set from the initial ITD using data on their relationship

collected from synthetic impulse responses, but the system is

not especially sensitive to particular values.

Equation (8) can be used to evaluate the likelihood of an

observation at any point in a spectrogram under the model

specified by the parameters Θ. Points are assumed to be

independent of one another as well, so such a likelihood

can be computed for any set of points by multiplying the

individual points’ likelihoods. Such a set of points could be

a spectrogram frame, as in traditional cross-correlation, but

could just as easily be a frequency band or an arbitrarily shaped

region in the spectrogram.

III. PARAMETER ESTIMATION FROM MIXTURES

The parameters of the model described above cannot be

estimated directly from a mixture of sources, where different

regions of the spectrogram are dominated by different sources,

because the sources have different distributions over IPD and

ILD. Only points from the same source and at the same delay

are assumed to be distributed identically. The parameters of

each of these distributions, then, could only be estimated if

somehow the source and delay of each point in the spectrogram

were known.

This is a classic missing data problem and the maximum-

likelihood model parameters can be estimated with an expec-

tation maximization (EM) algorithm. For each source in a

multisource mixture, this EM algorithm selects the regions

of the spectrogram that best fit its parameters, and then re-

estimates its parameters from only those regions. Instead of

using hard, binary masks, however, EM uses soft, likelihood-

based masks. It treats the source dominating each spectrogram

point as a hidden variable, i, and uses the expected probability

of source membership to estimate source parameters.

The delay of the source that dominates each spectrogram

point, τ(ω), also includes a hidden variable. We model it as

the sum of two components,

τ(ω) = τ + ω−1ξ(ω). (9)

The first term is a frequency-independent delay that is used

for localization. To make the inference tractable, the hidden

variable τ is modeled as a discrete random variable, where the

set of allowable delays is specified a priori. The parameter ξ(ω)
is an offset in (−π, π] that allows for minor deviations from

this frequency-independent model. It replaces 0 as the mean

of the IPD Gaussian in (5). Both i and τ are combined into

the hidden variable ziτ (ω, t), which is 1 if spectrogram point

(ω, t) comes from both source i and delay τ and 0 otherwise.

Each observation must come from some source and delay, so
∑

i,τ ziτ (ω, t) = 1.

The parameters of the various Gaussians are estimated in

the M step along with the marginal class memberships, ψiτ ≡
p(i, τ), the estimate of the joint probability of any spectrogram

point’s being in source i at delay τ . Estimates of the time-

delay of arrival for each source can be computed from ψiτ .

Since τ only takes on discrete values in our model, ψiτ is a

two-dimensional matrix of the probability of being in each

discrete state.

In the most general form of the model, we include all possible

dependencies of the parameters on dimensions of the data. In

Section V-B we compare different parameter tying schemes,

which reduce these dependencies. The IPD parameters for each

source, σiτ (ω) and ξiτ (ω), depend on τ as well as ω. The ILD

parameters for each source, µi(ω) and ηi(ω) depend on ω, but

are independent of τ . Both IPD and ILD parameters depend

on the source from which they come, i. Let

Θ ≡ {ξiτ (ω), σiτ (ω), µi(ω), ηi(ω), ψiτ} (10)

be the collection of the parameters of all of the models. By

marginalizing over the hidden variable ziτ (ω, t), we arrive at

the total log likelihood for a given observation

L(Θ) =
∑

ω,t

log p(φ(ω, t), α(ω, t) |Θ) (11)

=
∑

ω,t

log
∑

i,τ

[

p(φ(ω, t), α(ω, t) | ziτ (ω, t),Θ)

· p(ziτ (ω, t) |Θ)
]

(12)

=
∑

ω,t

log
∑

i,τ

[

N
(

φ̂(ω, t; τ) | ξiτ (ω), σ2
iτ (ω)

)

· N
(

α(ω, t) |µi(ω), η2
i (ω)

)

· ψiτ

]

. (13)

This is basically a Gaussian mixture model, with one Gaussian

per (i, τ) combination and ψiτ as the mixing weights. The

number of sources to compare must be specified a priori.

From this total log likelihood, we define the auxiliary

function to maximize with respect to Θ,

Q(Θ |Θs) = k +
∑

ω,t

∑

i,τ

[

p
(

ziτ (ω, t) |φ(ω, t), α(ω, t),Θs

)

· log p
(

ziτ (ω, t), φ(ω, t), α(ω, t) |Θ
)

]

(14)

where Θs is the estimate of the parameters Θ after s iterations

of the algorithm and k is independent of Θ. Maximum-

likelihood parameter estimation then proceeds in two steps,

the E step, in which the expectation of ziτ (ω, t) is computed

given the observations and the parameter estimate Θs, and the

M step, in which Q is maximized with respect to Θ given the

expected value of ziτ (ω, t).
In the E step, we compute

νiτ (ω, t) ≡ p(ziτ (ω, t) |φ(ω, t), α(ω, t),Θs) (15)

∝ p(ziτ (ω, t), φ(ω, t), α(ω, t) |Θs) (16)

= ψiτ · N
(

φ̂(ω, t; τ) | ξiτ (ω), σ2
iτ (ω)

)

· N
(

α(ω, t) |µi(ω), η2
i (ω)

)

