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Abstract. A new model-based iterative technique to cor- proaches (e.g., Hildebrand, 1978) for path attenuation correc-
rect for attenuation and differential attenuation and retrievetion, beginning from the closest (to the radar) range resolu-
rain rate, based on a neural-network scheme and a differtion volume and proceeding to farther (successive) resolution
ential phase constraint, is presented. Numerical simulationsolumes, are known to be unstable. Besides, these methods
are used to investigate the efficiency and accuracy of this apgenerally assume a power law relation between reflectivity
proach named NIPPER. The simulator is based on a T-matriband specific attenuation and are sensitive to the radar calibra-
solution technique, while precipitation is characterized with tion.

respect to shape, raindrop size distribution and orientation. A significant improvement to these path-attenuation cor-
A sensitivity analysis is performed in order to evaluate theection procedures is provided by using the total path-
expected errors of this method. The performance of the prointegrated attenuatiorP(A) as a constraint. This approach,
posed methodology on radar measurements is evaluated Rytiginally proposed for spaceborne radar applications where
USing one-dimensional Gaussian Shaped rain cell models arlqd]e sea or land surface is genera"y assumed as a refer-
synthetic radar data derived from disdrometer measurementgpnce target, have been extended to ground-based polarimet-
Numerical results are discussed in order to evaluate the rorjc radar. Recently, the use of cumulative differential phase
bustness of the proposed technique. (®4,) constraint to estimate tHelA and to correct the mea-
sured reflectivityZ,;, and differential reflectivityZ,,, pro-
posed and evaluated by Testud et al. (2000) and Le Bouar et
al. (2001) respectively, was improved by Bringi et al. (2001)
through the use of a self-consistent scheme.

Rainfall retrieval by using ground-based weather radar is The objective of this paper is to introduce an alternative
achieving increased relevance in the evaluation of the hydroapproach withd,, utilized as a constraint to retrie&, and
logical cycle and in the monitoring of severe events. Nearly Za- at C band in presence of significant path attenuation and,
all European weather radars operate at C band, mainly due tgonsequently, rainfall at ground. A model-based data set is
cost constraints. However, at frequencies higher than S bandised in an embedded neural network to train the retrieval al-
path attenuation effects due to rainfall can be significant anddorithms. The neural network approach is applied in cascade
need to be compensated for quantitative estimation of raint0 estimate rain rate from corrected polarimetric variables.
rate. In this regard, dual-polarized weather radars represerfinalysis of model data and numerical tests on synthetic radar
a unique technological resource to mitigate this problem aglata are discussed. The synthetic data are either created by

shown in recent literature (e.g., Bringi and Chandrasekar@ statistical generator or by spatial conversion of temporal
2001). series of disdrometer data.

Several approaches have been proposed to exploit polari-
metric observables for rainfall estimation. Algorithms using
the specific differential propagation pha&g, are immune
to path attenuation effects (e.g., Zrnic and Ryzhkov, 1996).
The specific differential propagation phase is the slope of the ] ] o .
range profile of differential phase shift,, , which can be A Gamma raindrop size distributioRED), having the gen-

estimated with an accuracy of few degrees. The iterative ap€ral form N (D)=NoD" exp(—A D) with D the particle di-
ameter andVp, © and A RSDparameters, has been intro-
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Fig. 1. Scatterplot ofZ;, vs Zpj,, Kap VS Zpp,Apn VS Kgp, and Phv
Agp Vs Kgp, at C band. Amplitude variables are expressed in dB.
where .., are the forward-scattering co-polar components
of Sandé (in deg) is the volume backscattering differential
phase. The specific attenuatigap; at H polarization and the
differential attenuatiom, are finally defined as:

The multiplication constan¥y, which has units depend-
ing onp (i.e., [mnm1=#m=3]) is not physically meaningful
when 0. In order to study the underlying shape of the
RSDfor widely varying rainfall rates, the concept of normal- A,, =2.1073 - Im[< fun(D) >1,  Agp = App — A (6)
ization has been introduced by Willis (1984) and revisited - ] ]
by Chandrasekar and Bringi (1987), Testud et al. (2001) andvhere specific attenuations are in kin
lllingworth and Blackman (2002). The number of raindrops

) o : ) 2.2 Numerical examples at C band
per unit volume per unit size can be written as:

