
Model based Kalman Filter Mobile Robot Self-Localization 59

Model based Kalman Filter Mobile Robot Self-Localization

Edouard Ivanjko, Andreja Kitanov and Ivan Petrović

0

Model based Kalman Filter

Mobile Robot Self-Localization

Edouard Ivanjko, Andreja Kitanov and Ivan Petrović
University of Zagreb, Faculty of Electrical Engineering and Computing,

Department of Control and Computer Engineering
Croatia

1. Introduction

Mobile robot self-localization is a mandatory task for accomplishing its full autonomy dur-
ing navigation. Various solutions in robotics community have been developed to solve the
self-localization problem. Developed solutions can be categorized into two groups: rela-
tive localization (dead-reckoning) and absolute localization. Although very simple and fast,
dead-reckoning algorithms tend to accumulate errors in the system as they utilize only in-
formation from proprioceptive sensors as odometer readings (e.g. incremental encoders on
the robot wheels). Absolute localization methods are based on exteroceptive sensors in-
formation. These methods yield a stable locating error but are more complex and costly in
terms of computation time. A very popular solution for achieving online localization consists
of combining both relative and absolute methods. Relative localization is used with a high
sampling rate in order to maintain the robot pose up-to-date, whereas absolute localization is
applied periodically with a lower sampling rate to correct relative positioning misalignments
Borenstein et al. (1996a).
As regards absolute localization within indoor environments, map-based approaches are
common choices. In large majority of cases, it is assumed that a map (model) of the
workspace has been established. The environment model can either be pre-stored as ar-
chitects drawing CAD model or built online simultaneously with localization using sensor
data fusion or structure from motion technics. The classical approach to model-based local-
ization consists of matching the local representation of the environment built from sensor
information with the global model map and will be used in this chapter also.
So, this chapter presents two approaches to mobile robot self-localization regarding used per-
ceptive sensor combined with an environment model. First approach uses sonar range sensor
and second approach uses monocular camera. Environment model in the first approach is
an occupancy grid map, and second approach uses a 3D rendered model.
Sonar range sensor is often used in mobile robotics for localization or mapping tasks Lee
(1996); Wijk (2001) especially after occupancy grid maps were introduced Moravec & Elfes
(1985). Mostly feature maps are used because of their more accurate environment presenta-
tion. In such a case when sonar range measurement prediction is done additional steps have
to be made. First, appropriate environment feature has to be detected and then correspond-
ing uncertainty that detected feature is correct has to be computed. This uncertainty adds
also additional computation step into mostly used Kalman filter framework for non-linear

4

www.intechopen.com

Robot Localization and Map Building60

systems making pose estimation more computationally complex. In this chapter an occu-
pancy grid map is used as the environment model in combination with Extended Kalman
filter (EKF) and Unscented Kalman filter (UKF). In this way computation of detected fea-
ture uncertainty is avoided and doesn’t have to be included in the Kalman filter localization
framework with sonar sensor.
General Kalman filter consist of a prediction (time update) and correction (measurement
update) step Welch & Bishop (2000). Prediction step makes an update of the estimated
state. In this case estimated state is mobile robot pose (combined mobile robot position and
orientation). So a kinematic mobile robot model is used for state prediction. In field of
mobile robotics such a kinematic model is also known as odometry Borenstein et al. (1996b).
It uses measured drive wheel speeds to compute mobile robot pose displacement from a
known start pose. It is accurate for short distances because of its aproximate quadratical
error growth rate. Such a growth rate arises from the fact that pose error in current pose
estimation time step is added to all previous made errors. Fortunately some odometry errors
can be taken into account slowing down the error growth rate Borenstein et al. (1996b). This
is done by odometry calibration and is also used in work described in this chapter.
Although navigation using vision has been addressed by many researchers, vision is not
commonly used on its own but usually in conjunction with other exteroceptive sensors,
where multi-sensor fusion techniques are applied, see e.g. Arras et al. (2001) and Li et al.
(2002). However, cameras have many advantages as range sensors comparing to sonars and
laser rangefinders as they are passive sensors, provide much more data about environment,
can distinguish between obstacles based on color etc. A great deal of work has been done
on stereo vision, see e.g. Guilherme & Avinash (2002), but for reasons of size and cost
monocular vision based navigation has been addressed by a number of researchers, e.g.
Aider et al. (2005); Jeon & Kim (1999); Kosaka & Kak (1992); Neira et al. (1997).
When using monocular vision, the localization process is composed of the five following
stages Guilherme & Avinash (2002); Kosaka & Kak (1992): 1) image acquisition from current
robot pose; 2) image segmentation and feature extraction; 3) model rendering; 4) matching
2D-image and 3D-model features and 5) camera pose computation. It is observed that each
stage may be time-consuming due to large amount of data involved. The strategy ultimately
adopted for each phase must then be very well-assessed for real-time use. For example,
an efficient real-time solution to the feature matching problem is presented in Aider et al.
(2005), where interpretation tree search techniques were applied. For mobile robot working
environment modelling and rendering professional freeware computer graphics tool Blender
www.blender3d.org (1995) was used, which is an open source software for 3D modelling, an-
imation, rendering, post-production, interactive creation and playback. It is available for all
major operating systems and under the GNU General Public License. The main advantage
of that choice is getting powerful 3D modelling tool while being able to optimize the code
for user application and use some external well proven computer graphics solutions that
Blender incorporates: OpenGL and Python. It also gives external renderer Yafray. Real-time
image segmentation for complex and noisy images is achieved by applying Random Win-
dow Randomized Hough Transform (RWRHT) introduced in Kälviäinen et al. (1994) which
is here used for the first time for robot self-localization to the best of our knowledge. We also
implemented and improved robot (camera) pose estimation algorithm developed in Kosaka
& Kak (1992).
This chapter is organized as follows. Second section describes used sensors including their
mathematical models. Following section describes applied sensor calibration procedures.

www.intechopen.com

Model based Kalman Filter Mobile Robot Self-Localization 61

Fourth section describes sonar based localization, followed with the fifth section describing
monocular vision based localization. Sixth section gives experimental results obtained with
a differential drive mobile robot including experiment condition description and comment
of localization results. Chapter ends with conclusion.

2. Mobile robot and sensors models

As mentioned in the introduction, used sensors are encoders, sonars and a mono camera.
Whence encoders measure mobile robot velocity which is used for odometric pose estimation
this section will describe mobile robot kinematic model used for odometric pose estimation.
Besides odometry, sonar and camera models will be described.

2.1 Mobile robot kinematics model

As mentioned above a differential drive mobile robot for indoor environments is used in
experiments. Its kinematics configuration with denoted relevant variables is presented in
Fig. 1. Such a mobile robot configuration has three wheels. Two front wheels are drive
wheels with encoder mounted on them and the third wheel is a castor wheel needed for
mobile robot stability. Drive wheels can be controlled independently. Kinematic model of
differential drive mobile robot is given by the following relations:

x(k + 1) = x(k) + D(k) · cos

(

Θ(k) +
∆Θ(k)

2

)

, (1)

y(k + 1) = y(k) + D(k) · sin

(

Θ(k) +
∆Θ(k)

2

)

, (2)

Θ(k + 1) = Θ(k) + ∆Θ(k), (3)

D(k) = vt(k) · T, (4)

∆Θ(k) = ω(k) · T, (5)

vt(k) =
ωL(k)R + ωR(k)R

2
, (6)

ω(k) =
ωR(k)R − ωL(k)R

b
, (7)

where are: x(k) and y(k) coordinates of the center of axle [mm]; D(k) travelled distance
between time step k and k + 1 [mm]; vt(k) mobile robot translation speed [mm/s]; ω(k)
mobile robot rotational speed [◦/s]; T sampling time [s]; Θ(k) angle between the vehicle and
x-axis [◦]; ∆Θ(k) rotation angle between time step k and k + 1 [◦]; ωL(k) and ωR(k) angular
velocities of the left and right wheel, respectively [rad/s]; R radius of the two drive wheels
[mm], and b mobile robot axle length [mm]. This general model assumes that both drive
wheels have equal radius. Sampling time T was 0.1 [s].
In case of real world mobile robot operations, drive wheel speed measurements are under
measurement error influence and some mobile robot parameters values aren’t exactly known.
Measurement error is mostly a random error with zero mean and can’t be compensated.
Unknowing exact mobile robot parameters present systematic error and can be compensated

www.intechopen.com

Robot Localization and Map Building62

− Θ

VL

VR

b

X

Y

x

y

left wheel

right wheel

center of axle

Fig. 1. Differential drive mobile robot kinematics

by means of calibration. Crucial unknown parameters are drive wheel radii and axle length.
Wheel radii effect the measurement of the drive wheel circumference speed and axle length
measurement affects the mobile robot rotational speed. Equations (6) and (7) can so be
rewritten to present mentioned error influence:

vt(k) =
(ωL(k)R + εL) + (ωR(k)R + εR)

2
, (8)

ω(k) =
(ωR(k)R + εR)− (ωL(k)R + εL)

b + εb

, (9)

where εL, εR and εb are the error influences on the drive wheel circumference speed mea-
surements and axle length, respectively. It can be noticed here that axle length is also under
influence of systematic and random errors. Systematic error obviously comes from unknow-
ing the exact axle length. In this case random error is caused by the effective axle length,
which depends on the wheel and surface contact points disposition. Contact points dis-
position may wary during mobile robot motion due to uneven surfaces and influence of
non-symmetric mass disposition on the mobile robot during rotation.

