
Model-Based Image Interpretation
Using Genetic Algorithms

A. Hill and C. J. Taylor

Department of Medical Biophysics,

University of Manchester,

Oxford Road,

Manchester Ml 3 9PT.

Abstract

We describe the application of genetic algorithms in model-based image inter-

pretation. The delineation of left ventricular boundaries in apical 4-chamber

echocardiograms is used as an illustrative exemplar. The suitability of genetic

algorithms for the model/objective-function/search procedure is presented.

1 Introduction
In model-based vision we generally wish to find the model-to-image transform-

ation which explains some observed image. For example, for a 2D image of a

known, rigid 3D object, the goal is to find the parameters (position and orientation)

of the model which best explain the projection observed in the image. In general,

additional parameters are required to account for variability in the object itself.

A common approach to finding the parameter values is to extract image primitives

and solve the combinatorial problem of establishing a correspondence between

these and model primitives [1]. This assumes that a robust mechanism exists for

extracting well-defined primitives, an assumption which often does not hold, par-

ticularly in fields such as medical image interpretation.

An alternative is to search through the space of possible parameter values, pro-

jecting model instances back into the image until one which is consistent with the

observed image is found. Such an approach has often been applied starting from

one or more approximate solutions but the initial approximations can be difficult

to find when primitive extraction is problematic. In the absence of an initial ap-

proximation or cue, the alternative of a "blind" search through the parameter space

seems unattractive because the search space can be huge (257 possible states in

the example we present below), however, the problem is well-matched to a class

of optimisation methods known as Genetic Algorithms (GAs) [2,3,4] which can

robustly find good solutions in large search spaces using very few trials. Given

an objective function, /, which measures the evidential support for any particular

projection into the image of the model, a GA search can find a set of parameters

which provide a good explanation (or interpretation) of the image. Out results dem-

onstrate the feasibility of this approach.
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2 The Exemplar
We have evaluated the method using ultrasound images of the heart (apical

4-chamber echocardiograms). A typical example is shown in figure l.a. The prob-

lem we address is that of locating the boundary of the left ventricle (LV) as shown

in figure l.b. The aim is to provide quantitative information concerning LV func-

tion, by analysing the motion of the LV boundary over a time sequence of images.

Figure l.a : An apical 4-chamber

echocardiogram

Figure l.b : Associated LV boundary

The features of echocardiograms which make this a challenging exemplar are :

• Drop-out of the echo from some sections of the left ventricular wall.

• Considerable biological variation in LV size, shape and position.

• Occlusion of the LV boundary by other structures in the heart.

• Noise and artefacts.

There have been many attempts to automate the delineation of the LV [5,6] but

nearly all rely on some operator intervention. Even so, such systems perform unre-

liably. Our objective is to achieve robust performance for images of clinical (poor)

quality using a completely automatic approach.

3 Genetic Algorithms
GAs employ mechanisms analogous to those involved in natural selection to con-

duct a search through a given parameter space for the maximum/minimum of some

objective function. The main features of the approach are as follows :

• A point in the search space is encoded as a chromosome.

• A population of N chromosomes/search points is maintained, rather than

a single point.

• New points in the search space are generated by probabilistically com-

bining existing solutions.

• Optimal solutions are evolved by iteratively producing new generations

of chromosomes using a selective breeding strategy based on the relative
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values of the objective function for the different members of the popula-

tion.

Under the right circumstances such methods have been shown to converge to good

solutions remarkably rapidly and have the advantage that the rate of convergence

varies in accordance with the complexity of the search space, thus achieving robust

performance over a range of conditions.

3.1 Representation and Evaluation of Solutions

A solution x = (x\,X2,..,xn) is encoded as a string of genes to form a chromosome

representing an individual. Each gene can take one of several values or alleles. Hol-

land [2] showed that long chromosomes with few alleles per gene are preferable

to shorter chromosomes with many alleles per gene. This implies that the optimal

case is binary alleles. Consequently, in many applications the chromosomes are

simply bit strings.