. (17)

Because ziτ (ω, t) is a binary random variable, this probability

is equal to its expectation, hence this is the “expectation”

step. This expectation is then used in the M step to calcu-

late maximum-likelihood parameters as weighted means of

sufficient statistics. Let the operator

〈x〉t,τ ≡

∑

t,τ x νiτ (ω, t)
∑

t,τ νiτ (ω, t)
(18)

be the weighted mean over the specified variables, in this case t

and τ . This notation makes it convenient to specify the indices
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(a) IPD-only mask (b) ILD-only mask (c) Combined mask

Fig. 2. Contribution of (a) IPD and (b) ILD to (c) MESSL mask using frequency-dependent ΘΩΩ parameters. White is 1, black 0. Two speakers at 0◦ and
75◦ in reverberation. Notice that the IPD mask is mainly informative for low frequencies and the ILD mask for high frequencies, but not exclusively. For this
same example, Figures 3 and 4 show the ground truth and estimated parameters for interaural level and phase differences, respectively.

over which to take the mean, i.e. the indices over which to

tie parameters. Without tying, and with an uninformative ILD

prior the model parameter updates are

µi(ω) = 〈α(ω, t)〉t,τ (19)

η2
i (ω) =

〈

(

α(ω, t) − µi(ω)
)2

〉

t,τ
(20)

ξiτ (ω) =
〈

φ̂(ω, t; τ)
〉

t
(21)

σ2
iτ (ω) =

〈

(

φ̂(ω, t; τ) − ξiτ (ω)
)2

〉

t
(22)

ψiτ =
1

ΩT

∑

ω,t

νiτ (ω, t). (23)

To tie parameters, the weighted mean is taken across more

variables. For example, different versions of the IPD variance

can be derived

σ2
iτ =

〈

(

φ̂(ω, t; τ) − ξiτ (ω)
)2

〉

ω,t
(24)

σ2
i =

〈

(

φ̂(ω, t; τ) − ξiτ (ω)
)2

〉

ω,t,τ
(25)

In addition to the model parameters that are output by the

algorithm, it is also possible to compute probabilistic masks

for each of the sources by marginalizing over delay

Mi(ω, t) ≡
∑

τ

νiτ (ω, t). (26)

Note that this mask represents probabilities and preliminary

experiments indicate that separation performance can be

improved by converting these probabilities to more Wiener

filter-like coefficients. We do not do so in this paper, and this

conversion should be explored in future work.

Under weak assumptions, this algorithm is guaranteed to

converge to a local maximum of the likelihood, but since

the total log likelihood is not convex, it is still sensitive to

initialization. Conveniently, however, it is also very flexible in

its initialization. Since it can start with the E step or the M

step, it can be initialized with data in the form of either model

parameters or masks. Even a subset of the model parameters

can be used to initialize the algorithm, from which the rest

can be bootstrapped. In Section V-C we compare the results

of initializing the algorithm in various ways.

Unless otherwise mentioned, we initialize ψiτ from a

cross-correlation based method while leaving all the other

parameters in a symmetric, non-informative state. If the ILD

prior (described below) is used, we initialize the ILD with

the same mean as its prior and a standard deviation of 10 dB.

From these parameters, we compute the first E step mask.

Using estimates of τ for each source from PHAT-histogram

[26], ψiτ is initialized to be centered at each cross-correlation

peak and to fall off away from that. Specifically, p(τ | i), which

is proportional to ψiτ , is set to be approximately Gaussian,

with its mean at each cross-correlation peak and a standard

deviation of one sample.

In order to model reverberation, we introduce a “garbage”

source into MESSL that is initialized to have a uniform p(τ | i),
a uniform distribution across IPD, and an ILD with 0 mean

across frequency. This garbage source is designed to account

for spectrogram points that are not well described by any

of the other source models. While the direct-path signal has

interaural cues consistent with the specific direction of the

source, reverberation has a diffuse character that may not fit a

source model particularly well. Thus a single garbage source

should be able to account for the reverberation from all of

the sources in a mixture, regardless of their locations. The

garbage source also allows the parameters of the other sources

to be estimated more accurately, as they are no longer forced

to include poorly fitting points into their parameter estimation.

The ILD prior affects the estimation of the ILD parameters

µi(ω) and ηi in (19) and (20). In effect, the prior acts as

a number of “virtual” observations that are included in (19)

and (20). The prior precision (inverse variance) controls the

strength of the prior relative to the observations, i.e. the

number of virtual observations. The exact value of the prior

mean was estimated from a set of synthetic binaural room

impulse responses, using a regression on ITD and frequency

and interaction terms up to the third order. The fact that this

mean is only able to capture broad features of the relationship

between ILD and ITD makes it better able to generalize across

individuals. We only employ the ILD prior when also using

the garbage source, as a pilot study found that that was when

it was most useful.

A note about computational complexity. The running time

of this algorithm is linear in the number of points in the
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Fig. 3. Example ILD for two sources at 0◦ (upper lines) and 75◦ (lower lines)
in reverberation. Thick lines are ground truth direct-path ILD measured in
isolation, thin lines are estimated from a mixture by MESSL using frequency-
dependent ΘG parameters, and the dashed lines are estimated by MESSL
using frequency-independent Θ11 parameters.

spectrogram, the number of sources, the number of discrete

values of τ that are used, and the number of EM iterations.

