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Section 1

Introduction - motivating examples



Geostatistics

• traditionally, a self-contained methodology for spatial
prediction, developed at École des Mines, Fontainebleau,
France

• nowadays, that part of spatial statistics which is
concerned with data obtained by spatially discrete
sampling of a spatially continuous process



Example 1.1: Measured surface elevations
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Example 1.2: Residual contamination from
nuclear weapons testing
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Example 1.3: Childhood malaria in Gambia

300 350 400 450 500 550 600

1
3
5
0

1
4
0
0

1
4
5
0

1
5
0
0

1
5
5
0

1
6
0
0

1
6
5
0

W−E (kilometres)

N
−

S
 (

k
ilo

m
e
tr

e
s
)

Western

Eastern

Central



Example 1.3: continued
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Example 1.4: Soil data
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Example 1.4: Continued
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Example 1.4: Continued
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Model-based Geostatistics

• the application of general principles of statistical
modelling and inference to geostatistical problems

• Example: kriging as minimum mean square error
prediction under Gaussian modelling assumptions



Section 2

Linear models



Notation

• Y = {Yi : i = 1, ..., n} is the measurement data

• {xi : i = 1, ..., n} is the sampling design (note lower case)

• Y = {Y (x) : x ∈ A} is the measurement process

• S∗ = {S(x) : x ∈ A} is the signal process

• T = F(S) is the target for prediction

• [S∗, Y ] = [S∗][Y |S∗] is the geostatistical model



Gaussian model-based geostatistics

Model specification:

• Stationary Gaussian process S(x) : x ∈ IR2

· E[S(x)] = µ

· Cov{S(x), S(x′)} = σ2ρ(‖x − x′‖)

• Mutually independent Yi|S(·) ∼ N(S(x), τ 2)



Minimum mean square error prediction

[S, Y ] = [S][Y |S]

• T̂ = t(Y ) is a point predictor

• MSE(T̂ ) = E[(T̂ − T )2]

Theorem: MSE(T̂ ) takes its minimum value when T̂ = E(T |Y ).

Proof uses result that for any predictor T̃ ,

E[(T − T̃ )2] = EY [VarT (T |Y )] + EY {[ET (T |Y ) − T̃ ]2}

Immediate corollary is that

E[(T − T̂ )2] = EY [Var(T |Y )] ≈ Var(T |Y )



Simple and ordinary kriging

Recall Gaussian model:

• Stationary Gaussian process S(x) : x ∈ IR2

· E[S(x)] = µ

· Cov{S(x), S(x′)} = σ2ρ(‖x − x′‖)

• Mutually independent Yi|S(·) ∼ N(S(x), τ 2)



Gaussian model implies

Y ∼ MVN(µ1, σ2V )

V = R + (τ2/σ2)I Rij = ρ(‖xi − xj‖)

Target for prediction is T = S(x), write r = (r1, ..., rn) where

ri = ρ(‖x − xi‖)

Standard results on multivariate Normal then give [T |Y ] as
multivariate Gaussian with mean and variance

T̂ = µ + r′V −1(Y − µ1) (1)

Var(T |Y ) = σ2(1 − r′V −1r). (2)

Simple kriging: µ̂ = Ȳ Ordinary kriging: µ̂ = (1′V −11)−11′V −1Y



The Matérn family of correlation functions

ρ(u) = 2κ−1(u/φ)κKκ(u/φ)

• parameters κ > 0 and φ > 0

• Kκ(·) : modified Bessel function of order κ

• κ = 0.5 gives ρ(u) = exp{−u/φ}

• κ → ∞ gives ρ(u) = exp{−(u/φ)2}

• κ and φ are not orthogonal:

– helpful re-parametrisation: α = 2φ
√

κ

– but estimation of κ is difficult
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Simple kriging: three examples

1. Varying κ (smoothness of S(x))
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2. Varying φ (range of spatial correlation
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3. Varying τ2/σ2 (noise-to-dignal ratio)
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Predicting non-linear functionals

• minimum mean square error prediction is not invariant
under non-linear transformation

• the complete answer to a prediction problem is the
predictive distribution, [T |Y ]

• Recommended strategy:

– draw repeated samples from [S∗|Y ]
(conditional simulation)

– calculate required summaries
(examples to follow)



