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[ Jeffrey A. Fessler] 

[A review of the use of iterative algorithms]

M
a g n e t i c 
resonance 
i m   a g i n g 
(MRI) is a 
sophisticat-

ed and versatile medical 
imaging modality.  Tra -
ditionally, MR images are 
reconstructed from the raw 
measurements by a simple 
inverse two-dimensional (2-D) or three-dimensional (3-D) fast 
Fourier  transform (FFT). However, there are a growing number 
of MRI applications where a simple inverse FFT is inadequate, 
e.g., due to non-Cartesian sampling patterns, non-Fourier physi-
cal effects, nonlinear magnetic fields, or deliberate under-sam-
pling to reduce scan times. Such considerations have led to 
increasing interest in methods for model-based image recon-
struction in MRI.

INTRODUCTION
The inverse FFT has served the MR community very well as the 
conventional image reconstruction method for k-space data 
with full Cartesian sampling. And for well sampled non-Carte-
sian data, the gridding method with appropriate density com-
pensation factors [1] is fast and effective. But when only 
under-sampled data is available, or when non-Fourier physical 

effects like field inhomogene-
ity are important, then grid-
ding/FFT methods for image 
reconstruction are subopti-
mal, and iterative algorithms 
based on appropriate models 
can improve image quality, 
at the price of increased 
computation. This article 
reviews the use of iterative 

algorithms for model-based MR image reconstruction. The ref-
erences give pointers to some recent work but are by no means 
a comprehensive survey. To see more citations, visit http://www.
eecs.umich.edu/~fessler/.

MRI BACKGROUND
Any signal processing method aimed at forming images from 
measurement devices such as MRI scanners must consider the 
relevant physics. A survey in IEEE Signal Processing Magazine 
[2] and a book written from a signal processing perspective [3] 
have described MRI physics well. Here we review the physics in 
a somewhat unconventional way that facilitates describing some 
of the “non- Fourier” aspects of MRI.

MRI PHYSICS
Standard MRI scanners use a large static magnetic field

B
S

0 1 rS 2 5 B0 1 rS 2 kS  (1)
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to induce a net magnetization M
S
5Mx i

S
1My j

S
1Mzk

S
 at each 

point in space in the body being imaged, where i
S

, j
S

, and k
S

 
denote the unit vectors along the x, y, and z axes, respective-
ly, and r

S
5 1x, y, z 2  denotes 3-D spatial coordinates. Ideally, 

the static field strength B0 1 rS 2  would be spatially uniform, i.e., 
a single constant B0. In practice, it is never perfectly uniform, 
due to the unavoidable nonuniformities of all practical coil 
designs and due to the field strength variations that are 
induced by the nonuniform magnetic susceptibilities of differ-
ent tissue types. The electron distributions in different mole-
cules also influence the local magnetic environment 
experienced by an atom’s nucleus, called chemical shift. Some 
types of MRI scans are robust to such spatial variations of B0; 
others are sensitive to nonuniformities, necessitating correc-
tion methods.

At equilibrium (which is established within a few seconds 
for a stationary object), the magnetization M

S
 is aligned with 

the applied static field and its magnitude is proportional to the 
product of B0 1 rS 2  and the object-dependent local density of 
(predominately) hydrogen protons or “spins.” This proton den-
sity alone is of only modest interest in MRI; in practice one 
applies time-varying magnetic fields B

S 1 rS, t 2  that induce time-
varying changes in the magnetization

 M
S 1 rS, t 2 5Mx 1 rS, t 2 i

S
1My 1 rS, t 2 j

S
1Mz 1 rS, t 2 kS. (2)

These changes depend on time constants (tissue-dependent 
relaxation parameters) and other factors, and the goal in MRI 
is to form images of aspects of this magnetization. By manipu-
lating the applied field B

S
0 1 rS, t 2  appropriately, sometimes in 

conjunction with injected or inhaled contrast agents, one can 
examine a multitude of different tissue properties.

An MRI scan consists of one or more alternations between 
two stages: excitation and readout. During the excitation stage, 
the applied magnetic field B

S 1 rS, t 2  is designed to tip the mag-
netization vectors M

S
 within some slice or slab away from equi-

librium, so that they have a component in the transverse plane, 
i.e., the 1x, y 2  plane. It is convenient to represent this trans-
verse component mathematically using a complex function 
defined as follows:

 M 1 rS, t 2 ! Mx 1 rS, t 2 1 i My 1 rS, t 2 , (3)

where i !"21. Note that the field components Mx  and 
My  are real physical quantities; the “transverse magnetiza-
tion” M 1 rS, t 2  is complex solely by definition. The excitation 
process can be quite complicated to model and is beyond 
the scope of this article. See [2] for an introduction to the 
role that signal processing plays in the design of excitation 
pulses and [4] for some recent model-based RF pulse 
design methods.

