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Abstract

Advances in camera and computing equipment hardware
in recent years have made it increasingly simple to capture
and store extensive amounts of video data. This, among
other things, creates ample opportunities for the sharing of
video sequences. In order to protect the privacy of subjects
visible in the scene, automated methods to de-identify the
images, particularly the face region, are necessary. So far
the majority of privacy protection schemes currently used in
practice rely on ad-hoc methods such as pixelation or blur-
ring of the face. In this paper we show in extensive experi-
ments that pixelation and blurring offers very poor privacy
protection while significantly distorting the data. We then
introduce a novel framework for de-identifying facial im-
ages. Our algorithm combines a model-based face image
parameterization with a formal privacy protection model.
In experiments on two large-scale data sets we demonstrate
privacy protection and preservation of data utility.

1. Introduction

Due to the continuously falling costs of video capture
equipment, it is becoming possible to record, store and pro-
cess large quantities of video data. As a consequence, an
increasing number of research projects aim at continuously
observing and monitoring people in private spaces. The
Caremedia project at CMU for example captures and an-
alyzes video data recorded in a nursing home facility to
support medical personnel in diagnosing and treating be-
havioral problems of the elderly [5]. The Aware Home
project at Georgia Tech equipped a house with an exten-
sive sensor network (including video cameras) with a simi-
lar goal of monitoring elderly people [1]. Privacy concerns
of non-consenting subjects however limit the abilities of re-
searchers to exchange raw data and often require labor in-
tensive manual post-processing to remove portions of the
data. These are examples of a growing number of applica-
tions in which valuable video data can not be shared due to
fear of re-identification. Out of this situation the need for

automatic methods to remove identifying information from
images, particulary the face region, arises. The goal is to
remove as much identifying information as necessary while
preserving as much of the data utility as possible.

Previous work on de-identifying facial images falls in
one of two categories: ad-hoc methods such as “blurring” or
“pixelation” [20] or formal methods such as k-Same [21] or
k-Same-Select [12]. Both types of approaches have short-
comings which we address in this paper. We first propose
a new algorithm, k-Same-M, which combines a model-
based face parameterization with a formal privacy protec-
tion model. We demonstrate that the algorithm achieves
privacy protection similar to previously proposed methods,
while producing de-identified images of much higher qual-
ity. We furthermore show that the proposed k-Same-M al-
gorithm better preserves data utility than the previously pro-
posed k-Same algorithm or ad hoc methods such as blur fil-
tration. We furthermore describe two completely automatic
algorithms to attack the protection provided by pixelation.

The remainder of this paper is organized as follows. In
Section 2 we survey related work. Section 3 defines face
de-identification along with other concepts used in the pa-
per. Section 4 introduces model-based face de-identification
and describes the k-Same-M algorithm. In Section 5 we
evaluate the privacy protection afforded by the k-Same-M
algorithm and examine the resulting data utility. Finally,
Section 6 examines the popular algorithm of pixelation and
shows its inadequacy for protecting privacy.

2. Related Work

While there is a rich body of work on privacy protection
for field-structured data [2], specifically medical data [25],
comparatively little has been done in the context of video
surveillance. The majority of work on images or image se-
quences applies simple distortion methods such as “pixela-
tion” (image subsampling) or “blurring” (smoothing the im-
age with e.g. a Gaussian filter with large variance) to obfus-
cate parts or all of the image [7,17,20,27]. The PrivacyCam
architecture proposed by Senior et al. [24] suppresses au-
tomatically segmented foreground objects in the scene and
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cryptographically secures access to the altered video stream
produced by the system. While some of these techniques
have been shown to reduce the capability of human ob-
servers to identify people or actions in the scene [7, 20, 27],
no formal privacy guarantees are made.