Running time on a 1.86 GHz Intel Xeon processor was

approximately 80 seconds to separate 2 sources from a 2.5-

second (40,000 sample) mixture using a τ grid of 61 elements

and 16 EM iterations. This processing rate is approximately

32 times slower than real time. To separate 3 sources under

the same conditions took approximately 110 seconds, or 45

times slower than real time.

IV. EXAMPLE PARAMETER ESTIMATES

We now present an example separation illustrating some

of MESSL’s properties. The example mixture includes two

speakers in a reverberant environment. The target speaker is

female and is located at 0◦, saying, “Presently, his water brother

said breathlessly.” The interfering speaker is male and is located

at 75◦, saying, “Tim takes Sheila to see movies twice a week.”

It is taken directly from the experiments in Section V-D without

any modification and is used in Figures 2, 3, 4, and 5. Sound

files from this example are also available on the project’s

webpage1. Two MESSL parameterizations were used in this

example, one frequency-dependent and the other frequency-

independent. Both use the garbage source and ILD prior.

Figure 2 shows the contributions of the IPD and ILD to

the full MESSL mask when using the frequency-dependent

parameterization. Note that as in human hearing, the IPD mask

is generally informative at low frequencies, while the ILD

mask is generally informative at high frequencies. Unlike in

human hearing, however, the IPD is effective at separating

the sources up to 6 kHz and beyond, albeit with periodic

interruptions. These interruptions occur when both sources’

ITD models predict the same IPD at a given frequency. The

IPDs from any pair of ITDs will coincide at a certain set of

harmonically related frequencies. See Figure 1 for an example

of this ambiguity. In the combined mask, these bands of

uncertainty remain present at low frequencies, but are resolved

at high frequencies by the ILD.

1http://labrosa.ee.columbia.edu/projects/messl

The parameters estimated by MESSL are not only effective at

separating sources, but are also interesting in and of themselves.

Figure 3 compares the ILD that MESSL estimates to the ground

truth direct-path ILD measured in isolation. Notice that the

estimate closely follows the ground truth for both sources even

though neither source was ever observed alone. The parameters

that MESSL estimates are different from the ILD measured

for a single source in reverberation, as reverberation tends to

reduce the magnitude of ILD cues [27]. MESSL’s ILD prior

helps it to estimate the correct direct-path parameters and the

garbage source absorbs reverberant time-frequency points that

do no fit these parameters well.

Similarly, Figure 4 compares the probability density function

of IPD that MESSL estimates to the ground truth IPD measured

in isolation. Even without depending on frequency, this model

accurately estimates the IPD of both sources, again without

ever observing either source alone. Marginalizing over the

delay yields the probability of a given IPD under the model

p(φ(ω, t) | i) =
∑

τ

ψiτN
(

φ̂(ω, t; τ) | ξiτ (ω), σ2
iτ (ω)

)

. (27)

Each component in this mixture is a line with a different slope,

as illustrated in Figure 1, although for Figure 4 there are 61

lines rather than two. In the frequency-independent case, the

width of each line is constant in IPD. At lower frequencies,

these mixture components are very close together and so the

variance of the mixture is lower. At higher frequencies, however,

the various mixture components are spaced farther apart due to

their proportionality to ω, and so the model is less informative.

Even though the IPD of the source at 0◦ is not distributed

exactly around 0 IPD, the model is able to approximate it by

mixing together components for a few delays that are close

to the true ITD. Thus, the marginal IPD distribution (27) is

still able to vary with frequency, even when the parameters ξiτ
and σiτ do not, as can be seen in Figure 4(b). Also, learning

τ -dependent, but frequency-independent ξiτ parameters can

more favorably align the straight lines that sum to the best

IPD model than setting them to 0.

Figure 4(c) shows the extra information captured by the

frequency-dependent parameters. This extra information mostly

takes the form of rapid fluctuations of the mean and variance

of the IPD with frequency, particularly at high frequencies.

It is not clear to us what these represent, possibly aspects

of the room impulse response like early echoes, and further

investigation is warranted.

V. SPEECH SEPARATION EXPERIMENTS

We perform three experiments in order to examine MESSL’s

performance and compare it to four other well-known algo-

rithms. The basic form of the experiments is as follows. Single

sentence utterances recorded with a microphone close to the

speaker are convolved with binaural impulse responses recorded

from a KEMAR dummy head, simulating speech originating

from a particular direction. A number of these utterances,

simulated at different azimuthal directions in the horizontal

plane, are then mixed together. The target speaker is always

directly in front of the dummy head (0◦) while the others are

up to 90◦ to either side. These stereo mixtures are given to
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(a) Before mixing (b) Estimated by MESSL with Θ11 (c) Estimated by MESSL with ΘG

Fig. 4. Interaural phase differences (IPD) as a function of frequency for two speakers at 0◦ and 75◦ in reverberation. Black is higher probability. (a)
Histogram of each source’s IPD before mixing, (b) PDF of each source’s IPD estimated from the mixture by MESSL using frequency-independent parameters,
Θ11. (c) PDF of each source’s IPD estimated from the mixture by MESSL using frequency-dependent parameters, ΘΩΩ.

the algorithms to separate along with the number of sources

that were mixed together. The algorithms attempt to extract

the target signal, which is mixed down to mono and evaluated

on its signal-to-distortion ratio.