2.2 Sonar model

An interpretation of measured sonar range is given in Fig. 2. It can be seen that in 2D a
sonar range measurement can be presented as a part of a circle arc. Size of circle part is
defined by the angle of the main sonar lobe and is typical for of the shelf sonar’s between
20 and 30 degrees. Therefore, the detected obstacle is somewhere on the arc defined by
measured range and main sonar’s lobe angle. Background of Fig. 2 shows a grid which is
used for creation of occupancy grid map. When a sonar range measurement is interpreted
in an occupancy grid framework usually a one to two cells wide area around the measured
range is defined as the occupied space. Space between the sonar sensor and measured range
is empty space. The sonar is a time of flight sensor, which means it sends a wave (acoustic
in this case) and measures the time needed for returning the wave reflected from an obstacle
back to the sonar. Generated acoustic wave has its most intensity along its axis, as denoted

Sonar axis

Obstacle

Occupied
space

Empty
space

Unknown
space

Main sonar
lobe angle

Measured
sonar range

Sonar
sensor

www.intechopen.com

Model based Kalman Filter Mobile Robot Self-Localization 63

VL

VR

b

X

Y

x

y

left wheel

right wheel

center of axle

in Fig. 2, therefore resulting a more accurate distance measurement of obstacles that are
inline and perpendicular to the sonar axis. Whence wave intensity decreases with traversed
distance, absolute range measurement accuracy also decreases with wave-traversed distance.
This is related with requirement of a big range measurement which is a longer open time
window to accept the reflected wave and therefore enable more specular reflections and
outliers. Specular reflections and outliers present in this case false readings, which decrease
the quality of the obtained map. To take this sonar range measurement features into account
a stronger emphasis is given to the range measurements closer to the sonar sensor and
environment parts closer to the main sonar axis. Mathematically this can be expressed with
following equations [3]:

α (Θ) =

{

1 −
(

Θ

Θ0

)2
0 ≤ Θ ≤ Θ0

0 |Θ|>Θ0

, (10)

∆ (ρ) = 1 −
1 + tanh (2 (ρ − ρv))

2
, (11)

where α (Θ) presents angular modulation function i.e., main lobe pattern of the used sonar
sensor; Θ angle between sonar axis and currently updated cell [◦]; Θ0 is one half of the sonar
main lobe angle [◦]; ρ distance from the sonar sensor and currently updated cell [m]; ∆ (ρ)
presents radial modulation function and ρv presents visibility radius where less emphasis
is given to the sonar range measurement further away from visibility radius [m]. Parameter
Θ0 value depends from the used sonar sensor and for our Polaroid 6500 sonar sensor it is
12.5 [◦]. Parameter ρv decreases influences of outlier readings and recommended value for
an indoor environment is 1.2 [m]. Sonar range measurement uncertainty is modeled with
angular and radial modulation functions. Most accurate range measurements are so within
main sonar axis which is used later in sonar range measurement prediction.

Sonar axis

Obstacle

Occupied
space

Empty
space

Unknown
space

Main sonar
lobe angle

Measured
sonar range

Sonar
sensor

Fig. 2. Interpretation of a sonar range measurement

www.intechopen.com

Robot Localization and Map Building64

2.3 Camera model

Generally, a camera has 6 degrees of freedom in three-dimensional space: translations in
directions of axes x, y and z, which can be described with translation matrix T(x, y, z), and
rotations around them with angles α, β and γ, which can be described with rotation matrices
Rx(α), Ry(β) and Rz(γ). Camera motion in the world coordinate system can be described as
the composition of translation and rotation matrices:

C = T(x, y, z) Rz(γ) Ry(β) Rx(α), (12)

where

Rx(a) =

1 0 0 0
0 cosα −sinα 0
0 sinα cosα 0
0 0 0 1

,

Ry(b) =

cosβ 0 sinβ 0
0 1 0 0

−sinβ 0 cosβ 0
0 0 0 1

,

Rz(g) =

cosγ −sinγ 0 0
sinγ cosγ 0 0

0 0 1 0
0 0 0 1

,

T(x, y, z) =

1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1

.

Inverse transformation C−1 is equal to extrinsic parameters matrix that is

C−1(α, β, γ, x, y, z) = Rx(−α) Ry(−β) Rz(−γ)T(−x,−y,−z). (13)

Perspective projection matrix then equals to P = S C−1 where S is intrinsic parameters matrix
determined by off-line camera calibration procedure described in Tsai (1987). The camera is
approximated with full perspective pinhole model neglecting image distortion:

[

(x, y)⊤ =

(
αxXc

Zc
+ x0,

αyYc

Zc
+ y0

)⊤
]

, (14)

where αx = f /sx and αy = f /sy, sx and sy are pixel height and width, respectively, f is
camera focal length, (Xc, Yc, Zc) is a point in space expressed in the camera coordinate system
and (x0, y0)

⊤ are the coordinates of the principal (optical) point in the retinal coordinate
system. The matrix notation of (14) is given with:

W X
W Y
W

 =

αx 0 x0 0
0 αy y0 0
0 0 1 0

︸ ︷︷ ︸

S

Xc

Yc

Zc

1

. (15)

www.intechopen.com

Model based Kalman Filter Mobile Robot Self-Localization 65

In our implementation, the mobile robot moves in a plane and camera is fixed to it at the
height h, which leaves the camera only 3 degrees of freedom. Therefore, the camera pose
is equal to the robot pose p. Having in mind particular camera definition in Blender, the
following transformation of the camera coordinate system is necessary C−1(−π/2, 0, π +
ϕ, px, py, h) in order to achieve the alignment of its optical axes with z, and its x and y axes

with the retinal coordinate system. Inverse transformation C−1 defines a new homogenous
transformation of 3D points from the world coordinate system to the camera coordinate
system:

C−1 =

−cosϕ −sinϕ 0 cosϕ px + sinϕ py

0 0 −1 h
sinϕ −cosϕ 0 −sinϕ px + cosϕ py

0 0 0 1

. (16)

focal

length

focal

pointsensor plane

camera viewing field

(frustrum)

optical ax

frustrum

length

Ø
h

Ø
v

Fig. 3. Visible frustrum geometry for pinhole camera model

Apart from the pinhole model, the full model of the camera should also include information
on the camera field of view (frustrum), which is shown in Fig. 3. The frustrum depends on
the camera lens and plane size. Nearer and further frustrum planes correspond to camera
lens depth field, which is a function of camera space resolution. Frustrum width is defined
with angles Ψh and Ψv, which are the functions of camera plane size.

3. Sensors calibration

Sensor models given in the previous section describe mathematically working principles of
sensors used in this article. Models include also influence of real world errors on the sensors
measurements. Such influences include system and nonsystem errors. System errors are
constant during mobile robot usage so they can be compensated by calibration. Calibration
can significantly reduce system error in case of odometry pose estimation. Sonar sensor isn’t
so influenced by error when an occupancy grid map is used so its calibration is not necessary.
This section describes used methods and experiments for odometry and mono-camera cali-
bration. Obtained calibration parameters values are also given.

3.1 Odometry calibration

Using above described error influences, given mobile robot kinematic model can now be
augmented so that it can include systematic error influence and correct it. Mostly used aug-
mented mobile robot kinematics model is a three parameters expanded model Borenstein

www.intechopen.com

Robot Localization and Map Building66

et al. (1996b) where each variable in the kinematic model prone to error influence gets an
appropriate calibration parameter. In this case each drive wheel angular speed gets a cal-
ibration parameter and third one is attached to the axle length. Using this augmentation
kinematics model given with equations (8) and (9) can now be rewritten as:

vt(k) =
(k1ωL(k)R + εLr) + (k2ωR(k)R + εRr)

2
, (17)

ω(k) =
(k2ωR(k)R + εRr)− (k1ωL(k)R + εLr)

k3b + εbr

, (18)

where εLr, εRr, and εbr are the respective random errors, k1 and k2 calibration parameters
that compensate the unacquaintance of the exact drive wheel radius, and k3 unacquaintance
of the exact axle length.
As mentioned above, process of odometry calibration is related to identification of a parame-
ter set that can estimate mobile robot pose in real time with a minimal pose error growth rate.
One approach that can be done is an optimization procedure with a criterion that minimizes
pose error Ivanjko et al. (2007). In such a procedure firstly mobile robot motion data have
to be collected in experiments that distinct the influences of the two mentioned systematic
errors. Then an optimization procedure with a criterion that minimizes end pose error can be
done resulting with calibration parameters values. Motion data that have to be collected dur-
ing calibration experiments are mobile robot drive wheel speeds and their sampling times.
Crucial for all mentioned methods is measurement of the exact mobile robot start and end
pose which is in our case done by a global vision system described in details in Brezak et al.
(2008).