In more recent work on face de-identification by Newton
et al. [21] the k-Same algorithm is introduced, which offers
formal privacy protection guarantees. k-Same is based on
the k-anonymity framework introduced by Sweeney [25].
The algorithm guarantees that each de-identified face im-
age could be representative of k faces in the gallery, there-
fore limiting face recognition performance to 1/k. Unlike
the methods discussed above, [21] also addresses the prob-
lem of adaptive recognition in which an adversery mimics
the obfuscation technique employed by a privacy-protection
algorithm. Newton et al. experimentally showed that ad-
hoc methods fail to protect privacy in the case of (manu-
ally guided) adaptive recognition, whereas the k-Same al-
gorithm offers protection guarantees even in this case.

In a different approach, Phillips [22] proposed an algo-
rithm for privacy protection of facial images through reduc-
tion of the number of eigenvectors used in reconstructing
images from basis vectors. A direct trade-off between pri-
vacy protection and data utility is established through the
introduction of the privacy operating characteristic (POC),
a plot similiar to a receiver operating characteristic (ROC)
often used in pattern classifier design [11].

In order to overcome the trade-off between privacy pro-
tection and data utility the k-Same-Select algorithm was in-
troduced as direct extension of the k-Same algorithm [12].
It was shown that the k-Same-Select algorithm preserves
data utility (as measured by the accuracy of gender and fa-
cial expression classifiers) while guaranteeing privacy pro-
tection. However, the k-Same-Select algorithm, like all al-
gorithms discussed above, is strictly appearance-based and
works directly on the pixel level. As a consequence, com-
monly appearing mismatches in image alignment (the cor-
respondence between pixels in images) lead to poor quality
in de-identified images.

3. Face Recognition and Face De-Identification

3.1. Definitions

In this section we provide definitions of all basic con-
cepts related to face de-identification. See Figure 1 for an
overview.

Definition 3.1 (Image Coding) For a given grayscale or
color input image I ∈ IRn we define image coding as func-
tion fc

A : IRn → IRm which maps an n-dimensional input
image to an m-dimensional representation using the auxil-
iary information A.

Note that grayscale images of dimension h×w are con-
verted into vectors of dimension n = h ∗ w through raster-
scanning. For color images we concatenate the vectors ob-
tained by rasterscanning the different color channels, so that
n = h∗w∗3. In this work we consider two different coding
schemes:

Example 3.1 (Appearance-Based Coding) Using the
(typically manually established) location of at least three
feature points (e.g. center of the eyes and tip of the nose)
appearance-based coding geometrically normalizes the
face so that the feature points are located in the same
positions across images. This is typically done by estimat-
ing the parameters of an affine transform (accounting for
translation, rotation and scale) between the current and
target feature point locations and applying the transform
to all pixels in the image. The images are then usually
cropped to the same fixed dimensions.

Example 3.2 (Model-Based Coding) In model-based
coding a previously learned generative model is fitted to
the input image by changing the model parameters until
the difference between the original image and the image
reconstructed from the model is minimal. The model
parameter vector is then used as encoding of the input
image.

In the following we assume that all face images are coded,
either appearance-based or model-based. For notational
ease we simply refer to them as images.

Definition 3.2 (Image Sets) We distinguish a num-
ber of different sets of facial images. The gallery
contains face images of individuals known to a face
recognition algorithm: G = {G1, G2, . . . , Gl}. The
probe set contains images of unknown people: P =
{P(1,1), P(1,2), . . . , P(1,m1), . . . , P(n,1), P(n,2), . . . , P(n,mn)}.
The goal of face recognition is therefore the correct
linking of images in the probe set to images in the
gallery set. We furthermore define the generic face set
F = {F(1,1), . . . , F(1,s1), . . . , F(r,sr)}, where we assume
that F ∩ G = F ∩ P = ∅.

This definition of image sets follows the standard estab-
lished for the FERET evaluations [23].