During the readout stage, the applied field B
S 1 rS, t 2  is 

manipulated in ways that help elucidate the transverse 
magnetization M 1 rS, t 2 . For image reconstruction, it is 
essential to model the effects of the applied field on the 

transverse magnetization. The precise relationship is gov-
erned by the Bloch equation [2]. For most image recon-
struction purposes, it suffices to consider just two aspects 
of the full relationship: precession and transverse relax-
ation. The most important equation in MRI is the Larmor 
relation: v 5 g| B

S
| , which states that the magnetization 

precesses (around the axis of the applied field) at a frequen-
cy v  that is proportional to the magnitude of the applied 
field. The constant of proportionality g  is called the gyro-
magnetic ratio and is about 42.6 MHz/T for hydrogen pro-
tons. During a readout, only the longitudinal component of 
B
S

 is varied usually, i.e.,

 B
S 1 rS, t 2 5 Bz 1 rS, t 2 kS, (4)

so the magnetization precesses around k
S

, i.e., within the trans-
verse plane. This property is why the complex representation (3) 
is convenient, because precession can be expressed using a com-
plex phase in this form. In general, the applied longitudinal field 
strength Bz 1 rS, t 2  varies both spatially and temporally, so the 
Larmor relationship describes the instantaneous frequency at a 
given spatial location

 v 1 rS, t 2 5g Bz 1 rS, t 2 . (5)

Without loss of generality, let t5 0 be the time when the excita-
tion pulse is completed, and consider some time point t . 0 
during the readout. The precession of the transverse magnetiza-
tion between time zero and time t corresponds to a net phase 
that is the integral of the instantaneous frequency (5), i.e., ide-
ally we would have

 M 1 rS, t 2 5M 1 rS, 0 2expa2i3
t

0
v 1 rS, t r 2dt rb.

In practice, microscopic variations in the magnetic field 
cause the spins within a given voxel to become out of phase 
over time. So the transverse magnetization vector’s magni-
tude decreases approximately exponentially with a time con-
stant T 2

*. Accounting for this decay, an accurate model for the 
temporal evolution of the transverse magnetization during a 
readout is

 M 1 rS, t 2 5 f 1 rS 2e2t/T2
*1 rS 2expa2 ig3

t

0
Bz 1 rS, t r 2dt rb, (6)

where f 1 rS 2 ! M 1 rS, 02  denotes the object’s transverse magne-
tization immediately after excitation. A typical goal in MRI is 
to form an image of f 1 rS 2 . The properties of f 1 rS 2  depend not 
only on spin density, but also on the type of excitation used. 
Note that for simplicity of exposition, we focus here on the 
case where the object is static so that f 1 rS 2  is not a function of 
time t. Generalizations to dynamic imaging are very active 
research areas in MR image reconstruction.

The relaxation factor T2
* varies spatially, and often is on the 

order of 10 ms. This relatively rapid decay is a significant limi-
tation in MRI. If T 2

* were longer, then a signal excitation stage 
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followed by a (lengthy) readout 
stage could be sufficient to 
form a high-resolution image 
of f 1 rS 2 . In practice, the rapid 
decay  limits how much spatial 
information can be recorded in a single readout stage, so such 
“single shot” imaging, such as echo-planar imaging (EPI) [5], 
provides only modest spatial resolution. Therefore, high-reso-
lution imaging uses multiple alternations between excitation 
stages and readout stages, each with different variations of the 
applied field Bz 1 rS, t2 .
DATA ACQUISITION: THE MR SIGNAL
By Faraday’s law, the time-varying magnetization M 1 rS, t2  will 
induce an electromotive force (emf) in a nearby coil. The emf 
will be proportional to the volume integral of the time deriva-
tive of the magnetization M 1 rS, t2  multiplied by the coil 
response pattern c 1 rS 2 . The resulting electrical potential v 1t 2  
across the receive coil is

 v 1t 2 5 reala3c 1 rS 2 d
dt

M 1 rS, t 2dr
Sb, (7)

where real(·) denotes the real part of a complex number. The 
coil response c 1 rS 2  generally decreases with distance from the 
coil. If uncorrected, this nonuniformity causes spatial variations 
in signal strength that can be a challenge for image processing 
methods like segmentation algorithms. Numerous correction 
methods have been developed.