Theoretical variograms

• the variogram of a process Y (x) is the function

V (x, x′) =
1

2
Var{Y (x) − Y (x′)}

• for the spatial Gaussian model, with u = ||x − x′||,

V (u) = τ2 + σ2{1 − ρ(u)}

• provides a summary of the basic structural parameters
of the spatial Gaussian process
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Empirical variograms

uij = ‖xi − x)j‖ vij = 0.5[y(xi) − y(xj)]
2

• the variogram cloud is a scatterplot of the points (uij , vij)

• the empirical variogram smooths the variogram cloud by
averaging within bins: u − h/2 ≤ uij < u + h/2

• for a process with non-constant mean (covariates), use
residuals r(xi) = y(xi) − µ̂(xi) to compute vij



Limitations of V̂ (u)
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Consequences:

• variogram cloud is unstable, pointwise and in overall shape

• binning addresses point 1, but not point 2



Parameter estimation using the variogram

• fitting a theoretical variogram function to the empirical
variogram provides estimates of the model parameters.

• weighted least squares criterion:

W (θ) =
∑

k

nk{[V̄k − V (uk; θ)]}2

where θ denotes vector of covariance parameters and V̄k

is average of nk variogram ordinates vij.

• need to choose upper limit for u (arbitrary?)

• variations include:
– fitting models to the variogram cloud
– other estimators for the empirical variogram
– different proposals for weights



Comments on variogram fitting

1. Can give equally good fits for different extrapolations
at origin.
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2. Correlation between variogram points induces
smoothness.

Empirical variograms for three simulations
from the same model.
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3. Fit is highly sensitive to specification of the mean.

Illustration with linear trend surface:

• solid smooth line: theoretical variogram;

• dotted line: from data;

• solid line: from true residuals;

• dashed line : from estimated residuals.
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Parameter estimation: maximum likelihood

Y ∼ MVN(µ1, σ2R + τ2I)

R is the n × n matrix with (i, j)th element ρ(uij) where
uij = ||xi − xj ||, Euclidean distance between xi and xj .

Or more generally:

µ(xi) =
k

∑

j=1

fk(xi)βk

where dk(xi) is a vector of covariates at location xi, hence

Y ∼ MVN(Dβ, σ2R + τ2I)



Gaussian log-likelihood function:

L(β, τ, σ, φ, κ) ∝ −0.5{log |(σ2R + τ2I)| +

(y − Dβ)′(σ2R + τ2I)−1(y − Dβ)}.

• write ν2 = τ2/σ2, hence σ2V = σ2(R + ν2I)

• log-likelihood function is maximised for

β̂(V ) = (D′V −1D)−1D′V −1y

σ̂2 = n−1(y − Dβ̂)′V −1(y − Dβ̂)

• substitute (β̂, σ̂2) to give reduced maximisation problem

L∗(τr, φ, κ) ∝ −0.5{n log |σ̂2| + log |(R + ν2I)|}

• usually just consider κ in a discrete set {0.5, 1, 2, 3, ..., N}



Comments on maximum likelihood

• likelihood-based methods preferable to variogram-based
methods

• restricted maximum likelihood is widely recommended
but in our experience is sensitive to mis-specification of
the mean model.

• in spatial models, distinction between µ(x) and S(x) is
not sharp.

• composite likelihood treats contributions from pairs (Yi, Yj)
as if independent

• approximate likelihoods useful for handling large
data-sets

• examining profile likelihoods is advisable, to check for
poorly identified parameters



Swiss rainfall data



Swiss rainfall: trans-Gaussian model

Y ∗
i = hλ(Y ) =

{

(yi)
λ−1
λ

if λ 6= 0
log(yi) if λ = 0

ℓ(β, θ, λ) = −1

2
{log |σ2V | + (hλ(y) − Dβ)′{σ2V }−1(hλ(y) − Dβ)}

+
n

∑

i=1

log
(

(yi)
λ−1

)



Swiss rainfall: profile log-likelihoods for λ

Left panel: κ = 0.5 Centre panel: κ = 1 Right panel: κ = 2



Swiss rainfall: MLE’s (λ = 0.5)

κ µ̂ σ̂2 φ̂ τ̂2 log L̂
0.5 18.36 118.82 87.97 2.48 -2464.315
1 20.13 105.06 35.79 6.92 -2462.438
2 21.36 88.58 17.73 8.72 -2464.185