Definition 3.3 (Face Recognition) We define face recogni-
tion as function Φ : IRm × (IRm)u → {1, 2, . . . , u} which,
given a probe image p ∈ P and a gallery G, with |G| = u
outputs the index of the subject most likely to correspond
to the subject seen in the probe image: Φ(p,G) = j, 1 ≤
j ≤ u. By convention we extend Φ to apply as well to a
probe set P with |P| = v as Φ : (IRm)v × (IRm)u →
({1, 2, . . . , u})v .
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Figure 1. Overview of the de-identification framework. Using the
de-identification function Φ, the image set P is mapped to the de-
identified image set P ′. We evaluate the performance of the de-
identification function Φ in terms of privacy protection afforded
by measuring face recognition performance (RR) and in terms of
preserved data quality.

We evaluate face recognition performance by computing
cumulative match characteristics (CMC) for a given face
recognition function Φ and gallery and probe sets P and
G. The CMC contains for each rank (position in the simi-
larity ordering of the face recognition function output) the
likelihood that the algorithm returns the correct answer at or
below this rank [6]. The simplest way of reporting the per-
formance of face recognition algorithms is to report rank 1
recognition rates.

Definition 3.4 (Face De-Identification) We define face de-
identification as a function ΨA : IRm → IRm, which asso-
ciates each input image with a vector of equal dimensional-
ity: ΨA(p) = p′, p, p′ ∈ IRm, using the auxiliary informa-
tion A.

The implicit goal of a face de-identification method Ψ is to
remove identifying information from face images, so that
CMC(Φ,Ψ(P),G) < CMC(Φ,P,G).

One formal approach to privacy protection that has
gained popularity in recent years is k-anonymity [25]. The
idea underlying k-anonymity is to ensure that every data at-
tribute that could be used to identify a particular user relates
indiscriminatively to at least k elements in the dataset. Ap-
plied to sets of faces we therefore define (following [21]):

Definition 3.5 (k-Anonymized Probe Set) We call a de-
identified probe set of face images k-anonymized, if for ev-
ery probe image there exist at least k images in the gallery
to which the probe image corresponds.

Maximum privacy protection is trivially achieved by sur-
pressing the data, e.g. by setting each pixel value in an im-
age to 0. We strive to guarantee privacy protection while
preserving as much of the original signal as possible.

Original

k = 2 k = 4 k = 8

Original Original Original

k = 10

Figure 2. Faces de-identified using the k-Same algorithm. Due
to the appearance-based nature of the algorithm errors in image
alignment lead to poor image quality in the de-identified images.

4. Model-Based De-Identification

This section introduces the proposed algorithm, k-Same-
M. We motivate the work by demonstrating significant
shortcomings of the previously proposed k-Same algorithm
[21]. We furthermore give a brief introduction to Active
Appearance Models.

4.1. Shortcomings of Appearance-Based Methods

The algorithms introduced in [21] and [12] are both ap-
pearance based, operating entirely in the image space. Since
both algorithms compute averages of images, artifacts due
to misalignments of the images involved are inevitable, even
when images are aligned based on a small number of feature
points (e.g. the eyes and the tip of the nose). This leads to
a reduction of data utility at higher levels of privacy protec-
tion (see Section 5). As shown in Figure 2 strong “ghosting”
artifacts are visible.

4.2. Background: Active Appearance Models

Active Appearance Models (AAMs) are generative para-
metric models that have been used successfully for mod-
elling and tracking faces [9, 19]. In the following we give a
brief description on constructing and fitting AAMs.

4.2.1 Definition and Model Construction

The 2D shape of an AAM is defined by a 2D triangulated
mesh and in particular the vertex locations of the mesh.
Mathematically, the shape s of an AAM is defined as the
2D coordinates of the n vertices that make up the mesh:
s = (x1, y1, x2, y2, . . . , xn, yn)T. AAMs allow linear
shape variation. This means that the shape matrix s can
be expressed as a base shape s0 plus a linear combination
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of m shape matrices si:

s = s0 +
m∑

i=1

pi si (1)

where the coefficients pi are the shape parameters. AAMs
are computed from training data consisting of a set of im-
ages with the shape mesh hand marked on them [9]. Af-
ter geometrically aligning the training shapes using the
Procrustes algorithm [10], Principal Component Analysis
(PCA) [18] is applied to the aligned training meshes. The
base shape s0 is the mean shape and the matrices si are
the (reshaped) eigenvectors corresponding to the m largest
eigenvalues.