Because the time constant T2
* is on the order of millisec-

onds whereas the phase variations in (6) are many MHz, it is 
very reasonable to use a narrow-band approximation when 
evaluating the time derivative of M 1 rS, t 2  as needed in (7). The 
time derivative of a narrow-band signal is well approximated 
by a constant scaling factor d/dtM 1 rS, t 2 < c0 M 1 rS, t 2 . We 
absorb this constant into the coil response pattern and rewrite 
(7) as

 v 1t 2 5 reala3c 1 rS 2  M 1 rS, t 2  dr
Sb. (8)

The receive coil’s signal is amplified and demodulated using 
some center frequency v0. Ideally, one would use v05g B0 if 
the static magnetic field had uniform strength B0. Usually 
quadrature demodulation is used, yielding separate in-phase 
I 1t 2  and quadrature Q 1t 2  baseband signals. In the literature, 
the demodulated “MR signal” s 1t 2  is defined (implicitly) as

s 1t 2 ! I 1t21 iQ 1t25 lowpass 1eiv0tv 1t 225 eiv0t3c 1 rS 2M 1 rS, t2dr
S

,
 (9)

where the low-pass operation selects the baseband component 
of the demodulated signal. This complex analog signal is just a 
mathematical definition; in practice, the I 1t 2  and Q 1t 2  signals 
are each sampled and digitized yielding two digital signals. (One 
can use two separate analog-to-digital (A/D) converters, or a sin-
gle A/D converter running at twice the normal rate to avoid I/Q  

imbalance.) Digitally, these two 
signals can be combined and 
stored as complex values, i.e., 
we record samples

 I 1mDT 2 1 iQ 1mDT 2 ,  m5 1, c, nd,

where DT denotes the sampling rate (typically around 1 ms) 
and nd denotes the number of recorded samples, typically 
64–512 for a given readout stage. Again, the physical quanti-
ties are real, but complex quantities are defined in terms of 
those physical quantities for convenience. (In some sys-
tems, digital demodulation is used, but the modeling 
remains identical.)

SIGNAL MODEL
To improve signal-to-noise ratio and reduce acquisition 
times, the use of multiple receive coils has become increas-
ingly popular in MRI. Although originally called phased array 
imaging [6], a term that resonates with other signal process-
ing applications involving multiple receivers, today the use 
of multiple receive coils in MRI is usually called parallel 
imaging [7].

Let cl 1 rS 2  denote the sensitivity (response pattern) of the lth 
coil, for l5 1, c, L, where L denotes the number of coils. Let 
sl 1t 2  denote the demodulated “MR signal” associated with the 
lth coil, defined as in (9). Substituting (6) into (9) and simplify-
ing yields the following general forward model for the MR signal 
associated with the lth coil

 sl 1t 2 5 3cl 1 rS 2 f 1 rS 2e2t/T2
*1 rS 2e2if1rS,t2 dr

S
, (10)

where the space- and time-varying phase is

 f 1 rS, t 2 ! 3
t

0

1g Bz 1 rS, t r2 2v0 2dt r. (11)

In practice, multiple such signals are recorded, one for each exci-
tation/readout pair (“shots”). For simplicity of notation, we con-
sider “single shot” imaging; the extension to multiple shots is 
conceptually straightforward but notationally cumbersome. Note 
that the phase variations (11) are common to all receive coils; 
only the coil response patterns 5cl 1 rS 2 6  differ between coils.

MEASUREMENT MODEL
The recorded measurements in a MR scan consist of noisy samples 
of the MR signal (10)

 yli5 sl 1ti 2 1 eli,  i5 1, c, nd,  l5 1, c, L, (12)

where yli denotes the ith sample of the lth coil’s signal at time 
ti and nd  denotes the number of time samples. Usually the ti 
values are equally spaced, and often there are one or more time 
values where the signal is particularly strong due to alignment 
of the magnetization’s phases; these values are called echo 
times. The measurement errors eli are very well modeled by 

NOTIONS OF SPARSITY 
HAVE DEEP ROOTS IN STATISTICAL 

SIGNAL PROCESSING. 
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additive, complex, zero-mean, 
temporally white Gaussian noise 
[8]. However, there can be cou-
pling of the noise values between 
different coils for the same time 
points, i.e.,

 Cov5eli, ekj6 5Slkd[i2 j 4 , (13)

where d denotes the Kronecker impulse, and the L 3 L matrix 
S characterizes the noise covariance between coils [7].

LINEAR RECONSTRUCTION PROBLEM
Using the measurement model (12) and the signal model (10), 
the “typical” image reconstruction problem in MRI is to esti-
mate the object f 1 rS 2  from the measurement vector 
y5 1y1, c, yL 2 , where yl5 1yl1, c, yl,nd

2 . (All vectors are 
column vectors here.) We first consider model-based image 
reconstruction for this “basic” linear formulation. Because par-
allel imaging is of considerable interest, we continue to consider 
the general case of L receive coils. A standard single receive coil 
is a simple special case.

