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Abstract. A Web Service is commonly not an independent software en-
tity, but plays a role in some business process. Hence, it depends on the
services provided by external Web Services, to provide its own service.
While developing and testing a Web Service, such external services are
not always available, or their usage comes along with unwanted side ef-
fects like, e.g., utilization fees or database modifications. We present a
model-based approach to generate stubs for Web Services which respect
both an extra-functional contract expressed via a Service Level Agree-
ment (SLA), and a functional contract modeled via a state machine.
These stubs allow a developer to set up a testbed over the target plat-
form, in which the extra-functional and functional behavior of a Web
Service under development can be tested before its publication.

1 Introduction

The emergence of the Service Oriented Architecture (SOA) paradigm is changing
the way in which software applications are developed [17]. Two trends, seemingly
in contradiction with each other, are witnessed. On the developer’s side, we face a
drop in control capability: a service-oriented application consists of the dynamic
composition of autonomous services. Therefore, a service-oriented application
commonly depends on the services provided by external, autonomous services,
and its development process is not anymore under the full control of a single
stakeholder/organization.

On the consumer’s side, instead, users (i.e., the service clients), who can choose
among many available services, are becoming more and more exigent concerning
the properties expected from a service, and ask for precise specifications of the
offered service functionality and performance. Based on those they will make
their “purchase” decision. Such specifications establish a contract between the
service provider and the client.
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Thus, a service provider needs to manage and reconcile these contrasting
trends: binding client requirements against limited control capability. A key ap-
proach to solve this conflict stays in propagating the formalization of contracts
among all the services invoked by a composite service. The interdependency
with other services is laid on precise specifications of service interfaces, which
also establish contracts on the interactions between services.

A contract can deal with functional and extra-functional properties. When
dealing with the former, beside the mere signatures of the provided operations,
the offered functionality of services is often subject to given conditions, like
e.g. always invoke the authentication operation providing a valid password be-
fore invoking the booking operation. This is especially true for stateful services.
Such contracts are prevalently specified via state machines. Extra-functional
contracts, i.e., the delivered Quality of Service (QoS) levels, are made explicit
in Service Level Agreements (SLAs in the following) [21]. SLAs also provide the
basis on which the cost of using the service is quantified, and the penalties, in
case the contract is violated, are defined.

When developing a new service, its interaction with the external services it
uses must be tested, to validate that it obeys the functional contracts in place,
and to evaluate its offered quality level, which is affected by the quality levels of
the invoked services. In an ideal case, all the external services are available, and
can be arbitrarily accessed at development time for testing purposes. Unfortu-
nately, this ideal case is seldom offered. Commonly, at least some of the external
services are either not available at all (for instance simply not implemented, yet),
or their usage comes along with unwanted side-effects (for instance utilization
fees or database modifications). But what is usually available are the contracts
of the external service interfaces. The availability of models specifying extra-
functional behavior for the interacting services could also suggest the application
of analytical techniques [16] to derive the needed extra-functional properties. As
discussed in [8], when interaction happens through complex middlewares, such
an option is not always feasible, since the modeling of such infrastructures is
particularly difficult and error prone.

At the core of the approach presented in this paper is a model-based stub
generator, called Puppet [23]. We assume that for each external service not
available or suited for testing, both a functional contract in terms of a state
machine, and an extra-functional contract in terms of an SLA, are present. Based
on these two contracts, Puppet automatically generates a stub for the external
service, which respects the contracts. For the functionality this means that the
stub behaves conforming to the functional contract (for instance, it never violates
any guard of the corresponding state machine). Furthermore, when someone is
using the stub, it is able to detect a violation of its functional contract by that
user. Respecting the extra-functional contract means that the stub meets the
quality levels specified in the corresponding SLA.

Using this generator the developer of a new composite service can replace all
external services which are not fully available at development time with the stubs
generated by Puppet. The automatically obtained stubs make up a testbed in
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which the service under development can be tested within the target platform
before it is published. Carrying on the testing also entails the identification of
a suitable test suite. This is a challenging issue, but outside the scope of the
present paper (though we hint at possible directions to pursue in future work).