An objective/utility function, /, is supplied which can decode the chromosome

and assign a fitness value to the individual the chromosome represents. In many

applications the fitness value is simply the objective function evaluated at the point

in the search space represented by the chromosome, f(x).

3.2 The Genetic Operators

Given a population of chromosomes the genetic operators crossover and mutation

can be applied. Crossover takes two parent chromosomes, cuts them at some ran-

dom gene/bit position and recombines the opposing sections to create two children:

• L>

Mutation is a background operator which selects a gene at random on a given indi-

vidual and mutates the allele for that gene (for bit strings the bit is complemented).

Mutation is used to reintroduce alleles which may have been lost from the popula-

tion for purely stochastic reasons.

3.3 Iterative Solution

The search for an optimal solution starts with a randomly generated population

of chromosomes; an iterative procedure is used to conduct the search. For each

iteration a process of selection from the current generation of chromosomes is fol-

lowed by application of the genetic operators. Selection allocates a number of trials

1 N

to each individual according to its relative fitness value fi/f, f' = — ^fi • The fitter
N
 i=i

an individual the more trials it will be allocated and vice versa. Average individuals

are allocated only one trial. A trial is conducted by applying the genetic operators

(in particular crossover) to selected individuals to produce a new generation of

chromosomes.
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The algorithm progresses by allocating, at each iteration, ever more trials to

the high performance (better than average) areas of the search space under the

assumption that these areas are associated with short sub-sections of chromosomes

(hyperplanes/schemata/building blocks) which can be recombined using the ran-

dom cut-and-mix of crossover to generate even better solutions.

4 The Model-Based Approach
The approach we adopt is to create a model of the LV which captures the variability

in LV shape and allows missing parts of the boundary within the image to be in-

ferred. The model is instantiated by choosing values for a set of 6 shape parameters

(a,/?,(5i, <52,<53, di) (see figure 2) and 4 transformation parameters (r,8,s,(f>). An

objective function, derived by considering edge evidence within the image along

profiles constructed perpendicular to the candidate boundary, is employed to evalu-

ate the degree to which image evidence supports any particular instantiation of

the model.

4.1 The Model

LV shape (see figure 2) is defined as follows : The parameter a controls the width/

height ratio. The co-ordinate of a control point representing the apex is thus given

by (-a , 1) and the control point representing the attachment of the mitral valve

to the septum (see figure l.a) by ( - a , - 1). The angle of the mitral valve to the

septum is governed by the parameter /? which defines a vertical displacement from

the position ( a , - 1) i.e. a control point is positioned at ( a , - 1 + @). The movement

of the mitral valve is governed by the parameter 5\ which describes the perpendicu-

lar displacement of a control point lying midway between the control points

{-a,- 1) and (a,-I + P). In a similar manner^ governs the position of the con-

trol point at the centre of the septum. The two remaining parameters 63, ̂ 4 dictate

the position of the control points which modify the shape of the outside wall of

the LV. 63a defines a horizontal displacement from the control point (- a, 1) and

(54 defines a vertical displacement from the control point (a, - 1 + P).

For any instantiation of the shape model a continuous ventricular boundary

can be obtained by first generating the control points in the manner described above

and then employing a parametric cubic spline which interpolates these control

points. Any number of points on the continuous boundary can be selected via the

cubic spline.

The translation, scale and orientation of the model co-ordinate system with

respect to the image are defined by (r,9),s,<prespectively. The translation is given

in polar co-ordinates because the echocardiogram is a sector of a circle. All 10

parameters a,fl,d\.A,r,0,s,<p are quantised appropriately - see table 1 (note that

r and j are dimensionless [0,1] variables i.e. for a square image of dimension L

the actual values of r and s employed are rL and sL respectively).
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-a X

Points used for spline.