D\ D Once aRSDis defined, the polarimetric radar parameters can
N(D) = Ny f (1) <F> exp|:—(3.67+ M)D—] (1) be computed from the equations given in Sect. 2.1. Numer-
0 0 ) )

ically computed forward scatter and backscatter amplitudes
where f(u) is a functionu only, the parameteDo is the  of raindrops for a given size are used to compute the radar
median volume drop diametey, is the shape of the drop parameters for a giveRSD(Mishchenko, 2000). Computa-
spectrum, andv,, [mm~'m~3] is a normalized drop con- tions are carried out at C band and the normalized Gamma
centration that can be calculated as function of liquid waterRSpis assumed for raindrop diameters between 0.6 and
content W andDg (e.g., Bringi and Chandrasekar, 2001).  8mm.

The shape of a raindrop can be described by an oblate |n order to generate a large set of model-based polarimetric
spheroid for which the equivalent volume diametgris re-  variables, we adopted fabg and .« a uniform distribution
lated to the axis ratia/b by a relation which has been in- jnside the range proposed by Chandrasekar et al. (1987), that
vestigated by several authors. In this study we limited ourjs 0.5< Dy3<3.5mm and—1<p<4. As already mentioned,
attention to the relationship introduced by Pruppacher andy, has been generated by assuming a random distribution
Beard (1970) (named PB) and to the combination of thosesf water contentw which results into a variability of rain
proposed by Andsager et al. (1999) and Chuang and Bearghte from 0 to 300 mm/h. Temperatures of raindrops have
(1990) (named AB). Given &SD the rainfall intensityR  peen varied betweer?6 and 30C with a step of 5C. We
can be Computed as a flux of raindrop volume at a terminabre assuming here the most W|de|y Varymstarameters
fall velocity v(D), usually parameterized as a power law of without any correlation among them in order to ensure the

D. training of the retrieval algorithm even in the most general
_ . ) conditions.
2.1 Polarimetric radar variables As an example of this randomly-generated polarimetric

dataset, Fig. 1 shows the scatterplotZf vs Z;,, Kqp Vs
Znh, Apn VS K gy, andA g, vs K4y, at C band. Amplitude vari-
ables are expressed in dB. The valueggf are varied up to
55dBZ. It is interesting to note the dominant linear correla-
tion between the specific differential phase and the specific

The copolar radar reflectivity facto®,, andZ,, [mm®m=3]

at H and V polarization state, the cross-polar reflectivity fac-
tor Z;,, the differential reflectivityZ,,. and the linear depo-
larization ratioLDR can be expressed as follows:

A4 attenuations, even though a non negligible variance is appre-
Z = ——— <47|S’ (D)]* > 2) - -
hhvvhe = 25 K2 hh,vv,hv ciable for values o4, larger than 8/km. Figure 2 shows
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Fig. 2. As in Fig. 1, but forppy VS Znp, phy VS Z gy, LDRVS Zyy,, o s
ands vs Z;. 0 2 2
300 T T
the scatterplot opyy VS Zip, phy VS Z4r, LDR VS Zyy,, and 2500 1
8 vs Z;,. Note the non-linear correlation betweeq, ands 200l i
with Z;, as shown by Scarchilli et al. (1993). Note th&R %150
shows a negligible contribution of cross-polar backscattered £
power, while the values qfy,, are always higher than 0.92. 100r ]
The correlation between the main polarimetric variables  so- X 1
and the rainrate® is illustrated in Fig. 3. This scatterplot is 0 ‘ . ‘ ‘ ‘ ‘ ! ) ‘
. . . . . . — 0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 09 1
very instructive as it highlights the possible statistical rela- A, (dBkm)
tion and their expected accuracy for designing an inversion
algorithm. From the figure, we note that, apart frafyy,, Fig. 3. As in Fig. 1, but for polarimetric variables vs. rainrate

K., andA; show a relatively high correlation witR.