3.1.1 Calibration experiments

Mobile robot
start pose

Mobile robot end pose in
case of an ideal trajectory

Ideal trajectory
without errors

Real trajectory
with errors

Position
drift

Orientation

drift
Mobile robot end pose in
case of a real trajectory

Fig. 4. Straight line experiment

Experiments for optimization of data sets collection must have a trajectory that can gather
needed information about both, translational (type B) and rotational (type A) systematic
errors. During the experiments drive wheel speeds and sampling time have to be collected,
start and end exact mobile robot pose has to be measured. For example, a popular calibration
and benchmark trajectory, called UMBmark test Borenstein & Feng (1996), uses a 5 [m] square
trajectory performed in both, clockwise and counterclockwise directions. It’s good for data
collection because it consist of straight parts and turn in place parts but requires a big room.

Mobile robot
start orientation

Mobile robot
end orientation

Right turn
experiment

Left turn
experiment

www.intechopen.com

Model based Kalman Filter Mobile Robot Self-Localization 67

Mobile robot
start pose

Mobile robot end pose in
case of an ideal trajectory

Ideal trajectory
without errors

Real trajectory
with errors

Position
drift

Orientation

drift
Mobile robot end pose in
case of a real trajectory

In Ivanjko et al. (2003) we proposed a set of two trajectories which require significantly less
space. First trajectory is a straight line trajectory (Fig. 4), and the second one is a turn in place
trajectory (Fig. 5), that has to be done in both directions. Length of the straight line trajectory
is 5 [m] like the one square side length in the UMBmark method, and the turn in place
experiment is done for 180 [◦]. This trajectories can be successfully applied to described three
parameters expanded kinematic model Ivanjko et al. (2007) with an appropriate optimization
criterion.

Mobile robot
start orientation

Mobile robot
end orientation

Right turn
experiment

Left turn
experiment

Fig. 5. Turn in place experiments

During experiments collected data were gathered in two groups, each group consisting of
five experiments. First (calibration) group of experiments was used for odometry calibration
and second (validation) group was used for validation of the obtained calibration parameters.
Final calibration parameters values are averages of parameter values obtained from the five
collected calibration data sets.

3.1.2 Parameters optimization

Before the optimization process can be started, an optimization criterion I, parameters that
will be optimized, and their initial values have to be defined. In our case the optimization
criterion is pose error minimum between the mobile robot final pose estimated using the
three calibration parameters expanded kinematics model and exact measured mobile robot
final pose. Parameters, which values will be changed during the optimization process, are
the odometry calibration parameters.
Optimization criterion and appropriate equations that compute the mobile robot final pose
is implemented as a m-function in software packet Matlab. In our case such function con-
sists of three parts: (i) experiment data retrieval, (ii) mobile robot final pose computation
using new calibration parameters values, and (iii) optimization criterion value computation.
Experiment data retrieval is done by loading needed measurements data from textual files.
Such textual files are created during calibration experiments in a proper manner. That means
file format has to imitate a ecumenical matrix structure. Numbers that present measurement
data that have to be saved in a row are separated using a space sign and a new matrix row
is denoted by a new line sign. So data saved in the same row belong to the same time
step k. Function inputs are new values of the odometry calibration parameters, and out-
put is new value of the optimization criterion. Function input is computed from the higher
lever optimization function using an adequate optimization algorithm. Pseudo code of the
here needed optimization m-functions is given in Algorithm 1 where X(k) denotes estimated
mobile robot pose.

www.intechopen.com

Robot Localization and Map Building68

Algorithm 1 Odometric calibration optimization criterion computation function pseudo code

Require: New calibration parameters values {Function input parameters}
Require: Measurement data: drive wheel velocities, time data, exact start and final mobile

robot pose {Measurement data are loaded from an appropriately created textual file}
Require: Additional calibration parameters values {Parameters k1 and k2 for k3 computation

and vice versa}
1: ωL, ωR ⇐ drive wheel velocities data file
2: T ⇐ time data file
3: Xstart, X f inal ⇐ exact start and final mobile robot pose
4: repeat
5: X(k + 1) = X(k) + ∆X(k)
6: until experiment measurement data exist
7: compute new optimization criterion value
8: return Optimization criterion value

In case of the expanded kinematic model with three parameters both experiments (straight
line trajectory and turn in place) data and respectively two optimization m-functions are
needed. Optimization is so done iteratively. Facts that calibration parameters k1 and k2

have the most influence on the straight line experiment and calibration parameter k3 has the
most influence on the turn in place experiment are exploited. Therefore, first optimal val-
ues of calibration parameters k1 and k2 are computed using collected data from the straight
line experiment. Then optimal value of calibration parameter k3 is computed using so far
known values of calibration parameters k1 and k2, and collected data from the turn in place
experiment. Whence the turn in place experiment is done in both directions, optimization
procedure is done for both directions and average value of k3 is used for the next iteration.
We found out that two iterations were enough. Best optimization criterion for the expanded
kinematic model with three parameters was minimization of the mobile robot final orienta-
tions differences. This can be explained by the fact that the orientation step depends on all
three calibration parameters as given with (7) and (18). Mathematically used optimization
criterion can be expressed as:

I = Θest − Θexact, (19)

where Θest denotes estimated mobile robot final orientation [◦], and Θexact exact measured
mobile robot final orientation [◦]. Starting calibration parameters values were set to 1.0. Such
calibration parameters value denotes usage of mobile robot nominal kinematics model.
Above described optimization procedure is done using the Matlab Optimization Toolbox ***
(2000). Appropriate functions that can be used depend on the version of Matlab Opti-
mization Toolbox and all give identical results. We successfully used the following func-
tions: fsolve, fmins, fminsearch and fzero. These functions use the Gauss-Newton
non-linear optimization method or the unconstrained nonlinear minimization Nelder-Mead
method. It has to be noticed here that fmins and fminsearch functions search for a min-
imum m-function value and therefore absolute minimal value of the orientation difference
has to be used. Except mentioned Matlab Optimization Toolbox functions other optimiza-
tion algorithms can be used as long they can accept or solve a minimization problem. When
mentioned optimization functions are invoked, they call the above described optimization m-
function with new calibration parameters values. Before optimization procedure is started

Computer for global
vision localization

Camera for global
vision localization

WLAN
connection

WLAN
connection

Mobile robot with
graphical patch
for global vision

localization

www.intechopen.com

Model based Kalman Filter Mobile Robot Self-Localization 69

appropriate optimization m-function has to be prepared, which means exact experiments
data have to be loaded and correct optimization criterion has to be used.

3.1.3 Experimental setup for odometry calibration

In this section experimental setup for odometry calibration is described. Main components,
presented in Fig. 6 are: differential drive mobile robot with an on-board computer, camera
connected to an off-board computer, and appropriate room for performing needed calibra-
tion experiments i.e. trajectories. Differential drive mobile robot used here was a Pioneer
2DX from MOBILEROBOTS. It was equipped with an on-board computer from VersaLogic
including a WLAN communication connection. In order to accurately and robustly measure
the exact pose of calibrated mobile robot by the global vision system, a special patch (Fig. 7)
is designed, which should be placed on the top of the robot before the calibration experiment.

Computer for global
vision localization

Camera for global
vision localization

WLAN
connection

WLAN
connection

Mobile robot with
graphical patch
for global vision

localization

Fig. 6. Experimental setup for odometry calibration based on global vision

Software application for control of the calibration experiments, measurement of mobile robot
start and end pose, and computation of calibration parameters values is composed from
two parts: one is placed (run) on the mobile robot on-board computer and the other one
on the off-board computer connected to the camera. Communication between these two
application parts is solved using a networking library ArNetworking which is a component
of the mobile robot control library ARIA *** (2007). On-board part of application gathers
needed drive wheel speeds measurements, sampling time values, and control of the mobile
robot experiment trajectories. Gathered data are then send, at the end of each performed
experiment, to the off-board part of application. The later part of application decides which
particular experiment has to be performed, starts a particular calibration experiment, and
measures start and end mobile robot poses using the global vision camera attached to this
computer. After all needed calibration experiments for the used calibration method are done,
calibration parameters values are computed.
Using described odometry calibration method following calibration parameters values have
been obtained: k1 = 0.9977, k2 = 1.0023, and k3 = 1.0095. From the calibration parameters
values it can be concluded that used mobile robot has a system error that causes it to slightly
turn left when a straight-forward trajectory is performed. Mobile robot odometric system
also overestimates its orientation resulting in k3 value greater then 1.0.

www.intechopen.com

Robot Localization and Map Building70

Robot
detection

mark

Robot pose
measuring

mark

Fig. 7. Mobile robot patch used for pose measurements

3.2 Camera calibration

Camera calibration in the context of threedimensional (3D) machine vision is the process of
determining the internal camera geometric and optical characteristics (intrinsic parameters)
or the 3D position and orientation of the camera frame relative to a certain world coordi-
nate system (extrinsic parameters) based on a number of points whose object coordinates in
the world coordinate system (Xi, i = 1, 2, · · · , N) are known and whose image coordinates
(xi, i = 1, 2, · · · , N) are measured. It is a nonlinear optimization problem (20) whose solu-
tion is beyond the scope of this chapter. In our work perspective camera’s parameters were
determined by off-line camera calibration procedure described in Tsai (1987).

min
N

∑
i=1

(

SC−1Xi − xi

)2
(20)

By this method with non-coplanar calibration target and full optimization, obtained were
the following intrinsic parameters for SONY EVI-D31 pan-tilt-zoom analog camera and
framegrabber with image resolution 320x240:

αx = αy = 379 [pixel],

x0 = 165.9 [pixel], y0 = 140 [pixel].

