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Abstract—Dual-energy X-ray CT (DECT) has the potential to
improve contrast and reduce artifacts as compared to traditional
CT. Moreover, by applying model-based iterative reconstruction
(MBIR) to dual-energy data, one might also expect to reduce
noise and improve resolution. However, the direct implementation
of dual-energy MBIR requires the use of a nonlinear forward
model, which increases both complexity and computation. Al-
ternatively, simplified forward models have been used which
treat the material-decomposed channels separately, but these
approaches do not fully account for the statistical dependencies
in the channels.

In this paper, we present a method for joint dual-energy MBIR
(JDE-MBIR), which simplifies the forward model while still ac-
counting for the complete statistical dependency in the material-
decomposed sinogram components. The JDE-MBIR approach
works by using a quadratic approximation to the polychromatic
log-likelihood and a simple but exact non-negativity constraint
in the image domain. We demonstrate that our method is
particularly effective when the DECT system uses fast kVp
switching, since in this case the model accounts for the inaccuracy
of interpolated sinogram entries. Both phantom and clinical
results show that the proposed model produces images that
compare favorably in quality to previous decomposition-based
methods, including FBP and other statistical iterative approaches.

Index Terms—Computed tomography (CT), dual-energy CT,
spectral CT, tomographic reconstruction, iterative reconstruction,
statistical reconstruction, model-based iterative reconstruction
(MBIR).

I. INTRODUCTION

DUAL-ENERGY CT (DECT) scanners, which acquire X-

ray projections with two distinct spectra, are of great

interest in applications such as medical imaging [1], [2],

security inspection [3], [4], and nondestructive testing [5].

The objective of DECT reconstruction is to determine the

energy-dependent attenuation at each voxel. Fortunately, for

most materials, the energy-dependent attenuation is accurately

approximated as a linear combination of two basis func-

tions corresponding to photoelectric absorption and Compton
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scattering [6]. In practice, it is usually more convenient to

reparameterize the energy-dependent attenuation as a linear

combination of two basis materials or components [7] such

as water and iodine. So in this case, our objective is then

to accurately reconstruct cross-sections corresponding to the

equivalent densities of, say, water and iodine.

Early work on dual-energy reconstruction focused on de-

composing the dual-energy measurements into two indepen-

dent sinograms, each of which corresponds to a basis com-

ponent or material. This can be done by first applying a

material-decomposition function to the two energy measure-

ments. This material-decomposition function then produces

two sinograms corresponding to the two basis materials. Many

methods have been proposed over the years for experimentally

determining this function. Alvarez and Macovski [6] proposed

the numerical inversion of a polynomial approximation to

the polychromatic measurement process. Other approaches

directly approximate the material-decomposition function as

a polynomial [7]–[12], or compute the decomposition through

an iterative estimation process [4], [13]–[15].

Alternatively, other approaches to dual-energy reconstruc-

tion work by first reconstructing images from the low- and

high-energy sinograms using filtered back projection (FBP)

method, and then performing image-domain material decom-

position [16]–[19]. However, while sometimes effective, this

type of image-domain reconstruction makes substantial ap-

proximations, particularly when the X-ray spectrum for each

measurement is broad. So the resulting reconstructions may be

quantitatively inaccurate and suffer from artifacts. Recently, an

iterative FBP method [20] has been proposed to account for

the polychromatic spectra. It repeats the process that performs

back projection, image-domain material decomposition, and

forward projection of the decomposed results with a calibrated

nonlinear model. This method can be applied to the case where

one of the dual-energy measurements is missing for each ray.

Recently, statistical reconstruction based on iterative meth-

ods has been found to be very effective in single-energy CT

reconstruction [21]–[24]; and in particular, model-based iter-

ative reconstruction (MBIR) methods [21], [24]–[26], which

incorporate an accurate system model, statistical noise model,

and prior model, have demonstrated the ability to reduce noise

and improve resolution [27]–[31].

Several statistical iterative approaches have been proposed

for DECT reconstruction. These methods can be mainly

classified into two categories, the direct-inversion methods
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and the decomposition-based methods. The direct-inversion

methods reconstruct images directly from dual-energy mea-

surements [32]–[36]. In particular, Fessler et al. [33] for-

mulated the likelihood function of the detector output by

using a Poisson model. Huh and Fessler [35] applied a

penalized weighted least square (PWLS) approach to DECT

with fast kVp switching acquisition and used an approximate

Gaussian noise model for the log-transformed measurements.

These approaches generally include a highly nonlinear forward

model in the likelihood function to model the polychromatic

measurement process, so this formulation increases complexity

and consequently complicates the optimization.

Alternatively, decomposition-based statistical approaches

reconstruct images from material-decomposed sinograms

[37]–[39] with a simplified forward model. Fessler et al.

[37], [39] applied PWLS approaches with diagonal weighting

matrices for the pair of decomposed sinogram entries. These

methods, which we refer to as independent dual-energy MBIR

(independent DE-MBIR), model the decomposed sinogram

entries as statistically independent when conditioned on image

content. The independent DE-MBIR methods are computation-

ally simpler than the direct-inversion methods, but the decou-

pled likelihood functions ignore the correlation in sinogram

entries that are caused by the decomposition process [40], [41].

Perhaps the most closely related work is Kinahan, Alessio, and

Fessler’s [38] method for dual-energy PWLS reconstruction in

PET/CT attenuation correction. This framework also allowed

for the potential correlation of sinogram entries, but left open

the specifics of how the entries should be weighted.

In this paper, we develop a novel joint dual-energy MBIR

(JDE-MBIR) method to reconstruct basis material densities

from the decomposed sinograms. In Sec. II-C, we introduce a

key novelty of the JDE-MBIR method, which is a quadratic

approximation to the joint likelihood model. This quadratic

approximation weights the decomposed sinogram entries by

non-diagonal matrices that explicitly model the noise correla-

tion in the decomposition domain. The proposed method also

incorporates a prior model that accounts for the separation

into materials and introduces a simple but exact non-negativity

constraint that accurately reflects the true physical constraint of

non-negative X-ray attenuation. We use the iterative coordinate

descent (ICD) algorithm to compute the solution. We note

that a preliminary version of this method was presented in the

conference paper of [42].

An important novelty of JDE-MBIR is that it achieves

computational efficiency by reconstructing from material-

decomposed sinograms while retaining an accurate forward

model and noise model in the decomposition domain. In

particular, the JDE-MBIR models the interdependence in de-

composed sinogram entries that result from the decomposition

process. This model leads to reconstructions with less noise

than those of the independent DE-MBIR methods.

The JDE-MBIR also allows for accurate modeling of DECT

data collected using fast kVp switching techniques. Fig. 1

illustrates a model for the fast kVp switching technique, in

which the system alternates between low- and high-energy

measurements from view to view. In this case, each view

contains either low- or high-energy measurements, whereas the
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Fig. 1. This figure illustrates a model for fast kVp switching technique.
A single X-ray tube alternates the voltage between low- and high-kVp from
view to view. Thus each view contains only one measurement, either low- or
high-energy.

material decomposition requires both to be available. Although

the angular difference between the low- and high-energy mea-

surements is small, an additional interpolation step needs to be

performed for the traditional decomposition-based approaches

to ensure perfect registration. The JDE-MBIR method also

exploits sinogram interpolation; however, the reconstruction

principally depends on only the real measurements, which

makes it robust to interpolation error and capable of preserving

more resolution than other decomposition-based approaches.

We also propose a novel non-negativity constraint for the

DECT reconstruction. Previous approaches have enforced non-

negativity constraints directly on reconstructed material densi-

ties [32], [35], [43], which is not generally physically correct.

We proposed a non-negativity constraint that is applied in

the attenuation space. This constraint can be enforced as two

simple linear constraints on the material images and accurately

reflects the true physical constraints of X-ray attenuation.

In our experiments, we evaluate the performance of the JDE-

MBIR by using phantom and clinical data. The experimental

results show that the JDE-MBIR significantly improves reso-

lution and reduces noise in the reconstructed material density

images and the synthesized monochromatic images.

