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Model-based Feature Augmentation for Cardiac

Ablation Target Learning from Images

Rocı́o Cabrera Lozoya1,2, Benjamin Berte2, Hubert Cochet2, Pierre Jaı̈s2, Nicholas Ayache1, Maxime Sermesant1

Abstract—Goal: We present a model-based feature augmenta-
tion scheme to improve the performance of a learning algorithm
for the detection of cardiac radio-frequency ablation (RFA)
targets with respect to learning from images alone. Methods:
Initially, we compute image features from delayed-enhanced MRI
(DE-MRI) to describe local tissue heterogeneities and feed them
into a machine learning framework with uncertainty assessment
for the identification of potential ablation targets. Next, we intro-
duce the use of a patient-specific image-based model derived from
DE-MRI coupled with the Mitchell-Schaeffer electrophysiology
model and a dipole formulation for the simulation of intracardiac
electrograms (EGM). Relevant features are extracted from these
simulated signals which serve as a feature augmentation scheme
for the learning algorithm. We assess the classifier’s performance
when using only image features and with model-based feature
augmentation. Results: We obtained average classification scores
of 97.2% accuracy, 82.4% sensitivity and 95.0% positive predictive
value (PPV) by using a model-based feature augmentation
scheme. Preliminary results also show that training the algorithm
on the closest patient from the database, instead of using all
the patients, improves the classification results. Conclusion: We
presented a feature augmentation scheme based on biophysical
cardiac electrophysiology modeling to increase the prediction
scores of a machine learning framework for the RFA target
prediction. Significance: The results derived from this study
are a proof of concept that the use of model-based feature
augmentation strengthens the performance of a purely image
driven learning scheme for the prediction of cardiac ablation
targets.

Index Terms—radio-frequency ablation planning, cardiac elec-
trophysiology modelling, intracardiac electrogram modelling,
electroanatomical mapping

I. INTRODUCTION

Cardiovascular diseases (CVD) remain, to date, the leading

cause of death in the western world. According to the Global

Burden of Disease, CVD were responsible for more than 29%
of deaths in the world in 2013 (> 15,616 million deaths),

twice the amount of deaths caused by cancer in the same

year [1]. Cardiac arrhythmias are a subset of CVD grouping

abnormalities in the heart rhythm. A dangerous consequence

of these rhythm perturbations includes a compromise of the

heart’s effectiveness to pump blood. Sudden cardiac death

(SCD) occurs if the condition is not treated within a very

Copyright (c) 2010 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

rocio.cabrera lozoya@inria.fr − Tel: +33 4 92 38 76 60 − 2004 route des
Lucioles BP-93, 06902 Sophia-Antipolis Cedex, FRANCE .

1 Inria Sophia-Antipolis, Asclepios Research Group, Sophia-Antipolis,
France
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short delay. Early detection and accurate prediction of disease

progression of cardiac arrhythmias remain an important need

to reduce their mortality. Furthermore, improvements in ther-

apy planning and guidance are of vital importance to reduce

the mortality of these diseases.

A potentially curative treatment for cardiac arrhythmias

is radiofrequency ablation (RFA), where thermal lesions are

generated in the heart to interrupt abnormal re-entry circuits

that cause arrhythmias. The greatest challenge in this therapy is

ablation target identification. To date, there exists no universal

consensus on the optimal ablation strategy, but a number of

techniques can be found in the literature [2]. Some report the

use of line lesions going from the regions of dense scar to

those of normal myocardium [3] or that transected all potential

isthmuses [4]. Other approaches focus on the study of reentry

isthmuses [5], [6] enhanced through the use of complementary

imaging modalities, such as MRI or PET [7], [8] while other

strategies include the assessment of pace maps [9], [10].

Electrocardiographic imaging (ECGI) is a relatively new,

noninvasive imaging modality that reconstructs potentials,

electrograms, and isochrones on the epicardial surface from

body surface measurements [11]. The work by Li and He

[12] solves this inverse problem by means of heart-model

parameters (onset activation location) and was further extended

[13] and validated on rabbits [14] and swines [15], [16].

More recently, [17] was able to reconstruct re-entry circuits

to correctly reveal both epicardial and endocardial origins of

activation, consistent with locations of exit sites confirmed

from the ablation procedure. Nevertheless, while it is useful in

capturing and analysing global activation patterns, it still has

limitations to assess the local abnormal ventricular activities

(LAVA) like those studied here which serve as ablation targets

for cardiac arrhythmia treatment.