This is an ill-posed problem because the given measure-
ments y are discrete whereas the object f 1 rS 2  is an unknown 
continuous-space function. To facilitate parametric estimation, 
we approximate the object f 1 rS 2  using a “finite series expansion” 
as follows:

 f 1 rS 2 5 a
N

j51
fjb 1 rS2 r

S
j 2 , (14)

where b 1 # 2  denotes the object basis function, r
S

j denotes the 
center of the jth translated basis function, and N  is the 
number of parameters. Such approximations are classic in 
the tomographic image reconstruction literature [9] and are 
slowly taking root in the MR community. Minimum L2 norm 
methods can postpone the discretization (14) until the final 
step of displaying the image, but it is unclear if this approach 
provides image quality benefits that outweigh its computa-
tional requirements. For simplicity, hereafter we use rect 
basis functions b 1 rS 2 5 rect 1 rS/D 2 , i.e., square pixels of di-
mension D, so N  is the number of pixels, or voxels in 3-D 
scans. Many other possible basis function choices can be 
considered, all of which are imperfect because the true ob-
ject never satisfies the parametric model (14) exactly. 
Nevertheless simple basis functions can provide useful ap-
proximations.

Substituting the basis expansion (14) into the signal model 
(10) and simplifying leads to the discrete forward model

 sl 1ti 2 5 a
N

j51
alij fj, (15)

where the elements 5alij6  of the system matrix Al  associated 
with the lth coil are given by

 alij5 3b 1 rS2 r
S

j 2cl 1 rS 2e2ti /T2
*1Sr 2e2if1rS, ti2 dr

S
. (16)

In practice the basis func-
tions are usually highly local-
ized (e.g., voxels), so “center 
of voxel” approximations like 
the following are nearly always 
used, often implicitly

 alij < cl 1 rSj 2e2ti /T2
* 1rSj 2e2if1 rSj ,  ti2 . (17)

For exceptions, see [10].
Typically the decay due to T 2

* is ignored, or it is assumed 
implicitly that the total readout time tnd

2 t1 is small relative 
to T 2

*  in which case one can make the approximation 
e2ti /T

*
21 rS2 < e2t1/T2

*1rS2 . Under this approximation, we can absorb 
the T2

*-weighting effect of e2t1/T2
*1 rS 2 into the unknown image f 1 rS 2 .

Combining (12) and (15) in matrix-vector form yields

 yl5 Al f1 el,

where f5 1 f1, c, fN 2  is the vector of parameters (pixel 
 values) that we wish to estimate from the data y. Stacking up 
all L measurement vectors as y5 1y1, c, yL2  and defining 
the 1nd L 2 3 N  system matrix A5 1A1, c, AL 2  yields the 
linear model

 y5 Af1 e. (18)

At first glance this linear model appears amenable to a vari-
ety of iterative solution methods. However, a significant chal-
lenge that arises is that in general the elements of A can be 
quite complicated in the form above, yet A is too large to store 
for typical problem sizes. Most iterative algorithms require 
matrix-vector multiplication by A  and its transpose; there 
are fast algorithms for these operations (without storing A 
explicitly) in many special cases of interest [10], [11].

Thus far we have allowed the phase function f 1 rSj, ti 2  to be 
quite general, without the traditional focus on “Fourier 
 encoding.” Recently there has been interest in investigating 
nonlinear magnetic field variations Bz 1 rS, t 2  in (4), and recon-
struction algorithms have been proposed that use much of the 
generality in (16) [12], [13]. These are currently specialized 
research topics, so we now focus on the more common case of 
linear field gradients.

FOURIER ENCODING
In typical MR scanners, the longitudinal component of the 
applied field Bz 1 rS, t 2  in (4) consists of three components

 Bz 1 rS, t 2 5 B01DB0 1 rS 2 1G
S 1t 2 # r

S
. (19)

The constant B0 denotes the advertised field strength of the 
main static field. The function DB0 1 rS 2  denotes the spatial devi-
ations of the field strength from this nominal value. This 
 function is often called a field map, and in general, it is 
unknown, but it can be estimated by suitable types of 

MODEL-BASED METHODS THAT 
ACCOUNT FOR THOSE [PHYSICAL] 

EFFECTS ARE PROVING TO BE 
BENEFICIAL FOR IMPROVING 

IMAGE QUALITY. 
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 acquisitions and data processing methods [14]. The field gradi-
ents G

S 1t 2 5G
S

x 1t 2 j
S
1G

S
y 1t 2 j

S
1G

S
z 1t 2 j

S
 consist of three user-

controlled functions that are the historical key to providing 
spatial information in standard MR imaging. Many different 
types of MR scans are possible by changing G