The paper is organized as follows. Sec. II describes the

formulation of the JDE-MBIR. Sec. III gives the ICD solution

to the optimization problem. Sec. IV presents the experimental

results on phantom and clinical data to demonstrate the image

quality improvement achieved by JDE-MBIR as compared to

FBP and independent DE-MBIR.

II. MAP RECONSTRUCTION FRAMEWORK

Let y ∈ ℜM×2 be the set of dual-energy CT measurements,

where each row, yi = [yi,l, yi,h], specifies the low- and
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high-energy projection measurements for the ith ray. We use

subscript “l” for “low-energy” and subscript “h” for “high-

energy”. Furthermore, let m ∈ ℜN×2 be the reconstructed

density images of the scanned object for the selected material

basis pair, where each row, mj = [mj,W , mj,I ], represents the

water- and iodine-equivalent densities for the jth voxel. We

use subscript “W” for “water” and subscript “I” for “iodine”.

In this paper, we choose water and iodine since they are

frequently used as basis materials for separation into low and

high X-ray attenuation characteristics, respectively. However,

the use of other material pairs is equally valid. The integer

M specifies the number of distinct ray paths during data

acquisition, and N specifies the number of voxels in the

reconstructed volume.

Our goal is to reconstruct the material density images, m,

from the measurements, y. One typical approach is to compute

the maximum a posteriori (MAP) estimate of m given by

m̂ = argmax
m∈Ω
{logP (y|m) + logP (m)}, (1)

where P (y|m) is the conditional distribution of y given m,

P (m) is the prior distribution of m, and Ω is the constraint

set for the reconstruction.

The following sections develop the theoretical framework

for the JDE-MBIR algorithm from the basic physical models.

Section II-A presents a noise model for the dual-energy

detector measurements based on photon statistics. Section II-B

then derives the forward model for the dual-energy data using

widely accepted models of polychromatic X-ray attenuation

through materials. With this framework in place, Section II-C

then introduces the primary innovation of our technique, which

is a quadratic approximation to the log-likelihood function

in the projection domain. Section II-D then shows how this

innovative model can be applied to the important problem of

fast kVp switching data and provides a theoretical analysis of

JDE-MBIR’s advantages in this application.

A. Measurement Preprocessing

In the X-ray transmission problem, we measure the photon

flux after object attenuation, which is denoted by λi,k for

ray i and source spectrum k, where k ∈ {l, h}. We also

measure the air scan photon flux, λi,k,0, which counts the

detected photons with no object present. The air scan counts

can be calibrated accurately by repeated scans and therefore

are assumed noiseless. The projection measurement, yi, is

then computed as the negative log of the photon measurement

normalized by the corresponding air scan photon count,

yi = [yi,l, yi,h]

,

[

− log

(

λi,l
λi,l,0

)

, − log

(

λi,h
λi,h,0

)]

. (2)

We model λi,k as the summation of a Poisson random

variable with conditional mean λ̄i,k and a Gaussian random

variable with mean zero and variance σ2
e . In fact, λ̄i,k is

the conditional mean of λi,k given the image m, and the

Gaussian random variable presents additive electronic noise

in the detector system. From this, the conditional mean and

variance of λi,k are given by

E[λi,k|m] = λ̄i,k, (3)

Var(λi,k|m) = λ̄i,k + σ2
e . (4)

Then we approximate the conditional mean of yi,k as

E[yi,k|m] ∼= − log

(

λ̄i,k
λi,k,0

)

. (5)

To compute the conditional variance of yi,k, we first perform

a first-order Taylor series expansion to the expression of yi,k
in (2) about λ̄i,k,

yi,k = − log

(

λi,k
λi,k,0

)

∼= − log

(

λ̄i,k
λi,k,0

)

−
1

λ̄i,k
(λi,k − λ̄i,k)

∼= E[yi,k|m]−
1

λ̄i,k

(

λi,k − λ̄i,k
)

, (6)

which yields the approximation we will use for the conditional

variance of yi,k [44],

Var(yi,k|m) ∼=
Var(λi,k|m)

λ̄2i,k
=
λ̄i,k + σ2

e

λ̄2i,k

∼=
λi,k + σ2

e

λ2i,k
, (7)

where λ̄i,k is approximated by its observation, λi,k. Thus, we

will model the conditional mean and covariance of yi as

E[yi|m] = [E[yi,l|m], E[yi,h|m]] , (8)

Cov(yi|m) =

[

Var(yi,l|m) 0

0 Var(yi,h|m)

]

. (9)

Note that the off-diagonal elements of the covariance matrix

are zeros since we assume that the low- and high-energy

measurements are made independently.

Assuming yi is conditionally Gaussian with mean and

covariance given by (8) and (9), the distribution of yi is given

by

− logP (yi|m) =
1

2
(yi − E[yi|m])Wi (yi − E[yi|m])

T
+ C,

(10)

where C is a normalizing constant, and Wi is the inverse

covariance of yi,

Wi =

[

wi,l 0

0 wi,h

]

, Cov−1(yi|m), (11)

where

wi,l =
1

Var(yi,l|m)
∼=

λ2i,l
λi,l + σ2

e

, (12)

wi,h =
1

Var(yi,h|m)
∼=

λ2i,h
λi,h + σ2

e

. (13)

With the assumption of measurements at distinct projections

being conditionally independent, the distribution of the data

given the object information is given by,

− logP (y|m) =
1

2

M
∑

i=1

(yi − E[yi|m])Wi (yi − E[yi|m])T+C.

(14)
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However, this function is still a nonlinear function of m
because the conditional expectation, E[yi|m], is in general a

nonlinear function of the argument m. In Section II-C, we will

use this result to construct a fully quadratic approximation to

the log-likelihood in (14).

B. Forward Model

We next need to formulate a physical model for E[yi|m].
Given the linear attenuation coefficients, µ, the conditional

mean of λi,k is computed by integrating the photon attenuation

over the source spectrum,

E[λi,k|µ] = λ̄i,k =

∫

ℜ

λi,k,0 Sk(E)e
−

∫
rayi

µ(r,E)dr
dE , (15)

where E (keV) is the photon energy, Sk(E) is the normalized

photon energy distribution for source spectrum k, and µ(r, E)
(cm−1) is the linear attenuation coefficient as a function of

location r and energy E , representing X-ray photon absorption

per unit distance. Since µ and m contain the same information,

note that E[·|µ] = E[·|m].
If we discretize µ(r, E), then this leads to the expression

E[λi,k|µ] =

∫

ℜ

λi,k,0 Sk(E)e
−

∑
N
j=1

Ai,jµj(E)dE , (16)

where A ∈ ℜM×N is the projection matrix, with its element,

Ai,j (cm), representing the intersection of ray i with voxel j.
We use the distance driven approach [45] to compute A. Then

from (5), the conditional mean of the projection measurement

is given by

E[yi|µ] = − log

(
∫

ℜ

S(E)e−
∑

N
j=1 Ai,jµj(E)dE

)

, (17)

where yi = [yi,l, yi,h] and S(E) = [Sl(E), Sh(E)].
Moreover, the linear attenuation coefficient can be expressed

as a linear combination of the mass attenuation functions of

two or more basis materials [7]. With water and iodine as the

basis, the linear attenuation function can be decomposed as

µj(E) = mj,WϕW
(E) +mj,IϕI

(E), (18)

where mj,s (mg/cm3) is the equivalent density for basis

material s at voxel j, where s ∈ {W, I}, and ϕs(E) (cm2/mg)

is the known energy-dependent mass attenuation function for

basis material s, which represents the photon absorption per

unit distance for the particular material with 100% concentra-

tion under standard temperature and pressure. Note that the

reconstructions, mj,W and mj,I , do not depend on energy.

Then, by substituting (18) into (17), we have

E[yi|m]

=− log

(
∫

ℜ

S(E)e−
∑N

j=1 Ai,j(mj,W
ϕ

W
(E)+mj,I

ϕ
I
(E))dE

)

,− log

(
∫

ℜ

S(E)e−pi(ϕ(E))
T

dE

)

, (19)

where ϕ(E) , [ϕ
W
(E), ϕ

I
(E)], and pi (mg/cm2) is the

material density projection defined as

pi , [pi,W , pi,I ] ,





N
∑

j=1

Ai,jmj,W ,

N
∑

j=1

Ai,jmj,I



 , [Am]i.

