
0278-0062 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2018.2820382, IEEE

Transactions on Medical Imaging

1

Model based learning for accelerated, limited-view

3D photoacoustic tomography
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Abstract—Recent advances in deep learning for tomographic
reconstructions have shown great potential to create accurate and
high quality images with a considerable speed-up. In this work
we present a deep neural network that is specifically designed to
provide high resolution 3D images from restricted photoacoustic
measurements. The network is designed to represent an iterative
scheme and incorporates gradient information of the data fit to
compensate for limited view artefacts. Due to the high complexity
of the photoacoustic forward operator, we separate training
and computation of the gradient information. A suitable prior
for the desired image structures is learned as part of the
training. The resulting network is trained and tested on a set
of segmented vessels from lung CT scans and then applied to
in-vivo photoacoustic measurement data.

Index Terms—Deep learning, convolutional neural networks,
photoacoustic tomography, iterative reconstruction

I. INTRODUCTION

Photoacoustic Tomography (PAT) is an emerging ”Imaging

from Coupled Physics” technique [1] that can obtain high

resolution 3D in-vivo images of absorbed optical energy by

sensing laser-generated ultrasound (US) [2], [3], [4], [5], [6],

[7]. If data is obtained over a complete surface surrounding the

domain of interest, and for all times over which the acoustic

waves are propagating, then the inverse problem can be solved

directly by several analytical or numerical algorithms [8].

The fastest of such methods just require to solve a single

wave equation; see Section II-B for details. In many practical

applications, restricted spatial and/or temporal sampling of the

US signal is either imposed due to geometrical limitations (e.g.

limited view) [9], or by the choice to utilise a compressed-

sensing (CS) undersampling strategy in order to accelerate data

acquisition [10]. In such cases, direct reconstruction methods

are not optimal to obtain high quality reconstructions as they

give rise to artefacts and/or adverse noise amplification.

Recently, several groups showed that variational image

reconstruction methods that iteratively minimise a penalty

function involving an explicit model of the US propagation
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and prior constraints on the image structure can provide

significantly better results in these situations [11], [12], [13],

[14], [15], [16]. However, a crucial drawback of these methods

is their considerably higher computational complexity and the

difficulty to handcraft prior constraints that capture the spatial

structure of the target accurately enough.

As the strongest contrast in biological soft tissue is given

by haemoglobin, a central promise of PAT is to deliver high

quality images of blood vessel networks, e.g., for assessing the

vascularization of tumors [17], [18]. Consequently we assume

in this study that our targets are vessel rich and hence we learn

suitable prior constraints from a set of segmented vessels.

A. Deep Learning in Image Reconstruction

The huge recent success of Deep Learning methods in

image processing and computer vision has seen an increas-

ing interest in applying similar strategies to tomographic

reconstruction problems. Deep Neural Networks (DNN) are

especially popular due to the low latency of a forward pass

through a network which leads to prospective highly efficient

reconstruction algorithms.

In this paper we differentiate between two fundamentally

different approaches to involve learning in image reconstruc-

tion:

1) Reconstruction followed by learning based post-

processing. In this approach image reconstruction

is carried out using a simple inversion step, and

post-processing is used to remove artefacts and noise.

2) Model based learning and reconstruction. In this approach

the forward and adjoint operators of the imaging problem

are used directly in the inverse algorithm, with a multi-

scale regularisation scheme whose parameters are learned

in the training phase.

Many applications of Deep Learning for image reconstruc-

tion have been concentrated on the first approach by using a

fast and simple direct reconstruction algorithm to obtain low

quality and corrupted images and then train a convolutional

neural network (CNN) on removing those artefacts, see [19],

[20] for an application to CT, [21] for PAT, and MRI [22].

Alternatively following the second approach by including

the physical forward model into the network has been stud-

ied in [23], [24], [25], [26], [27]. However, these improved

results in reconstruction quality typically come at the cost of

longer computation times which are effectively limited by the

repeated simulation of the physical model.

In this paper we take the second approach. In particular,

we utilize our knowledge of the forward operator in the

reconstruction process, but we will not invoke handcrafted

https://github.com/asHauptmann/3DPAT_DGD
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prior constraints on the vessel structures that we are interested

in. Instead, we will learn them from the data.

B. Compressed Sensing and Limited View PAT

In several imaging modalities the application of compressed

sensing methods has been studied as a means to achieve

faster acquisition speeds and/or a reduced dose when using

ionising radiation [28], [29], [30]. In PAT this has been studied

for example in [13], [31], [32], [33], [34]. Because these

methods mandate an appropriate regularisation strategy, the

involvement of Deep Learning in compressed sensing is an

important topic for study.

As well as data sub-sampling, in this paper we also consider

the limited-view problem. Due to geometric restrictions, one

can often only access the US field on one side of the

tissue. A detailed examination and discussion of sub-sampling

combined with the limited view problem for PAT can be found

in [13].