The study in [18] analysed rates of ventricular tachycardia

(VT) recurrence in patients undergoing ablation limited to

clinical VT along with mappable VTs versus substrate-based

ablation. The first subset of patients underwent conventional

mapping techniques to define the mechanism of the arrhyth-

mias and identify potential sites for ablation. After complete

substrate mapping, pacing protocols were used to induce

clinical VT. Linear ablation lesions were placed to transect the

VT isthmus and terminate inducible VTs [18]. In the subset

of patients undergoing substrate-based ablation, careful iden-

tification of fractionated, delayed, or abnormal electrograms

was performed to eliminate all abnormal potentials. The study

found that an extensive substrate-based ablation approach is

superior to ablation targeting only clinical and stable VTs

in patients with ischemic cardiomyopathy presenting with
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Fig. 1: General processing pipeline showing the clinical data and the data processing, feature extraction and learning stages. It

shows EGM labels from clinical data being used only on the training process. Electrode locations (from the clinical EP study)

are used as reference points where the simulated electrograms are generated and where MR image features are computed.

Both simulated and image features are fed into the random forest algorithm for training. Finally, the testing stage consists

of obtaining a newly seen dataset and computing the corresponding features which are fed to the trained algorithm to obtain

prediction labels with a certain confidence level.

tolerated VT [18].

We will focus our attention on a recent study with a cohort

of 70 patients suffering from VT and structurally abnormal

ventricles which proposed the elimination of LAVA as an

endpoint for RFA therapy and concluded that it was associated

with a reduction in recurrent VT or death during long-term

follow-up [19].

LAVA identification can be achieved using electrophysi-

ological (EP) substrate mapping, however this is a lengthy

procedure (>6 hours), requiring a significant amount of X-

ray imaging and an expert electrophysiologist’s knowledge to

appropriately identify all LAVA instances. There is still a high

rate of recurrences due to missed ablation targets, as their

identification of LAVA is still a challenge.

It has been hypothesized that the generation of these abnor-

mal electrical activities is related to regions with the presence

of surviving myocardial fibers within scar tissue. Delayed-

enhanced magnetic resonance imaging (DE-MRI) remains, to

date, the gold standard for myocardial size and morphology

evaluation and for assessment of the heterogeneity of the

border zone [20]. In our context, it is useful to non-invasively

assess scar topology and tissue heterogeneity. Areas of in-

termediate signal intensity in DE-MRI, referred to as the grey

zone, are likely to host both scarred and surviving myocardium

related to arrhythmia in ischemic populations [19] [21].

In previous works [22], we demonstrated the feasibility in

the identification of RFA targets using only DE-MR image-

based features in a machine learning framework while in-

tegrating the influence of the inherent error sources of the

complex multi-modal data in the training set. Furthermore, we

presented in [23] the use of patient-specific anatomical models

constructed from DE-MR images coupled with a biophysical

electrophysiology model for the synthetic simulation intracar-

diac electrograms with distinguishable healthy and LAVA-like

characteristics.

We build up on our previous publication on signal simula-

tion [23] in order to show that model-based feature augmenta-

tion can introduce physiological knowledge from modelling

into the data-driven capabilities of machine learning. The

contributions of this manuscript are:

- The combined use of imaging and modelling to improve

the identification of ablation targets
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- An uncertainty assessment inspired from the works on

cost-sensitive learning to account for the impact of noisy

or inaccurate ground truth when being fed into learning

algorithms. A preliminary version of this work was

presented in [23].

- The analysis of the relative impact of using only imaging

data or imaging data together with model-based feature

augmentation on classification performance.

- The application of our full pipeline on a clinical patient

cohort consisting of five subjects whose ground truth

was constructed and revised by experienced clinicians.

The pipeline of our work is shown in Figure 1 and the

structure of this paper is as follows: we first present the ac-

quisition and processing stages of the clinical data used for our

experiments. We then describe the feature extraction process

for the imaging data. The framework used for the simulation

of intracardiac EGM is then explained, as well as the features

of the resulting signals. Then, we include an overview of the

uncertainty assessment followed by the evaluation metrics used

to assess the classification performance. Finally, the results

obtained through the use of only image features and image

features augmented with model-based features are presented

and their relevance is discussed.

The results derived from this study open up possibilities

for the inclusion of physiological knowledge into learning

algorithms through feature augmentation schemes for non-

invasive cardiac arrhythmia ablation planning. The clinical

significance of this work stems from the possibility of in-

corporating modelling and machine learning techniques into

a clinical workflow which would require only non-invasive,

pre-intervention data in order to improve the accuracy of

RFA target identification, therefore reducing intervention time

and increasing the success rates of RFA. To the best of our

knowledge, this is the first work presenting combined image-

based and model-based features in such a learning framework,

and using it to predict ablation targets from non-invasive

clinical data.

II. CLINICAL DATA

Five patients referred for cardiac ablation for post-infarction

ventricular tachycardia were included in this study. The pa-

tients underwent cardiac MRI prior to high-density EP contact

mapping of the endocardium or epicardium. While the final

aim of this work is to predict ablation targets from non-

invasive clinical data, the invasive EP study is required as

it will serve to obtain the ground truth necessary to train

and validate our algorithm. The following section describes

in more details the clinical data acquired.