(20)

The quantity pi represents the line integral of material den-

sities along ray i. We then define a vector-valued function,

h : ℜ2 → ℜ2, as

h(pi) , − log

(
∫

ℜ

S(E)e−pi(ϕ(E))
T

dE

)

, (21)

which models the nonlinear relationship between the material

density projections and the expected photon attenuation. From

this, we have

E[yi|m] = h([Am]i). (22)

The function h does not depend on particular ray paths

generally; however, it can be a function of the ray index, i,
if the source spectrum, S(E), varies among rays. This is the

case in practice with systems including bowtie filters to shape

the X-ray beam to a particular scanned object.

Thus, substituting (22) into (14), we have the negative log-

likelihood function,

− logP (y|m)

=
1

2

M
∑

i=1

(yi − h([Am]i))Wi (yi − h([Am]i))
T + C.

(23)

This is the likelihood function used in the direct-inversion

methods.

While the forward model of (23) could be used directly

for MBIR reconstruction, it is not practical for a number

of reasons. First, the function h is generally not measured

on real CT systems. In practice, real CT systems require a

knowledge of the material decomposition function, h−1, as

described in the following section. This is because h−1 is

required for implementation of standard direct reconstruction

methods such as FBP; so it is accurately measured using

calibration procedures. However, h is not easily computed

from h−1 and would require a completely separate calibration

procedure. Second, direct nonlinear optimization of the MAP

cost function using (23) would be very complex and potentially

very computationally expensive since it does not have a

quadratic form. So our goal will next be to derive a quadratic

function that accurately approximates (23).

C. Quadratic Joint Likelihood Model

In this section, we introduce a quadratic approximation

to the negative log-likelihood function, − logP (y|m), which

reduces the complexity of the reconstruction algorithm while

still retaining an accurate model of the noise correlation in the

decomposition domain.

We first define the inverse function, h−1 : ℜ2 → ℜ2, as

h−1(h(pi)) , pi . (24)

In practice, the h−1 function is called the “material decom-

position function”. There are a variety of means to determine

this function. One may employ a polynomial approximation

to the h function and then solve numerically for pi [6],

or directly approximate the h−1 function as a polynomial

[7]–[12]. The coefficients of the polynomial approximations

can be determined empirically by system calibration. Possible

calibration methods include a projection-domain calibration
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[11], [46], or an image-domain approach [12]. One may also

compute the decomposition through an iterative estimation

process [4], [13]–[15]. In practice, we approximate the h−1

function as a high order polynomial through calibration, which

will be described in detail in Sec. IV.

With the h−1 function, we can then compute the decom-

posed sinogram entries, p̂i = [p̂i,W , p̂i,I ], as

p̂i , h−1(yi), (25)

with p̂i an estimate of the material density projection, pi.
Performing a Taylor series expansion of [Am]i at yi yields,

[Am]i = h−1(h([Am]i))
∼= h−1(yi) + (h([Am]i)− yi)

[

∇h−1(yi)
]

= p̂i + (h([Am]i)− yi)
[

∇h−1(yi)
]

, (26)

where ∇h−1(yi) is the gradient of function h−1 at yi. For our

problem, ∇h−1(yi) is a 2 × 2 invertible matrix. This results

in the linear approximation we will use in the model,

yi − h([Am]i) ∼= (p̂i − [Am]i)
[

∇h−1(yi)
]−1

. (27)

Thus by substituting (27) into (23), we approximate the true

log-likelihood function in (23) by

− logP (y|m) ∼=
1

2

∑

i

(p̂i − [Am]i)Bi (p̂i − [Am]i)
T
+ C′,

(28)

where the estimated material projection, p̂i, is given by (25),

and the statistical weighting matrix, Bi, is given by

Bi , [∇h−1(yi)]
−1Wi[∇h

−1(yi)]
−T . (29)

Each Bi is a 2×2 symmetric matrix representing the inverse

covariance of the decomposed sinogram entries, p̂i. Each Bi is

therefore also positive semi-definite and has a zero eigenvalue

if and only if the diagonal matrix, Wi, has a zero eigenvalue,

which implies that λi,l = 0 in (12) or λi,h = 0 in (13).

The equation (28) gives the likelihood model we use in

the proposed JDE-MBIR method. In contrast to the direct-

inversion methods, our model has a simple quadratic form, so

it allows for direct application of existing quadratic optimiza-

tion methods for the computation of the MAP reconstruction.

It should also be noted that our weighting matrix, Bi, is

in general non-diagonal for every projection. The off-diagonal

elements of Bi provide significant information about the noise

correlation between distinct decomposed sinogram entries.

D. Likelihood Model For Fast kVp Switching Modality

Our proposed model is particularly well suited for CT

systems that use fast kVp switching to acquire dual-energy

data. Fig. 1 graphically illustrates a model for the fast kVp

switching technique, in which the system alternates between

low- and high-energy measurements between adjacent views.

Fast kVp switching requires high-speed detectors and X-ray

sources and generators that allow for fast switching, but it

offers the advantage that low- and high-energy measurements

are interlaced closely in time and space so that misalignments

due to motion or other effects are minimized. Notice that a

fast kVp switching system has the capability of varying the

duty cycle between low- and high-energy views to optimize

dose. This is graphically depicted by the fact that the low-

energy (orange) line may be longer than the high-energy

(green) line. For typical scans, the low-energy dwell time is

greater than the high-energy dwell time, but this depends on

many details of the scan parameters. While the dwell time

may be different from view to view, data acquisition still

results in consecutive views alternating between low- and high-

energy measurements. Dwell time characteristics are taken into

account in h−1 by calibration. The dwell time of the view

generally will affect the resulting noise variance, with longer

dwell times reducing noise variance and short ones increasing

variance. However, this change in variance is fully accounted

for by the estimates of noise variance given in Sec. II-A and

more specifically equation (7).

For fast kVp switching, each projection contains either low-

or high-energy measurements. Therefore, for each projection,

either yi.l or yi,h is missing. In the case of the true likelihood

of equation (23), this missing measurement can be accommo-

dated by setting the weighting matrix to be

Wi =























[

wi,l 0

0 0

]

, for low-energy projections;

[

0 0

0 wi,h

]

, for high-energy projections.

(30)

So in this case, the missing measurement is always weighted

by zero.

However, in the case of the joint approximation in (28),

we still must determine a value for the weighting matrix Bi
from equation (29) and the estimated projection, p̂i, from

equation (25). Unfortunately, both these values depend on

the missing measurement. In order to solve this problem, we

interpolate the missing value of yi, and use this interpolated

value to compute both the gradient of h−1 used for the weight

matrix Bi, and the projection p̂i. While this interpolation

process does introduce error, this error is relatively minor

when the joint log-likelihood approximation is used, which

allows using relatively straightforward interpolation techniques

without significant concern for the quality of the reconstructed

images. In order to see this, consider the plots of Figs 2 and 3.

Fig. 2 graphically illustrates the importance of using the

joint log-likelihood approximation rather than the simpli-

fied independent approximation using some typical values

of [yi,l, yi,h] = [3.9, 3.8] at 80 kVp and 140 kVp. In the

independent approximation, the off-diagonal entries of Bi are

set to zero, so the errors in p̂i,W and p̂i,I are modeled as

independent, and the approximated log-likelihood function has

ellipsoidal level curves. This is a very poor approximation of

the true log-likelihood and artificially imposes a penalty for

any deviation from its unique maximum. With incorporation

of the off-diagonal terms in Bi, the joint approximation is

much more accurate. The joint approximation appropriately

retains the under-specified nature of the maximum-likelihood

projection estimate, allowing it to move along its level lines

without change in cost.