A. Shared experimental details

1) Data sources: The utterances used are from the TIMIT

acoustic-phonetic continuous speech corpus [28], a dataset of

utterances spoken by 630 native American English speakers. Of

the 6300 utterances in the database, we randomly selected 15 of

approximately the same duration to use in our evaluation. Each

utterance is approximately 3 seconds long, and we used the first

2.5 seconds to avoid ending silence. Before convolution with the

binaural impulse responses, all utterances were normalized to

have the same root mean square energy. All of the experiments

either include two or three simultaneous speakers, a single

target and one or two distractors. In the three speaker case, the

two distractors were situated symmetrically about the target.

The binaural impulse responses come from two sources. For

simulating anechoic signals, we use the head-related impulse

responses from [29], an effort to record such impulse responses

for many individuals. We use the measurements of the KEMAR

dummy with small ears, although the dataset contains impulse

responses for around 50 individuals. We restrict our attention

to the 50 impulse responses measured in the horizontal plane,

both in front and in back of the dummy. These 50 impulse

responses were measured more densely near the median plane

and more sparsely to the sides.

The second set of binaural impulse responses comes from

[27]. They were recorded in a real classroom with a reverbera-

tion time of around 565 ms. These measurements were also

made on a KEMAR dummy, although a different actual dummy

was used. We used the measurements taken in the middle of

the classroom, with the source 1 meter from the listener, at 7

different angles spaced evenly between 0◦ and 90◦, i.e. all the

way to the right. The recording equipment was taken down and

setup on three different occasions, so there are three recordings

at each location, for a total of 21 binaural impulse responses.

For three-source measurements, we transpose the two ears to

simulate the source on the left.

For each configuration of the simulated sources, i.e. each

off-axis binaural impulse response, we randomly select five

different sets of utterances. Thus, for anechoic mixtures, 10

different sets of utterances are mixed at each angular separation,

five in front and five behind the listener. For reverberant

mixtures, 15 different sets of utterances are mixed at each

angular frequency, five for each of the three repetitions of

the impulse response measurement. Each configuration was

repeated for two and three speakers, for a total of 240 different

anechoic mixtures and 180 different reverberant mixtures.

2) Evaluation metrics: We evaluate separation performance

using the signal-to-distortion ratio (SDR) [5]. This metric is

the ratio of the energy in the original signal to the energy in

interference from other signals and other unexplained artifacts.

Any energy in the estimated signal that can be explained with

a linear combination of delayed versions of the target signal

(up to 32 ms) counts towards the target energy. Similarly,

any energy that can be explained with a linear combination

of delayed versions of the interferer signals counts towards

interferer energy. Any energy that cannot be explained by either

of these projections is deemed to be an artifact, most notably

reverberation from any of the sources. Using the same structure,

we can also compute the signal-to-interferer ratio (SIR), the

ratio of the target to interferer energy, which ignores artifacts

like reverberation.

We also evaluate the speech quality of the separations using

the Perceptual Evaluation of Speech Quality, or PESQ [30, Sec.

10.5.3.3]. This measure is highly correlated with the Mean

Opinion Score (MOS) of human listeners asked to evaluate the

quality of speech examples. MOS ranges from −0.5 to 4.5,

with 4.5 representing the best possible quality. Although it was

initially designed for use in evaluating speech codecs, PESQ

can also be used to evaluate speech enhancement systems [31].

The PESQ results for each algorithm in Table III should be

compared to those of the unseparated mixtures in the last row

of that table.

3) Control “algorithms”: All algorithms are compared

against three control masks, two ground truth 0 dB masks, and

a random mask. These masks are included to provide upper

and lower bounds on the separation performance achievable

using spectral masking. Since our test mixtures are created

synthetically, we use knowledge of the original separate

sources to create ground truth binary masks. Optimal masking

separation is achieved by a mask that is 1 at every spectrogram
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(a) DP-Oracle (12.78 dB) (b) MESSL using ΘG (8.32 dB) (c) Messl using ΘΩΩ (6.11 dB)

(d) Sawada (6.87 dB) (e) DUET (5.48 dB) (f) Mouba (5.58 dB)

Fig. 5. Example masks from the various algorithms compared in Section V-D (white is 1, black 0). Two speakers at 0◦ and 75◦ in reverberation. SDR for
each mask is in parentheses. Not shown: TRINICON (5.02 dB), Random mask (−3.52 dB). Note that (b) is the same as Figure 2(c).

point in which the target signal is at least as loud as the

combined interferers and 0 everywhere else [4]. Because this

information is not available in an actual source separation

application, this mask is referred to as the Oracle mask. In our

notation, the Oracle and DP-Oracle masks are the same except

for their treatment of reverberation from the target source.

The Oracle mask considers reverberation from the target

source to be part of the desired signal. In reality, however,

reverberation is an unwanted addition to the signal and should

be considered interference rather than target. Thus, the DP-

Oracle mask only considers direct-path energy from the target

source as desirable. For anechoic mixtures, the two masks are

equivalent. Since we simulate source location by convolution

with impulse responses, we are able to isolate the direct-path

of each impulse response by forcing all of the samples after

10 ms to be 0. This eliminates both early reflections and

reverberation while still coloring the signal with the anechoic

head-related transfer function, making it comparable to the

separated sources.