S 1t 2 .
Substituting (19) into (11) using v0 ! gB0 and simplify-

ing yields

 f 1 rS, t 2 5 3 t

0
g DB0 1 rS 2 1gG

S 1t 2 # r
S

 dt

or equivalently

 e2if1 rS,t 25 e2iDv01rS2t e2i2pk
S 1t2 # rS , (20)

where Dv0 1 rS 2 ! g DB0 1gS 2  denotes the off-resonance frequen-
cy and the k-space trajectory is defined by

 k
S 1t 2 ! 1

2p3
t

0
gG
S 1t 2  dt. (21)

Usually the phase accrual e2iDv01 rS 2 t due to off resonance is 
undesirable and can distort reconstructed images if ignored. 
Therefore some image reconstruction methods, particularly in 
fMRI, account for its effects [10]. In some cases, the map 
Dv0 1 rS 2  is found from a separate “prescan,” in other cases it is 
estimated jointly with f  [15]. In chemical shift imaging, e.g., 
to separate fat and water components, the term Dv0 1 rS 2  
includes both useful information about the chemical shift 
effect as well as the undesirable variations due to field inho-
mogeneity [16].

For the linear field gradients (19), substituting (20) into (17) 
yields simpler expressions for the system matrix

 alij < cl 1 rSj 2e2z 1rSj2 ti e2i2pk
S 1ti2 # rSj , (22)

where we define the “rate map” z 1 rS 2  by combining the relax-
ation and field maps

 z 1 rS 2 ! 1/T 2
* 1 rS 2 1 iDv0 1 rS 2 . (23)

When this rate map is assumed to be zero, i.e., if relaxation 
and off resonance are ignored, then alij is the product of a 
Fourier encoding matrix having elements e2i2pk

S1ti2   # rSj  with a 
diagonal sensitivity encoding matrix having elements cl 1 rSj 2 .

If the k-space sample locations k
S 1ti 2  lie on an appropriate 

subset of a Cartesian grid, then FFT operations provide effi-
cient multiplication by A and its transpose. If non-Cartesian 
k-space sampling is used, then a nonuniform FFT (NUFFT) is 
needed [17].

When z 1 rS 2  in (22) is nonzero, then the elements (22) no lon-
ger correspond to a standard Fourier transform. Approximations 
are needed to provide fast computation of matrix-vector products. 
In particular, often one can approximate the exponentials in (17) 
using an additively separable form

 e2z1rSj 2ti < a
k

bik ckj

for various choices for the basis functions bik and coefficients ckj 
[11]. With this type of approximation, we can rewrite matrix-
vector multiplication as follows:

 3Al f 4i < a
k

bika
N

j51

1ckj cl 1 rSj 2 fj 2e2i2pk
S 1 ti2  # rSj .

The inner sum is simply a FFT or NUFFT so this approach is 
relatively fast. Free software for this is available [18].

RECONSTRUCTION COST FUNCTION
Having specified the linear model (18), we now turn to solution 
methods. Because the noise in MRI measurements is Gaussian, 
a natural approach is to estimate f  by minimizing a regularized 
least-squares cost function

 f̂ 5 arg min
f

 C 1 f 2 , C 1 f 2 !   || y2 Af ||21 bR 1 f 2 . (24)

For a single coil, the noise variance in the k-space data is 
white (uncorrelated with uniform variance), so the usual 
Euclidian norm || # || is appropriate. For parallel MRI, noise is 
stationary across time samples 1 i 2 , but the norm should 
include the inverse of the L 3 L  covariance matrix S  in 
(13) that describes the noise correlation between receive 
coils [7].

If the k-space samples lie on an equally spaced grid 
(Cartesian sampling) with appropriate sample spacings relative 
to the object field of view, and if the rate map z 1 rS 2  is zero (i.e., 
we ignore relaxation and field inhomogeneity), and if we consid-
er just a single coil 1L5 1 2  and treat the sensitivity pattern as 
uniform, i.e., c1 1 rS 2 5 1 , then the system matrix Al is orthogo-
nal. In this special case, no regularization is needed and 
A215 1/N A r  and the solution is simply f̂ 5 1/N Ary, which 
can be evaluated by an inverse FFT. This is the most common 
MR image-reconstruction method. However, if any of these con-
ditions do not hold, then typically the system matrix A is not 
well conditioned, and the unregularized LS solution can lead to 
undesirable noise amplification. To avoid this problem, some 
form of regularization is needed.