Fig. 3 illustrates more precisely the effect of interpolation

error in the joint and independent log-likelihood approxima-



6

7.5
8

8.5
9

x 10
4

0

200

400

−30

−20

−10

0

pW
 (mg/cm

2)

p
I  (m

g/cm 2
)

c
o

s
t

(a) true log-likelihood

7.5
8

8.5
9

x 10
4

0

200

400

−30

−20

−10

0

pW
 (mg/cm

2)

p
I  (m

g/cm 2
)

c
o

s
t

(b) independent approximation

7.5
8

8.5
9

x 10
4

0

200

400

−30

−20

−10

0

pW
 (mg/cm

2)

p
I  (m

g/cm 2
)

c
o

s
t
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Fig. 2. Plots of the true log-likelihood function, the independent approxima-
tion, and the proposed joint approximation, with contours plotted underneath.

tions. The figure shows contour plots of the log-likelihood

function of Fig. 2, but also shows the effect of a 5% inter-

polation error in the missing sample. The interpolation error

has a relatively minor effect on the joint approximation, while

shifting quite significantly the maximum of the independent

model. Intuitively, the joint approximation is very robust to

interpolation error because the weighting matrix, Bi, has a

zero eigenvalue in the direction of any interpolation error.

This is due to the fact that the underlying matrix Wi of

equation (29) has a zero in the location of the missing sample.

In practice, we will see that the independent approximation

results in reconstructions which lose resolution due to the

interpolation process. Alternatively, the joint approximation

approach preserves resolution by primarily depending on only

the uninterpolated samples in the reconstruction.

Fig. 4 provides a pseudocode of the joint log-likelihood

approximation for fast kVp switching. First, the missing

measurement is interpolated, and then the interpolated value

is used to compute the material decomposition estimate, p̂i,
and the projection weighting matrix, Bi.

E. Prior Model

We model the reconstructed density image as a Markov

random field (MRF) with the following form

− logP (m) =
∑

s∈{W,I}

∑

{j,r}∈C

bjr,sρs(mj,s −mr,s), (31)

where s is the index of material type, {j, r} specifies a neigh-

boring pair consisting of voxel j and voxel r, C represents

the set of all such voxel pairs, bjr,s is the prior strength for

voxel pair {j, r} and material s, and ρ(.) is the potential

function. We choose bjr,s to be inversely proportional to

the distance between voxel j and voxel r, and the scale
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(e) joint, high attenuation
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(f) independent, high attenuation

Fig. 3. This figure plots the contours of the true log-likelihood function
and different approximations. We compare the independent model and the
joint model within three different attenuation levels. Within each figure, we
plot the contours of the true log-likelihood (blue), approximation without
interpolation error (red), and same approximation with 5% interpolation error
present (green). Without loss of generality, we fix the air scan photon flux
to be [λl,0, λh,0] = [5000, 5000], and then simulate the low, medium,
and high attenuation cases with photon measurements [λl, λh] equivalent to
[2500, 2650], [500, 550], and [100, 110], respectively. Each plot covers two
standard deviations of water and iodine projections.

of bjr,s can be further adjusted to balance between noise

and resolution in the reconstruction. By choosing this model,

we perform the regularization independently on each of the

material components in the image domain.

Our particular choice of potential function is the q-

generalized Gaussian MRF (q-GGMRF) of the form

ρs(∆) =
|∆|p

1 + |∆/cs|p−q
, (32)

with 1 < q ≤ p ≤ 2. This type of prior has shown to

be effective in many tomographic reconstruction studies [21],

[24], [47]–[49]. With 1 < q ≤ p ≤ 2, the potential function is

strictly convex [21], which guarantees global convergence of

the cost function and produces reconstruction as a continuous

function of the data [50].

We set p = 2.0 and q = 1.2 in our application, since this

particular setting has shown a desirable compromise between
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JDE-MBIR(yl, yh, wl, wh, h
−1,∇h−1){

for i = 1 to M do

if wi,h = 0 then

yi,h ← Interpolation

else if wi,l = 0 then

yi,l ← Interpolation

end if

yi ← [yi,l, yi,h]
Wi ← diag{wi,l, wi,h}
p̂i ← h−1(yi) {Material decomposition}
Bi ← [∇h−1(yi)]

−1Wi[∇h
−1(yi)]

−T

end for

m̂← ImageRecon(p̂, B)

return m̂
}

Fig. 4. Pseudocode of JDE-MBIR for DECT that uses fast kVp switching.
First, we interpolate the missing sample for each projection. Second, we
perform material decomposition and also compute the statistical weighting
matrix. Finally, we use the decomposed sinograms and weighting matrices to
reconstruct the images iteratively. The subroutine ImageRecon is described in
Fig. 8.

noise and resolution in similar clinical studies [21]. With

p = 2.0, the potential approximates a quadratic function for

small voxel differences, which preserves details in low contrast

regions. The value, q = 1.2, approximates the behavior of a

generalized Gaussian MRF [50] for large voxel differences,

which preserves edges in high contrast regions. The parameter

c models the transition between low and high contrast contents.

In practice, we choose c
W

= 10 mg/cm3 for water image and

c
I
= 0.5 mg/cm3 for iodine image.

F. Constrained Optimization

In X-ray tomographic reconstruction problems, an important

physical constraint to the reconstruction is that the linear

attenuation of any material at any photon energy must be non-

negative. More specifically, for all E ∈ [40, 140] keV, we know

that

µj(E) = mj · ϕ(E) ≥ 0 , (33)

where the photon energy range [40, 140] keV is of particular

interest for medical imaging and is above the k-edge of iodine.

Let Ω′ be the constraint set of a single voxel value, which

is given by

Ω′ = ∩E∈[40,140]{mj ∈ ℜ
2 : mj · n(E) ≥ 0}, (34)

where n(E) ,
ϕ(E)

||ϕ(E)|| is the normalized mass attenuation

vector. In this way, Ω′ is formed by the intersection of an

infinite number of half planes. However, the form of Ω′ can be

dramatically simplified by observing that the direction of n(E)
moves continuously with E . As a consequence, the constraint

can be represented much more simply by the intersection of

only two planes corresponding to the minimum and maximum

values of n(E), as nmin = n(40) and nmax = n(140),

Ω′ =
{

mj ∈ ℜ
2 : mj · nmin ≥ 0 and mj · nmax ≥ 0

}

, (35)
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Fig. 5. This figure illustrates the feasible values of a voxel,
mj = [mj,W ,mj,I ], where mj,W is the water-equivalent density and
mj,I is the iodine-equivalent density. The yellow region shows the constrained
solution set, which is formed by the intersection of only two half planes,
one defined by nmax and the other by nmin. The green arrows show the
attenuation vectors at intermediate energies.

Fig. 5 illustrates the constraint set and the associated mass

attenuation vectors. Then the constraint set for the entire

image, denoted by Ω, is given by

Ω = Ω′N , (36)

where N is the number of voxels in the reconstructed volume.

Clearly, Ω′ is a convex set and so is Ω.

The proposed constraint allows negative values for the

reconstructed densities of water and iodine. This is because

the reconstructed densities are only some coefficients for the

linear combination that produces the equivalent attenuation.

However, in the attenuation domain, the combination of the

reconstructed material densities should remain non-negative.

Combining the log-likelihood in (28) and the prior in (31)

with the constraints in (36) yields the expression for the MAP

reconstruction of equation (1),

m̂ = arg min
m∈Ω

{

1

2

M
∑

i=1

(p̂i − [Am]i)Bi (p̂i − [Am]i)
T

+
∑

s∈{W,I}

∑

{j,r}∈C

bjr,sρ(mj,s −mr,s)







. (37)

III. OPTIMIZATION ALGORITHM

There are a wide variety of techniques that can be used to

solve the optimization problem (37), from which we choose

the iterative coordinate descent (ICD) algorithm. The ICD

algorithm has the advantages that it has rapid convergence at

high spatial frequencies [25], especially when initialized with

FBP to obtain a good original estimate of low frequencies.

Also, it can easily incorporate the proposed non-negativity

constraint.

The ICD algorithm sequentially updates voxels of the recon-

structed image. Within each ICD iteration, every single voxel

is updated with remaining voxels fixed so as to minimize the

total cost function. Within each ICD update, we compute the
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exact solution to the constrained voxel update with the Karush-

Kuhn-Tucker (KKT) condition.