4. Sonar based localization

A challenge of mobile robot localization using sensor fusion is to weigh its pose (i.e. mobile
robot’s state) and sonar range reading (i.e. mobile robot’s output) uncertainties to get the op-
timal estimate of the pose, i.e. to minimize its covariance. The Kalman filter Kalman (1960)
assumes the Gaussian probability distributions of the state random variable such that it is
completely described with the mean and covariance. The optimal state estimate is computed
in two major stages: time-update and measurement-update. In the time-update, state pre-
diction is computed on the base of its preceding value and the control input value using the
motion model. Measurement-update uses the results from time-update to compute the out-
put predictions with the measurement model. Then the predicted state mean and covariance
are corrected in the sense of minimizing the state covariance with the weighted difference
between predicted and measured outputs. In succession, motion and measurement models
needed for the mobile robot sensor fusion are discussed, and then EKF and UKF algorithms
for mobile robot pose tracking are presented. Block diagram of implemented Kalman filter
based localization is given in Fig. 8.

non-linear
Kalman Filter

Measured wheel
speeds

Real sonar
measurements

Selection of
reliable sonar

measurements

reliable sonar
measurements

mobile robot pose
(state) prediction

Motion
model

Measurement
model

World model
(occupancy grid map)

Sonar
measurement

prediction

www.intechopen.com

Model based Kalman Filter Mobile Robot Self-Localization 71

Robot
detection

mark

Robot pose
measuring

mark

non-linear
Kalman Filter

Measured wheel
speeds

Real sonar
measurements

Selection of
reliable sonar

measurements

reliable sonar
measurements

mobile robot pose
(state) prediction

Motion
model

Measurement
model

World model
(occupancy grid map)

Sonar
measurement

prediction

Fig. 8. Block diagram of non-linear Kalman filter localization approaches.

4.1 Occupancy grid world model

In mobile robotics, an occupancy grid is a two dimensional tessellation of the environment
map into a grid of equal or unequal cells. Each cell represents a modelled environment part
and holds information about the occupancy status of represented environment part. Occu-
pancy information can be of probabilistic or evidential nature and is often in the numeric
range from 0 to 1. Occupancy values closer to 0 mean that this environment part is free,
and occupancy values closer to 1 mean that an obstacle occupies this environment part. Val-
ues close to 0.5 mean that this particular environment part is not yet modelled and so its
occupancy value is unknown. When an exploration algorithm is used, this value is also an
indication that the mobile robot has not yet visited such environment parts. Some mapping
methods use this value as initial value. Figure 9 presents an example of ideal occupancy
grid map of a small environment. Left part of Fig. 9 presents outer walls of the environment
and cells belonging to an empty occupancy grid map (occupancy value of all cells set to
0 and filled with white color). Cells that overlap with environment walls should be filled
with information that this environment part is occupied (occupancy value set to 1 and filled
with black color as it can be seen in the right part of Fig. 9). It can be noticed that cells
make a discretization of the environment, so smaller cells are better for a more accurate map.
Drawback of smaller cells usage is increased memory consumption and decreased mapping
speed because occupancy information in more cells has to be updated during the mapping
process. A reasonable tradeoff between memory consumption, mapping speed, and map
accuracy can be made with cell size of 10 [cm] x 10 [cm]. Such a cell size is very common
when occupancy grid maps are used and is used in our research too.

www.intechopen.com

Robot Localization and Map Building72

Fig. 9. Example of occupancy grid map environment

Obtained occupancy grid map given in the right part of Fig. 9 does not contain any unknown
space. A map generated using real sonar range measurement will contain some unknown
space, meaning that the whole environment has not been explored or that during exploration
no sonar range measurement defined the occupancy status of some environment part.
In order to use Kalman filter framework given in Fig. 8 for mobile robot pose estimation,
prediction of sonar sensor measurements has to be done. The sonar feature that most precise
measurement information is concentrated in the main axis of the sonar main lobe is used for
this step. So range measurement prediction is done using one propagated beam combined
with known local sensor coordinates and estimated mobile robot global pose. Measurement
prediction principle is depicted in Fig. 10.

Obstacle

Global coordinate
system center

Measured
range

Local coordinate
system center

Mobile robot
global position

Mobile robot
orientation

Sonar sensor
orientation

Sonar sensor angle
and range offset

YG

XG

YL

XL

Fig. 10. Sonar measurement prediction principle.

It has to be noticed that there are two sets of coordinates when measurement prediction is
done. Local coordinates defined to local coordinate system (its axis are denoted with XL and
YL in Fig. 10) that is positioned in the axle center of the robot drive wheels. It moves with
the robot and its x-axis is always directed into the current robot motion direction. Sensors
coordinates are defined in this coordinate system and have to be transformed in the global
coordinate system center (its axis are denoted with XG and YG in Fig. 10) to compute relative

www.intechopen.com

Model based Kalman Filter Mobile Robot Self-Localization 73

Obstacle

Global coordinate
system center

Measured
range

Local coordinate
system center

Mobile robot
global position

Mobile robot
orientation

Sonar sensor
orientation

Sonar sensor angle
and range offset

YG

XG

YL

XL

distance between the sonar sensor and obstacles. This transformation for a particular sonar
sensor is given by the following equations:

SXG = x + So f f D · cos
(

So f f Θ + Θ

)

, (21)

SYG = y + So f f D · sin
(

So f f Θ + Θ

)

, (22)

SΘG = Θ + SsensΘ, (23)

where coordinates x and y present mobile robot global position [mm], Θ mobile robot global
orientation [◦], coordinates SXG and SYG sonar sensor position in global coordinates [mm],
SΘG sonar sensor orientation in the global coordinate system frame [◦], So f f D sonar sensor
distance from the center of the local coordinate system [mm], So f f Θ sonar sensor angular
offset towards local coordinate system [◦], and SΘG sonar sensor orientation towards the
global coordinate system [◦].
After above described coordinate transformation is done, start point and direction of the
sonar acoustic beam are known. Center of the sound beam is propagated from the start
point until it hits an obstacle. Obtained beam length is then equal to predicted sonar range
measurement. Whence only sonar range measurements smaller or equal then 3.0 m are used,
measurements with a predicted value greater then 3.0 m are are being discarded. Greater
distances have a bigger possibility to originate from outliers and are so not good for pose
correction.

4.2 EKF localization

The motion model represents the way in which the current state follows from the previous

one. State vector is expressed as the mobile robot pose, xk = [xk yk Θk]
T , with respect to a

global coordinate frame, where k denotes the sampling instant. Its distribution is assumed
to be Gaussian, such that the state random variable is completely determined with a 3 ×
3 covariance matrix Pk and the state expectation (mean, estimate are used as synonyms).
Control input, uk, represents the commands to the robot to move from time step k to k + 1.

In the motion model uk = [Dk ∆Θk]
T represents translation for distance Dk followed by a

rotation for angle ∆Θk. The state transition function f(·) uses the state vector at the current
time instant and the current control input to compute the state vector at the next time instant:

xk+1 = f(xk, uk, vk), (24)

where vk =
[

v1,k v2,k

]T
represents unpredictable process noise, that is assumed to be Gaus-

sian with zero mean, (E{vk} = [0 0]T), and covariance Qk. With E{·} expectation function
is denoted. Using (1) to (3) the state transition function becomes:

f(xk, uk, vk) =

xk + (Dk + v1,k) · cos(Θk + ∆Θk + v2,k)
yk + (Dk + v1,k) · sin(Θk + ∆Θk + v2,k)

Θk + ∆Θk + v2,k

 . (25)

The process noise covariance Qk was modelled on the assumption of two independent
sources of error, translational and angular, i.e. Dk and ∆Θk are added with corresponding
uncertainties. The expression for Qk is:

www.intechopen.com

Robot Localization and Map Building74

Qk =

[

σ
2
D 0
0 ∆Θ2

kσ
2
∆Θ

]