Model Parameters:
a = width/height ratio (0.5)
P = mitral valve relative to septum (0)
5j = movement of mitral valve (-0.1)

T 82 = movement of septum (0)
a 53 = outside wall with apex (0.5)

84 = outside wall with mitral valve (0.5)

-4-—p
Figure 2 : The model for the left ventricle.
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4.2 The Objective Function

To perform the experiments described below we have used a simple and rather

ad-hoc objective function. A number of points, P, on the continuous boundary of

the candidate ventricle are selected for processing, P = [Pe s (1 + a)] where []

indicates rounding to the nearest integer and PQ governs the density of points.

Using PQ = 200 gives typically 30-100 points on the boundary. For each of these

points a grey level profile perpendicular to the boundary at that point is extracted.

For each profile the position (p,-, p m m < pt < pmax) and strength (gi) of the largest

intensity step along the profile are recorded. Each profile is of length 20 pixels

(Pmin = -16, Pmax = 4 ) . The objective function is then given by :

Pi

f
where g — —

When we use the objective function to evaluate instantiations of the ventricle model

we seek to minimise/, thus favouring solutions with strong edges (g large) of equal

magnitude

model (pi

- l| -» 0) located close to the boundary position predicted by the

0).
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5 Implementation of Genetic Algorithm

5.1 Representation

As suggested by Fitzpatrick et al [7], the parameters of the model are encoded

as unsigned gray-code binary integers. The number of bits encoding each para-

meter is given in table 1. For the translation vector (r, 0) it has proved useful to

inter-leave the bits from each variable to form a single position vector variable

with alleles 0..3, viz :

|QiT M Qj\ e4 85\ e6

r\ n ri Ti, n

I (r9)i\ (r9)2\ (r9h\ {rS)Jj (r0)5\ (r6)6\ ( 7 ^ |

0 < (rO)i < 3 V i

5.2 Search Parameters

We have employed the "standard" GA values (see Grefenstette [8]) of population

size (N) = 50 and crossover rate (C) = 0.6 together with a mutation rate (M) of

0.005. In general, a fixed maximum number of objective function evaluations were

allowed and this was set at 5000. The problem of unbiased trial allocation is dis-

cussed by Baker [9]. We have employed the Remainder Stochastic Independent

Sampling (RSIS) algorithm as our selection strategy.

6 Results

We have acquired approximately 40 apical 4-chamber echocardiogram time se-

quences from several sources. All the images are of dimension 2562 and pre-pro-

cessed using a 3D grey-level morphological closing filter of dimensions 5 x 5 x 3

(x, y and t respectively). The sequences exhibit all of the characteristics described

in section 2. We have conducted two experimental studies; a comparison of differ-

ent methods of optimisation (GAs and Simulated Annealing (SA) [3,10]) and a

comparison of the performance of the model-based interpretation scheme de-

scribed here with interpretations derived by an expert (manually drawn LV bound-

aries generated by a clinician).

For the first experiment a single image from each of five sequences was se-

lected. These images were chosen on the basis that they were both difficult for

an expert to interpret and also included characteristics which made the search space

as difficult as possible (multiple optima, atypical LV shape). We applied both GA

and SA to minimise the objective function described in section 4.2 for each of the

five images and recorded the best objective function value located for each of 20

applications. Both methods of optimisation were allowed a maximum of 5000 func-

tion evaluations per application. Table 2 shows the two-tailed t-test results for the

20 sample distributions. It is clear from this table that, for the particular objective

function, data and implementations described here, the performance of GA is sig-

nificantly better than SA.
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Table 2 : Comparison of different methods of optimisation.

Test

Image

1

2

3

4

5

Genetic

mean/

0.1804

0.1184

0.1460

0.1001

0.1223

Algorithm

oof/

0.0165

0.00551

0.00685

0.0C477

0.00891

Simulated

mean /

0.1905

0.1243

0.1521

0.1039

0.1282

Annealing

o of/

0.0129

0.00447

0.00646

0.00447

0.00805

t

2.2

3.7

2.9

2.6

2.2

t-test

signif.