More precisely, by changing only one voxel while fixing

the rest of the image, we compute the voxel update, m̂j , from

the current image, m, by

m̂j ← arg min
u∈Ω′

{

1

2

M
∑

i=1

‖p̂i − [Am]i +Ai,j (mj − u)‖
2
Bi

+
∑

s∈{W,I}

∑

r∈∂j

bjr,sρ (us −mr,s)







, (38)

We denote ‖x‖2
B

= xBxT for simplicity. We introduce a

dummy variable u = [u
W
, u

I
] to represent the voxel value

being updated, to distinguish from its current value, mj .

Define the error sinogram, e , Am − p̂. Then intuitively,

the first term in equation (38) describes the change in the

error sinogram introduced by the change in the voxel value.

Equivalently, equation (38) can be written as

m̂j ← arg min
u∈Ω′

{

(u −mj)θ1 +
1

2
‖u−mj‖

2
θ2

(39)

+
∑

s∈{W,I}

∑

r∈∂j

bjr,sρ(us −mr,s) + const.







.

where θ1 and θ2 are the first and second derivatives of the

log-likelihood function, which are given by

θ1 ,

M
∑

i=1

Ai,jBie
T
i , (40)

θ2 ,

M
∑

i=1

A2
i,jBi. (41)

where ei = [Am]i − p̂i is the ith row of the error sinogram,

and Ai,j is a scalar that represents the intersection of ray i
with voxel j.

Solving the 2-D optimization problem in (39) simultane-

ously for both material components may be difficult, since the

prior term cannot be explicitly expressed as a function of u.

To address this problem, one may use a functional substitution

approach [24], [51]–[54]. In this problem, we introduce a

quadratic substitute function for the potential function. More

precisely, let ∆ = us−mr,s and ∆∗ = mj,s−mr,s. Then we

define the substitute function, q(∆;∆∗), as

q(∆;∆∗) =
αjr,s
2

∆2 + Cjr,s, (42)

with

αjr,s =
ρ′(∆∗)

∆∗
, (43)

Cjr,s = ρ(∆∗)−
ρ′(∆∗)

2
∆∗,

where Cjr,s is an offset constant and therefore can be ignored

during optimization. This function, q(∆;∆∗), satisfies the

following two constraints for a valid substitute function [24],

[51]–[53].

q(∆∗; ∆∗) = ρ(∆∗),

q(∆;∆∗) ≥ ρ(∆).
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Fig. 6. This figure illustrates the desired substitute function. The substitute
function, q(∆;∆∗), equals the true function, ρ(∆), at ∆ = ∆∗, and upper
bounds the true function everywhere else. Thus, the true function is guaranteed
to decrease when the substitute function is minimized.

Intuitively, a valid substitute function for minimization should

equal the true function at the current point and upper bound

the true function everywhere else. Fig. 6 illustrates the desired

substitute function, q(∆;∆∗). It is important to know that re-

placing the true potential function with the substitute function

still guarantees monotone convergence of the cost function

[24], [53].

Replacing the potential function in (39) with the substitute

function yields a quadratic cost function of u,

m̂j ← arg min
u∈Ω′

{

(u −mj)θ1 +
1

2
‖u−mj‖

2
θ2

+
1

2

∑

r∈∂j

‖u−mr‖
2
ψr

+ const.







, (44)

where

ψr ,

[

bjr,Wαjr,W 0

0 bjr,Iαjr,I

]

. (45)

Furthermore, define

φ1 , θ1 − θ2m
T
j −

∑

r∈∂j

ψrm
T
r , (46)

φ2 , θ2 +
∑

r∈∂j

ψr. (47)

By using φ1 and φ2, we rewrite (44) into a standard form,

min
u

1

2
uφ2u

T + uφ1 + const. (48)

s.t. u · nmin ≥ 0

u · nmax ≥ 0

This is a standard quadratic minimization problem with two

linear constraints. It can be solved exactly by applying the

KKT condition following a standard procedure [55]. Fig. 7

shows the procedure for computing the solution by using the

KKT condition. As shown in the pseudocode, we first test

the KKT condition on the unconstrained solution. If it fails,

we solve the minimization problem on either boundary of the

feasible set by rooting the derivative of the resulting 1D cost

function, and then we test the corresponding solution with the

KKT condition. Once the KKT condition is met, the particular

solution becomes our updated value. This is because the KKT



9

KKTSolve(φ1, φ2, nmin, nmax){
// unconstrained solution

u← −φT1 φ
−1
2

if u · nmin < 0 or u · nmax < 0 then

// solve on the boundary defined by u · nmin = 0
k ← nmin(1)/nmin(2)

u←

(

−φ1(1) + kφ1(2)
φ2(1, 1)− 2kφ2(1, 2) + k2φ2(2, 2)

)

[1,−k]

λ← (u · [φ2(1, 1), φ2(1, 2)] + φ1(1)) / (nmin(1))

if u · nmax < 0 or λ ≤ 0 then

// solve on the boundary defined by u · nmax = 0
k ← nmax(1)/nmax(2)

u←

(

−φ1(1) + kφ1(2)
φ2(1, 1)− 2kφ2(1, 2) + k2φ2(2, 2)

)

[1,−k]

λ← (u · [φ2(1, 1), φ2(1, 2)] + φ1(1)) / (nmax(1))

if u · nmin < 0 or λ ≤ 0 then

// only feasible solution is the origin

u← [0, 0]
end if

end if

end if

return u
}

Fig. 7. Pseudocode for solving the quadratic minimization problem in (48)
with the KKT condition. We first test the KKT condition on the unconstrained
solution. If it fails, we solve the minimization problem on either boundary of
the feasible set, and then we test the corresponding solution with the KKT
condition. Once the KKT condition is met, the particular solution becomes
the updated value. The origin will be the only feasible solution if no qualified
solution is found in the previous cases. The derivation for the solution is
provided in the appendix.

condition is both necessary and sufficient in this problem, due

to the fact that the cost function and the constraints are all

continuously differentiable and convex [56]. The origin will

be the only feasible solution if no qualified solution is found

in the previous cases. The derivation of the solution is provided

in the appendix.

The pseudocode in Fig. 8 summarizes the procedure for

reconstructing the image from the decomposed sinograms. We

initialize the image and the error sinogram with the raw FBP

images. Then within each iteration, for each selected voxel

j, we first compute the jth column of the forward projection

matrix, which is A∗,j , by using the distance driven method

[45]. Second, we compute the first two derivatives of the

log-likelihood function, θ1 and θ2. Third, we compute the

surrogate prior coefficients, ψr, for each of the neighboring

voxels by using (43) and (45). Fourth, we compute the first

two derivatives for the quadratic cost function, φ1 and φ2, by

using (46) and (47). Fifth, we solve the optimization problem

in (48) by using the KKT condition to obtain the voxel update.

Finally, we update the error sinogram by forward projecting

the voxel update and update the image as well.

ImageRecon(p̂, B){
m← raw FBP images

A← Compute

e← Am− p̂
nmin, nmax ← Compute

repeat

repeat

j ← Select a voxel according to random schedule

A∗,j ← Compute

θ1, θ2 ← Compute by using (40) and (41)

for each r ∈ ∂j do

ψr ← Compute by using (43) and (45)

end for

φ1, φ2 ← Compute by using (46) and (47)

m̂j ← KKTSolve(φ1, φ2, nmin, nmax)

e← e+A∗,j(m̂j −mj)
m← m+ δj(m̂j −mj)

until All voxels have been visited

until Image m converges to the desired level

return m
}

Fig. 8. Pseudocode for reconstructing the image by using generic ICD
algorithm. We initialize m with the raw FBP images and also initialize
the error sinogram. Within each iteration, for each selected voxel, we first
compute the column of the forward projection matrix. Second, we compute
first two derivatives of the log-likelihood function. Third, we compute the
coefficients for the surrogate prior. Fourth, we compute the first two derivatives
of the quadratic cost function. Fifth, we solve the optimization problem with
the KKT condition to obtain the voxel update. Finally, we update the error
sinogram and the image. We define δj as an N×1 vector that is 1 for element
j and 0 otherwise. The subroutine KKTSolve is described in Fig. 7.