_ _ o in dBkm™1) are linearly related t&, (in ° km~1) which
3 Rainfall retrieval from polarimetric radar data is the range derivative ob,,. Note that, before applying

Th d retrieval techni dN I ve P the attenuation correction scheme the differential phase shift
e proposed retrieval technique, named Neural lterative %d,, must be filtered from the backscattering effects which

:antmettr:jc _Pr&cmﬂaﬂ:n Esumatrl]on tl)ty Rad_a: (NIfPtPER)t IS 'I'_ are non negligible at C band (Scarchilli et al., 1993).
ustrated in the next paragrapns. 1t consists of two steps i o proposed iterative algorithm is described in the fol-

cascade where: lowing. The first step is the estimation of the path integrated

i) rain path attenuation is corrected by using an iterative . : . .
. . . . ttenuatiorPI nd th th integrat ifferential at-
scheme with the aid of a total path attenuation constraint antﬁl enuatiorPI, (ry), and the pa egrated differential a

. enuationPIAy, (ry), at the farthest rangey by using the
g(r):;;?gsed neural-network estimates of the unknown pa'd>d,, constraint. Therefore the corrected valuesZgf and

. . . . . . Zq, are derived at the farthest range volume (hereNiy
i) a neural-network rain retrieval algorithm is applied to d,’ 9 (
the polarimetric observable previously corrected within each™"

single volume bin. c _ om

The main features of the NIPPER algorithm are that it doesZhdr "N) = Zyar (') + 2P 1 Annap (rn) ")
not assume any given analytical relation between the varioughere hoth reflectivities andllA are expressed in dB, while
polarimetric variables and it exploits the neural-network po- ;o superscript€ andm stand respectively for corrected and
tential as a retrieval tool in a non linear context. measured.

Using the corrected values &, and Z,,, it is possible
to estimate the specific attenuation (and the specific differen-
Bringi et al. (1990) showed thab,,, is directly related to tial attenuation), through a neural network, at & range
path integrated attenuation. It is possible to estimatétde ~ Volume by means of:
from &4, and use it to constrain the attenuation correction
procedure (Testud et al., 2000y, andA,, (both expressed  Annar (rn) = NNa (th rn) . Z§, (rN)) (8)

3.1 lIterative correction of rain path attenuation
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30 30 check ondy, filtering is performed estimatingby means of
corrected variables using ad hocneural-network algorithm
2% RELS i | (Vulpiani et al., 2003).
20 2 3.2 Rain rate retrieval
§ s % s One of the applications of polarimetric radars is the possibil-
% % ity to use different algorithms in order to estimate the rain-
S 4 S 4 fall rate. Apart fromR(Z,;), polarization diversity allows
to employ the two-parameter algorithn®& Z;;, Z,;-) and
5 5 R(Z4r, Kap) as well asR(Kgp). The algorithms using re-
flectivity and differential reflectivity are affected by absolute
% - = = o A . = and differential radar calibration errors. On the other hand,

FSE (%) FSE (%) those using the&;, have the impact of the scheme adopted
to derive it from®,, which could be contaminated by the
backscattering differential phase.

% " The rainfall estimator proposed in this work, indicated as
RNN(Zp, Zar, Kap), is based on a feed-forward neural net-
R(Z,Z,) RiK,,Z,) . . . .
25 ] 2 ] work with a back-propagation learning algorithm and uses
the retrieved corrected profiles af,, Z,-, andK,,. In a
2 2 formal way, we can write:
I F _ C ,C pC
g s - Ryy = NNr(Zy,. Z4,. Kg,,) (13)
3 3 whereNNg, is again a Neural Network functional used for
10 © 10 the rain rate estimation.
5 5
4 Numerical tests on synthetic radar data
0'I 2l5 010 15 2l0
FSE (% FSE (%) In this subsection we analyze the numerical results obtained

applying the proposed NIPPER inversion technique to the
Fig. 4. Performance of NIPPER algorithm in terms of the histogram synthetic radar data sets assuming that the radar is well cali-
of fractional standard error (FSE) calculated for each range profilebrated. The evaluation of the radar system bias effects on the

realization for 4 rain retrieval algorlthms applied to corrected po- retrieval performance is discussed in Vulpiani et al. (2004).
larimetric observables i.e. besidB$Z<)), R(Z,, Z5,), R(ZS,,