REGULARIZATION
An open problem in most image reconstruction problems, 
including MRI, is how to best choose the regularizer R 1 f 2 . If 
this term is not included, then the image estimate f̂  will suffer 
from noise and artifacts for under-sampled and/or non-Cartesian 
data, because this inverse problem is ill conditioned. The 
approach for iterative reconstruction that has been adopted in 
commercial positron emission tomography scanners is to use 
an unregularized algorithm, initialize it with a uniform image, 
stop iterating just as the image gets unacceptably noisy, and 
then perhaps apply a bit of post-filtering to reduce the noise. 
One could adopt a similar approach for MR imaging. However, 
introducing regularization can ensure that the iterative algo-
rithm converges to a stable image and can enforce prior infor-
mation that improves image quality particularly for 
under-sampled data.
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The simplest choice is Tikhonov regularization R 1 f 2 5  || f ||2 
or R 1 f 2 5  || f2 f ||2, where f  is some prior or reference image 
(possibly zero). The disadvantage of this choice is that it biases 
the estimate towards the reference image f . In particular, if the 
reference image is zero, then all pixel values in f̂  are dimin-
ished towards zero, possibly reducing contrast.

Another choice is a quadratic roughness penalty function, 
which in one-dimensional (1-D) would be written

 R 1 f 2 5 a
N

j52
| fj2 fj21 |

2. (25)

This choice biases the reconstruction towards a smooth image 
where neighboring pixel values are similar. It is convenient for 
minimization [10], but it has the drawback of smoothing image 
edges, particularly if the regularization parameter b in (24) is 
too large. One can prove that 
using (25) guarantees that the 
cost function (24) has a unique 
minimizer.

More recently, total varia-
t ion methods have been 
 investigated for MR image 
reconstruction [19]. In 1-D, these methods replace the 
squared differences between neighboring pixels above with 
absolute  differences

 R 1 f 2 5 a
N

j52
| fj2 fj21 |. (26)

In 2-D continuous space, the analogous functional is

 3 0 0  =f 0 0d r
S
5 33Å ` '

'x
f 1 r

S 2 ` 21 ` '
'y

f 1 r
S 2 ` 2dx dy.

The advantage of this type of regularization is that it biases the 
reconstructed image towards a piecewise smooth image, instead 
of a globally smooth image, thereby better preserving image 
edges. However it is harder to minimize and can lead to the 
appearance of “blocky” texture in images. Numerous alterna-
tives of the form

 R 1 f 2 5 a
N

j52
c 1 fj2 fj21 2

for various choices of the “potential function” c 1 # 2  have been 
proposed in the imaging literature. Many of these compromise 
between the quadratic case (25) and the absolute difference case 
(26), for example the hyperbola

 c 1t 2 5"11 | t/d |22 1 (27)

is approximately quadratic near zero, which aids noise reduc-
tion, yet approximately linear away from zero, which helps 
preserve edges.

ALGORITHMS
Iterative algorithms are needed to minimize (24). For differen-
tiable regularizers such as (25), the conjugate gradient algo-
rithm is a natural choice [10]. For nondifferentiable regularizers 
like (26), more sophisticated algorithms are needed and this is 
an active research area [20].

RECONSTRUCTION CHALLENGES
Although a variety of useful problems can be solved in MRI 
using the formulation (24), there are numerous challenges that 
provide research opportunities.

REGULARIZATION PARAMETER SELECTION
A practical challenge with regularized methods is selection of 
the regularization parameter b in (24). For quadratic regular-

ization, there is a well-devel-
oped theory for choosing b in 
terms of the desired spatial res-
olution properties of the recon-
structed image [21]. This theory 
extends readily to MR imaging 
with reasonably well sampled 

trajectories (and to parallel imaging with reasonable accelera-
tion factors) for which the point spread function (PSF) of the 
reconstructed image is relatively close to a Kronecker impulse 
so that simple measures like full width at half maximum 
(FWHM) are reasonable resolution metrics. For highly under-
sampled trajectories, the PSF can have “heavy tails” due to alias-
ing effects, and more investigation is needed to extend the above 
methods to MR applications.

For nonquadratic regularization such as the total variation 
method (26), the analysis in [21] is inapplicable so one must 
resort to other methods for choosing b. Statisticians often use 
cross validation for choosing regularization parameters, with a 
goal of finding the parameter that minimizes the mean-squared 
error (MSE) between f̂  and the unknown f . However, MSE is 
the sum of variance and bias squared, and where bias is related 
to spatial resolution and artifacts, and it is unclear whether an 
equal weighting of noise variance and bias (squared) is optimal 
from an image-quality perspective in medical imaging.

Another method for choosing b is the “L-curve” method. 
This method is expensive because it requires evaluating f̂  for 
several values of b, and it has some theoretical deficiencies [22].

In summary, choosing b for nonquadratic regularization 
remains a nontrivial issue in most ill-posed imaging problems 
including MRI, and remains an active research area [23].