Likelihood criterion favours κ = 1



Swiss rainfall: profile log-likelihoods
(λ = 0.5, κ = 1)

Left panel: σ2 Centre panel: φ Right panel: τ2



Swiss rainfall: plug-in predictions and
prediction variances
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Swiss rainfall: non-linear prediction
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Section 3

Bayesian inference



Basics

Model specification

[Y, S, θ] = [θ][S|θ][Y |S, θ]

Parameter estimation

• integration gives

[Y, θ] =

∫

[Y, S, θ]dS

• Bayes’ Theorem gives posterior distribution

[θ|Y ] = [Y |θ][θ]/[Y ]

• where [Y ] =
∫

[Y |θ][θ]dθ



Prediction: S → S∗

• expand model specification to

[Y, S∗, θ] = [θ][S|θ][Y |S, θ][S∗|S, θ]

• plug-in predictive distribution is

[S∗|Y, θ̂]

• Bayesian predictive distribution is

[S∗|Y ] =

∫

[S∗|Y, θ][θ|Y ]dθ

• for any target T = t(S∗), required predictive distribution
[T |Y ] follows



Notes

• likelihood function is central to both classical and Bayesian
inference

• Bayesian prediction is a weighted average of plug-in
predictions, with different plug-in values of θ
weighted according to their conditional probabilities
given the observed data.

• Bayesian prediction is usually more conservative than
plug-in prediction



Bayesian computation

1. Evaluating the integral which defines [S∗|Y ] is often
difficult

2. Markov Chain Monte Carlo methods are widely used

3. but for geostatistical problems, reliable implementation
of MCMC is not straightforward (no natural Markovian
structure)

4. for the Gaussian model, direct simulation is available



Gaussian models: known (σ2, φ)

Y ∼ N(Dβ, σ2R(φ))

• choose conjugate prior β ∼ N
(

mβ ; σ2Vβ

)

• posterior for β is
[

β|Y, σ2, φ
]

∼ N
(

β̂, σ2 Vβ̂

)

β̂ = (V −1
β + D′R−1D)−1(V −1

β mβ + D′R−1y)

Vβ̂ = σ2 (V −1
β + D′R−1D)−1)

• predictive distribution for S∗ is

p(S∗|Y, σ2, φ) =

∫

p(S∗|Y, β, σ2, φ) p(β|Y, σ2, φ) dβ.



Notes

• mean and variance of predictive distribution can be
written explicitly (but not given here)

• predictive mean compromises between prior and weighted
average of Y

• predictive variance has three components:

– a priori variance,

– minus information in data

– plus uncertainty in β

• limiting case Vβ → ∞ corresponds to ordinary kriging.



Gaussian models: unknown (σ2, φ)

Convenient choice of prior is:

[β|σ2, φ] ∼ N
(

mb, σ2Vb

)

[σ2|φ] ∼ χ2
ScI

(

nσ, S2
σ

)

[φ] ∼ arbitrary

• results in explicit expression for [β, σ2|Y, φ] and
computable expression for [φ|Y ], depending on choice of
prior for φ

• in practice, use arbitrary discrete prior for φ and combine
posteriors conditional on φ by weighted averaging



Algorithm 1:

1. choose lower and upper bounds for φ according to the
particular application, and assign a discrete uniform prior
for φ on a set of values spanning the chosen range

2. compute posterior [φ|Y ] on this discrete support set

3. sample φ from posterior, [φ|Y ]

4. attach sampled value of φ to conditional posterior,
[β, σ2|y, φ], and sample (β, σ2) from this distribution

5. repeat steps (3) and (4) as many times as required;
resulting sample of triplets (β, σ2, φ) is a sample from
joint posterior distribution, [β, σ2, φ|Y ]



Predictive distribution for S∗ given φ is tractable, hence write

p(S∗|Y ) =

∫

p(S∗|Y, φ) p(φ|y) dφ.

Algorithm 2:

1. discretise [φ|Y ], as in Algorithm 1.