, (26)

where σ
2
D and σ

2
∆Θ

are variances of Dk and ∆Θk, respectively.
The measurement model computes the range between an obstacle and the axle center of the
robot according to a measurement function Lee (1996):

hi(x, pi) =
√

(xi − x)2 + (yi − y)2, (27)

where pi = (xi, yi) denotes the point (occupied cell) in the world model detected by the ith
sonar. The sonar model uses (27) to relate a range reading to the obstacle that caused it:

zi,k = hi(xk, pi) + wi,k, (28)

where wi,k represents the measurement noise (Gaussian with zero mean and variance ri,k) for
the ith range reading. All range readings are used in parallel, such that range measurements
zi,k are simply stacked into a single measurement vector zk. Measurement covariance matrix
Rk is a diagonal matrix with the elements ri,k. It is to be noted that the measurement noise is
additive, which will be beneficial for UKF implementation.
EKF is the first sensor fusion based mobile robot pose tracking technique presented in this
paper. Detailed explanation of used EKF localization can be found in Ivanjko et al. (2004)
and in the sequel only basic equations are presented. Values of the control input vector uk−1

computed from wheels’ encoder data are passed to the algorithm at time k such that first
time-update is performed obtaining the prediction estimates, and then if new sonar readings
are available those predictions are corrected. Predicted (prior) state mean x̂−k is computed
in single-shot by propagating the state estimated at instant k − 1, x̂k−1 through the true
nonlinear odometry mapping:

x̂−k = f(x̂k−1, uk−1, E{vk−1}). (29)

The covariance of the predicted state P−
k is approximated with the covariance of the state

propagated through a linearized system from (24):

P−
k = ∇fxPk−1∇fT

x +∇fuQk∇fT
u , (30)

where ∇fx = ∇fx(x̂k−1, uk−1, E{vk−1}) is the Jacobian matrix of f with respect to x, while
∇fu = ∇fu(x̂k−1, uk−1, E{vk−1}) is the Jacobian matrix of f(·) with respect to control input
u. It is to be noticed that using (29) and (30) the mean and covariance are accurate only to the
first-order of the corresponding Taylor series expansion Haykin (2001). If there are no new
sonar readings at instant k or if they are all rejected, measurement update does not occur
and the estimate mean and covariance are assigned with the predicted ones:

x̂k = x̂−k , (31)

Pk = P−
k . (32)

Otherwise, measurement-update takes place where first predictions of the accepted sonar
readings are collected in ẑ−k with ith component of it being:

ẑ−i,k = hi(x̂
−
k , pi) + E{wi,k}. (33)

www.intechopen.com

Model based Kalman Filter Mobile Robot Self-Localization 75

The state estimate and its covariance in time step k are computed as follows:

x̂k = x̂−k + Kk(zk − ẑ−k), (34)

Pk = (I − Kk∇hx)P
−
k , (35)

where zk are real sonar readings, ∇hx = ∇hx(x̂
−
k , E{wk}) is the Jacobian matrix of the

measurement function with respect to the predicted state, and Kk is the optimal Kalman
gain computed as follows:

Kk = P−
k ∇hT

x (∇hxP−
k
∇hT

x + Rk)
−1. (36)

4.3 UKF localization

The second sensor fusion based mobile robot pose tracking technique presented in this chap-
ter uses UKF. UKF was first proposed by Julier et al. Julier & Uhlmann (1996), and further
developed by Wan and van der Merwe Haykin (2001). It utilizes the unscented transforma-
tion Julier & Uhlmann (1996) that approximates the true mean and covariance of a Gaussian
random variable propagated through nonlinear mapping accurate to the inclusively third
order of Taylor series expansion for any mapping. Following this, UKF approximates state
and output mean and covariance more accurately than EKF and thus superior operation of
UKF compared to EKF is expected. UKF was already used for mobile robot localization
in Ashokaraj et al. (2004) to fuse several sources of observations, and the estimates were,
if necessary, corrected using interval analysis on sonar measurements. Here we use sonar
measurements within UKF, without any other sensors except the encoders to capture angular
velocities of the drive wheels (motion model inputs), and without any additional estimate
corrections.
Means and covariances are in UKF case computed by propagating carefully chosen so called
pre-sigma points through the true nonlinear mapping. Nonlinear state-update with non-
additive Gaussian process noises in translation D and rotation ∆Θ is given in (25). The
measurement noise is additive and assumed to be Gaussian, see (28).
The UKF algorithm is initialized (k = 0) with x̂0 and P0, same as the EKF. In case of non-
additive process noise and additive measurement noise, state estimate vector is augmented
with means of process noise E{vk−1} only, thus forming extended state vector x̂a

k−1:

x̂a

k−1 = E[xa

k−1] =
[

x̂T

k−1 E{vk−1}T

]T

. (37)

Measurement noise does not have to enter the x̂a

k−1 because of additive properties Haykin
(2001). This is very important from implementation point of view since the dimension of out-
put is not known in advance because number of accepted sonar readings varies. Covariance
matrix is augmented accordingly forming matrix Pa

k−1:

Pa

k−1 =

[

Pk−1 0

0 Qk−1

]

. (38)

Time-update algorithm in time instant k first requires square root of the Pa

k−1 (or lower

triangular Cholesky factorization),
√

Pa

k−1. Obtained lower triangular matrix is scaled by the

factor γ:
γ =

√
L + λ, (39)

www.intechopen.com

Robot Localization and Map Building76

where L represents the dimension of augmented state xa

k−1 (L = 5 in this application), and λ
is a scaling parameter computed as follows:

λ = α2(L + κ)− L. (40)

Parameter α can be chosen within range [10−4, 1], and κ is usually set to 1. There are 2L + 1
pre-sigma points, the first is x̂a

k−1 itself, and other 2L are obtained by adding to or subtracting

from x̂a

k−1 each of L columns of γ
√

Pa

k−1, symbolically written as:

X a

k−1 =
[

x̂a

k−1 x̂a

k−1 + γ
√

Pa

k−1 x̂a

k−1 − γ
√

Pa

k−1

]

, (41)

where X a

k−1 = [(X x

k−1)
T (X v

k−1)
T]T represents the matrix whose columns are pre-sigma

points. All pre-sigma points are processed by the state-update function obtaining matrix
X x

k|k−1
of predicted states for each pre-sigma point, symbolically written as:

X x

k|k−1 = f[X x

k−1, uk−1,X v

k−1]. (42)

Prior mean is calculated as weighted sum of acquired points:

x̂−
k
=

2L

∑
i=0

W
(m)
i

X x

i,k|k−1, (43)

where X x

i,k|k−1
denotes the ith column of X x

k|k−1
. Weights for mean calculation W

(m)
i

are given

by

W
(m)
0 =

λ

L + λ
, (44)

W
(m)
i

=
1

2(L + λ)
, i = 1, . . . , 2L. (45)

Prior covariance matrix P−
k

is given by

P−
k
=

2L

∑
i=0

W
(c)
i

[X x

i,k|k−1 − x̂−
k
][X x

i,k|k−1 − x̂−
k
]T , (46)

where W
(c)
i

represent the weights for covariance calculation which are given by

W
(c)
0 =

λ

L + λ
+ (1 − α2 + β), (47)

W
(c)
i

=
1

2(L + λ)
, i = 1, . . . , 2L. (48)

For Gaussian distributions β = 2 is optimal.
If there are new sonar readings available at time instant k, predicted readings of accepted
sonars for each sigma-point are grouped in matrix Zk|k−1 obtained by

Zk|k−1 = h[X x

k|k−1, p] + E{wk}, (49)

www.intechopen.com

Model based Kalman Filter Mobile Robot Self-Localization 77

where p denotes the series of points in the world map predicted to be hit by sonar beams.
Predicted readings ẑ−k are then

ẑ−k =
2L

∑
i=0

W
(m)
i

Zi,k|k−1. (50)

To prevent the sonar readings that hit near the corner of obstacles to influence on the mea-
surement correction, since their probability distribution cannot be approximated with Gaus-
sian, another threshold comparison were made. These problematic sonar readings are recog-
nized with mean ẑ

−
i,k that differs from zi,k more than the acceptation threshold amounts, and

those are being discarded. Readings covariance is

Pzk
=

2L

∑
i=0

W
(c)
i

[Zi,k|k−1 − ẑ−
k
][Zi,k|k−1 − ẑ−

k
]T + Rk, (51)

and state-output cross-covariance matrix is

Pxkzk
=

2L

∑
i=0

W
(c)
i

[X x

i,k|k−1 − x̂−
k
][Zi,k|k−1 − ẑ−

k
]T . (52)

Kalman gain Kk is

Kk = Pxkzk
P−1

zk
. (53)

Posterior state covariance is finally calculated as

Pk = P−
k
− KkPzk

KT

k
. (54)

The measurement correction is done as in (34).

5. Monocular vision based localization

In this section, we consider the problem of mobile robot pose estimation using only visual
information from a single camera and odometry readings. Focus is on building complex
environmental models, fast online rendering and real-time complex and noisy image seg-
mentation. The 3D model of the mobile robot’s environment is built using a professional
freeware computer graphics tool named Blender and pre-stored in the memory of the robot’s
on-board computer. Estimation of the mobile robot pose as a stochastic variable is done
by correspondences of image lines, extracted using Random Window Randomized Hough
Transform line detection algorithm, and model lines, predicted using odometry readings
and 3D environment model. The camera model and ray tracing algorithm are also described.
Developed algorithms are also experimentally tested using a Pioneer 2DX mobile robot.