PARTIAL K-SPACE METHODS
If the object f 1 rS 2  were real, then its Fourier transform would 
be Hermitian symmetric so in principle only half of k-space 
would need to be sampled. In practice, the magnetization (3) is 
complex due to a variety of physical effects. However, in many 
cases the phase of M 1 rS, t 2  can be assumed to be a smooth func-
tion. This property has led to a variety of partial k-space meth-
ods where one samples a bit more than half of k-space, then 
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estimates the phase from the central portion of k-space 
 (corresponding to low spatial frequencies), and then uses this 
estimated phase to reconstruct the entire image [24]. Such 
methods are used routinely in many types of MR scans.

UNDER-SAMPLED K-SPACE DATA
The need for some type of regularization is essential when the 
k-space data is under sampled, i.e., when the number of mea-
surements Lnd  is less than the number of unknown voxels N . 
In MRI, the scan time is roughly proportional to the number of 
measurements, so collecting fewer samples can reduce scan 
time, which is particularly desirable in dynamic imaging.

In the broader field of tomographic image reconstruction, 
there is a long history of using prior information, such as 
assuming objects are piecewise smooth, to reconstruct images 
from an under-sampled set of 
projection views, e.g., [25]. 
Many of these methods involve 
cost functions of the form (24) 
with a suitable system matrix 
A  for the application and 
appropriate regularizers R 1 f 2  
that capture prior information about the object.

Recently it has become very popular to express prior infor-
mation in terms of some type of sparsity of the object. Notions 
of sparsity have deep roots in statistical signal processing [26]. 
Sparsity is especially apparent in MR angiography. The moniker 
of compressed sensing or compressive sampling has become 
widespread for such techniques, and recently entire sessions at 
MR conferences have been devoted to this topic [20]. Some 
compressed sensing formulations ignore the noise in the data. 
In the presence of noise, a typical formulation is

 arg min 
f

|| Cf ||1    s.t.   || y2 Af ||2 # P ,

where C  transforms the image f into a domain (such as wavelet 
coefficients) where one postulates that the signal is sparse.

Often this optimization problem is solved using a Lagrange 
multiplier approach

 arg min
f

 7  y2 Af 7 221 b 7  Cf 7 1,
which corresponds to a particular regularizer in (24). Rarely is 
the ,1 norm implemented exactly; in practice usually a continu-
ously differentiable approximation is used, such as

 0 0  v 0 0 1 < a
i

1"| vi |
21d22d 2  (28)

for some small value of d . 0. This approximation is equivalent 
to the hyperbola (27) used frequently for edge-preserving image 
reconstruction. Nonconvex methods that enforce sparsity even 
more strongly are also under investigation. In the usual case 
where A corresponds to an under-sampled discrete Fourier 
transform (DFT), a variety of algorithms are available that have 
numerous potential applications in MR [20]. Challenges with 

this approach include choosing the sparsifying transform C  and 
regularization parameters b and d appropriately. Furthermore, 
when d is small, the regularizer (28) has very high curvature 
near zero, which can slow convergence.

NONLINEAR RECONSTRUCTION PROBLEMS
The linear image reconstruction problem (24) is just one of 
many estimation problems of interest in MRI. Returning to the 
elements of the system matrix (22), there has been research on 
estimating essentially every component therein, as summa-
rized below.

FIELD MAP ESTIMATION
For scans with long readout times, the effect of field inhomo-
geneity Dv0 in (22) is important. In practice, the field map 

v 1 rS 2  is not known a priori but 
rather it must be estimated 
from noisy MR scans. One can 
examine the phase differences 
between two scans having dif-
ferent echo times to determine 
Dv0 . If these two scans have 

short readouts, then there are simple image-domain methods 
for estimating Dv0, which is known as B0 field mapping [14]. 
Errors in the field map estimates may cause artifacts in recon-
structed images that are based on models like (22).

In addition, object motion that occurs between the field 
map scans and subsequent scans of interest, e.g., in fMRI, will 
lead to an inconsistency between the actual scan data and the 
assumed model (22) used by the reconstruction algorithm. 
This possibility has motivated the development of dynamic 
field mapping methods that estimate the field map separately 
for each frame in a dynamic study, e.g., [15]. For scans with 
long readout durations, the appearance of Dv0 in a complex 
exponential in (22) makes this a somewhat complicated non-
linear estimation problem.