hh
K§ ) andRyn (2, Z5, ., KCP). 4.1 Synthetic radar data from statistical generator
As already noted when discussing (1), the intensity of rain
whereNN, is a Neural Network functional used for the spe- events can be characterized using the liquid water content
cific attenuation (differential attenuation) estimation. As a W or the rainfall rater. In this work we adopted a dou-
consequence we can estimate BHé at the (v—1)" range  ble Gaussian-shaped range profile of liquid water coritént
bin from: in [gm~3] in order to derive theVv,, range profile and the
randomly generated values Bh andp as inputs. For each
PIAwn.ap (rn-1) = PLAwn.ap (ry) — Annar () - Ar(9) range bin of this synthetic profile, the axis ratio model is se-
whereAr is the bin range resolution, while the corrected val- lected randomly between the PB and AB relationships, ac-
ues of reflectivity and differential reflectivity are cording to a uniform distribution. The dielectric constant,
c - is dependent on temperature and has been assumed constant
Zinar 'N=1) = Zyp ay 'N-1) + 2P Apnap 'n-1) - (10) 51640 the profile. A random noise on simulated polarimetric
Generalizing (9) and (10) for th&™ range volume, we can Variables has been introduced to realistically reproduce the
write: measurebles, resulting in a 1 dB noise #y,, 0.3dB noise
rgAr for Z4- and 2 noise for®,,. One hundred range profiles
have been generated in this study.
PLAwnap (rx) = PLAwnap (rn) = / Apnar (5)-ds  (11) As a quality metric of the retrieved rain rate, we have con-
(rgk=DAr sidered the fractional standard error (FSE), which is the root
th’dr (rk) = ZJ'y 4y () + 2P Appap (k) (12) gwgeeznasl,gggrti:rriaonrgréopr)rrrcl:?il;;ed to the mean true value, aver
Through (11) and (12) it is possible to iteratively correct the Figure 4 shows the performance of the NIPPER algorithm
profiles of Z,;, and Z;,. At each range volume a control in terms of the histogram of FSE calculated for each range
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Fig. 5. Time series of estimated,,, D,, andu from disdrometer ~ Fig. 6. Behavior of simulatedy,, Z;,, andR derived from Fig. 5
data, fitted to the normalised Gamm&8Das in (1), acquired in by assuming a storm velocity of 10 m/s. Retrieved quantities, de-
Northern Mississippi (Uijlenhoet et al., 2003). rived from NIPPER, are also plotted.

profile realization for the four rain retrieval algorithms ap- estimatedv,,, D,, andu from disdrometer data fitted to the
plied to corrected measurements, namaiZf,), R(Zf,,  normalised GammRSDas in (1). Note thaD,, is the mass-
Z%), R(ZG,, K§,) and Ryn(Zp,, 2§, K§,). Itis worth  weighted mean diameter closely related to the median vol-
mentioning that the first three are the “best” parametric algo-ume diameterDg (Bringi and Chandrasekar, 2001). Con-
rithms. vective, transition and stratiform regions are denoted by “C”,
The comparison clearly shows how the neural-network ap-T" and “S”, respectively.
proach is more accurate in the reconstruction of the rain with  As shown in Fig. 5, during this event,, is characterized
errors always below 20%. by significant variations not only in the transition phase (T)
but also in the pure convective phase.
4.2 Synthetic radar data from disdrometer measurements  |n order to convert the disdrometer time series into range
profile, an average fixed storm velocity of 10 m/s has been
The ZPHI algorithm is based on the hypothesis that the exassumed. Analyzing the relative behaviour of the simulated
ponentg, characterising the relation between reflectivity and R, z,;, and Z,,, shown in Fig. 6, it can be argued that the
attenuation, is constant and, is a “local” variable that is  observed jump was due to a sequence of contrasting regimes
reasonably constant at a scale of about 10 km (Testud et alwithin the convective phase of the squall-line system. To
2000). While scattering simulations have demonstrated thas certain extent, the assumption of “moderate” variability
the first assumption is reasonable at C-band, the second hynside a specific rain regime has not a general validity and
pothesis depends on the properties of prevailing precipitashould be carefully used. The use of analytical solutions to
tion. path attenuation correction could not be suitable under these
See for example a case study for a squall-line system passonditions, given the dependence fra¥y,. This is the rea-
ing over a watershed in northern Mississippi presented byson why the NIPPER algorithm can show some advantages
Uijlenhoet et al. (2003). Figure 5 shows the time series ofin circumstances where there is a significAit variability.
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15 : The performance of the proposed methodology on radar
measurements has been evaluated by using one-dimensional
r 1 Gaussian rain cell models and synthetic radar data derived
from disdrometer measurements. Numerical results have
demonstrated the potential and robustness of the proposed
o technique.
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