A. Imaging Data

The scar tissue was imaged on a 1.5T MRI device (Avanto,

Siemens Medical Systems) 15 minutes after the injection of a

gadolinium contrast agent. A whole heart image was acquired

using an inversion-recovery prepared, ECG-gated, respiratory-

navigated, 3D gradient-echo pulse sequence with fat-saturation

(1.25×1.25×2.5mm3).

Fig. 2: (Left) DE-MRI slice with segmentation of the epi-

cardium (green), endocardium (orange) and the scar (white)

region. (Right) Anatomically personalised heart model denot-

ing the healthy (yellow), grey-zone (light grey) and scarred

(dark gray) tissues obtained from DE-MRI segmentations.

Fig. 3: (Left) CARTO mapping framework including catheter

location, generated mesh and recorded electrograms. (Right)

Samples of intracardiac electrograms labeled as LAVA (red)

or non-LAVA (blue) by an experienced electrophysiologist.

The top signal presents sharp potentials occurring after the

QRS complexes which have a slightly higher frequency than

the far-field ventricular potential, whereas the third signal

presents fractionation during the first recorded beat, therefore

complying with the definitions of LAVA. The second and third

signals show normal depolarization patterns, nonetheless, the

last signal presents a higher degree of noise in the baseline.

Experienced electrophysiologists are trained in order to be able

to detect LAVA even within signals with a certain degree of

noise. Furthermore, if the recording was deemed to noisy for

classification, it was discarded.

The epicardial and endocardial walls were manually

segmented on reformatted images of isotropic voxel size

(0.625mm3) as shown on the left image in Figure 2. Abnormal

myocardium (dense scar and grey zone areas) was segmented

using adaptive thresholding of the histogram, with a cut-

off at 35% of maximal signal intensity. Segmentations were

reviewed by an experienced radiologist, with the option of

manual correction, and allowed for the creation of anatomi-

cally personalised heart models as the one shown on the right

image in Figure 2.

B. Electrophysiological Data

Electroanatomical mapping (EAM) is a minimally-invasive

technique used to record in-vivo cardiac electrical activity at

specific locations inside the heart. When the catheter comes

in contact with the tissue of interest, both electrogram charac-

teristics (i.e. activation time or voltage) of the tissue and the
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TABLE I: Electrophysiology Study Statistics

Patient # Electrode Locations # M1-M2 EGMs # LAVA Samples # Non-LAVA Samples % LAVA in Dataset Ratio Scar / Healthy Tissue

1 1472 368 71 297 19.3% 0.17
2 4804 1201 44 1157 3.7% 0.25
3 1356 339 82 257 24.2% 0.08
4 856 214 44 170 20.6% 0.10
5 2800 700 33 667 4.7% 0.02

Fig. 4: Anatomically personalised heart models for Patients 1 to 5 showing healthy (brown), scar (black) and border zone

(grey) tissues.

coordinates of the catheter’s position in space through non-

fluoroscopic localization are retrieved [2].

Despite the capability of locating the catheter in 3D space

and therefore reconstructing the heart chamber that is be-

ing mapped, geometries provided by EAM systems tend to

be rough estimates of the actual cardiac anatomy. Catheter

position is highly affected by cardiac or respiratory motion,

and anatomic reconstruction algorithms may vary between

systems [2]. These limitations can compromise the integra-

tion of EAM information with anatomical information from

traditional imaging systems.

For our study, the CARTO mapping system (Biosense Web-

ster) is used. Contact mapping was achieved in sinus rhythm

on the endocardium (trans-septal approach) with a dedicated

multipolar mapping catheter (PentaRay, Biosense Webster).

Signals were annotated by an experienced electrophysiologist

into either normal or LAVA categories, extremely noisy signals

which did not allow for a reliable classification were discarded.

All labels were validated by a different electrophysiologist.

Samples of these signals are shown in Figure 3. Table I

summarizes the number of electrode locations and bipolar

electrograms recorded as well as the proportion of LAVA and

normal signals encountered for the EP study of each patient.

III. METHODS: COMBINED IMAGING AND MODELLING

We first aim to extract local image features in the vicinity

of the location where intracardiac electrograms were recorded

and therefore introduce the concept of catheter’s sensing

range. It refers to the volume of tissue that influences the

recording at a particular electroanatomical point (EAP) and it

is this region that should be considered when computing image

features to describe a particular EAP. Following the recom-

mendations of the experienced electrophysiologist involved in

this work, it is represented by a sphere of radius empirically

set to 10mm [22].