RELAXATION MAP ESTIMATION
In some MR applications, it is useful to estimate tissue relax-
ation parameters, particularly T2 or T 2

*, on a pixel-by-pixel 
basis. One approach to measuring such relaxation parameters 
is to acquire a “baseline” scan of the object and then acquire 
one or more additional scans having different echo times. One 
then reconstructs images from each of those scans and then 
performs linear regression on a voxel-by-voxel basis using the 
logarithm of the image voxel values. This approach can be ade-
quate if the readout durations are sufficiently small. But for 
acquisitions with long readouts, the effect of time ti in the 
e2z1 rSj 2ti  in (22) should be considered, i.e., we should account 
for relaxation during the signal readout. This requires meth-
ods that estimate the relaxation map directly from the k-space 
data. These are more challenging nonlinear estimation prob-
lems because T 2

* appears in an exponent in (22). Several meth-
ods for jointly estimating T 2

* , Dv0 , and f 1 rS 2  have been 
investigated [27].
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SENSITIVITY MAP ESTIMATION
The coil sensitivity patterns cl 1 rS 2  in (22) also must be deter-
mined for parallel imaging based on sensitivity encoding. 
Normally this is done by acquiring well-sampled data both 
with local receive coils and with a reference body coil and 
dividing the two [7]. Acquiring the extra reference data can 
be inconvenient, so normalizing by the square root of the 
sum of squares of the local receive coils is also used. A variety 
of other estimation methods have been proposed, including 
methods that jointly estimate the sensitivity maps 5cl 1 rS 2 6  
and the image f 1 rS 2  [28]. Note 
that if f 1 rS 2  were known, then 
the problem of estimating 
cl 1 rS 2  would be a linear esti-
mation problem because cl 1 rS 2  
appears as a linear scaling in 
(22). But when both f 1 rS 2  and 
cl 1 rS 2  are to be estimated, the 
model is bilinear because f 1 rS 2  and cl 1 rS 2  appear as a product 
in (10). This complicates joint estimation.

TRAJECTORY MAPPING
The k-space trajectory k

S 1 ti 2 , defined as an integral of the gradi-
ent waveforms in (21), should be calibrated carefully to ensure 
that the system model (22) is accurate. In practice, the field 
gradients induced by the gradient coils in the scanner are not 
exactly proportional to the waveforms applied to those coils due 
to eddy currents. Therefore the physical k-space trajectory real-
ized in the system can depart somewhat from the desired k-
space trajectory. These differences can degrade the 
reconstructed image, particularly for non-Cartesian trajectories 
with long readout durations. Therefore, a variety of techniques 
have been developed for mapping the actual k-space trajectory 
experimentally.

WITHIN-VOXEL GRADIENTS
The model (23) treats the field inhomogeneity within each voxel 
as being a constant, ignoring within-voxel gradients of the off-
resonance map. However, these gradients can be significant in 

functional magnetic resonance imaging (fMRI) based on the 
BOLD effect [29]. Accurate reconstruction of signals near air-
tissue interfaces requires compensation for these within-voxel 
gradients, which complicates the reconstruction method [30].

EXAMPLE
To illustrate the capabilities of model-based image reconstruc-
tion methods for MRI, we simulated k-space data for a four-
shot EPI sequence with matrix size 128 × 128 and 5 ms 
sampling so the readout duration was 27.3 ms per shot. The 

field map D B0 1 rS 2  appears in 
Figure 2 of [14] and is based 
on a brain slice above the 
sinuses and ear canals where 
susceptibility effects occur. 
Figure 1 shows the true image 
used in the simulations and 
images from three different 

reconstruction methods. The “uncorrected” reconstruction 
simply uses an inverse 2-D FFT, with no consideration of field 
inhomogeneity. The field inhomogeneity causes spatial distor-
tion in the read-out (vertical) direction (that increases NRMSE 
dramatically), as well as significant intensity artifacts above the 
ears and sinuses where the susceptibility effects are largest. 
The  classical conjugate phase re  con  struction method, which 
corresponds to Ary in this single-coil case, reduces the spatial 
distortion but the intensity artifacts persist. Applying 15 itera-
tions of a conjugate gradient algorithm with a monotonic line 
search [11] to the cost function (24) with the edge-preserving 
hyperbola (27) yields the right-most image in Figure 1. This 
model-based image reconstruction method yields the lowest 
RMS error, but it requires about 30 times more computation 
than the noniterative conjugate phase method [11] because 
each iteration requires multiplication by A and A r . The soft-
ware that generated this figure is available online [18].

SUMMARY
Image reconstruction is not a single problem in MRI but rath-
er is a wide family of problems depending on what physical 
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[FIG1] Comparison of model-based image reconstruction with convention methods.
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effects are included in the signal model. The most widely stud-
ied case, particularly in the signal processing community, is 
when nearly all physical effects are disregarded and the system 
model consists solely of sampled of the Fourier transform of 
the object. This basic model is amenable to familiar signal pro-
cessing tools and is applicable to many MR scans. But there 
are also many interesting applications where other physical 
effects are relevant, and model-based methods that account for 
those effects are proving to be beneficial for improving image 
quality. Model-based methods themselves depend on estimates 
of a variety of model parameters, leading to interesting prob-
lems where those parameters are determined either by sepa-
rate calibration scans or by jointly estimating the image and 
those parameters. Despite over three decades of MR research, 
there remain challenging and intriguing problems in MR 
image reconstruction.
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