The appearance of the AAM is defined within the base
mesh s0. Let s0 also denote the set of pixels u = (u, v)T

that lie inside the base mesh s0. The appearance of the
AAM is then an image A(u) defined over the pixels u ∈ s0.
AAMs allow linear appearance variation. This means that
the appearance A(u) can be expressed as a base appear-
ance A0(u) plus a linear combination of l appearance im-
ages Ai(u):

A(u) = A0(u) +
l∑

i=1

λi Ai(u) (2)

where the coefficients λi are the appearance parame-
ters. The appearance images Ai are usually computed
by applying PCA to the shape normalized training im-
ages [9, 19]. We furthermore define the vector c =
{p1, . . . , pn, λ1, . . . , λm} as concatenation of the shape pa-
rameters pi and the appearance parameters λi.

4.2.2 Model Fitting

Fitting a AAM is usually formulated [19] as minimizing
the sum of squares difference between the model instance
A(x) = A0(x) +

∑m
i=1 λiAi(x) and the input image

warped back onto the base mesh I(W(x;p)):

∑
x∈s0

[
A0(x) +

m∑
i=1

λiAi(x) − I(W(x;p))

]2

(3)

where the sum is performed over all of the pixels x in the
base mesh s0. A number of fitting algorithms have been
proposed for the minimization of the expression in Eqn. 3
ranging from the very efficient project-out algorithm [19]
and the less efficient but more accurate simultaneous inverse
compositional algorithm [3] to efficient robust fitting algo-
rithms capable of dealing with occlusion [13].

4.3. Model-Based k-Same: k-Same-M

For subject images within the modelling space of a given
AAM the model is able to describe the image with high ac-
curacy, meaning that the face image reconstructed from the

input : Face set Mo, privacy constant k, with
|Mo| ≥ k, Active Appearance Model A

output: De-identified face set Md

Md ← ∅1

M′
o ← ∅2

for i ∈ Mo do3

Compute parameter representation ci of i with4

respect to AAM A and add to M′
o

end5

for c ∈ M′
o do6

if |M′
o| < 2k then7

k = |M′
o|8

end9

Select the k vectors {c1, . . . , ck} ∈ M′
o that are10

closest to c according to L2 norm.
avg ← 1

k

∑k
m=1 cm11

Add k copies of avg to Md12

Remove c1, . . . , ck from M′
o13

end14

Algorithm 4.1: k-Same-M Algorithm.

model parameters is very close in appearance to the original
face image. Coupled with the generative nature of the AAM
it is intuitive to perform face de-identification in the space of
the model parameters instead of the image space. We there-
fore extend the previously proposed k-Same algorithm [21]
to the k-Same-M algorithm by performing k-Same on AAM
model parameter vectors. Intuitively, k-Same-M works by
computing the average of k AAM parameter vectors com-
puted from a set of faces and replacing the vectors with the
average vector. See algorithm box 4.1 for a definition of k-
Same-M. It has been shown previously [21] that image sets
de-identified with the k-Same algorithm are k-anonymized.
The same holds for parameter sets de-identified using the
k-Same-M algorithm.

Figure 3 shows example images of faces de-identified
using k-Same-M. The images are of visually higher quality
in comparison to the images shown in Figure 2. Notice that
no “ghosting” artifacts are present.

5. Experiments

To evaluate the privacy protection afforded by the pro-
posed k-Same-M algorithm we conducted recognition ex-
periments using Principal Component Analysis [26].

5.1. Dataset

We used a subset of the CMU Multi-PIE face database
[14] containing 249 subjects displaying a neutral and a
smile expression. The images were captured within minutes
of each other as part of a multi-camera, multi-flash record-
ing. In the experiments here only images with frontal pose
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Figure 3. Face images de-identified using the proposed k-Same-M
algorithm.