2. compute posterior [φ|Y ]

3. sample φ from posterior [φ|Y ]

4. attach sampled value of φ to [S∗|y, φ] and sample from
this to obtain realisations from [S∗|Y ]

5. repeat steps (3) and (4) as required

Note: Extends immediately to multivariate φ (but may be
computationally awkward)



Swiss rainfall

Priors/posteriors for φ (left) and ν2 (right)
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Swiss rainfall

Mean (left-panel) and variance (right-panel) of

predictive distribution
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Swiss rainfall: posterior means and 95% cred-
ible intervals

parameter estimate 95% interval
β 144.35 [53.08, 224.28]
σ2 13662.15 [8713.18, 27116.35]
φ 49.97 [30, 82.5]
ν2 0.03 [0, 0.05]



Swiss rainfall: non-linear prediction

0.36 0.38 0.40 0.42 0.44

0
1
0

2
0

3
0

A200

f(A
2

0
0
)

0 50 100 150 200 250 300

−
5
0

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

X Coord

Y
 C

o
o
rd

0.2 0.4 0.6 0.8

Left-panel: Bayesian (solid) and plug-in (dashed) prediction for
proportion of total area with rainfall exceeding 200 (= 20mm)

Right-panel: Bayesian predictive map of P (rainfall > 250|Y )



Section 4

Generalized linear models



Generalized linear geostatistical model

• Latent spatial process

S(x) ∼ SGP{0, σ2, ρ(u))}
ρ(u) = exp(−|u|/φ)

• Linear predictor

η(x) = d(x)′β + S(x)

• Link function

E[Yi] = µi = h{η(xi)}

• Conditional distribution for Yi : i = 1, ..., n

Yi|S(·) ∼ f(y; η) mutually independent



GLGM

• usually just a single realisation is available, in contrast
with GLMM for longitudinal data analysis

• GLM approach is most appealing when there is a natu-
ral sampling mechanism, for example Poisson model for
counts or logistic-linear models for proportions

• transformed Gaussian models may be more useful for
non-Gaussian continuous respones

• theoretical variograms can be derived but are less natural
as summary statistics than in Gaussian case

• but empirical variograms of GLM residuals can still be
useful for exploratory analysis



A binomial logistic-linear model

• S(·) ∼ zero-mean Gaussian process

• [Y (xi) | S(xi)] ∼ Bin(ni; pi)

• h(pi) = log{pi/(1 − pi)} =
∑k

j=1 dijβj + S(xi)

• model can be expanded by adding uncorrelated random
effects Zi,

h(pi) =
k

∑

j=1

dijβj + S(xi) + Zi

to distinguish between two forms of the nugget effect:

– binomial variation is analogue of measurement error

– Zi is analogue of short-range spatial variation



Simulation of a binary logistic-linear model
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Inference

• Likelihood function

L(θ) =

∫

IRn

n
∏

i

f(yi; h
−1(si))f(s | θ)ds1, . . . , dsn

• involves high-dimensional integration

• MCMC algorithms exploit conditional independence
structure



Conditional independence graph
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Prediction with known parameters

• simulate s(1), . . . , s(m) from [S|y] (using MCMC).

• simulate s∗(j) from [S∗|s(j)], j = 1, . . . , m
(multivariate Gaussian)

• approximate E[T (S∗)|y] by 1
m

∑m
j=1 T (s∗(j))

• if possible reduce Monte Carlo error by

– calculating E[T (S∗)|s(j)] directly

– estimating E[T (S∗)|y] by 1
m

∑m
j=1 E[T (S∗)|s(j)]



MCMC for conditional simulation

• Let S = D′β + Σ1/2Γ, Γ ∼ Nn(0, I).

• Conditional density: f(γ|y) ∝ f(y|γ)f(γ)

Langevin-Hastings algorithm

• Proposal: γ′ from a Nn(ξ(γ), hI),

ξ(γ) = γ +
h

2
∇ log f(γ | y)

• Example: Poisson-log-linear spatial model:

∇ log f(γ|y) = −γ + (Σ1/2)′(y − exp(s)), s = Σ1/2γ.

• expression generalises to other generalised linear spatial
models

• MCMC output γ(1), . . . , γ(m), hence sample s(m) = Σ1/2γ(m)
from [S|y].