A. Image Feature Extraction

The work in [21] showed that MR image intensities can

be used to discriminate the heterogeneous substrate. Voxels

contained inside the sensing range of the catheter were used to

compute intensity-based features, including minimal, maximal,

mean and standard deviation values. Another feature, defined

as the standard deviation over the average intensity in the

region, was included. Myocardium thickness was calculated

and the scar transmurality was defined as the extent of scar

through the entire myocardial thickness.

Texture from medical images provide us with additional

information inherent to the underlying tissue. This information

has been used in applications as cardiac image indexing

and retrieval [24], or to predict vascular events [25]. Grey

level co-occurence matrices (GLCM) are matrices of the joint

probability of occurrence of a pair of grey values separated

by a displacement d = (dx, dy, dz). Haralick features are

statistics computed on GLCM that emphasize specific tex-

ture properties and have been extensively used in medical

image analysis [26]. In our study, the GLCM were computed

around the center of the myocardium were the EAP had been

projected using a ROI of window size of 11×11×11 pixels

(∼9.4×9.4×9.4mm). Three distances from the central pixel

(1, 2 and 4 pixels), 13 directions and 12 Haralick features

were considered, resulting in a 468 element texture feature

vector per EAP analyzed. Concatenation of the intensity and

texture features yielded a final image-based feature vector of

475 dimensions per electroanatomical point. Furthermore, we

assigned a confidence weighting value to the samples during

the training phase based on their temporal displacement during

EGM recording. This way, image features from EAPs which

were less affected by movement were considered more reliable

by the classification algorithm. The methods have been more

thoroughly described in [22].

B. Model-based Feature Augmentation

The first step in our model-based feature augmentation

scheme is the generation of synthetic intracardiac

electrograms, for which we require three main components:

a cardiac source model which will be able to describe the

depolarization and repolarization activity of the cardiac
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tissue, a tissue model which will be able to account for the

differences in electrophysiological properties of the scar and

the grey zone and, finally, an electrogram recording model

which will describe the electrical activity at the location of a

particular catheter.

Cardiac Source Model: Cardiac electrophysiology can be

described through a variety of mathematical models [27]–

[30]. More detailed cell-specific models also exist which

aim to describe cell-to-cell variability in the cardiac tissue

[31], [32]. These models have evolved in the last decades

to better represent physiological phenomena [33], e.g. some

have been used to study VT or other arrhythmia episodes

[34]–[37]. We chose a cardiac electrophysiology model able to

represent complex cardiac electrical phenomena while keeping

the number and variation of the involved variables tractable:

the Mitchell-Schaeffer (MS) [30] model. It has two variables:

u, the transmembrane potential and z, a secondary variable in

charge of controlling the repolarisation phase. The model is

governed by the following two equations:











∂tu = div(D∇u) + zu2(1−u)
τin

− u
τout

+ Jstim(t)

∂tz =

{

(1−z)
τopen

if u < ugate

−z
τclose

if u > ugate

(1)

Where D = d · diag(1, r, r) is an anisotropic diffusion tensor

that enables the conduction velocity in the fibre direction to

be 2.5 times faster than in the transverse plane R = 1
2.52 . The

parameters τin and τout define the depolarisation and repolar-

isation phases whereas τopen and τclose are responsible for the

action potential duration and the refractory period, based on

the change-over voltage ugate. Jstim is the stimulation current

at the pacing location.

The implementation of the Mitchell-Schaeffer model in the

SOFA public framework (details described in [38]) was used.

Tissue Model: Imaging data were used to construct a

personalized bi-ventricular model, including distributions of

scarred and grey zone regions. The MS model parameters were

changed in order to account for the differences in electrophysi-

ological properties of the infarcted and border zone tissue with

respect to the healthy myocardium. Table II shows the set of

parameters used for our personalized simulations. Details of

the modifications leading to these parameter values can be

found in [23].

TABLE II: Simulation Parameter Values (taken from [23])

Parameter Healthy Tissue Grey Zone Scar Tissue

τin [ms] 0.3 0.42 10×103

τout [ms] 6 8.4 10×103

τclose [ms] 150 187.5 187.5
τopen [ms] 120 120 120
ugate 0.13 0.13 0.13
AP Peak Amplitude 1.0 0.7 0.7
Conductivity 4.0 0.4 0.4

EGM recording model: The cardiac source model with the

tissue-specific parameters and the electrogram recordings were

computed simultaneously using a dipole approach as done in

Fig. 5: Sample LAVA (red) and non-LAVA (blue) simulated

signals and their clinical counterpart (recorded by the CARTO

EP system) are shown. Nevertheless, it is important to note that

the blue CARTO signal presents a certain degree of noise,

which to the untrained eye might seem as abnormal activa-

tions. Also the red CARTO signal presents a steep and high

amplitude potential occurring after the QRS complex, a LAVA,

which does not happen in the blue signal. This characteristic

is well reproduced in the simulated LAVA signal, whereas the

simulated blue signal presents a clean depolarization complex

and (due to the model characteristics as detailed in [23])

appears noise-free.