5.1 Scene modelling and rendering

Referential model of the environment was built using Blender, where vertices, edges (lines)
and faces (planes) were used for model notation. An edge is defined with two vertices and a
face with three or four vertices. The drawn model is one object in which all vertices, edges
and faces are listed. For illustration, in Fig. 11, 3D model of the hallway in which our mobile
robot moves is shown. Although the environment model is quite complex, we achieved
online execution of the localization algorithms by applying fast rendering. Namely, in each

www.intechopen.com

Robot Localization and Map Building78

Fig. 11. Hallway 3D model

step we render only the small region enclosed with the camera frustrum and then apply a
ray tracing algorithm to solve the occlusion problems.
The above described notation of the scene model, enables us to implement a ray tracing
algorithm. The algorithm is organized in two ”for” loops, as shown in Fig. 12(b), where the
algorithm flowchart is depicted. The first (outer) loop goes over the edge list and the second
(inner) loop goes over the face list. The outer loop starts with the function IsInsideFrustrum
(point3D), which examines whether observed points are located inside the camera frustrum
and discards those that are not in it. Then, for a point p in the frustrum, where p is the point
in the middle of the edge determined with two vertices, e.vert1 and e.vert2, as shown in Fig.
12(a), the direction of the vector ray is defined with point p and camera pose (cam_pos).
The inner loop starts with choosing a plane f from the list of faces, and then the function
Intersect (f, vector) returns intersection point PT between the given plane f and direction
vector as an output value, or None if the intersection doesn’t exist. Visible edges are checked
by comparing distances from the camera pose to the the point p (dist1) and to intersection
point PT (dist2), see Fig. 12(a). If these two distances do not match, the checked model edge
(line) is invisible, and therefore not used in later matching procedure.
Notice the incompleteness of rendering because only edges whose middle point is visible
will be rendered visible. That does not affect the accuracy of the later matching algorithm
for partially visible model lines because it is done in Hough space where a line is represented
with a single point regarding its length. The rendering could produce only smaller number
of partially visible lines, but in this case it is not important because there are still enough
lines for estimating mobile robot’s pose while gaining faster algorithm execution.

5.2 Image segmentation

Mobile robot self-localization requires matching of edge segments in the current camera im-
age and edge segments in the environment model seen from the expected mobile robot pose.
In previous section we described line extraction from the environment model, and below
we describe the line extraction in the camera image (image segmentation). Image segmen-
tation is done by the Canny edge detector and RWRHT line detector algorithm described in
Kälviäinen et al. (1994). The RWRHT is based on Randomized Hough Transformation (RHT),
which selects n pixels from the edge image by random sampling to solve n parameters of

www.intechopen.com

Model based Kalman Filter Mobile Robot Self-Localization 79

e.vert1

e.vert2

p(x,y,z)

cam_pos

T1

T2

T3

T4

T

T

T

T5

7

8

6

dist2

dist1

X

Z

Y

trace

PT

f

(a) model

for e in data.edges:

If [IsInsideFrustrum(e.vert1) == True or

IsInsideFrustrum(e.vert2) == True or

IsInsideFrustrum(p) == True]

ray = p - cam_pos

dist1 = || p – cam_pos ||

trace = None

foundVisible = 1

for f in data.faces:

trace = Intersect (f, ray)

if (trace != None)

If [IsInsideFrustrum(trace) == True]

dist2 = || trace – cam_pos ||

If [(dist1 – dist2) > eps]

foundVisible = 0

If (foundVisible == 1)

write edge in file

End of ray

tracing

f reaches

the end of

data.faces

e reaches

the end of

data.edges

False

False

False

False

(b) algorithm flowchart

Fig. 12. Ray tracing

a curve, and then accumulates only one cell in parameter space. Detected curves are those
whose accumulator cell is greater then predefined threshold. The RWRHT is an extension of
the RHT on complex and noisy images that applies RHT to a limited neighborhood of edge
pixels. The benefit is the reduction of the computational power and memory resources. The
pseudo-code of the RWHT is written in Algorithm 2.

5.3 Mobile robot pose estimation

Once the correspondences have been established between image lines and model lines seen
from the current mobile robot pose, we could update the mobile robot pose by applying
an appropriate estimation technique. In most cases, linearized system and measurement
equations and Gaussian noise in states and measurements are satisfactory approximations.
Therefore, we apply Extended Kalman Filter (EKF) Welch & Bishop (2000), which is an opti-
mal estimator under the above assumptions.
The state vector that is to be estimated is the mobile robot pose p. Introducing uncertainty
in the equations (1), (2) and (3) as the zero mean Gaussian additive noise, the state equations
are obtained:

pn+1 = f [pn, v(n), ω(n)] + w(n), (55)

where w ∼ N (0, Q).

www.intechopen.com

Robot Localization and Map Building80

Algorithm 2 The Random Window RHT Algorithm

1: D ⇐ all edge points in binary edge picture
2: di ⇐ randomly selected point from set D
3: m ⇐ randomly selected window size where mmin ≤ m ≤ mmax

4: W ⇐ pixel data set of m × m neighborhood of the point di

5: repeat
6: RHT algorithm on the set W
7: until maximum R times
8: if accumulator cell ≥ threshold then
9: corresponding parameters are the parameters of detected curve

10: else
11: goto 2
12: end if

Measurement is a set S of pairs "model line - image line":

S = {{m, i}|m = visible model line,

i = image line - perspective projection of m}.
(56)

The straight line in the world coordinate system which passes through the point (x0, y0, z0)
and has direction coefficients (a, b, c) is given by:

x
y
z

 =

a
b
c

 u +

x0

y0

z0

 , u ∈ ℜ. (57)

The straight line in image plane is given by

x cosγ + y sinγ = ρ, ρ ≥ 0, γ ∈ [0, 2π], (58)

where ρ and γ are the Hough space parameters of the line.
Let by applying perspective projection transformation P to a 3D model line we obtain 2D
straight line m and let its pair line i in the image be defined with the Hough space parameters
(ρ, γ). The projection of the 3D point (x0, y0, z0) lies on the image line i and direction
coefficients of m and i lines are the same if the following conditions are fulfilled:

www.intechopen.com

Model based Kalman Filter Mobile Robot Self-Localization 81

z1 = W

ρ cosγ
ρ sinγ

1

− P

x0

y0

z0

1

= 0, (59)

z2 =

−sinγ
cosγ

0

−

P

a
b
c
0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

P

a
b
c
0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0, (60)

z = [z1, z2]
⊤ . (61)

Equations (59) and (60) are measurement equations and are used to correct mobile robot pose
with each correct match. Uncertainty in mobile robot pose means uncertainty in model lines
and is propagated to the Hough space in the same way as in Kosaka & Kak (1992), so we
will not go into details but only explain the main concept. For differentials of the equation
(15) we obtain

δX =

[

δX
δY

]

= JP (M, p̂) δp , (62)

where JP (p̂) is Jacobian of perspective projection of the end point of 3D model line M taken
at expected values of random vector p. Notice that from this point on, we are using first
order Taylor approximations of nonlinear transformations. Covariance matrix related to pixel
coordinates of a single model line point is given by:

ΣX = E[δX δX⊤] = JP (M, p̂) Σp JP (M, p̂)⊤, (63)

where Σp is covariance matrix of mobile robot pose p. So, at this moment, we have deter-
mined uncertainty convex hull in which the probability of finding corresponding image line
is the highest. Furthermore, we can apply Hough transform H to that line segment, which
would lead to point representation ĥ = (ρ, γ) of the line on which the segment coincides with
elliptical uncertainty region defined by the Mahalanobious distance and covariance matrix.
If JH denotes Jacobian of the Hough transform H with respect to variables ρ and γ we can
write:

[

δρ
δγ

]

= JH

δX1

δY1

δX2

δY2

, (64)

Σργ = JH

[

JP (M1, p̂) 0
0 JP (M2, p̂)

]

Σp

[

JP (M1, p̂) 0
0 JP (M2, p̂)

]⊤

J⊤
H

. (65)

www.intechopen.com

Robot Localization and Map Building82

We limit the search for image lines to uncertainty region in the Hough space ⊂ ℜ2 deter-
mined by the constraint:

(h − ĥ)Σ−1
ργ (h − ĥ)T ≤ 2.

This rises a matching problem if one model line has more then one image candidate, but the
problem was solved in Kosaka & Kak (1992) and Aider et al. (2005).
There are also quantization error, noise in camera image and error in edge detection and
image segmentation which have been approximated by Gaussian variable ξ ∼ N (0, V) and
included in the EKF equations as the measurement noise. Finally, the equations of the im-
plemented EKF are:
a priori update:

p̂n+1 = f [p̂n, v(n), ω(n)] , (66)

ẑn = z
[

p̂n, ĥ(i)i→m

]

, (67)

Σpn+1|n
= A Σpn A⊤ + Q, A = ∂f/∂p|p=p̂, (68)

a posteriori update:

Kn+1 = Σpn+1|n
H⊤

[

H Σpn+1|n
H⊤ + R

]

, (69)

pn+1 = p̂n+1 + Kn+1(z − ẑn), (70)

Σpn+1 = (I − Kn+1 H)Σpn+1|n
, (71)

where H = ∂z
∂p |p=p̂ and R = ∂z

∂h |h=ĥ · V · ∂z
∂h

⊤
|h=ĥ.