In a preliminary work [4] we described how stubs respecting an extra-functional
contract can be generated, but in that work the generated stubs did not consider
functional aspects (i.e., they provided a correct quality-related behavior, but the
messages were not built to be semantically meaningful). This paper’s original con-
tribution is the integration of functional contracts as part of the generated testbed.
We will motivate (see Sect. 5) that functionality and extra-functionality are not
independent from each other. Having functionally correct stubs can reveal extra-
functional behavior of the service under development, which may not be observ-
able in a purely extra-functional testbed. Vice versa, having stubs respecting given
quality levels may disclose functional behavior which does not show up in a purely
functional testbed. Thus, here the whole is more than the sum of its parts; combin-
ing both kinds of contracts strictly increases the testing power of the testbed com-
pared to taking both a purely extra-functional and a purely functional testbed.
While related proposals exist for functional verification or extra-functional eval-
uation of services (see Sect. 6), to the best of our knowledge, no such framework
supports an integration of both aspects.

The next section provides an overview of Puppet, and introduces the case
study we will use throughout the paper to illustrate the approach. Section 3
explains how the SLAs are modeled and simulated, while Sect. 4 provides the
background for functional modeling, and introduces the formal testing relation
we exploit to simulate correct functional behavior of the generated stubs. Section
5 illustrates the testing power of the testbed generated by Puppet. Finally,
related work is overviewed in Sect. 6, while conclusions and further interesting
features, that Puppet could offer in future work, are given in Sect. 7.

2 Overview

We demonstrate our approach by referring to an exemplary case study, which is
introduced in Sect. 2.1. Section 2.2 presents the logical approach of the Puppet
stub generator.

2.1 Motivating Scenario

We have implemented a simplified version of the scenario presented in [1], in
which three services (the customer, the supplier, and the warehouse) cooperate to
achieve the task of a trade. The customer service is interested in buying a certain
amount of a given product, and queries the supplier service for a quote for the
product of interest. Having received the request, the supplier queries one or more
warehouse services to check if the requested quantity is in stock. The information
provided by the warehouses is then collected by the supplier service, and returned
to the customer service. If satisfied with one of the provided quotes, the customer
can then proceed with the order. The case study also handles further interactions,
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Fig. 1. The Customer-Supplier-Warehouse Case Study

namely supplier authentication and bonus accounting schemes, which will be
discussed in Sect. 4 and Sect. 5.

We can realistically assume that the three services are implemented and pro-
vided by different stakeholders, and that their interactions are governed by mes-
sage exchange protocols under agreed levels of QoS, as shown in Fig. 1.

For illustration purposes, we put ourselves in the role of the developer of
a supplier service, which requires a testbed to a) test the compliance of the
supplier service with the functional contracts of the warehouse services, and b)
needs to derive reliable values for the QoS of the supplier service by taking
into account the QoS of the given warehouse services. The latter is particularly
important if the developer him/herself needs to publish a contract for potential
customers, which may involve the provision of the services under agreed level of
QoS parameters (such as for instance throughput, latency, reliability).

The behavior of the supplier (both functional and extra-functional) depends
on the behavior of the warehouse services going to be accessed at run-time. The
problem the developer faces here is that he/she does not want to invoke the real
warehouse services during development time for testing purposes (e.g., really
buying goods).

To address this issue, the Puppet tool can automatically generate stubs for
the warehouses that do not only reproduce the specified functional behavior
encoded in corresponding state machines, but also perform according to the
QoS parameters defined in the warehouses SLAs. The idea is, that such a stub
can then be deployed on a Web Service platform (such as Axis [3]), potentially
reproducing different distribution settings, and being accessed during testing
by the supplier service for taking experimental measures. For simplicity the
considered case study only deals with one warehouse service to be simulated;
in general Puppet can handle an arbitrary number of services, generating one
stub for each externally accessed service.

2.2 Logical Approach of Puppet

Puppet generates stubs which exhibit meaningful extra-functional and func-
tional behaviour. The generation is structured in three main steps. The first step
defines the stub structure by converting the abstract part of a WSDL [6] rep-
resentation into a collection of Java classes and interfaces. This transformation
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is performed exploiting the Apache-Axis WSDL2Java utility [3]. The second
generation step extends the stub with the code simulating the extra-functional
behavior. We assume that the desired QoS properties of the service to be stubbed
are expressed according to a WS-Agreement specification [13]. Section 3 will show
how the WS-Agreement statements are mapped to parametric portions of Java
code. The final step of the generation process inserts into the stub parametric
code able to emulate the intended functionality. Our assumption is that a func-
tional specification of the service to be stubbed is available (possibly derived
from a global view such as a choreography specification) via a state machine.
Such a specification defines which are the correct values expected for the ser-
vice invocation parameters, what is the legal message ordering accepted by the
service, and, what are the characteristics of an answer to be provided by the
service. In particular we adopt the Symbolic Transition System (STS) notation
(see Sect. 4). Having all desired stubs generated by Puppet, the developer is
able to mock-up the environment by deploying the generated stubs on any Axis
platform.