MCMC for Bayesian inference

Posterior:

• update Γ from [Γ|y, β, log σ), log(φ)] (Langevin-Hastings))

• update β from [β|Γ, log(σ), log(φ)] (RW-Metropolis)

• update log(σ) from [log(σ)|Γ, β, log(φ)] (RW-Metropolis)

• update log(φ) from [log(φ)|Γ, β, log(σ)] (RW-Metropolis)

Predictive:

• simulate (s(j), β(j), σ2(j), φ(j)), j = 1, . . . , m (MCMC)

• simulate s∗(j) from [S∗|s(j), β(j), σ2(j), φ(j)],
j = 1, . . . , m (multivariate Gaussian)



Comments

• above is not necessarily the most efficient algorithm
available

• discrete prior for φ reduces computing time

• can thin MCMC output if storage is a limiting factor

• similar algorithms can be developed for MCMC
maximum likelihood estimation



Some computational resources

• geoR package:
http://www.est.ufpr.br/geoR

• geoRglm package:
http://www.est.ufpr.br/geoRglm

• R-project:
http://www.R-project.org

• CRAN spatial task view:
http://cran.r-project.org/src/contrib/Views/Spatial.html

• AI-Geostats web-site:
http://www.ai-geostats.org

• and more ...







African
Programme for
Onchocerciasis
Control

• “river blindness” – an endemic disease in wet tropical
regions

• donation programme of mass treatment with ivermectin

• approximately 30 million treatments to date

• serious adverse reactions experienced by some patients
highly co-infected with Loa loa parasites

• precautionary measures put in place before mass
treatment in areas of high Loa loa prevalence

http://www.who.int/pbd/blindness/onchocerciasis/en/



The Loa loa prediction problem

Ground-truth survey data

• random sample of subjects in each of a number of villages

• blood-samples test positive/negative for Loa loa

Environmental data (satellite images)

• measured on regular grid to cover region of interest

• elevation, green-ness of vegetation

Objectives

• predict local prevalence throughout study-region (Cameroon)

• compute local exceedance probabilities,

P(prevalence > 0.2|data)



Loa loa: a generalised linear model

• Latent spatial process

S(x) ∼ SGP{0, σ2, ρ(u))}
ρ(u) = exp(−|u|/φ)

• Linear predictor

d(x) = environmental variables at location x

η(x) = d(x)′β + S(x)

p(x) = log[η(x)/{1 − η(x)}]

• Error distribution

Yi|S(·) ∼ Bin{ni, p(xi)}



Schematic representation of Loa loa model
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The modelling strategy

• use relationship between environmental variables and ground-
truth prevalence to construct preliminary predictions via
logistic regression

• use local deviations from regression model to estimate
smooth residual spatial variation

• Bayesian paradigm for quantification of uncertainty in
resulting model-based predictions



logit prevalence vs elevation
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logit prevalence vs MAX = max NDVI
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Comparing non-spatial and spatial predictions
in Cameroon

Non-spatial
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Probabilistic prediction in Cameroon



Next Steps

• analysis confirms value of local ground-truth prevalence
data

• in some areas, need more ground-truth data to reduce
predictive uncertainty

• but parasitological surveys are expensive



Field-work is difficult!



RAPLOA

• a cheaper alternative to parasitological sampling:

– have you ever experienced eye-worm?

– did it look like this photograph?

– did it go away within a week?

• RAPLOA data to be collected:

– in sample of villages previously surveyed
parasitologically (to calibrate parasitology vs RAPLOA
estimates)

– in villages not surveyed parasitologically (to reduce
local uncertainty)

• bivariate model needed for combined analysis of
parasitological and RAPLOA prevalence estimates



UNDP/World Bank/WHO Special Programme for Research & Training in Tropical Disease (TDR)

R E P O RT  O F  A  M U LT I - C E N T R E  S T U DY

Rapid AssessmentProceduresfor Loiasis

TDR/IDE/RP/RAPL/01.1



RAPLOA calibration
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RAPLOA calibration (ctd)
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Parasitology/RAPLOA bivariate model

• treat prevalence estimates as conditionally independent
binomial responses

• with bivariate latent Gaussian process {S1(x), S2(x)} in
linear predictor

• to ease computation, write joint distribution as

[S1(x), S2(x)] = [S1(x)][S2(x)|S1(x)]

with low-rank spline representation of S1(x)



Lecture 3

Geostatistical design; geostatistics and
marked point processes



Section 5

Geostatistical design



Geostatistical design

• Retrospective

Add to, or delete from, an existing set of measurement
locations xi ∈ A : i = 1, ..., n.