IV. EXPERIMENTAL RESULTS

We have applied the proposed JDE-MBIR algorithm to real

3D DECT reconstruction problems. Raw data were acquired

on a Discovery CT750 HD scanner (GE Healthcare, WI, USA)

in a dual-energy fast switching acquisition mode, with the X-

ray tube voltage alternating between 80 kVp and 140 kVp

from view to view. This spectral CT imaging technique is also

referred to as Gemstone Spectral Imaging (GSI). Each scan

contains approximately 2500 views per rotation, with each

kVp having the same number of views, which is approximately

1250. Each scan was made with a large bowtie present. Each

of the reconstructed images has a thickness of 0.625 mm,

with 512×512 pixels. We reconstruct with water and iodine

sinograms after material decomposition, with each material

having the same number of views per rotation, which is

approximately 2500. The reconstructed images represent the

cross-sections corresponding to water- and iodine-equivalent

densities in units of mg/cm3. The “monochromatic” image,

which specifies the cross-section corresponding to the atten-

uation given the photon energy, can then be generated by a

linear combination of the reconstructed density images as in

equation (18). Note that we do not generate monochromatic

sinograms for reconstruction.

The function h−1 in equation (25) is approximated by using
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a high order polynomial with the following form,

[p̂i,W , p̂i,I ] = h−1(yi,l, yi,h) (49)

=

[

L
∑

m=0

L
∑

n=0

cm,n,Wy
m
i,ly

n
i,h,

L
∑

m=0

L
∑

n=0

cm,n,Iy
m
i,ly

n
i,h

]

.

where L = 10. The specific coefficients for the polynomial,

defined as {cm,n,W , cm,n,I} , ∀m ∈ {0, 1, · · · , L}, ∀n ∈
{0, 1, · · · , L}, are computed in a calibration procedure for

each device as described in [57]. As described in Sec. II-B,

these coefficients depend on many specific details of the

device’s physics including the X-ray spectra and detector

sensitivity. The coefficients of the material decomposition are

estimated in two stages. First, a polynomial is estimated to

correct for beam hardening on a water phantom, and then

the full set of coefficients are estimated for complete material

decomposition.

We will compare the proposed JDE-MBIR method with

two other decomposition-based methods, one using FBP re-

construction and the other using independent DE-MBIR. The

FBP method consists of first obtaining two material sinograms

from the material decomposition and then performing FBP

on each sinogram with a standard reconstruction filter kernel.

Then the resulting material density images are processed by

a correlation-based noise reduction method [40], [58]. The

independent DE-MBIR was implemented in the same way as

described in Sec. II-D. That is, the off-diagonal terms of the

weighting matrix, Bi, were set to 0. All of the above methods

work with the same decomposed sinograms. In practice, we

implement the interleaved non-homogeneous ICD algorithm

[24] for both independent DE-MBIR and JDE-MBIR. This

method focuses computation where updates are mostly needed,

which consequently accelerates the convergence. Both the

independent DE-MBIR and JDE-MBIR are implemented on

a standard 2.53 GHz clock rate 8 core Intel processor work-

station with the Linux operating system. For both methods,

we run 10 iterations to obtain the fully converged results.

In order to compare fairly among different reconstruction

methods, in each experiment we match the noise level in

70 keV monochromatic images. That is, the difference of

the noise standard deviation measured within a fixed ROI is

less than 1 HU among different methods. We adjust the prior

strength, bjk,s in (31), to match the noise level.

We first evaluate the performance of the methods with the

phantom. For quantitative assessment, we use a 20 cm diam-

eter GE Performance Phantom (GEPP) scanned in 64× 0.625
mm helical mode at pitch 0.938:1 in 540 mAs in 300 mm field

of view (FOV). The GEPP contains a Plexiglas insert with

resolution bars and a 50 µm diameter tungsten wire placed in

water. We measure the standard deviation within a fixed ROI

in a homogeneous region of Plexiglas for noise assessment,

and also measure the modulation transfer function (MTF) by

using the wire for in-plane resolution assessment [59]. The

width of the MTF is proportional to the spatial resolution. In

this paper, 10% MTF width is chosen for comparison, since it

generally reflects the visual resolution of the image. In addition

to the above wire method, we also use the cyclic bar patterns to

measure the spatial resolution. Following the method described

in [60], we compute the MTF gain as the image modulation

divided by the object modulation.

The JDE-MBIR method improves the spatial resolution

and simultaneously reduces noise in the phantom study. This

is illustrated by the GEPP reconstructions shown in Fig. 9.

As shown in the figure, JDE-MBIR provides greater noise

suppression than FBP and independent DE-MBIR in both

water and iodine images, which leads to visually smoother

homogeneous regions. Meanwhile, JDE-MBIR improves the

resolution by producing a less blurred wire spot and spatially

more distinguishable bars in both material density images. One

can also observe the resolution improvement in the monochro-

matic images as shown in Fig. 10, which are synthesized from

the reconstructed material density images shown in Fig. 9

based on equation (18). The increased visual separation of

the bars is illustrated by the profile plots in Fig. 11.

The visual improvement on the GEPP reconstruction is

further verified by quantitative measurements in Table I. With

comparable noise level in 70 keV monochromatic images,

JDE-MBIR significantly reduces noise as compared to FBP

and independent DE-MBIR, especially for water images. JDE-

MBIR also improves the in-plane resolution substantially as

compared to FBP and independent DE-MBIR, according to

these two different resolution metrics.

Fig. 13 and 14 show the resolution and noise of the

monochromatic images across various photon energies, with a

matched noise level at 70 keV. Fig. 12 presents the monochro-

matic images at two distinct energies as an example. As

shown in Fig. 13, JDE-MBIR method significantly raises the

resolution as compared to the FBP method and the independent

DE-MBIR method. Fig. 14 also shows this resolution improve-

ment by investigating the bar patterns at three different spatial

frequencies. Each plot is computed using the method described

in [60]. Note that for each spatial frequency, the JDE-MBIR

method produces the largest contrast (i.e., closest to an ideal

value of 100%) across all energies. This is consistent with the

visual quality of the resolution bars in Fig. 10 and 12.

In addition, Fig. 13 shows that the JDE-MBIR monochro-

matic image contains less noise than the FBP image for all

energies of diagnostic interest. It also has a more tractable

noise characteristic than the monochromatic image associated

with the independent DE-MBIR method. More precisely,

although the independent DE-MBIR monochromatic image

appears slightly less noisy than the JDE-MBIR monochromatic

image for some energy levels, the noise rises rapidly for the

independent model as energy decreases. This is due to the fact

that the iodine component dominates the photon attenuation

at low energy and the independent DE-MBIR method tends

to produce noisy iodine reconstructions. Also, optimizing the

prior strength for independent DE-MBIR becomes difficult due

to this huge variation. This result also indicates that one can

further reduce noise while still earning the advantage in spatial

resolution by using the JDE-MBIR method.

We also compared the convergence speed of the JDE-

MBIR and the standard single-energy MBIR [24] with the

GEPP reconstruction to measure the additional computational

burden occasioned by the dual-energy reconstruction. For

single-energy MBIR, we simply took the water sinogram
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noise = 21.21 mg/cm
3

(a) FBP, water

noise = 14.31 mg/cm
3

(b) indep. DE-MBIR, water

noise = 9.68 mg/cm
3

(c) JDE-MBIR, water (d) Difference: (c) − (a) (e) Difference: (c) − (b)

noise = 0.60 mg/cm
3

(f) FBP, iodine

noise = 0.89 mg/cm
3

(g) indep. DE-MBIR, iodine

noise = 0.30 mg/cm
3

(h) JDE-MBIR, iodine (i) Difference: (h) − (f) (j) Difference: (h) − (g)

noise = 14.18 HU

(k) FBP, 70 keV

noise = 13.55 HU

(l) indep. DE-MBIR, 70 keV

noise = 13.69 HU

(m) JDE-MBIR, 70 keV (n) Difference: (m) − (k) (o) Difference: (m) − (l)

Fig. 9. Comparison of FBP, independent DE-MBIR (indep. DE-MBIR) and JDE-MBIR reconstructions from a GEPP scan. From top to bottom: water density
image, iodine density, and 70 keV monochromatic image. From left to right: FBP, independent DE-MBIR, JDE-MBIR, difference between JDE-MBIR and
FBP, difference between JDE-MBIR and independent DE-MBIR. Display window for water images: window width (WW) 600 mg/cm3 and window level
(WL) 1000 mg/cm3; for water difference images: WW 600 mg/cm3 and WL 0 mg/cm3; for iodine images: WW 15 mg/cm3 and WL -0.5 mg/cm3; for iodine
difference images: WW 7.5 mg/cm3 and WL 0 mg/cm3; for monochromatic images: WW 600 HU and WL 0 HU; for mono difference images: WW 300
HU and WL 0 HU. The white box on the 70 keV FBP image (first at the third row) indicates the region where the noise standard deviation is evaluated.