Note that the generated functional and the extra-functional parts may in-
teroperate at run-time. As described in the following, Puppet uses pre-defined
Java patterns in order to emulate the functional and extra-functional properties.
Puppet combines the generated patterns according to a fixed order. Defining a
new pattern or changing an existing one has to be validated with respect to both
the possible dependencies with the other patterns, and the order in which Pup-
pet combines them. For example, as detailed in Sect. 3.2, the definition of the
Java pattern dealing with latency constraints takes into account the temporal
dependency on other computational tasks.

3 Model-Based Extra-Functionality

This section firstly introduces the language we use to express SLAs (Sect. 3.1),
and then shows how the referred extra-functional properties are processed by
Puppet (Sect. 3.2). Generally speaking, SLAs describe the agreements that a
service commits to accomplish when processing a request from a client, starting
from the moment it receives the request until the moment it replies [22]. QoS
properties are defined only as a provider constraint, and do not include any kinds
of events that the client may experience, for example network failures or traffic
congestion problems. We point at ways to consider network issues in Sect. 6.

3.1 WS-Agreement

WS-Agreement [13] is a language defined by the Global Grid Forum aiming at pro-
viding a standard layer to build agreement-driven SOAs. The main ingredients of
the language concern the specification of domain-independent elements of a sim-
ple contracting process. Such generic definitions can be augmented with domain-
specific concepts. The top-level structure of a WS-Agreement is expressed via an
XML document comprising the agreement descriptive information, the context it
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refers to and the definition of the agreement items. It includes the involved parties
as well as other aspects such as its expiration date.

An agreement can be defined for one or more contexts. The defined consensus,
or obligations, of a party core in a WS-Agreement specification are expressed
by means of terms, organized in two logical parts. The Service Description
Terms part specifies the involved services. It describes the reference to a descrip-
tion of a service, rather than describing it explicitly into the agreement. The sec-
ond part of the terms definition specifies measurable guarantees associated with
the other terms in the agreement. Such guarantees can be fulfilled or violated. A
Guarantee Term definition consists of the obliged parties (i.e, Service Consumer
and Service Provider), the list of services this guarantee applies to (Service
Scope), a boolean expression that defines the condition under which the guar-
antee applies (Qualifying Condition), the actual assertions that have to be
guaranteed over the service (Service Level Objective - SLO), and a set of
business-related values (Business Value List) of the described agreement (i.e.,
importance, penalties, preferences). In general, the information contained in the
fields of a Guarantee Term is expressed by means of domain-specific languages.

3.2 Defining Extra-Functional Annotations

The approach implemented in Puppet associates concepts in the WS-Agreement
(i.e., SLO, Qualifying Condition, Service Scope) with an interpretation by
means of a given operational semantics. This can be a quite complex and effort-
prone task, but given a specific language and an intended interpretation of the
concepts, it has to be done only once and for all.

Precisely, Puppet defines a mapping from the declarative XML descriptions of
the supported QoS properties to composable Java code segments. The mapping
is specified in a parametric format that is instantiated each time one occurrence
of the concept appears. Within the scope of this paper, we deal with two QoS
properties: latency and reliability. The remainder of this section introduces their
characteristics. Please note that the specifications of such QoS properties con-
form to the definitions adopted within the PLASTIC Project [9]. Nevertheless,
also other definitions can be adopted (e.g. as in [20]).

1 ...
2 <wsag:ServiceLevelObjective>
3 <puppetSLO:PuppetSLO>
4 <puppetSLO:Latency>
5 <value>25000</value>
6 <puppetSLO:Distribution>
7 <Gaussian>10</Gaussian>
8 </puppetSLO:Distribution>
9 </puppetSLO:Latency>

10 </puppetSLO:PuppetSLO>
11 </wsag:ServiceLevelObjective>
12 ...

–A–

1 ...
2 Density D = new Density();
3 long funcElapsedTime = puppet.ambition.Naturals.asNatural

(aMbItIoNinvocationTime - System.currentTimeMillis()
);

4 long maxSleepingPeriod = 25000 - funcElapsedTime;
5 Double sleepingPeriod = D.gaussian(maxSleepingPeriod,10);
6 try {
7 Thread.sleep(sleepValue.longValue());
8 } catch (InterruptedException e) {}
9 ...