6. Experimental results

This section presents obtained experimental results including description of experimental
setup and experiment conditions. First are presented results obtained using sonar sensors
and after that results obtained using monocular-vision. Section ends with comments on
obtained results.

6.1 Experimental setup description

Experiments are performed using a Pioneer 2DX mobile robot from MobileRobots. Its con-
figuration is presented in Fig. 13 only that in localization experiments monocular camera was
used insted of depicted stereo one. Used sensors are encoders for odometry, sonars, mono-
camera and a laser range finder. Laser range finder was used only for a comparison purpose
as a sensor that enables a more accurate localization than the sonars or mono-camera. It
is combined with a Monte-Carlo algorithm Konolige (1999) implemented as standard local-
ization solution in the mobile robot control software. Used camera for monocular-vision
localization is a SONY EVI-D31 pan-tilt-zoom analog camera. Laser sensor is a SICK LMS-
200, and sonars are Polaroid 6500 sensors.
Experimental environment including trajectory traversed by the mobile robot is presented in
Fig. 14. Global coordinate system is depicted on the left side. It’s a hallway with several door
niches. Mobile robot movement started in one corridor end and ended when it reached other
corridor end. Trajectory length is approximately 20 [m] and is generated using a gradient
based algorithm described in Konolige (2000). Obstacle avoidance was also active during all
experiments.

stereo-camera

on-board
computer

WLAN antenna

bumpers

LRF
sensor

sonars

RS232 interface for
piggy-back laptop

www.intechopen.com

Model based Kalman Filter Mobile Robot Self-Localization 83

stereo-camera

on-board
computer

WLAN antenna

bumpers

LRF
sensor

sonars

RS232 interface for
piggy-back laptop

Fig. 13. Pioneer 2DX mobile robot

Fig. 14. Mobile robot trajectory for experimental evaluation.

Initial robot’s pose and its covariance was in all experiments set to (orientation given in
radians):

p0 =
[

210 dm 9.25 dm π
]⊤

,

Σp0
=

0.3000 0 0
0 0.3000 0
0 0 0.0080

 ,

which means about 0.55 [dm] standard deviation in px and py and about 5 [◦] standard
deviation in robot orientation. In every experiment mobile robot start pose was manually set
according to marks on the hallway floor, so given initial pose covariance was set to cover start
pose setting error margins. Experiments show that implemented self-localization algorithms
were able to cope with that starting pose error margins.
During all experiments relevant measurements data were collected and saved for obtained lo-
calization quality evaluation. Saved data included mobile robot drive wheel speeds, sampling
period, sonar range measurements, camera images, evaluated self-localization algorithm es-
timated pose and Monte Carlo based localization results. Pose obtained using Monte Carlo

www.intechopen.com

Robot Localization and Map Building84

algorithm and laser range finder sensor was then used as the more accurate i.e. exact mobile
robot pose for comparison.
If localization was only done by odometry, results would be like shown on Fig. 15, i.e. pose
error would monotonically increase over time. It is obvious that mobile robot cannot perform
its tasks without any pose correction.

20 40 60 80 100 120 140 160 180 200 220
-40

-20

0

20
Robot�trajectory�through�hallway

y
�[

d
m

]

x�[dm]

Monte�Carlo

Odometry

0 200 400 600 800 1000 1200
80

130

180

230

time�step

Θ
[d

e
g

re
e

s
]

Robot�orientation�during�experiment

Monte�Carlo

Odometry

Fig. 15. Robot trajectory method comparison: solid - Monte Carlo localization, dash-dot -
odometry

6.2 Sonar localization results

Figures 16 and 17 present results obtained using sonar sensors. Solid line denotes Monte
Carlo localization with laser range finder and doted line denotes sonar sensor based local-
ization results. Both figures consist of two parts. Upper part presents mobile robot trajectory
i.e. its position and lower part presents mobile robot orientation change.
As mentioned before two sonar sensor based localization approaches were implemented.
EKF based results are presented in Fig. 16 and UKF based results are presented in Fig. 17.
Both implementations use calibrated odometry as the motion model to increase localiza-
tion accuracy. An occupancy grid model is used for sonar sensor measurement prediction.
Whence occupancy grid size is 100 [mm] x 100 [mm], localization accuracy is expected to be
in this range.
Figures given in this section show that sonar sensors can be effectively used for self-
localization with accuracy in range of used occupancy model grid size. It can be noticed
that EKF ends with a pose estimation with bigger pose corrections. This feature arises from
the first order linearization done be the EKF. In case of the UKF corrections are of smaller
value as expected. More accurate pose estimation of the UKF can be proved by computing
pose error values on the whole traversed path. Pose error is computed as difference be-
tween estimated trajectory and referent Monte Carlo pose. With the EKF maximal position
error is 3.2 [dm], and maximal orientation error is 6.8 [◦], while with the UKF their values
are 2.5 [dm], and 3.7 [◦]. These values are important when self-localization algorithms are
used for longer trajectories. A bigger maximal pose error indicates a greater probability that
mobile robot will loose its pose indicating a necessary global pose correction.

20 40 60 80 100 120 140 160 180 200 220
6

7

8

9

10
 Robot trajectory through hallway

 x [dm]

 y
 [d

m
]

Monte Carlo
EKF

0 200 400 600 800 1000
165

170

175

180

185
 Robot orientation during experiment

 [d
eg

re
es

]

 time step

Monte Carlo
EKF

0 50 100 150 200
6

7

8

9

10
 Robot trajectory through hallway

 x [dm]

 y
 [d

m
]

Monte Carlo
UKF

0 100 200 300 400 500 600 700 800 900
165

170

175

180

185
 Robot orientation during experiment

 [d
eg

re
es

]

 time step

Monte Carlo
UKF

www.intechopen.com

Model based Kalman Filter Mobile Robot Self-Localization 85

20 40 60 80 100 120 140 160 180 200 220
6

7

8

9

10
 Robot trajectory through hallway

 x [dm]

 y
 [d

m
]

Monte Carlo
EKF

0 200 400 600 800 1000
165

170

175

180

185
 Robot orientation during experiment

Θ
 [d

eg
re

es
]

 time step

Monte Carlo
EKF

Fig. 16. Robot trajectory method comparison: solid - Monte Carlo localization, dots - EKF
method.

0 50 100 150 200
6

7

8

9

10
 Robot trajectory through hallway

 x [dm]

 y
 [d

m
]

Monte Carlo
UKF

0 100 200 300 400 500 600 700 800 900
165

170

175

180

185
 Robot orientation during experiment

Θ
 [d

eg
re

es
]

 time step

Monte Carlo
UKF

Fig. 17. Robot trajectory method comparison: solid - Monte Carlo localization, dots - UKF
method.

www.intechopen.com

Robot Localization and Map Building86

6.3 Monocular-vision localization results

Similar as in the sonar localization experiment the mobile robot was given navigational com-
mands to drive along a hallway and to collect odometry data and images from camera fixed
to it at multiples of the discretization time. Figure 18 shows line segments superimposed to
the camera view. Very good robustness to change of illumination and noise in camera image
can be noticed. Figure 19 shows rendered hallway model superimposed to the camera view,
before any correction was done. After image acquisition and model rendering, the off-line
optimal matching of rendered image lines and lines extracted from the camera image was
done. Obtained pairs and rendered model from corrected camera pose are shown in Fig. 20.
Updated mobile robot start pose and its covariance was (orientation given in radians):

p0 =
[

209.946 dm 9.2888 dm 3.1279
]⊤

0 50 100 150 200 250 300

0

50

100

150

200

Fig. 18. Superposition of camera view and line segments extracted by RWRHT method

0 50 100 150 200 250 300

0

50

100

150

200

Fig. 19. Superposition of camera view and rendered model before correction

0 50 100 150 200 250 300

0

50

100

150

200

www.intechopen.com

Model based Kalman Filter Mobile Robot Self-Localization 87

0 50 100 150 200 250 300

0

50

100

150

200

0 50 100 150 200 250 300

0

50

100

150

200

0 50 100 150 200 250 300

0

50

100

150

200

Fig. 20. Superposition of camera view and rendered model after correction. Line pairs that
were matched and used as measurement are drawn with different colors for each pair.

Σp0
=

0.2810 −0.0332 −0.0002
−0.0332 0.2026 −0.0034
−0.0002 −0.0034 0.0001

Complete trajectory compared to the Monte-Carlo trajectory is shown in Fig. 21. Almost
identical results are obtained in orientation and little shift exists in position.