The lower-bound control mask is one in which each

spectrogram point is assigned uniformly at random to one

of the sources. Its SDR is typically the same as the SDR of

the mixture.

B. Model complexity

The first experiment examines the tying of various parameters

to determine the amount of complexity our test data can support.

Tying parameters means that model parameters that are similar

in some way are forced to take the same value, for example the

IPD variance could be forced to be the same across frequency

as in (24) and (25). Parameters can be tied across frequency,

across delay, across sources, or assumed to have a fixed value,

although certain combinations make more sense than others.

This tying is easy to enforce in the M step equations (19)-(23),

by averaging together tied parameters.

In this experiment, we compare the signal-to-distortion ratio

of MESSL with different amounts of parameter tying when

separating two sources in reverberation. See Table I for the

list of parameters used for each version of the algorithm. The

parameter sets are named by their complexity in ILD and IPD,

respectively, 0 being simplest, 1 being more complex, and Ω
being most complex, i.e. frequency-dependent. For example,

the model with parameters ΘΩ0 uses a complex ILD model, but

a simple IPD model. The model with parameters Θ01 on the

other hand uses a simple ILD model and a moderately complex

IPD model. See Table I for the specific parameterization used

in each condition and the separation results.

The version of MESSL using Θ00 was published in [23]

and referred to as EM−ILD in [32]. It uses only IPD and has

a single σ per source. The versions using Θ10 and ΘΩ0 were

referred to as EM+1ILD and EM+ILD in [32], they use both

IPD and ILD, but their IPD model again only uses a single σ

per source. The others are introduced for the first time in this

paper. The versions using Θ01 and Θ0Ω have τ -dependent IPD

mean and variance, but no ILD. The last three versions use

the full IPD and ILD models. With Θ11, both are frequency-

independent and with ΘΩΩ both are frequency-dependent. The

ΘG parameters are the same as the ΘΩΩ parameters, but also

include the garbage source and ILD prior.

It should be noted that initializing models with a large
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Fig. 6. Signal-to-distortion ratio for complexity experiment, two speakers
in reverberation. Each point is the average of 15 mixtures with the same
angular separation. Error bars show 1 standard error. Note that the random
and DP-Oracle masks bound performance between 11.79 and −0.78 dB SDR,
respectively, independent of angle.

number of parameters requires some care to avoid source

permutation errors and other local maxima. This is most

important with regards to parameter tying across frequency. To

address this problem, we use a bootstrapping approach where

initial EM iterations are performed with frequency-independent

models, and frequency-dependence is gradually introduced.

Specifically, for the first half of the total number of iterations,

we tie all of the parameters across frequency. For the next

iteration, we tie the parameters across two groups, the low and

high frequencies, independently of one another. For the next

iteration, we tie the parameters across more groups, and we

increase the number of groups for subsequent iterations until

in the final iteration, there is no tying across frequency and all

parameters are independent of one another, but still consistent.

1) Results: A summary of the results of this experiment can

be seen in Table I. The most complex model, using ΘG achieves

the best separation by 1.3 dB. Note that the models after that are

paired as performance is comparable with frequency-dependent

and frequency-independent parameters. Comparing ΘΩ0 with

Θ00, the frequency-dependent ILD increases the signal-to-

distortion ratio of the target by 1.0 dB. The more complete

model of interaural phase difference present in Θ0Ω provides

an extra 0.6 dB of separation over Θ00. Their combination is

not quite additive, ΘΩΩ increases SDR by 1.4 dB over Θ00.

A graph of MESSL’s performance using each of these

parameter sets versus interferer azimuth can be seen in Figure 6.

First note that all of the algorithms perform similarly compared

to the two controls (which are not shown). Second, note

that they also all perform worse as the separation decreases.

Third, note that the ILD improves separation, except at the

smallest angles. And finally, note that the models that use the

more complicated parameterization of the IPD, including a τ -

dependent mean and variance, are able to realize proportionally

larger improvements at larger separations than those that use

the simpler parameterization with zero mean and a single σ

per source.

TABLE I
SDR FOR DIFFERENT MODEL COMPLEXITIES, SEPARATING TWO SPEAKERS

IN REVERBERATION, AVERAGED OVER 15 MIXTURES AT EACH OF 6
ANGULAR SEPARATIONS.

Name ILD mean ILD std IPD mean IPD std SDR (dB)

ΘG µi(ω) ηi(ω) ξiτ (ω) σiτ (ω) 5.87
ΘΩΩ µi(ω) ηi(ω) ξiτ (ω) σiτ (ω) 4.45
Θ11 µi ηi ξiτ σiτ 4.57
ΘΩ0 µi(ω) ηi(ω) 0 σi 4.07
Θ10 µi ηi 0 σi 4.16
Θ0Ω 0 ∞ ξiτ (ω) σiτ (ω) 3.69
Θ01 0 ∞ ξiτ σiτ 3.51
Θ00 0 ∞ 0 σi 3.08

C. Initialization

Our second experiment compares the normal version of

MESSL with other versions that are allowed to “cheat” using

ground truth information. This experiment provides insight into

the ability of the non cheating model to extract parameters from

mixtures and the ways in which the imperfections in parameter

estimates from mixtures hurt separation. Note that all models

use frequency-dependent parameters for this experiment, with

no garbage source and no ILD prior.