–B–

Fig. 2. SLO Mapping for Latency
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Latency is defined as a server-side constraint, and does not concern (just ig-
nores) other kinds of delays that the client may experience, for example due to
network failures or traffic congestion problems. Conditions on latency are sim-
ulated in Puppet by introducing delay instructions into the operation bodies
of the services stubs. For each Guarantee Term in a WS-Agreement document,
information concerning the maximum service latency is defined as a Service
Level Objective. As an example, Fig. 2.A reports the XML code for a maxi-
mum latency declaration of 25000msec normally distributed, and Fig. 2.B shows
the corresponding Java code that is automatically generated by Puppet.

When dealing with latency constraints, Puppet also has to deal with other
computational tasks, like generating a functionally correct return message, tak-
ing care of reliability constraints, etc. Since these tasks also consume time, Pup-
pet has to adapt the generated latency sleeping period. For example, consider
that the term in Fig. 2.A comes in combination with some functional compu-
tation statements. If at run time these computations take 2sec, the delay of
the service is adjusted to the range of [0 ÷ 23000]msec. In case the calculation
of the functionally correct return message takes more than what is allowed by
the latency constraint, the stub raises an exception and has failed its purpose.
Since SLA latency constraints for services are commonly in the order of seconds,
the computational tasks needed to generate the return messages only miss such
deadlines in quite rare cases.

Reliability constraints are declared in the Service Level Objective of a
Guarantee Term, stating the maximal admissible number of failures a service
can raise in a given time window. Such kinds of QoS attributes can be reproduced
introducing code that simulates a service failure. Puppet realizes a reliability

1 ...
2 <wsag:ServiceLevelObjective>
3 <puppetSLO:PuppetSLO>
4 <puppetSLO:Reliability>
5 <Reliabilitywindow>
6 120000
7 </Reliabilitywindow>
8 <MaxFailures>
9 3

10 </MaxFailures>
11 <puppetSLO:Distribution>
12 <Gaussian>
13 10
14 </Gaussian>
15 </puppetSLO:Distribution>
16 </puppetSLO:Reliability>
17 </puppetSLO:PuppetSLO>
18 </wsag:ServiceLevelObjective>
19 ...

–A–

1 ...
2 long winSize = 120000;
3 int maxFault = 3;
4 long currentTimeStamp = System.currentTimeMillis();
5 for (int i=0; i<faultBuffer.size();i++){
6 if (currentTimeStamp - faultBuffer.get(i) >= winSize){
7 faultBuffer.remove(i);
8 }
9 }

10 if (faultBuffer.size() < maxFault){
11 Density d = new Density();
12 double dv = d.gaussian(100);
13 if (dv > 50) {
14 String fCode = "Server.NoService";
15 String fString = "PUPPET�EXCEPTION�:�No�target�

service�to�invoke!";
16 org.apache.axis.AxisFault fault = new org.apache.

axis.AxisFault(fCode, fString, "", null);
17 aMbItIoNsim.undo();
18 faultBuffer.add(currentTimeStamp);
19 throw fault;
20 }
21 }
22 ...

–B–

Fig. 3. SLO Mapping for Reliability
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failure via an exception raised by the platform hosting the Web Service stub.
An example of the Puppet transformation for reliability constraints is shown in
Fig. 3. Part A shows the XML code specifying a maximum allowed number of
three failures over an observation window of 2 minutes; part B gives the corre-
sponding Java translation, assuming that the Apache-Tomcat/Axis [3] platform
is used.

As described in Sect. 3.1, a guarantee in a WS-Agreement document could also
be stated under an optional condition expressed by means of some Qualifying
Condition elements. Usually such optional constraints are defined in terms of
accomplishments that the service consumer must meet. For instance, the latency
of a service may depend on the value of some parameters provided at run-time.
In these cases, the Puppet transformation function wraps the simulating code
obtained from the Service Level Objective part within a conditional state-
ment. As mentioned, the scope for a guarantee term describes the list of services
to which it applies. In these cases, for each listed service, the transformation
function adds the behavior obtained from the Service Level Objective and
Qualifying Condition transformations only to those operations declared in the
scope.

4 Model-Based Functionality

The functional behavior of a service is modeled using an automata model called
Symbolic Transition System (STS). STSs are a well studied formalism in model-
ing and testing of reactive systems [12]. We understand, though, that they could
sound unfamiliar and difficult for practitioners. However, STSs can be seen as
a formal semantics for a variant of UML 2.0 state machines [18]. We have de-
veloped a library called Minerva [23], which transforms the output generated
by MagicDraw (http://www.magicdraw.com) – a commercial UML modeling
tool – into an STS representation understood by Puppet. Thus, a developer can
use this visual tool to model the functionality of service interfaces in the common
formalism of UML 2.0 state machines. We do not describe this mapping here,
but present instead directly the STS formalism. We will use a dedicated testing
relation called eco [11] which is specifically appropriate for the creation of stubs
like the ones we are dealing with in our setting. This section introduces STSs
and the eco relation.