• Prospective

Choose optimal positions for a new set of measurement
locations xi ∈ A : i = 1, ..., n.



Naive design folklore

• Spatial correlation decreases with increasing distance.

• Therefore, close pairs of points are wasteful.

• Therefore, spatially regular designs are a good thing.



Less naive design folklore

• Spatial correlation decreases with increasing distance.

• Therefore, close pairs of points are wasteful if you know
the correct model.

• But in practice, at best, you need to estimate unknown
model parameters.

• And to estimate model parameters, you need your design
to include a wide range of inter-point distances.

• Therefore, spatially regular designs should be tempered
by the inclusion of some close pairs of points.



Examples of compromise designs
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A Bayesian design criterion

Assume goal is prediction of S(x) for all x ∈ A.

[S|Y ] =

∫

[S|Y, θ][θ|Y ]dθ

For retrospective design, minimise

v̄ =

∫

A

Var{S(x)|Y }dx

For prospective design, minimise

E(v̄) =

∫

y

∫

A

Var{S(x)|y}f(y)dy

where f(y) corresponds to

[Y ] =

∫

[Y |θ][θ]dθ



Results

Retrospective: deletion of points from a monitoring network
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Selected final designs
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Prospective: regular lattice vs compromise designs
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Monitoring salinity in the Kattegat basin
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Further remarks on geostatistical design

1. Conceptually more complex problems include:

(a) design when some sub-areas are more interesting
than others;

(b) design for best prediction of non-linear functionals
of S(·);

(c) multi-stage designs (see below).

2. Theoretically optimal designs may not be realistic
(eg Loa loa mapping problem)

3. Goal here is not optimal design, but to suggest
constructions for good, general-purpose designs.



Section 6

Geostatistics and marked point processes



The geostatistical model re-visited

locations X signal S measurements Y

• Conventional geostatistical model: [S, Y ] = [S][Y |S]

• What if X is stochastic?

Usual implicit assumption: [X, S, Y ] = [X][S][Y |S]

Hence, can ignore [X] for likelihood-based inference
about [S, Y ].

L(θ) =

∫

[S][Y |S]dS



Marked point processes

locations X marks Y

• X is a point process

• Y need only be defined at points of X

• natural factorisation of [X, Y ] depends on
scientific context

[X, Y ] = [X][Y |X] = [Y ][X|Y ]



Preferential sampling

locations X signal S measurements Y

• Conventional model:

[X, S, Y ] = [S][X][Y |S] (1)

• Preferential sampling model:

[X, S, Y ] = [S][X|S][Y |S, X] (2)

Under model (2), typically [Y |S, X] = [Y |S0] where S0 = S(X)
denotes the values of S at the points of X



An idealised model for preferential sampling

[X, S, Y ] = [S][X|S][Y |S, X]

• [S]= SGP(µ, σ2, ρ) (stationary Gaussian process)

• [X|S]= inhomogenous Poisson process with intensity

λ(x) = exp{α + βS(x)}

• [Y |S, X] =
∏n

i=1[Yi|S(Xi)]

• [Yi|S(Xi)] = N(S(Xi), τ 2)



Simulation of preferential sampling model
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Impact of preferential sampling on spatial
prediction

• target for prediction is S(x), x = (0.5, 0.5)

• 100 data-locations on unit square

• three sampling designs

Sampling design
uniform clustered preferential

bias (−0.081, 0.059) (−0.082, 0.186) (1.290, 1.578)
MSE (0.268, 0.354) (0.948, 1.300) (2.967, 3.729)



Likelihood inference (crude Monte Carlo)

[X, S, Y ] = [S][X|S][Y |S, X]

• data are X and Y , likelihood is

L(θ) =

∫

[X, S, Y ]dS = ES

[

[X|S][Y |S, X]
]

• evaluate expectation by Monte Carlo,

LMC(θ) = m−1
m
∑

j=1

[X|Sj][Y |Sj, X],

using anti-thetic pairs, S2j = −S2j−1



An importance sampler

Re-write likelihood as

L(θ) =

∫

[X|S][Y |X, S]
[S|Y ]

[S|Y ]
[S]dS

• [S] = [S0][S1|S0]

• [S|Y ] = [S0|Y ][S1|S0, Y ] = [S0|Y ][S1|S0]