The ground truth parameters were extracted using MESSL on

“mixtures” of a single source at a time. White noise was passed

through each pair of reverberant binaural impulse responses and

then fed into MESSL, allowing it to make the best possible

estimates of the ILD parameters µi(ω) and ηi(ω) and the

IPD parameters ξiτ (ω), σiτ (ω), and ψiτ . To perform actual

separations, the ideal parameters for each source in the mixture

were combined in initializing MESSL. The DP-Oracle mask

was used for initializing from a ground truth mask.

Seven different initializations were compared in this ex-

periment on the 90 mixtures of the two-speaker, reverberant

condition. See Table II for an enumeration of the parameters

used in each one and their separation results. MESSL can be

initialized from many different parameters, including masks,

ILD, ITD, or any combination thereof. ITD can be estimated

from a mixture using cross-correlation based methods like

PHAT-histogram [26], and masks can be estimated using e.g.

monaural signal-based source separators. ILD is more difficult

to estimate directly from a mixture in practice. In the other

experiments in this paper, we only initialize MESSL’s ITD

parameters from a non-cheating estimate, which appears on

the second to last line of the table.

The top section of the table shows the performance of

initializations that include ground truth interaural parameters

in various combinations. From the top of the table down, these

are: ground truth IPD and ILD information along with DP-

Oracle masks, ground truth IPD and ILD information, only

IPD information, and only ILD information. Initializations

including ground truth ILD are run for as few iterations as

possible, because on a separate parameter tuning data set

their performance decreased with each iteration. This property

indicates that it is the estimation of ILD parameters that is

limiting the system’s performance, not the separation based on

an ILD estimate. This is not the case for ITD estimates, for

which separation improves with each iteration as the parameters
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TABLE II
SDR FOR MESSL WITH DIFFERENT INITIALIZATIONS AND NO GARBAGE

SOURCE OR ILD PRIOR, SEPARATING TWO SPEAKERS IN REVERBERATION,
AVERAGED OVER 15 MIXTURES AT EACH OF 6 ANGULAR SEPARATIONS.

KEY: 1: UNINFORMATIVE INIT., gt: GROUND TRUTH INIT., xcorr: ITD INIT.
FROM CROSS-CORRELATION PEAKS.

ILD IPD Mask Iterations SDR (dB)

gt gt gt 2 6.40
gt gt 1 2 6.29
1 gt 1 16 5.59
gt xcorr 1 2 5.37

1 xcorr gt 16 4.67
1 xcorr 1 16 4.43
1 1 gt 16 4.17

adapt to a particular mixture, even after initialization with

ground truth ITD parameters. One possible explanation for this

is that ILD is reduced by reverberation, while ITD is not [27].

The bottom section of the table shows the performance

of initializations that do not include ground truth interaural

parameters. From the top of this section, these are: estimated

ITD with ground truth DP-Oracle masks, only estimated ITD,

and only DP-Oracle masks. These systems were all run for 16

iterations because their performance tended to improve every

iteration.

Initial model parameters were used in the first E step to

calculate νiτ (ω, t). The algorithm then proceeded normally,

discarding the initial parameters and replacing them with

estimates made directly from the mixture and νiτ (ω, t). When

an initial mask was supplied, however, it survived until the

second E step. This is because in the first E step, it is used as

a prior in estimating νiτ (ω, t), which also varies with τ , and

only re-estimated after the first M step. Thus two iterations

are required for a fair evaluation.

1) Results: The results of this experiment can be seen

in Table II. Considering the top portion of the table, all

initializations that use ground truth interaural parameters are

better able to separate the sources than those estimating initial

parameters from the mixture. IPD parameters seem to be

slightly more helpful than ILD parameters, increasing SDR by

1.2 dB versus 0.9 dB when compared with the ΘΩΩ parameters,

shown in the second to last row in the table. In combining

the two cues, the performance gain is approximately additive,

increasing SDR 1.9 dB beyond what is achieved with IPD

alone. Including the ground truth mask only increases SDR by

another 0.1 dB.

Considering the bottom portion of the table, initializing

with just the ground truth mask separates sources more poorly

than the baseline algorithm initialized from PHAT-histogram

localization. When combined, however, the ground truth mask

provides a slight improvement in separation. The difficulty in

starting with just a mask is that the ψiτ extracted using the

mask is peaked at the proper delay, but assigns significant

probability to the other delays as well. It takes between 8

and 12 iterations before the values in ψiτ begin to resemble

those coming from the PHAT-histogram initialization. When

starting with ψiτ already reasonably initialized, the mask helps

performance, possibly in estimating the ILD parameters.

D. Comparison with other algorithms

The third experiment compares MESSL with four other well

known source separation algorithms, DUET [6], the algorithm

of Sawada et al. [22], which we refer to as Sawada, the

algorithm of Mouba and Marchand [10], which we refer to as

Mouba, and TRINICON-based blind source separation using

second order statistics [13]. We implemented the first three of

these algorithms ourselves and tested them on mixtures of two

and three sources in reverberant and anechoic environments.