[23] and [39]. As in [40], we modelled every myocardium vol-

ume element (tetrahedron) as a spatially fixed but time varying

current dipole. We define the equivalent current density jeq as:

jeq = −σi∇v (2)

where jeq is a current dipole moment per unit of volume and

the local dipole moment p in the volume V writes as p =
∫

V
jeqdV . According to the volume conductor theory [41], the

electric potential at a distance R in a homogeneous volume

conductor of conductivity σb is:

Ψ(R) =
1

4πσb

∫

V

jeq · ∇(
1

R
)dV (3)

We model the moving propagation front as a dipole field. The

infinitesimal dipole moment of the volume dVX located at

position X is defined as pX = jeq,X dVX = −σi
X ∇vXdVX .

As we use linear tetrahedra in the FEM discretization of the

myocardium, the potential v is linear and ∇v is constant over

the tetrahedron. We get the following formulation of the dipole

moment of the charge in the volume VH of tetrahedron H of

the myocardial mesh: pH = −σi
H∇vHVH The gradient of

the electric potential ∇vH for a tetrahedron H is estimated

using the node positions Xk
H and the shape vectors

−−→
Dk

H of the

tetrahedron H [42]:

−−→
Dk

H =
s

VH

(Xk⊕2
H −Xk⊕1

H )× (Xk⊕3
H −Xk⊕1

H ) (4)

where s = 1 for k = 2, 4, s = −1 for k = 1, 3, and k ⊕ l =
(k−1+l) mod 3+1. The gradient of the electric potential in
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the tetrahedron H is then computed from the potentials v(Xk
H)

at the nodes Xk
H as:

∇vH =
4

∑

k=1

v(Xk
H)

−−→
Dk

H (5)

From Equation 3, the contribution ΨH of the tetrahedron H

to the potential field calculated at position XT is:

ΨH(XT ) =
1

4πσT

σi
HVH (∇vH ·

−−→
HT )

‖
−−→
HT‖3

(6)

with
−−→
HT the vector from centre of the tetrahedron H to the

torso electrode location T . Finally, we sum over the whole

mesh to get the potential field at XT .

The recording catheter used in the clinical environment has

four electrodes named M1, M2, M3 and M4 from the distal to

the proximal. The locations obtained from the CARTO system

during the recording of the clinical electrograms were used to

simulate unipolar electrograms. Therefore, a single electrode

location will be associated with both a clinical unipolar

signal and a simulated one. Then, in both the clinical and

the simulation scenario, two bipolar recordings are generated

from these unipolar measurements: M1-M2 and M3-M4.

Because the far-field signal is assumed to be similar for

both unipolar recordings, it is largely filtered out in bipolar

measurements and they are useful to study local activities.

It is on these bipolar measurements that LAVA signals

can be identified. Sample signals for simulated intracardiac

electrograms and their clinical CARTO counterpart are show

in Figure 5.

Extraction of Augmented Features. Feature extraction

was performed on the distal-most bipolar simulated EGMs.

Eight model-based features, shown in Figure 6, were extracted

from the simulated electrograms: signal range, number of

inflection points, signal energy, dominant frequency, mean

slope, fractionation index and minimum and maximum sig-

nal values. Details concerning EGM feature extraction are

discussed in [23]. These features were concatenated to the

ones obtained from the image. Similarly as in the image-based

learning scheme, a confidence weighting based on temporal

displacement during EGM recording was incorporated in the

training phase.

A full summary of the features used is shown in Table III.

TABLE III: Augmented Feature Summary

Feature Description Dimensions

Image Features
Intensity-based 5
Myocardial thickness 1
Scar transmurality 1
Texture-based 468
Simulation Features
Amplitude-based 3
Energy/frequency 2
Clinical EGM description (fractionation) 3

Fig. 6: Features obtained through the use of a model-based

feature augmentation scheme.

C. Uncertainty Assessment

We derived a principled analysis of confidence impact on

classification. Inspired by cost-sensitive learning, we formulate

the problem as samples (x, y, c) drawn from a distribution

D on a domain X × Y × C with X being the input feature

space, Y corresponding to the binary output class and C to

the confidence associated with each sample. We aim to learn

a classifier h : X → Y which minimizes the new expected

classification error E:

E(x, y, c ∼ D)[cI(h(x) 6= y)] (7)

Where I( · ) is the indicator function that has a value of

1 in case the argument is true and 0 otherwise. Using the

Translation Theorem 2.1 in [43] we can compute and draw

samples from a distribution D′ such that the optimal error rate

classifiers for D′ are optimal cost minimizers for data drawn

from D. We derive how this modifies the training using weights

to simulate the expectation of finite data E(x, y ∼ D)[I(x, y)]
as:

E(x, y ∼ D)[f(x, y)] =
1

∑

c

∑

cI(x, y) (8)

equivalent to importance sampling for D′ using distribution

D, so the modified expectation is an unbiased Monte Carlo

estimate of the expectation with respect to D′ [43]. In random

forests, the node split criterion is information gain:

IG = H(S)−
∑

i=1,2

|Si|

|S|
H(Si) (9)

with |S| being the number of samples in a node before split,

|Si| being the number of samples of each children node and

H(S) the Shannon entropy:

H(S) = −
∑

c∈C

p(c)log(p(c)) (10)

where p(c) is calculated as normalized empirical histogram of

labels corresponding to the training points in S, p(c) = |Si|
|S| .
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Using weighted instances, p(c) is replaced by pw(c), which

has the following formulation:

piw(c) =

∑

Weights of samples of class c in node i
∑

Weights of samples in node i
(11)

piw(c) =

∑

Sc
W i

∑

S W i
(12)

This yields a sample weighted formulation of the information

gain that can be written as:

IG = H(W )−
∑

i=1,2

∑

S W i

∑

S W
H(W i) (13)

where W are sample weights at the parent node and W i are

sample weights that have been passed to each child node.

H(W ) is given by:

H(W ) = −
∑

c∈C

pw(c)log(pw(c)) (14)

Due to breathing and cardiac motions, the recording catheter

is displaced throughout the 2.5 seconds of recording time.

Magnitudes varying significantly among electro-anatomical

points (EAP) so, intuitively, features from EAP with smaller

displacement are considered to be more reliable. The co-

variance of the position matrix is obtained and an ellipsoid

with radii 2
√

diag(P ) is generated, where P is the matrix

containing the eigenvalues along the main diagonal. The

major ellipsoid radius, TD = max(2
√

diag(P )), defines the

temporal displacement. Each EAP is assigned a confidence

value by linearly scaling the temporal displacement to a weight

parameter with range of [0.5, 1] where 0.5 corresponds to the

lowest confidence and 1 to the highest. We first presented this

formulation to strengthen our methodological approach in [22].

D. Machine Learning Framework

Similarly to what was presented in [22], we used a ran-

dom forest [44] classification framework with a five-fold

nested cross-validation scheme [45]. The use of nested cross-

validation, with a parameter-tuning inner loop and an outer

loop for performance estimation, avoided an optimistic bias

introduction into generalization estimate [45]. The number of

trees in the classifier, their respective depth and the maximum

number of features used were optimized for PPV performance

using the Python implementation from the scikit-learn library

[46].

IV. EVALUATION METRICS

In order to be clinically useful, the results of the classifica-

tion algorithms were projected onto the endocardial surface

mesh to create confidence maps for potential RF ablation

targets. The study in [47] reports an average endocardial

area of 3.5cm2 for RFA lesions. Therefore, the endocardial

surface was divided into regions of area 1.7cm2, two times

smaller than the average RFA lesions. Figure 7 shows a sample

endocardial surface mesh partition.

EAP were projected to their closest endocardial surface

region along with their prediction and confidence results. Also,

Fig. 7: (Left) Anterior and (Right) posterior resulting regions

for classification result display after endocardial surface divi-

sion.

a region was considered LAVA if at least one of the EAP

projected onto it was labelled as such. The justification behind

this is given by the physical constraints of RFA: the ablation

of a LAVA site will affect neighbouring tissue within the

extension of the RFA lesion size, even if they are considered

non-LAVA inducing.

After projection of the classification results onto the regions

in the surface mesh and its comparison with the ground truth,

a confusion matrix was generated and the following statistics

were computed: accuracy, sensitivity and positive predictive

value (PPV).

V. RESULTS AND DISCUSSION

A. Classification Results

By applying the presented method on 5 patients, we

obtained the classification results detailed in Table IV. For

illustrative purposes, prediction maps from Patient 1 are

shown on Figure 8.

TABLE IV: Classification Statistics

Learning Patient Accuracy Sensitivity Specificity PPV

Image P1 94.0 73.3 98.5 91.6
P2 92.6 33.3 100 100
P3 91.8 39.0 99.0 90.0
P4 93.7 11.0 100 100
P5 92.5 10.0 100 100

Mean 92.9 33.2 99.4 96.4

Simulation P1 89.2 73.3 92.7 68.7
P2 95.4 66.6 98.0 88.0
P3 92.6 78.0 98.0 90.0
P4 99.2 89.0 100 100
P5 95.7 60.0 100 100

Mean 94.4 73.2 97.8 89.4

After Feature P1 95.2 80.0 98.5 92.3
Augmentation P2 96.3 66.6 100 100

P3 96.2 87.0 98.0 83.0
P4 99.2 89.0 100 100
P5 98.9 90.0 100 100

Mean 97.2 82.4 99.2 95.0

- Results from image-based learning. As can be seen

from Table IV, the algorithm has an overall accuracy of

92.9% across the five patients, with a LAVA-specificity

of 99.4% and a LAVA-PPV of 96.4%. This means that

when a region is classified as LAVA, in general, the
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Fig. 8: (Top) LAVA regions from ground truth of Patient 1 and predicted LAVA regions with confidence level color-coding for

image-based features and image + model-based augmented features.