Neutral Smile

Figure 4. Example images from the dataset used in experiments
for the k-Same-M algorithm.

and frontal illumination were used. AAM ground-truth was
manually established for all 498 face images. See Figure 4
for example images.

5.2. Evaluation of Privacy Protection

We divided the subject pool into non-overlapping sets for
training and gallery/probe, following the experimental setup
established in the FERET evaluations [23]. We used 30% of
the subjects for training of the PCA eigenspace with origi-
nal, unaltered images. For the remaining subjects, the neu-
tral expression images were used as gallery and the smile
images as probe. All results reported are based on randomly
selecting five different subject assignments into training and
gallery/probe sets and computing the average recognition
rate over all configurations.

Figure 5 shows rank-1 accuracies and CMC curves for
face images de-identified for the different variants of the k-
Same algorithm. The recognition rates stay below the theo-
retical maximum of 1/k [21] (see Figure 5(a)). The recog-
nition accuracy of k-Same is slightly below the accuracy of
k-Same-M, potentially due to the noise introduced by this
algorithm. Figure 5(b) shows CMC curves for the k-Same-
M algorithm for different levels of k. Performance declines
steadily with increasing k, illustrating the amount of de-
identification necessary to achieve a given privacy goal.

5.3. Evaluation of Data Utility

Depending on the application, many different measures
of data utility are possible, ranging from simple distance
metrics to the evaluation of the presence of certain image
features determined by specific classifiers. Following [12]
we evaluated data utility through facial expression classifi-
cation. We say that more data utility is preserved if a fa-
cial expression classifier performs better on a certain im-
age set. In experiments we employed a Support Vector Ma-
chine classifier with Radial Basis Kernel, implemented us-
ing LIBSMV [8]. We performed 5-fold cross-validation by
partitioning the dataset into five near equally sized subsets,
trainining in turn on four subsets and testing on the remain-
ing fifth. The reported classification accuracy is averaged
over the five experiments. Figure 6 shows classification ac-
curacy plots for images de-identified using k-Same and k-
Same-M (Figure 6(a))1 and for images de-identified using
blur filtration (Figure 6(b)). The accuracy for both variants
of the k-Same algorithm is substantially higher than in the
case of blur filtration. Furthermore, data utility of the im-
ages de-identified using the proposed k-Same-M algorithm
is slightly better than the data utility of the previously intro-
duced k-Same algorithm.

6. How Not To Protect Privacy: Pixelation

In the popular media, in data protection legislation [12]
as well as in parts of the scientific literature, pixelation
filters are considered adequate means to protect privacy
[17, 27]. Previous studies have already suggested that this
is not the case [12, 21]. In this section we provide further
evidence by demonstrating multiple ways to achieve high
recognition accuracies on pixelated images.

6.1. Image Pixelation

Pixelation occurs as unwanted side effect when the reso-
lution of an image is increased using a simple method such
as nearest neighbor interpolation. In the de-identification
setting pixelation is performed by replacing all pixel values
in all sub-blocks of given constant size in an image by the
average pixel value of the block. As the size of the sub-
blocks increases more information is removed from the im-
age. See Figure 7 for example images.

6.2. Attacks on Ad-Hoc Methods

6.2.1 Automatic Parrot Recognition

Newton et al proposed to defeat pixelation along with other
ad-hoc de-identification methods by applying the same
transformation on both the training images as well as the

1De-identification for both algorithms was performed on expression
specific subsets, effectively using the “select” variant of the k-Same al-
gorithm introduced in [12].
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Figure 5. Face recognition rates for original images and images de-identified using the proposed k-Same-M algorithm as well as the
previously proposed k-Same algorithm. The experiments use neutral images from the CMU Multi-PIE dataset [14] as gallery and smile
images as probe. (a) Comparison of the rank-1 accuracies of the k-Same and k-Same-M algorithms. Both algorithms stay well below
the theoretically predicted maximum recognition rate of 1/k. (b) CMC curves for the k-Same-M algorithm for different levels of k.
Recognition performance declines steadily with increasing k, illustrating the amount of de-identification necessary to achieve a given
privacy goal.
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gallery images [21]. In extension of this work we devel-
oped a simple detection algorithm to determine the amount
of pixelation applied to the image. The algorithm counts
runs of pixels with identical or nearly identical pixel values
in both the x and y direction and uses a voting scheme to
determine a single pixelation value across the whole image.
A similar attack on images de-identifed by blur filtration is
described in [15].