TRINICON was run on our mixtures by the authors of that

paper using their original code.

The Degenerate Unmixing Estimation Technique (DUET)

[4], [6] creates a two-dimensional histogram of the interaural

level and time differences observed over an entire spectrogram.

It then smooths the histogram and finds the I largest peaks,

which should correspond to the I sources. DUET assumes that

the interaural level and time differences are constant at all

frequencies and that there is no spatial aliasing, conditions that

can be met to a large degree with free-standing microphones

close to one another. With dummy head recordings, however,

the ILD varies with frequency and the microphones are spaced

far enough apart that there is spatial aliasing above about

1 kHz. Frequency-varying ILD scatters observations of the

same source throughout the histogram as does spatial aliasing,

making sources harder to localize and isolate. See Figure 5(e)

for an example mask estimated by DUET.

Two-stage frequency-domain blind source separation [22]

is a combination of ideas from model-based separation and

independent component analysis (ICA) that can separate

underdetermined mixtures. In the first stage, blind source sep-

aration is performed on each frequency band of a spectrogram

separately using a probabilistic model of mixing coefficients. In

the second stage, the sources in different bands are unpermuted

using k-means clustering on the posterior probabilities of

each source and then refined by matching sources in each

band to those in nearby and harmonically related bands. The

first stage encounters problems when a source is not present

in every frequency and the second encounters problems if

sources’ activities are not similar enough across frequency. See

Figure 5(d) for an example mask estimated by this algorithm.

The algorithm of Mouba and Marchand [10], like MESSL,

uses EM clustering to separate sources from binaural recordings.

This algorithm needs access to certain coefficients describing

the relationship between ILD, ITD, and azimuth, which can be

extracted offline from head-related transfer functions. It it not

particularly sensitive to the exact values of these coefficients,

however, so the same values generally work for different

heads. Using these coefficients, the algorithm maps the ILD

at each point in the spectrogram to an azimuth, with which

it disambiguates each IPD-to-ITD mapping. The ITD is then

mapped to azimuth at each spectrogram point and these azimuth

values (after weighting by the energy at that spectrogram point)

are clustered using a Gaussian mixture model. The means of the

Gaussians are the estimated source locations and the posterior

probability of each azimuth coming from each Gaussian is used

to construct a spectral mask. See Figure 5(f) for an example

mask estimated by Mouba and Marchand’s algorithm.
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(a) Anechoic, 3 speakers (b) Reverberant, 2 speakers (c) Reverberant, 3 speakers

Fig. 7. SDR as a function of angle for three conditions. Anechoic conditions are averaged over 10 mixtures at each of 12 angles, reverberant over 15 mixtures
at each of 6 angles. Error bars show 1 standard error.

Blind Source Separation using Second Order Statistics

(BSS-SOS) using Triple-N ICA for convolutive mixtures

(TRINICON) [13] is very different from the other algorithms

compared in this experiment. Instead of using time-frequency

masking to separate sources, it learns a convolutive linear

system to unmix the signals. The three Ns referred to are

nongaussianity, nonstationarity, and nonwhiteness, properties

of signals that TRINICON takes advantage of in separation.

The unmixing system that it learns minimizes the correlation

between the separated signals at multiple time lags. A number

of algorithms in this framework have been derived, trading off

computational complexity for separation performance. Note

that this algorithm can only separate critically-determined and

over-determined mixing systems, so we only evaluate it on

two-source mixtures.

1) Results: The results of this experiment can be seen in

Figure 7, where the SDR is shown as a function of separation

angle for two and three sources in anechoic and reverberant

environments. From the graphs, it is clear that the performance

of all of the algorithms decreases as the sources get closer

together and their spatial cues become more similar. This is

not the case with the ground truth masks, suggesting that an

algorithm that relied more on spectral cues (perhaps from

source models) as opposed to spatial cues might be able

to separate the two speakers equally well at any separation.

Note that the DP-Oracle mask achieves much higher SDR and

PESQ scores than the Oracle mask, due to its exclusion of all

reverberation.

MESSL isolates the target source better than the other algo-

rithms in all conditions and at all angles except for the smallest

angles in anechoic conditions. Adding a second distractor

source does not affect performance when the separation is

large, but hurts performance for separations less than 40◦. The

garbage source and ILD prior increase performance quite a bit

in reverberation, and when the sources are close together in

anechoic mixtures.

In all conditions except A2, Mouba and Marchand’s algo-

rithm performs second best. Qualitatively, it appears to do

a good job of resolving 2π ambiguities when the phase has

wrapped one or two times. This is the case for most of the

spectrum when azimuths are small and for lower frequencies

when azimuths are larger. This frequency range generally

includes most of the speech energy of interest, giving it good

SDR performance and a significant advantage over DUET. At

very small separations, it is difficult for the clustering to resolve

two separate peaks in the azimuth histogram, so performance

appears to be best for angles that are neither too big nor too

small.

Generally, Sawada et al.’s algorithm performs third best.