Fig. 9: Classification statistics summary on five patients using

image-only features (blue) and image plus augmented model-

based features (orange).

algorithm is quite reliable. Nevertheless, there is a severe

discrepancy in the scores of LAVA-sensitivity across

patients, being as high as 73% as in Patient 1 or as low

as 10% as in Patient 5.

- Results from simulation-based learning. Although the

results from using only simulation-based features are

slightly lower in terms of LAVA-specificity (97.8%) and

PPV (89.4%) than those obtained through image-based

learning, they remain high. The overall accuracy of the

algorithm across the five patients is of 94.4%, but more

importantly, the sensitivity increased by almost 40%.

- Results after model-based feature augmentation.

Significantly higher scores in accuracy (97.2%) and

even more in LAVA-sensitivity (82.4%) scores were

achieved after incorporating feature augmentation while

yielding high values for LAVA-specificity (99.2%) and

LAVA-PPV (95.0%) across the five patients. Therefore,

it can be said that this scheme is able to boost both

the accuracy and LAVA-sensitivity obtained from purely

image-based methods while slightly compromising on

the specificity and PPV.

From the previous results it an be seen that the use of an

augmented feature set containing both imaging and simulation-

based features outperforms the overall results from either

method alone. The deficiencies of the simulation-based method

in PPV score are compensated by the high scores of the image-

based method and, more importantly, the synergy between both

methods allows for an overall increase of LAVA-sensitivity

across patients.

It is also interesting to note that the patient with the lowest

scores has a scar-to-healthy tissue ratio of 0.25, the highest

in our patient cohort. Similarly, the patient with the smallest

scar-to-healthy tissue ratio had the highest sensitivity in our

database.

On the other hand, the algorithm’s performance is not

correlated to the number of LAVA in the dataset, as Patients

2 and 5, with the two lowest percentages, present both the

lowest and highest sensitivity scores when using an augmented

feature set.

B. Preliminary Results on Inter-patient Learning

Given the large variability in etiologies, image quality and

catheter recording noise level, using a classifier learned from

a different patient is challenging. Nevertheless, we performed

preliminary inter-patient classification experiments using the

two patients in the database whose mean feature vector re-

sembled the most. The mean feature vector of a patient was

obtained by averaging the feature values for all its EAP. The

Euclidean distance of the current test patient’s feature vector

to each of the patients in the database was computed and the

learning algorithm was trained using only the features from

the closest subject. Figure 10 shows the distance between the

feature vectors of all the patients in the database.

Furthermore, the threshold in classification probability was

optimized. Traditional random forest binary classification al-

gorithms label a given sample based on the probability dis-

tribution of both classes. The label assigned is that of the

class with the highest probability, therefore, even the slightest

increase from a 50% probability would result in a hard label.

Nevertheless, for the purposes of our particular application, we

wish to leverage our clinical understanding of the problem to

explore the use of a more clinically-suitable threshold. In this
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Fig. 10: Grid depicting the normalized Euclidean distance

between the mean feature vectors of all patients. Patients 3

and 4 have the most similar vector while Patient 2 is shown

to have the most dissimilar one to the rest of the database.

context, as the output of our algorithm would be providing

the clinician with a map of regions that would be potential

ablation targets, it is preferable to minimize the number of

false negatives (FN) in the classification. This is because

during the intervention, a clinician could always assess the

tissue marked as a target prior to performing an ablation.

While having a considerable percentage of false positives (FP)

would signify that the clinician would have to manually verify

them before ablation, it is preferable than having an algorithm

yielding a considerable number of false negatives. This would

fail to mark as ablation candidates regions in the myocardial

tissue that are LAVA-inducing, and because the clinician would

not be driven to analyse these regions, it could compromise the

success of the therapy. Therefore, we gradually increased the

threshold values for classification to find an optimal threshold

t. That is to say, a region should have at least a confidence t of

it belonging to a non-LAVA inducing region, before classifying

it as so. This will primarily impact the sensitivity of the LAVA-

inducing regions while increasing the PPV of the classification.