4.1 Symbolic Transition Systems

In our setting, STSs specify the functional aspects of a service interface. Firstly,
there are the static constituents like types, messages, parameters, and operations.
This information is commonly denoted in the WSDL [6]. Secondly, there are the
dynamic constituents like states, and transitions (also called arcs) between the
states. STSs can be seen as a dynamic extension of a WSDL. They specify
the legal ordering of the message flow at the service interface, together with
constraints on the data exchanged via message parameters (called parts in the
WSDL).

http://www.magicdraw.com
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An STS can store information in STS-specific variables. Every STS transition
corresponds to either a message sent to the service (input), or a message sent
from the service (output). Furthermore, a transition can be guarded by a logical
expression. After a transition has fired, the values of the variables can be up-
dated. Due to its extent and generality we do not give here the formal definition
of STSs, which can be found in [12]. Instead, we exemplify the concepts in the
setting relevant for this paper.

We assume here that data types in the WSDL are specified via XML Schema
types, as commonly done. Let us consider a WSDL operation checkAvail with
an input message ?checkAvail and an output message !checkAvail. The input
message has a part r of type QuoteRequest; the output message has a part q
of type Quote. The QuoteRequest type is a complex type sequence with the
elements product of type String and quantity of type Integer. The Quote
type is a complex type sequence with the elements status of type Integer,
product of type String, quantity of type Integer, price of type double, and
refNumber of type Integer. This WSDL operation could for instance corre-
spond to a Java method with signature: Quote checkAvail(QuoteRequest r),
together with the classes Quote and QuoteRequest. A message in an STS corre-
sponds to a message in the WSDL. Hence, we model the call of the checkAvail
operation in the STS by two succeeding transitions. The first one with message
?checkAvail(r:QuoteRequest) represents the operation invocation, the second
one represents the returned value via the !checkAvail(q:Quote) message.

Regarding the case study, which we introduced in Sect. 2.1, the checkAvailop-
eration is one of the four operations offered in the WSDL specification of the ware-
house service. The remaining three operations are auth, cancelTransact, and
orderShipment. The auth operation has an input message ?auth(pw:String)
and an output message !auth(q:Quote). Just an input message exists for the
cancelTransact and orderShipment operations, no value is returned via an out-
put message. The input message of the cancelTransact operation is called
?cancelTransact, and has a part ref of type Integer. The input message of the
orderShipment operation is called ?orderShipment, and has a part ref of type
Integer, and a part adr of type Address. The Address type is a complex type se-
quence with elements necessary for identifying an address (the concrete elements
are not relevant, here).

Figure 4 shows an STS specifying the warehouse service. Initially, the ware-
house is in state 1. Now a user of the service (in our case study the Service Under
Test (SUT), i.e. the supplier) can invoke the checkAvail operation by sending
the ?checkAvail message. This corresponds to the transition a from state 1 to
state 2. The guard of the transition restricts the attribute quantity of parameter
r to be greater than zero. After the transition has fired, r is saved in the variable
qr (which is also of type QuoteRequest). Next, the warehouse has to return a
Quote object via the return parameter q. Three things can happen. Firstly, the
requested product may not be on stock with the requested quantity. In this case
a Quote object is returned with the status attribute being SOLDOUT (transition
b). Secondly, if the product is on stock and the requested quantity is less than or
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a

b

g,h

1 2 3 4
c

f

d

e

5 i

ARC MESSAGE GUARD UPDATE
a ?checkAvail<r:QuoteRequest> r.quantity > 0 qr = r;

b !checkAvail<q:Quote> q.status == SOLDOUT

c !checkAvail<q:Quote> qr.quantity > MAXQ && q.status == AUTHREQ

d ?auth<pw:String> spw = pw;

e !auth<q:Quote> q.status == PWINVAL && !valid(spw)

f !checkAvail<q:Quote>

qr.quantity <= MAXQ && q.price > 0.0 &&
q.status == VALIDQUOTE && q.refNumber > 0 &&
q.product == qr.product &&
q.quantity == qr.quantity

qi = q;

g ?cancelTransact<ref:Integer> ref == qi.refNumber

h
?orderShipment<ref:Integer,

adr:Address>
ref == qi.refNumber

i !auth<q:Quote>
valid(pw) && q.status == VALIDQUOTE &&
q.product == qr.product && q.price > 0.0 &&
q.quantity == qr.quantity && q.refNumber > 0

qi = q;