Visually inspecting some of the masks it creates, it generally

works quite well, especially at high frequencies where adjacent

frequency bands are highly correlated. It seems to have some

difficulty unpermuting sources at low frequencies, however,

where adjacent bands are less well-correlated. These problems

are exacerbated in reverberation and with more sources.

Comparing Figure 5(b) and (d), it is interesting to note that

MESSL and this algorithm both exhibit “bands of ambiguity”

in frequencies for which two sources’ ITDs predict the same

IPD (e.g. 1.5–2 kHz).

In anechoic conditions, TRINICON dramatically outperforms

the masking-based systems in terms of SDR, even the DP-

Oracle mask. In reverberation, however, it performs slightly

worse than Sawada et al.’s algorithm. According to the signal-to-

interferer ratio (SIR), which measures only the ratio of energy

directly attributable to the target and interference (i.e. ignoring

most reverberation), TRINICON outperforms MESSL even in

reverberation, achieving 12.79 dB SIR on average in the two-

source reverberant condition, compared to MESSL’s 11.07 dB.

We believe that the inversion of the ranking between SIR

and SDR is due to the introduction of a substantial amount

of reverberation by TRINICON (which is penalized under

SDR but does not affect SIR). Another interesting performance

characteristic is that in reverberation TRINICON achieves a

much better SDR for the interfering source, 5.64 dB, than the

target source, 3.72 dB. We believe that this is because the on-

axis target source is easier to cancel than the off-axis interfering

source. Under the PESQ metric, TRINICON’s estimated speech

quality is second only to MESSL’s.

DUET performs relatively well in the anechoic case, but

worse in reverberation. It is not affected much by the presence

of a second distractor source. It performs much better in this

experiment than in previous experiments we have run, possibly

because the sources are more balanced here, while before they

sometimes had different energies.

The PESQ results follow the SDR results quite closely. As

would be expected, the PESQ scores for anechoic mixtures
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TABLE III
SDR AND PESQ METRICS COMPARING SYSTEMS IN ANECHOIC AND REVERBERANT ENVIRONMENTS WITH 2 AND 3 SPEAKERS, E.G. “A2” INDICATES

ANECHOIC, 2 SPEAKER CONDITION. ANECHOIC CONDITIONS AVERAGED OVER 120 MIXTURES EACH, REVERBERANT OVER 90 MIXTURES EACH.

SDR (dB)

A2 A3 R2 R3 Avg

DP-Oracle 16.63 13.63 11.79 10.15 13.05
Oracle 16.63 13.63 8.25 7.59 11.52

MESSL-G 11.91 8.41 5.87 2.87 7.27

MESSL-ΩΩ 11.29 6.47 4.45 2.19 6.10
Mouba 11.83 6.34 3.98 0.55 5.67
Sawada 11.44 4.98 3.80 −0.55 4.91
TRINICON 22.47 — 3.72 — —
DUET 9.67 4.38 2.35 −1.42 3.75

Random 1.54 −2.13 −0.78 −3.95 −1.33

PESQ (MOS)

A2 A3 R2 R3 Avg

DP-Oracle 3.34 3.02 2.99 2.72 3.02
Oracle 3.34 3.01 2.35 2.24 2.73

MESSL-G 2.93 2.29 2.07 1.73 2.26

MESSL-ΩΩ 2.84 2.12 1.92 1.62 2.13
TRINICON 3.37 — 1.84 — —
Mouba 2.69 1.96 1.81 1.49 1.99
Sawada 2.82 1.71 1.80 1.24 1.89
DUET 2.53 1.95 1.60 1.20 1.82

Mixture 1.81 1.35 1.45 1.15 1.44

are higher than for reverberant mixtures, and they are also

higher for two sources than for three. The separations typically

maintain the same ordering across conditions, except for

TRINICON, which does better than DP-Oracle for anechoic,

two-source mixtures. These orderings and this exception are

consistent with the SDR results. Of the 1.58 MOS units between

the average mixture score and the average DP-Oracle score,

MESSL was able to recover approximately half, or 0.82 units.

VI. SUMMARY

This paper has presented a novel source separation procedure

using probabilistic models of sources and an expectation

maximization parameter estimation procedure. We first built

a probabilistic model of a single source that can be evaluated

independently at every spectrogram point. We then reduced the

multi-source problem to a collection of single source problems

by combining this model with the idea of probabilistic masking

using an EM algorithm.

We then performed three experiments to test various aspects

of the model. We found that the most complex models were

the best at separating sources in our experimental conditions.

We showed that even from a mixture, MESSL can estimate

interaural parameters that are close to those measured in

isolation and using these parameters can closely approximate

its performance when initialized with “cheating” parameters.

In reverberant and anechoic conditions with two and three

speakers, MESSL produces SDRs 1.6 dB higher and PESQ

results 0.27 MOS higher than comparable algorithms.

There are a number of directions to take this work in

the future. The first is to build a more explicit model of

reverberation than the garbage source to better distinguish

it from direct-path sounds. We would also like to add a

model of early echoes to the system so that they could aid

in separation and be removed from the reconstructed sources.

Other monaural cues could also be used for separation and

combined probabilistically with the current binaural separation.

Finally, to allow for a real-time implementation we would like

to develop an online version of this algorithm. Such a system

would propagate sources in time using a dynamics model while

simultaneously creating separation masks one frame at a time.
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