These preliminary experiments were only performed using

the two patients with highest resemblance in their feature

vectors (Patient 3 and 4), which are also the two patients

with the most similar value of scar-to-healthy tissue ratio in

our patient cohort. As can be seen from Table V, the average

classification scores were of 96.8% accuracy, 95.9% specificity

and 89.6% PPV. While very preliminary, we consider these

results open the doors to a proof of concept for an entirely

non-invasive assessment of the presence of LAVA inducing

regions in a patient.

TABLE V: Inter-patient Classification Statistics. (trained on

the closest patient, given in parenthesis with the normalized

Euclidean distance using optimal classification threshold)

Learning Patient Accuracy Sensitivity Specificity PPV

Closest P4 (P3, 7.40) 98.4 100.0 98.3 83.3
(t = 0.60) P3 (P4, 7.40) 95.1 91.7 95.6 75.9

Mean 96.8 95.9 96.9 79.6

C. Discussion

From these experiences, it can be seen that model-based

feature augmentation improves the classification scores ob-

tained by using only image-based features. Particularly it

increases the algorithm’s sensitivity to abnormal electrograms

by incorporating physiological knowledge into the data-driven

learning system.

We recognize that one of the limitations of this work is the

reduced patient cohort due to the challenges in acquiring such

comprehensive data for the study. These challenges include,

but are not limited to, the need for both cardiac MRI and

electroanatomical mapping, as well as detailed labelling of

this data by experts, which is a time-consuming process

(late-enhancement MR segmentation is still not automatised,

and we have between 800 and 4800 recorded electrodes

per patient to label). Furthermore, most patients undergoing

RFA for VT were not suitable for this work as the MR

imaging study could not be performed due to the presence of

an implantable cardioverter-defibrillator (ICD). Nevertheless,

despite this limitation, we believe this work is an encouraging

proof of concept of the use of biophysical modeling for feature

augmentation in a machine learning framework, in order to

improve the accuracy of ablation point identification.

In the results section, it was described how Patient 2,

with a scar-to-healthy tissue ratio of 0.25, had the lowest

performances, while Patients 3, 4, and 5, with a scar-to-healthy

tissue ratio lower than 0.10, had better overall performances.

This might lead us to believe that one of the limitations of

our method is its capability of extrapolating to patients with

significantly large scars, and that it would be best suited for

patients with a relatively small scar-to-healthy tissue ratio.

While the current state of our modeling framework allows us

to modify the electrophysiological parameters of healthy, grey

zone and scarred tissue, the electrophysiological properties of

large sections of damaged tissue might become less homoge-

neous, giving rise to greater differences between the clinically

and simulated electrogram features.

While preliminary, we also showed that inter-patient analy-

sis can yield encouraging results by training on a small cohort

(the closest patient) and leveraging on the understanding of

the clinical problem further drives the algorithm to perform

better for our clinical application.

The authors consider that a line of future work should

focus on the construction of larger databases. One way to

achieve this is to use synthetic data with realistic character-

istics similar to what was performed in [48]. These samples

could include realistic myocardial infarctions with different

grey zone to scar core ratios, sizes, shapes and locations and

intracardiac electrograms could be computed from them. After

considerably increasing the size of our database (with both real

and synthetic samples) we could consider more sophisticated

learning algorithms, such as deep learning, and evaluate them

in a clinical study.

If this larger study were to be successful, the authors see the

inclusion of an approach like the one proposed in this paper to

be feasible from a technical standpoint. For a new incoming

patient, only a non-invasive imaging study would be needed
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in order to generate a personalized model of the patient’s

cardiac anatomy, including differentiation between the healthy

and scarred regions of the heart. Next, electrophysiological

modelling and imaging features could be extracted and com-

pared to an existing database. The simulation and analysis

time could be shortened to meet clinical needs, especially

with the current advances in hardware, which could allow for

rapid parallel processing. The analysis of this pre-intervention

data would allow for an improvement in the accuracy of RFA

target identification, reduction of the intervention time and an

increase in the success rates of RFA.

VI. CONCLUSION

We presented the use of a biophysical model for feature

augmentation to improve the performance of machine learning,

for the prediction of RFA target identification defined by

the presence of LAVA. The image data was obtained from

delayed-enhanced MR imaging while feature augmentation

was performed through the use of a personalized image-

based model for the simulation of intracardiac electrograms.

First, the classification performance was assessed using only

image-based features. Next, an augmented feature vector was

used for classification. Their performances were evaluated

for five patients in an intra-patient manner. We found that

using a model-based feature augmentation scheme had better

performance when assessed using four classification metrics.

Finally, a preliminary inter-patient learning experiment was

put in place. Because only a reduced and highly heterogeneous

database was available, we restricted the training set to the

single closest patient in the database, as opposed to using all

the patients contained in it, and we adjusted the classification

threshold as opposed to using the traditional 0.5 threshold.

These results open up possibilities to introduce physiological

knowledge through biophysical modelling into machine learn-

ing approaches, in order to improve the prediction results.
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