6.2.2 Resolution Enhancement
Since pixelated images are essentially low-resolution ver-
sions of the original image scaled to the size of the in-

put image, resolution enhancement algorithms can be ap-
plied directly to defeat the protection afforded by pixelation.
Much work has been devoted in recent years to resolution
enhancement methods, especially for face images [4, 16].
We report results using the algorithm described in [16].

6.3. Experiments

We performed experiments on a 275 subject subset of the
FERET database using fa images in the gallery and fb im-
ages as probes [23]. The recognition experiments followed
the same protocol as described in Section 5.2.
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(a) Original vs. Pixelated Recognition (b) Automatic Parrot Recognition

Figure 8. Results of recognition experiments using PCA on pixelated images. (a) CMC curves for recognition on original fa and fb images
as well as images pixelated to various degrees. High recognition rates are achieved for anything but the highest level of pixelation. (b)
CMC curves for experiments in which the amount of pixelation in probe images is automatically detected and applied to gallery images as
well. This algorithm achieves recognition rates that are even higher than the performance on original, unaltered images.

Original p = 2 p = 4 p = 6

p = 8 p = 10 p = 12 p = 16

Figure 7. Original image from the FERET database [23] along
with de-identified versions using different degrees of pixelation.
The parameter p refers to the side length of the sub-block over
which pixel values are averaged.

6.3.1 Privacy Protection

Figure 8 shows results of recognition experiments using
PCA on both the original fa and fb images as well as images
pixelated to various degrees. In Figure 8(a) we see inade-
quate privacy protection for anything but that highest level
of pixelation. Notice that for p = 2 and p = 4 recognition
rates stay virtually unchanged. Even at the comparatively
high pixelation level p = 8 a rank-1 recognition of 40% is
achieved. We therefore conclude that pixelation does not
adequately protect privacy.

Figure 9. Comparison of recognition performance for pixelated
probe images and enhanced pixelated probe images. For small
levels of pixelation, enhancement improves the recognition accu-
racy.

6.3.2 Automatic Parrot Recognition

We used the algorithm described in Section 6.2.1 to auto-
matically detect the amount of pixelation present in probe
images and applied the same amount of pixelation to gallery
images. Training images and the separately computed
eigenspace remained unchanged. As shown in Figure 8(b)
the resulting recognition rates are even higher than the rates
achieved on the original, unaltered images for all but the
highest level of pixelation.

6.3.3 Image Enhancing Methods

We applied the algorithm proposed by Hardie et al. [16]
to pixelated images and compared the recognition perfor-
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mance on these enhanced images with performance on pix-
elated images. We found small performance improvements
for the enhanced images for low pixelation levels (p = 2
and p = 4) and decreases in performance for a higher pixe-
lation level (p = 8). See Figure 9.

6.3.4 Conclusion

In this section we showed that even under the “best” cir-
cumstances, the privacy protection afforded by pixelation is
fairly low. With simple attacks such as the automatic par-
rot recognition and image enhancing methods the little pro-
tection that pixelation provides can be further eroded. We
conclude that pixelation is inadequat as a privacy protection
mechanism.

7. Summary

In this paper we introduced a novel framework for the
protection of privacy in facial images. We showed that
our k-Same-M algorithm offers privacy protection simi-
lar to previously proposed algorithm, while producing de-
identified images of much better quality. We furthermore
provided additional evidence that simple ad-hoc methods
such as pixelation are inadequate for protecting privacy.
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