(a) FBP (b) independent DE-MBIR (c) JDE-MBIR

Fig. 10. Resolution bars in the 70 keV monochromatic images from a GEPP
scan reconstructed with: (a) FBP; (b) independent DE-MBIR; (c) JDE-MBIR.
Display window: WW 200HU and WL -400HU. Each image zooms in to the
resolution bars of the monochromatic images shown in Fig. 9 with a different
display window.

and weight from the data used in the experiment of Fig. 9

and performed the reconstruction. In this case, the data used

in JDE-MBIR and the single-energy MBIR share the same

scanner geometry and settings such as helical pitch, rotation

speed, and local statistics for the water component. Note that

the resulting single-energy MBIR reconstruction has no partic-

ularly quantitative meaning, but it is still useful for comparing

the computation time. Both algorithms were implemented on

the same software platform as described at the beginning of

this section and run on the same hardware. Fig. 15 shows

the comparison of convergence speed between JDE-MBIR and

single-energy MBIR. Since these two methods do not reach the

same final cost due to different cost functions, we scale the cost

of the single-energy MBIR such that it has the same final cost

as JDE-MBIR, assuming full convergence has been reached in

10 iterations as usually observed in practice. It is shown in the

figure that both algorithms converge within 4 iterations. In this

experiment, the average total computation time per iteration

for JDE-MBIR was 1.47 times the computation required for

single-energy MBIR case as measured across about 9 million

voxels located differently in the 3D FOV. The main reason

for the increase in computation stems from the fact that the

sinograms for JDE-MBIR contain twice as much data as that

for single-energy MBIR because of interpolation.

We also evaluated the reconstruction accuracy of JDE-
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(b) attenuations along the profile line

Fig. 11. Profile plot across the resolution bars on the GEPP 70 keV
monochromatic images for FBP, independent DE-MBIR, and JDE-MBIR: (a)
profile line on the image; (b) attenuations along the profile line with FBP
(blue), independent DE-MBIR (green), and JDE-MBIR (red).

MBIR by using a GE GSI contrast phantom, which was

scanned in 32 × 0.625 mm axial mode in 384 mAs in

500 mm FOV. This phantom consists of a water phantom

with several cylindrical rods inserted, each of which contains

known concentrations of iodine and water. The JDE-MBIR

reconstructions of this phantom are shown in Fig. 16, while

the theoretical iodine and water densities are given in Table II .

Fig. 16 also plots the reconstructed iodine and water densities

for FBP and JDE-MBIR. For each rod with known iodine

concentration, we calculated the average of the reconstructed

values in an ROI within the rod. As shown in the plots, FBP

and JDE-MBIR produce equally accurate material densities.

We also compared FBP, independent DE-MBIR, and JDE-

MBIR by using real clinical data, as shown in Figs 17 and 18.

The data were collected from an abdominal scan in 64×0.625
mm helical mode at pitch 0.984:1 in 540 mAs in 500 mm

FOV. Fig. 17 shows that the JDE-MBIR dramatically reduces

the noise in the homogeneous regions (e.g., liver) in both

water and iodine images. The bone structures in the JDE-

MBIR water image also suffer from less blooming and have

sharper edges than those of the other two methods. Meanwhile,

the JDE-MBIR method improves the resolution in the iodine

image as compared to the other two methods. For example,

one can see details such as vessels in the liver more clearly

in the JDE-MBIR image.

TABLE I
COMPARISON OF FBP, INDEPENDENT DE-MBIR AND JDE-MBIR FOR

MEASUREMENT OF NOISE AND IN-PLANE RESOLUTION FOR THE IMAGES

IN FIG. 9. THE RESOLUTION MEASURED BY USING THE CYCLIC BARS

METHOD IS MADE IN THE 70 KEV MONOCHROMATIC IMAGES AT THE

THREE LOWEST SPATIAL FREQUENCIES.

Noise Measurement (Standard Deviation)

water
(mg/cm3)

iodine
(mg/cm3)

70 keV mono.
(HU)

FBP 21.21 0.60 14.18

Independent DE-MBIR 14.31 0.89 13.55

JDE-MBIR 9.68 0.30 13.69

Resolution Measurement (10% MTF by the wire method)

water
(lp/cm)

iodine
(lp/cm)

70 keV mono.
(lp/cm)

FBP 6.15 5.81 6.60

Independent DE-MBIR 8.61 6.35 8.90

JDE-MBIR 11.80 10.59 11.70

Resolution Measurement (MTF gain by the cyclic bars method)

6.25 lp/cm
(%)

7.69 lp/cm
(%)

10 lp/cm
(%)

FBP 11.55 3.70 0

Independent DE-MBIR 15.35 3.74 0.25

JDE-MBIR 40.30 19.10 3.28

Fig. 18 presents the corresponding monochromatic images

at various energies. The resolution improvement can be ob-

served in the monochromatic images as compared to the

other two methods, with a fixed noise level in the 70 keV

monochromatic image. However, according to the resolution

and noise curves shown in Fig. 13, one can achieve less

noise while still retaining better resolution for the JDE-MBIR

method as compared to the FBP method, by adjusting the

prior strength. These results illustrate the potential diagnostic

benefits of the JDE-MBIR method for DECT reconstruction.

Note that either JDE-MBIR or independent DE-MBIR can

be further improved by tuning the parameters for a particular

clinical application.

V. CONCLUSION

In this paper, we have presented a JDE-MBIR approach

for DECT reconstruction. The proposed method combines a

joint likelihood model to account for the noise correlation

in material-decomposed sinograms with MRF regularization,

and features a physically realistic constraint that ensures non-

negative X-ray absorptions. We also demonstrate that the JDE-

MBIR method retains a more accurate model of the data

likelihood than other decomposition-based statistical iterative

methods when DECT uses fast kVp switching techniques.

The experimental results on phantom and clinical data show

that the JDE-MBIR method can reduce noise and increase

resolution as compared to the FBP method and the independent

DE-MBIR method. We expect that the improvement in terms

of lower noise and higher resolution brought by the JDE-

MBIR method may potentially reduce the CT dose required

for a particular image quality. Future investigation will assess

how to further improve material separation performance and

investigate potential clinical benefits.
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noise = 24.82 HU

(a) FBP, 50 keV

noise = 36.90 HU

(b) indep. DE-MBIR, 50 keV

noise = 22.58 HU

(c) JDE-MBIR, 50 keV (d) Difference: (c) − (a) (e) Difference: (c) − (b)

noise = 18.98 HU

(f) FBP, 130 keV

noise = 10.11 HU

(g) indep. DE-MBIR, 130 keV

noise = 9.92 HU

(h) JDE-MBIR, 130 keV (i) Difference: (h) − (f) (j) Difference: (h) − (g)

Fig. 12. Comparison of FBP, independent DE-MBIR (indep. DE-MBIR), and JDE-MBIR monochromatic images of the GEPP at different energies. From
top to bottom: photon energy at 50 keV and 130 keV. From left to right: FBP, independent DE-MBIR, JDE-MBIR, difference between JDE-MBIR and FBP,
difference between JDE-MBIR and independent DE-MBIR. Display window for monochromatic images: WW 600 HU and WL 0 HU; for difference images:
WW 300 HU and WL 0 HU. These monochromatic images are synthesized using the reconstructed material densities shown in Fig. 9 based on equation (18).
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(a) in-plane resolution