Fig. 4. The Provided Interface of the Warehouse as an STS

equal some limit MAXQ, a Quote object is returned with status VALIDQUOTE, the
same quantity as being requested, and a price and refNumber greater than
zero (transition f). We save here the issued quote in the variable qi. Thirdly, if
the requested quantity exceeds MAXQ, a quote is returned with status AUTHREQ
(transition c). This informs the user to provide a password string via the the auth
operation (transition d). If the password in invalid, a quote with status PWINVAL
is returned (transition e), and the user has to invoke the auth operation again.
Given a valid password, a valid quote is returned (transition i).

Being in state 5, again two things can happen. Either the user of the service de-
cides to reject the quote. He/she invokes the one-way operation cancelTransact
by sending the message ?cancelTransact (transition g). Here he/she must refer
to the correct issued reference number refNumber. Or he/she decides to accept
the quote. In this case, in addition to the correct reference number, an address
must be provided as a second parameter to the ?orderShipment message (tran-
sition h).

4.2 Environmental Conformance

We show now how the above specification can be used to generate functionally
correct responses within a generated stub. In model-based testing, a testing
relation formally defines when a model representing the SUT conforms to a
model constituting its specification [24]. A testing relation for the formalism of
Labeled Transition Systems (LTS) is eco [11]. Since STSs have an underlying
LTS semantics, we can use eco also for STSs.

The motivation of eco is to define what it means for a component C to cor-
rectly invoke a requested, or environmental, component E. Given a provided
interface specification of E in terms of an LTS, an eco compliance checker for E
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plays the role of E. While doing so it checks if C respects the specification of E
when invoking it.

The main observation here is, that an eco compliance checker for the compo-
nent E does exactly what we demand from a functionally correct stub for E.
Taking the warehouse STS specification given in Fig. 4, a generated eco compli-
ance checker (from hereon simply called stub) will play the role of the warehouse,
and in doing so it can test if the supplier, while using the warehouse, does respect
the STS specification. To render more precisely what that means, we show an
example walk by the stub trough the STS, next. Initially, the stub is in state
1. The only allowed call here is checkAvail with a quantity greater zero. If it
receives a different call, it will alert a detected failure of the user. If the call
is correct, it moves to state 2. Now the stub can decide nondeterministically if
it either returns a quote with status SOLDOUT (back to state 1), or if it checks
the quantity and proceeds to state 3 or 5. This choice is made randomly, but
may also be made according to certain coverage criteria, or other heuristics.
Assuming, for instance, that the stub decides to check the quantity and that
the quantity is greater MAXQ. It then constructs a quote with status AUTHREQ,
returns it to the user, and moves to state 3. Now it waits for the user in invoke
the auth operation. Assuming that the user does provide a valid password here,
the stub moves to state 4 and sees that the password is valid. Next it constructs
a Quote object with status VALIDQUOTE. Also here the stub has many choices,
every solution to the guard on transition i corresponds to a possible quote. The
stub will choose one solution (again randomly, or according to some heuristics),
return the corresponding quote to the user, and move to state 5. Now it waits
again for the user to either cancel the transaction, or order the shipment. And
so on. Using this approach ensures that the generated stubs give always func-
tionally correct answers, and can detect incorrect invocations from interacting
components.

5 Verifying and Utilizing the Testbed

We have shown so far the approach to generate stubs for Web Services which
respect both a given SLA contract, and a functional contract in terms of a state
machine. This section firstly presents in Sect. 5.1 results of experiments which
we carried out to verify the stubs themselves, i.e., we tested here if the stubs
really behave as their protocols dictate, to gain confidence in the implementation
environment. Having the stubs deployed, the developer can test the service under
development in this testbed. Sections 5.2 and 5.3 exemplify and summarize the
testing power of the generated testbed. We refer again to the customer, supplier,
warehouse scenario introduced in Sect. 2.

5.1 Verifying the Generated Stubs

We have to verify that a stub which is generated by Puppet both respects its
SLA, and its STS specification. To verify the former we specified several SLAs
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for the warehouse service, and checked if the behavior of the generated stubs is
in line with what their SLA dictates. In order to verify the latency exhibited
by the stubs, we instrumented the service container of the warehouses with a
simple performance monitor logger, as described in [3]. To obtain meaningful
measures, we iterated each interaction scenario over 1000 executions. We always
verified that the mean response time elapsed was in line with the one dictated
by the SLA. To monitor reliability constraints, we associated the agreement in
Fig. 3 with the operation orderShipment of the warehouse, and developed a
supplier which repeats any invocation of orderShipment when a remote excep-
tion was thrown by the warehouse. Furthermore, we instrumented the supplier
with logging code, counting how many invocations it executed until the shipment
of the order succeeded. As in the case of latency, we monitored the reliability
constraints over 1000 executions, and verified that they were always respected.