0 200 400 600 800 1000 1200
120

140

160

180

200

220

time�step

Θ
[d

e
g

re
e

s
]

Robot�orientation�during�experiment

Monte�Carlo

Our�method

20 40 60 80 100 120 140 160 180 200 220
4

6

8

10

12

14

x�[dm]

y
�[

d
m

]

Robot�trajectory�through�hallway

Monte�Carlo

Our�method

Fig. 21. Robot trajectory method comparison: solid - Monte Carlo localization, dots - our
method

www.intechopen.com

Robot Localization and Map Building88

7. Conclusion

Monotonous position error growth is inherent characteristic of every mobile robot naviga-
tional system based solely on proprioceptive sensors. In order to deal with various sources
of uncertainties in mobile robot localization it is necessary to establish a representative model
of its internal states and environment and use perceptive sensors in the pose estimation. In
this chapter we have demonstrated those properties on a differential drive mobile robot by
localizing it in a 2D environment by using sonar ring as the perceptive sensor and in a 3D
environment by using a mono camera as the perceptive sensor. In both cases we have applied
nonlinear Kalman filtering for pose estimation and have compared results with the Monte
Carlo localization based on a laser range finder, which is much more accurate sensor than
sonars and cameras. Achieved localization accuracies with sonar ring and with mono cam-
era are comparable to those obtained by the laser range finder and Monte Carlo localization.
The applied calibration of mobile robot kinematic model also contributed to the increased
accuracy.

8. References

*** (2000). Optimization Toolbox For Use With Matlab User’s Guide, The MathWorks Inc.
*** (2007). ActivMedia robotics interface for application (ARIA): Overview, ActivMedia

Robotics, LLC.
Aider, O. A., Hoppenot, P. & Colle, E. (2005). A model-based method for indoor mobile robot

localization using monocular vision and straight-line correspondences, Robotics and
Autonomous Systems 52.

Arras, K. O., Tomatis, N., Jensen, B. & Siegwart, R. (2001). Multisensor on-the-fly localization:
Precision and reliability for applications, Robotics and Autonomous Systems 34.

Ashokaraj, I., Tsourdos, A., Silson, P. & White, B. (2004). Mobile robot localisation and
navigation using multi-sensor fusion via interval analysis and ukf, Proceedings of the
2004 Towards Autonomous Robotic Systems (TAROS), University of Essex,Colchester,UK .

Borenstein, J., Everett, B. & Feng, L. (1996a). Navigating Mobile Robots: Systems and Techniques.,
A. K. Peters, Ltd., Wellesley, MA, ISBN 1-56881-058-X.

Borenstein, J., Everett, H. R. & Feng, L. (1996b). Where am I? Sensors and Methods for Mobile
Robot Positioning, University of Michigan, Ann Arbor, MI 48109.

Borenstein, J. & Feng, L. (1996). Measurement and correction of systematic odometry errors
in mobile robots, IEEE Transactions in Robotics and Automation 12(2).

Brezak, M., Petrović, I. & Ivanjko, E. (2008). Robust and accurate global vision system for real
time tracking of multiple mobile robots, Robotics and Autonomous Systems 3(56): 213–
230.

Guilherme, N. D. & Avinash, C. K. (2002). Vision for mobile robot navigation: A survey, IEEE
Transactions on Pattern Analysis and Machine Intelligence 24(2): 237–267.

Haykin, S. (2001). Kalman Filtering and Neural Networks, John Wiley and Sons, chapter Ch. 7.
The Unscented Kalman Filter.

Ivanjko, E., Komšić, I. & Petrović, I. (2007). Simple off-line odometry calibration of differential
drive mobile robots, Proceedings of 16th International Workshop on Robotics in Alpe-
Adria-Danube Region, Ljubljana, Slovenia, pp. 164–169.

Ivanjko, E., Petrović, I. & Perić, N. (2003). An approach to odometry calibration of differen-
tial drive mobile robots, Proc. International Conference on Electrical Drives and Power
Electronics EDPE’03, The High Tatras, Slovakia, pp. 519–523.

www.intechopen.com

Model based Kalman Filter Mobile Robot Self-Localization 89

Ivanjko, E., Petrović, I. & Vašak, M. (2004). Sonar-based pose tracking of indoor mobile
robots, AUTOMATIKA - časopis za automatiku, mjerenje, elektroniku, računarstvo i ko-
munikacije 45(3-4): 145–154.

Jeon, S. H. & Kim, B. K. (1999). Monocular-based position determination for indoor naviga-
tion of mobile robots, IASTED Intl. Conf. on Control and Applications, Banff, pp. 408–
413.

Julier, S. J. & Uhlmann, J. K. (1996). A general method for approximating nonlinear transfor-
mations of probability distributions, Technical report, Dept. of Engineering Science,
University of Oxford.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems, Transactions
of the ASME, Journal of Basic Engineering 82: 35–45.

Kälviäinen, H., Hirvonen, P., Xu, L. & Oja, E. (1994). Comparisons of Probabilistic and Non-
probabilistic Hough Transforms, Proc. of the 3rd European Conf. on Computer Vision,
Stockholm, Sweeden, pp. 351–360.

Konolige, K. (1999). Markov localization using correlation, International Joint Conference on
Artificial Intelligence, Stockholm, Sweden.

Konolige, K. (2000). A gradient method for realtime robot control, Proceedings of IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS 2000), Kagawa Univer-
sity, Takamatsu, Japan.

Kosaka, A. & Kak, A. C. (1992). Fast Vision-Guided Mobile Robot Navigation Using
Model-Based Reasoning and Prediction of Uncertainties, CVIPG: Image Understand-
ing 56(3): 271–329.

Lee, D. (1996). The Map-Building and Exploration Strategies of a Simple Sonar-Equipped Robot,
Cambridge University Press, Trumpington Street, Cambridge CB2 1RP.

Li, X. J., So, A. & Tso, S. K. (2002). CAD-Vision-Range-Based Self-Localization for Mobile
Robot Using One landmark, Journal of Intelligent and Robotic Systems 35.

Moravec, H. P. & Elfes, A. (1985). High resolution maps from wide angle sonar, Proceedings
of the 1985 IEEE International Conference on Robotics and Automation, St. Louis, USA,
pp. 116–121.

Neira, J., Ribeiro, M. I. & Tardós, J. D. (1997). Mobile Robot Localization and Map Build-
ing using Monocular Vision, 5th Int. Symp. on Intelligent Robotic Systems, Stockholm,
Sweden, pp. 275–284.

Tsai, R. (1987). A versatile camera calibration technique for high accuracy 3D machine vision
metrology using off-the-shelf TV cameras and lenses, IEEE Journal of Robotics and
Automation 3(4): 323–344.

Welch, G. & Bishop, G. (2000). An introduction to the Kalman filter, Technical Report TR
95-041, University of North Carolina at Chapel Hill, NC.

Wijk, O. (2001). Triangulation Based Fusion of Sonar Data with Application in Mobile Robot Map-
ping and Localization, PhD thesis, Royal Institute of Technology (KTH) Sweden, SE-
100 44 Stockholm, Sweden.

www.blender3d.org (1995). Blender Foundation .

www.intechopen.com

Robot Localization and Map Building90

www.intechopen.com

Robot Localization and Map Building
Edited by Hanafiah Yussof

ISBN 978-953-7619-83-1
Hard cover, 578 pages
Publisher InTech
Published online 01, March, 2010
Published in print edition March, 2010

InTech Europe
University Campus STeP Ri
Slavka Krautzeka 83/A
51000 Rijeka, Croatia
Phone: +385 (51) 770 447
Fax: +385 (51) 686 166
www.intechopen.com

InTech China
Unit 405, Office Block, Hotel Equatorial Shanghai
No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820
Fax: +86-21-62489821

Localization and mapping are the essence of successful navigation in mobile platform technology. Localization
is a fundamental task in order to achieve high levels of autonomy in robot navigation and robustness in vehicle
positioning. Robot localization and mapping is commonly related to cartography, combining science, technique
and computation to build a trajectory map that reality can be modelled in ways that communicate spatial
information effectively. This book describes comprehensive introduction, theories and applications related to
localization, positioning and map building in mobile robot and autonomous vehicle platforms. It is organized in
twenty seven chapters. Each chapter is rich with different degrees of details and approaches, supported by
unique and actual resources that make it possible for readers to explore and learn the up to date knowledge in
robot navigation technology. Understanding the theory and principles described in this book requires a
multidisciplinary background of robotics, nonlinear system, sensor network, network engineering, computer
science, physics, etc.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Edouard Ivanjko, Andreja Kitanov and Ivan Petrovic (2010). Model based Kalman Filter Mobile Robot Self-
Localization, Robot Localization and Map Building, Hanafiah Yussof (Ed.), ISBN: 978-953-7619-83-1, InTech,
Available from: http://www.intechopen.com/books/robot-localization-and-map-building/model-based-kalman-
filter-mobile-robot-self-localization

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed
under the terms of the Creative Commons Attribution-NonCommercial-
ShareAlike-3.0 License, which permits use, distribution and reproduction for
non-commercial purposes, provided the original is properly cited and
derivative works building on this content are distributed under the same
license.

https://creativecommons.org/licenses/by-nc-sa/3.0/