• [Y |X, S] = [Y |S0]

⇒

L(θ) =

∫

[X|S]
[Y |S0]

[S0|Y ]
[S0][S|Y ]dS

= ES|Y

[

[X|S]
[Y |S0]

[S0|Y ]
[S0]

]



An importance sampler (continued)

• simulate Sj ∼ [S|Y ] (anti-thetic pairs)

• if Y is measured without error, set [Y |S0j]/[S0j|Y ] = 1

Monte Carlo approximation is:

LMC(θ) = m−1
m
∑

j=1

[

[X|Sj ]
[Y |S0j]

[S0j|Y ]
[S0j]

]



Practical solutions to weak identifability

1. explanatory variables U to break dependence between
S and X

2. strong Bayesian priors

3. two-stage sampling







Ozone monitoring in California

Data:

• yearly averages of O3 from 178 monitoring locations
throughout California

• census information for each of 1709 zip-codes

Objective:

• estimate spatial average of O3 in designated sub-regions



California ozone monitoring data
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Ozone monitoring in California (continued)

Preferential sampling?

• highly non-uniform spatial distribution of monitors,
negatively associated with levels of pollution

• may be able to allow for this if demographic and/or
socio-economic factors are associated both with levels
of pollution and with intensity of monitoring



Ozone monitoring in California (continued)

Modelling assumption

• dependence induced by latent variables U ,

[X, S, Y ] =

∫

[X|U ][S|U ][Y |S, U ][U ]dU

• if U observed:

– use conditional likelihood,

[X, S, Y |U ] = [X|U ][S|U ][Y |S, U ]

– and ignore term [X|U ] for inference about S



California ozone monitors: outlier?
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Analysis of California ozone monitor
locations

• monitor intensity associated with:

– population density (positive)

– percentage College-educated (positive)

– median family income (negative)

• good fit to inhomogeneous Poisson process model
(after removal of one outlier)



California ozone monitors: fit to Poisson model
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Heavy metal bio-monitoring in Galicia
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Heavy metal bio-monitoring in Galicia
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Heavy metal bio-monitoring in Galicia
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Heavy metal bio-monitoring in Galicia

• 1997 sampling design is good for monitoring effects of
industrial activity

• but would lead to potential biased estimates of residual
spatial variation

• 2000 sampling design is good for fitting model of residual
spatial variation

• assuming stability of pollution levels over time, possible
analysis strategy is:

– use 2000 data, or sub-set thereof, to model spatial
variation

– holding spatial correlation parameters fixed,
use 1997 data to model point-source effects of
industrial locations.



Galicia: 2000 predictions (posterior mean)
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Galicia: excision of areas close to industry
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Galicia: posteriors from analysis of 2000 data
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Galicia: analysis of 1997 data

• introduce distance to nearest industry as explanatory
variable,

µ(x) = µ0 + α + γd(x)

• for β and spatial covariance parameters, use posteriors
from 2000 analysis

• resulting posterior mean and SD for (α, γ)

α γ
mean 0.601 -0.000561

SD 0.179 0.000609



Galicia: posteriors for (α, γ)
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Galicia: a cautionary note
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Closing remarks on preferential sampling

• preferential sampling is widespread in practice, but
almost universally ignored

• its effects may or may not be innocuous

• model parameters may be poorly identifed, hence

• reliance on formal likelihood-based inference for a single
data-set may be unwise

• different pragmatic analysis strategies may be needed for
different applications



Closing remarks on model-based
geostatistics

• Parameter uncertainty can have a material impact on
prediction.

• Bayesian paradigm deals naturally with parameter
uncertainty.

• Implementation through MCMC is not wholly
satisfactory:

– sensitivity to priors?

– convergence of algorithms?

– routine implementation on large data-sets?



• Model-based approach clarifies distinctions between:

– the substantive problem;

– formulation of an appropriate model;

– inference within the chosen model;

– diagnostic checking and re-formulation.

• Areas of current research include:

– preferential sampling

– computational issues around large data-sets

– multivariate models

– spatio-temporal models



• Analyse problems, not data:

– what is the scientific question?

– what data will best allow us to answer the question?

– what is a reasonable model to impose on the data?

– inference: avoid ad hoc methods if possible

– fit, reflect, re-formulate as necessary

– answer the question.