To verify the functional conformance we generated several warehouse stubs
with Puppet based on (variations of) the state machine specification from Fig. 4.
To verify that they functionally conform to their specification, we automatically
tested them with the model-based Web-Service testing tool Jambition [23],
which is especially suited for this purpose since it also takes STSs as its spec-
ification formalism. No failures were observed after several hours of automatic
testing. Secondly, we developed a supplier service which behaves conforming to
the warehouse specification from Fig. 4, and made several non-conforming mu-
tants of it, like requesting a quote with a zero quantity, or ordering goods without
having received a valid quote beforehand. All mutants were immediately detected
by the warehouse stub.

5.2 Detecting Extra-Functional Failures

This case refers to the task of the developer to derive reliable values for the qual-
ity levels of the newly developed service by taking into account the QoS of the
external services. Having merely extra-functional correct stubs gives a testbed
as the one we described in [4]. The added value for the approach of this paper
comes into play when taking into account also the functionality. The main ad-
vantage of a functional stub here is, that it has a notion of state. In other words,
it forces the user to respect the functional protocol. By so doing, the user auto-
matically walks through the specified transactions, like ordering products after
having authenticated. For instance, the enforcement of its functional protocol by
the warehouse stub may reveal failures in the extra-functional behavior of the
supplier. Going in detail, let us assume that the supplier has to meet a given
SLA on latency regarding the interactions with its clients, namely processing
each request within 40000msec. As defined in the agreement with the warehouse
shown in Fig. 2, each interaction between the warehouse and the supplier ser-
vice can take up to 25000msec. Take also into account, as described in Sect. 4,
that the warehouse service requires an additional authentication step in case the
product quantity exceeds MAXQ (see Fig. 4).

A potential extra-functional failure here is, that when the authentication of
the supplier is required, the time needed by the supplier to fulfill a client request
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may violate its SLA. Even if the first password provided is correct, the response
of the warehouses to the availability request (arc c), together with the response
to the provided password (arc i), may in the worst case sum up to 50000msec,
which respects for each invocation the SLA exposed by the warehouse, but breaks
the supposed SLA between the supplier and the client. Given a warehouse stub
which does not have any notion of the functional protocol might never notice the
necessity of authentication for a supplier. Each request is considered stand-alone,
and no relation to previous or following requests, including data interdependen-
cies, exist. Thus, in a mere extra-functional testbed this extra functional failure
can easily be invisible.

5.3 Detecting Functional Failures

We have already shown above (end of Sect. 5.1), that the generated stubs are
able to detect functional violations of their contracts by the user. This refers
to the task of testing the compliance of a service under development with the
functional contracts of external services, and is on its own already of high value
for the developer.

Taking into account also the extra-functional correctness of the stubs, can
reveal further functional issues of their users. For instance, the warehouse stub
generated by Puppet shows an extra-functional behavior which can potentially
affect the functional state of the supplier (its user). To exemplify this, assume
a supplier offering a special welcome discount to new clients for their first five
purchases. Furthermore, let us consider that the supplier behaves as depicted
in Fig. 5. For a given client, the supplier associates a counter FreeOrder, ini-
tially being five, which is decremented each time the client places an order. To
fulfill the order request, the supplier invokes the orderShipment operation of
the warehouse stub. In case a reliability failure occurs now, this is propagated
to the client. Let us recall that the interactions between the supplier and the
warehouse service is governed by an SLA containing a reliability clause as spec-
ified in Fig. 3. The supplier service is not prepared to deal functionally properly
with such a reliability failure in the sense that it does not increase again the

Fig. 5. Functional Fault Revealed by a Reliability Constraint
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FreeOrder counter to its original value. This is necessary since the warehouse
does not process the order due to its reliability failure - the products cannot
be purchased by the client of the supplier. As a consequence, each reliability
failure reduces the number of discounts by one, even though no goods have been
purchased by the client. Such kinds of functional failures cannot be discovered
using a testbed that only reproduces functionally correct behavior, ignoring the
extra-functional specifications.