40 60 80 100 120 140
0

10

20

30

40

50

60

70

x−ray photon energy (keV)

n
o
is

e
 s

ta
n
d
a
rd

 d
e
v
ia

ti
o
n
 (

H
U

)

 

 

FBP
independent DE−MBIR
JDE−MBIR

(b) noise standard deviation

Fig. 13. Resolution and noise of the monochromatic images across various energy levels with different reconstruction methods.
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(a) cyclic bars with frequency of 6.25 lp/cm

40 60 80 100 120 140
0

5

10

15

20

25

30

35

x−ray photon energy (keV)

M
T

F
 (

%
)

 

 

FBP
independent DE−MBIR
JDE−MBIR

(b) cyclic bars with frequency of 7.69 lp/cm
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(c) cyclic bars with frequency of 10 lp/cm

Fig. 14. MTF measured at the cyclic bars of three different spatial frequencies in the monochromatic images across various photon energies. The JDE-MBIR
produces higher MTF values than the other two methods at all three frequencies.
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Fig. 15. Comparison of the convergence speed of the JDE-MBIR and the
standard single-energy MBIR with the GEPP reconstruction in Fig. 9. The
cost for the single-energy MBIR is scaled such that it reaches the same final
cost as JDE-MBIR.

TABLE II
THEORETICAL DENSITIES OF IODINE AND WATER FOR THE INSERTED

RODS IN THE GSI CONTRAST PHANTOM AS SHOWN IN FIG. 16.

Rod 1 2 3 4 5 6

Iodine (mg/cm3) 0 2.5 5 7.5 15 20

Water (mg/cm3) 1000 999.5 999 998.5 997 995.9

APPENDIX

DERIVATION OF THE SOLUTION

We derive the solution to the 2D quadratic minimization

problem defined in equation (48). The optimization problem

is given by

min
u

1

2
uφ2u

T + uφ1 + const.

s.t. u · nmin ≥ 0 and u · nmax ≥ 0

where u ∈ ℜ2 and

φ1 = [φ1(1), φ1(2)]
T ,

φ2 =

[

φ2(1, 1) φ2(1, 2)

φ2(1, 2) φ2(2, 2)

]

,

nmin = [nmin(1), nmin(2)],

nmax = [nmax(1), nmax(2)].

We solve this problem by using the KKT condition. The

KKT condition states that a valid solution u should satisfy,










































φ2u
T + φ1 − λ1n

T
min − λ2n

T
max = 0

λ1 · u · nmin = 0

λ2 · u · nmax = 0

u · nmin ≥ 0

u · nmax ≥ 0

λ1, λ2 ≥ 0

(50)

where λ1 and λ2 are the KKT multipliers. Then we

can compute the solution within four different cases, i.e.,

(λ1 = 0, λ2 = 0), (λ1 > 0, λ2 = 0), (λ1 = 0, λ2 > 0) and

(λ1 > 0, λ2 > 0). Within each case, we compute the solution

by using the equality conditions and then test the resulting
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(d) reconstructed water density

Fig. 16. Top row shows the JDE-MBIR reconstructions of the GE GSI
contrast phantom. This phantom consists of a water phantom base and several
cylindrical rods, each of which contains certain concentrations of iodine and
water. Display window for water image: WW 600 mg/cm3, WL 1000 mg/cm3;
for iodine image: WW 17.5 mg/cm3, WL 7.5 mg/cm3. Bottom two rows show
the reconstruction accuracy of FBP and JDE-MBIR for iodine and water.

solution with the inequality conditions. Since the cost func-

tion and the constraints in this problem are all continuously

differentiable and convex, the KKT condition is both necessary

and sufficient [56]. Thus, a solution becomes our updated

value if and only if it satisfies both the equality and inequality

conditions.

1) λ1 = 0, λ2 = 0. This combination gives the uncon-

strained solution, which can be computed from the first

equation in (50) as

u = −φ−1
2 φ1. (51)
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(a) FBP, water (b) FBP, iodine (c) FBP, 70 keV

(d) independent DE-MBIR, water (e) independent DE-MBIR, iodine (f) independent DE-MBIR, 70 keV

(g) JDE-MBIR, water (h) JDE-MBIR, iodine (i) JDE-MBIR, 70 keV

(j) Difference: (g) − (a) (k) Difference: (h) − (b) (l) Difference: (i) − (c)

(m) Difference: (g) − (d) (n) Difference: (h) − (e) (o) Difference: (i) − (f)

Fig. 17. Comparison of FBP, independent DE-MBIR and JDE-MBIR reconstructions for an abdominal clinical scan. From top to bottom: FBP, independent
DE-MBIR, JDE-MBIR, difference between JDE-MBIR and FBP, difference between JDE-MBIR and independent DE-MBIR. From left to right: water density
image, iodine density image, and 70 keV monochromatic image. Display window for water images: WW 300mg/cm3 and WL 1000mg/cm3 ; for water
difference images: WW 200 mg/cm3 and WL 0 mg/cm3; for iodine images: WW 17.5mg/cm3 and WL 6.5mg/cm3; for iodine images: WW 8 mg/cm3 and
WL 0 mg/cm3; for monochromatic images: WW 400HU and WL 40HU; for mono difference images: WW 200 HU and WL 0 HU.
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(a) FBP, 60 keV (b) FBP, 100 keV (c) FBP, 130 keV

(d) independent DE-MBIR, 60 keV (e) independent DE-MBIR, 100 keV (f) independent DE-MBIR, 130 keV

(g) JDE-MBIR, 60 keV (h) JDE-MBIR, 100 keV (i) JDE-MBIR, 130 keV

(j) Difference: (g) − (a) (k) Difference: (h) − (b) (l) Difference: (i) − (c)

(m) Difference: (g) − (d) (n) Difference: (h) − (e) (o) Difference: (i) − (f)

Fig. 18. Comparison of FBP, independent DE-MBIR and JDE-MBIR performance on monochromatic images of an abdominal clinical scan at various energies.
From top to bottom: FBP, independent DE-MBIR, JDE-MBIR, difference between JDE-MBIR and FBP, difference between JDE-MBIR and independent DE-
MBIR. From left to right: photon energy at 60 keV, 100 keV, and 130 keV. Display window: WW 400HU and WL 40HU; for mono difference images: WW
200 HU and WL 0 HU. These monochromatic images are synthesized using the reconstructed material densities shown in Fig. 17 based on equation (18).
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We need to test this solution with the following inequal-

ity conditions
{

u · nmin ≥ 0

u · nmax ≥ 0
(52)

2) λ1 > 0, λ2 = 0. In this case, we solve the optimization

problem on the boundary with u · nmin = 0. This

combination leads to the following equation
[

φ2 −nTmin

−nmin 0

] [

uT

λ1

]

=

[

−φ1

0

]

. (53)

The solution is given by














uT = −

(

φ−1
2 −

φ−1
2 nTminnminφ

−1
2

nminφ
−1
2 nTmin

)

φ1

λ1 =
nTminφ

−1
2 φ1

nminφ
−1
2 nTmin

(54)

This solution needs to be tested with
{

u · nmax ≥ 0

λ1 > 0
(55)

3) λ1 = 0, λ2 > 0. In this case, we solve the optimization

problem on the boundary with u · nmax = 0. Similarly

to the previous case, this combination gives the solution














uT = −

(

φ−1
2 −

φ−1
2 nTmaxnmaxφ

−1
2

nmaxφ
−1
2 nTmax

)

φ1

λ2 =
nTmaxφ

−1
2 φ1

nmaxφ
−1
2 nTmax

(56)

This solution needs to be tested with
{

u · nmin ≥ 0

λ2 > 0
(57)

4) λ1 > 0, λ2 > 0. With this combination, the only feasible

solution is u = [0, 0].

In practice, we test the four cases sequentially. Once all

the equality and inequality conditions are met, the solution

becomes the desired voxel update. This process is shown in

Fig. 7.
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