0.037

0.001

0.006

0.013

0.034

For the second experiment we employed ten time sequences with boundaries

drawn by an expert for the end systole and diastole frames i.e. two images per

sequence giving a test suite of 20 images. It should be noted that several of these

sequences were difficult to interpret, even for an expert. The images were inter-

preted using the model-based approach described here and the resulting LV bound-

aries compared with the expert-generated boundaries. The results are shown in

table 3.

Table 3 : Comparison of model-based approach with expert.

X

5

10

20

Number

Area

12

14

17

of Images within -

Max Height

6

11

18

y-x%

Max Width

8

13

17

No. of images for

A within x pixelst

3

14

18

( x - 2 )

( x - 4 )

( x - 6 )

In this table A is the mean distance between boundaries and is given by

2 P
— ]T v/(aijt - bj*)2 + (aj,y - bj,y)

2 where bj = (bj.*, bj,y) is the point on the expert
p
i = i

boundary closest to the point on the GA generated boundary aj. These results were

produced by applying the GA search to each image once only and always from

the same random set of starting points/chromosomes. A limit of 5000 function

evaluations was again employed.

A "visual" comparison of the results revealed that the model-based approach

failed to locate two out of the twenty left ventricles and obtained a less than accept-

able interpretation for one other. The first two "failures" occur due to multiple

plausible interpretations within the image and the third because of an abnormal

ventricular shape (an aneurism). These incorrect interpretations are highlighted

in the last row of table 3. Of the remaining 17 images, very plausible interpretations

were obtained comparing favourably with those generated by an expert. We stress

again the difficulty of the interpretation task for these images and the simplicity

of the objective function we have employed.

t The mean absolute pixel height and width of the expert boundaries are 100 and 54 respectively.
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7 Extensions - Niches and Species
If the GA could be employed to extract multiple optima, the functionality of the

method would be greatly enhanced. The purpose of the search would no longer

be to locate the single model instantiation most likely to be the LV in the current

image, but would be to extract a handful of strong, ranked candidates for the LV.

The problem of locating multiple optima when using GAs is discussed by Goldberg

[4]. The approach adopted is to reduce the number of individuals in over-crowded

areas of the search space by modifying their function values.

The major problem with this approach is how to decide how close individuals

are to each other in order to determine crowding factors with which to modify the

function values. We have implemented a crowding strategy which defines the close-

ness of individuals simply to be the 2D Euclidian distance separating the centres

of the candidate ventricles within the image. The crowding factor (F) for any indi-

vidual is simply the number of individuals that lie within a disc of a certain radius

to the individual being considered. The modified function value is then given by

/(7 - FIN) (when maximising) i.e. the greater the crowding, the worse the modified

function values. A modified mating strategy has also been implemented in which

close individuals are favoured as mates over distant individuals. This strategy has

been found to be successful in maintaining separate sub-populations of individuals

within the image which represent various candidate LVs.

As an example, the white dots in figure 3 represent the central co-ordinates

of the individuals within the population after 40 generations; upon inspection it

is clear that there are several separate species corresponding to the various cavities

within the image.

Figure 3 : Species adapted to different chambers.

8 Conclusions
One of the major attributes of the model-based approach is the ability to correctly

interpret incomplete and/or noisy image data by constraining all possible interpreta-

tions using knowledge represented by a model. In order for this process to be sue-
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cessful it may be necessary to search a high-dimensional, non-linear, multi-modal

and noisy search space. The chosen exemplar exhibits many of the problems fre-

quently encountered within image interpretation (see section 2). The combination

of a shape model which guarantees the feasibility of solutions, a naive objective

function and a powerful search technique has been shown to yield very promising

results.

The model-based approach described here would benefit greatly from a more

generic approach to both model building (for generating candidate solutions) and

evidential support mechanisms (the objective function). We are addressing both

of these problems in our current work and progress in the former has already been

made [11]. The sophistication of the objective function could be improved signifi-

cantly by incorporating terms within the objective function which, rather than being

ad-hoc as in section 4.2, are learned during the training phase of the model-build-

ing process.
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