6 Related Work

An early interesting work exploring QoS testing is Grabowski and Walker [14],
although they did not consider QoS relations among input and output, but
only temporal relations among two streams, and did not target the automatic
generation of testbeds. However, they provide an interesting classification of
QoS requirements. In [10], Weyuker and Vokolos highlight the potential of using
testing and synthetic workload to assess the performance behavior of complex
distributed applications. Denaro and coauthors [8] provide a framework for early
evaluation of performance characteristics of a distributed application, taking into
account the influence of complex middleware.

Concerning our goal, i.e., testbed generation for deriving or validating the
contracts of composite services, without accessing the invoked real services, to
the best of our knowledge no similar approaches exist that can simulate both the
functional and extra-functional behavior of the surrounding environment. Ram-
sokul and coauthors [19] discuss a testing strategy and provide a conformance
relation to assess the cooperation among services against a globally specified
protocol (they do not address SLA constraints). Closer to our approach are
some QoS testbeds. Zhu and coauthors [26] develop an interesting model-driven
approach to the generation of benchmarks reproducing clients’ workload for eval-
uating the QoS provided by a Web Service. Grundy and coauthors [15] propose
a performance test-bed generator which has much in common with what we
propose here, in that a collection of service stubs is generated from a composi-
tional model, and clients simulating a defined workload are also automatically
developed. However, in the cited works, no contract or agreement specification
is assumed, and the surrounding environment is not simulated. We believe that
the above works could be used to complement Puppet, providing the workload
to solicit our generated stubs.

Another interesting issue is how the network affects the QoS. As said, the
provider of a service is responsible of the agreed SLAs at his/her port. Possible
network problems are not his/her business, so the customer should handle such
issues with the network provider [22]. Nevertheless the QoS perceived by the
user of a service is also affected by the network. Therefore, to reproduce likely
distribution settings and network delay distributions, the tester should use a
network in which it is possible to control the introduced delay. In this respect an
interesting tool is Weevil [25], that supports the creation of a synthetic workload
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for distributed software and can reproduce realistic stub distribution over world-
wide distributed platforms.

7 Conclusions and Future Work

It is well known that testing amounts for the most part of its effort to coding,
and great part of this coding effort is needed for making test cases executable.
Automation of the setup of the testing environment is routinely addressed in
conventional software development. Such need also affects, or is even exacer-
bated, in the testing of service-oriented systems, as the provision of a service
commonly depends on other surrounding services.

We have presented the Puppet environment for the automatic generation
of stubs simulating the behavior of external services invoked by a service under
test, which encapsulates both their functional specifications and their contractual
SLAs. To achieve this, we assume that we have access to an extra-functional spec-
ification (SLA), and a functional specification (STS), of the surrounding services.
Using these specifications, the Puppet tool automatically generates for each
surrounding service a stub which respects the functional and extra-functional
properties. These stubs constitute an environment which realistically simulates
the runtime environment. The service developer can test the SUT within it, and
obtain realistic QoS measures, without having the need to access the real sur-
rounding services, that might not be available, or could generate unwanted side
effects. We have illustrated why considering both functional and extra-functional
aspects for the stub generation is a crucial means to raise potential failures and
obtain realistic estimates for the QoS attributes.

The integration of the extra-functional and functional contracts is currently
done in pragmatic way, aiming at a proof-of-concept of the presented approach.
Further investigations are necessary to come up with a theoretical foundation of
such an integration. One promising candidate here is the combination of func-
tional models like STSs with concepts known from timed automata [2,5].

Having in place the Puppet testbed, a suitable test suite must be generated.
This task is out of the scope of Puppet, but the framework already gives in-
dications on how this could be achieved. Obtaining reliable values demands for
the execution of many tests, thus test generation here is a strong candidate for
automation. Model-based testing (MBT) has precisely this goal, i.e., the auto-
matic generation, execution, and evaluation of test cases based on a (usually
functional) formal model of the SUT. A natural choice would be to keep the
model already used by Puppet, namely STSs, also for functionally modeling
the provided service of the SUT. We could use some existing STS-based MBT
tools for doing so (like [7,23]). Future research has to explore how to precisely
combine functional MBT of the SUT with an effective derivation of the corre-
sponding QoS properties. Also here the promising candidate is the integration
with timed automata models.

Finally the experiments we conducted so far have been aimed at verifying that
the generated stubs are correctwith respect to the (functional andextra-functional)
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specifications. As a next step, we are currently involved in further experiments di-
rected at validating Puppet in practice. Specifically, in collaboration with the in-
dustrial partners of the PLASTIC project [9], we are using the stubs generated by
Puppet on wider and more complex case studies.
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