C. Overview of this paper

The rest of the paper is organised as follows. In Section II

we discuss the physical model of photoacoustic signal gener-

ation, as well as direct reconstruction approaches, variational

and the corresponding iterative reconstruction approaches, and

an outline of the model based learning approach. In Section

III we give a detailed description of the architecture and

implementation of the model based learning approach as well

as a description of its training steps. In Section IV we discuss

the measurement details, generation of training data as well

as post-processing, i.e. denoising/artifact removal, of direct

reconstructions. Results for simulated and 3D in-vivo data

are shown. Section V provides a detailed evaluation of the

results. Finally in Section VI we provide some conclusions

and outlook for the future.

II. PHOTOACOUSTIC TOMOGRAPHY

A. Photoacoustic Signal Generation

To generate the PA signal, a short pulse of near-infrared

laser light is sent into biological tissue where the photons

will get scattered and absorbed by any chromophores present.

Under certain conditions (see [35] for details), part of the

absorbed optical energy will be thermalised, i.e., converted

to heat, and the induced local pressure increase x travels

through the tissue as an US wave (photoacoustic effect).

Spatio-temporal measurements of these waves at the boundary

of the tissue constitute the PA signal y. A common way to

model the acoustic part of the signal generation is to consider

the following initial value problem for the wave equation [8],

[12], [35],

(∂tt−c
2
0∆)p(r, t) = 0, p(r, t = 0) = x, ∂tp(r, t = 0) = 0.

(1)

The US sensing is then modeled as a linear operator M acting

on the pressure field p(r, t) restricted to the boundary of the

computational domain Ω and a finite time window (see [3],

[36] for details on measurement systems):

y = M p|∂Ω×(0,T ). (2)

Equations (1) and (2) define a linear mapping

Ax = y, (3)

from initial pressure x to measured pressure time series y,

which constitutes the forward problem in PAT. The corre-

sponding image reconstruction step constitutes the inverse

problem to (3).

Note that x is a Nx × Ny × Nz 3D image of initial

pressure and y is a Nh × Nv × Nt volume of acquired

pressure data as a function of acoustic propagation time. In

the examples used in this paper this results in dimension

of A of around 7M by 4.6M which (if fully dense) would

require about 123TB of memory in single precision which

is intractable for currently available computational resources.

Thus image reconstruction methods require either direct, or

iterative ”matrix-free” implementations as discussed in the

next sections.

B. Direct methods for PAT Image Reconstruction

Direct methods are especially attractive in the large scale

setting as they only require solution of a single wave equation;

i.e., given a computational solver for (1) we can compute

an inverse solution with the same computational cost [12].

In particular in this study we choose to compute the adjoint

solution A∗y, which is close to the inverse solution.

Here, as the wave solver we use a pseudo-spectral time-

domain method [37], [38], [39] as implemented in the k-Wave

Matlab Toolbox [40], which allows to run the computations

on GPU cards using fast CUDA code.

Whilst direct approaches are computationally efficient they

are inadequate for dealing with the sub-sampled limited-view

data employed in this paper as we demonstrate next. Figure 1

illustrates the influences of limited-view and sub-sampling on

a simple numerical phantom of tubes that should mimic blood

vessels. From Figure 1(c), we can see that a reconstruction by

A∗y suffers from severe circular artefacts [41] and a systematic

loss of contrast with depth. Figure 1(d) shows that these

problems are accentuated with sub-sampled data.

C. Variational approach to PAT image reconstruction

Variational methods aim to recover the PA image x in (3)

from the measurement y as a minimiser of a penalty function,

x ∈ argmin
x′

{J(x′)} = argmin
x′

{d(y,Ax′) + λR(x′)} , (4)

where the fidelity term d(y,Ax′) measures the data fit and

a regularising term R(x) encodes prior knowledge about

the structures in the image. Often, R(x) is convex but not

differentiable. A simple approach to find a solution to (4) is

given by a proximal-gradient-descent scheme:

xk+1 = proxR,(λγk+1)
(xk − γk+1∇d(y,Axk)) , (5)

with step length γ > 0 and where the proximal operator

solves an image denoising problem:

proxR,α(y) = argmin
x

{

R(x) +
1

2α
‖x− y‖22

}

. (6)
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(a) volume rendering of the numerical tube
phantom and the sensor locations (pink dots)

(b) slice view through the tube phantom

(c) A∗y, full data (d) A∗y, sub-sampled data (e) sub-sampling pattern

(f) NNLS, 5 iter, full data (g) NNLS, 5 iter, sub-sampled data (h) TV, 5 iter, sub-sampled data

(i) NNLS, 20 iter, full data (j) NNLS, 20 iter, sub-sampled data (k) TV, 20 iter, sub-sampled data

Fig. 1. Illustration of the properties and errors of different image reconstruction methods using a simple numerical phantom consisting of tubes. (a)&(b):
Visualizations of the numerical phantoms. (e): Illustration of the sub-sampling pattern. Every pixel corresponds to one of the 118× 118 scanning locations
shown as pink dots in (a). We sub-sample by a factor of 16, i.e., of all locations, a fraction of 1/16 is chosen at random and visualized by a black pixel.
(c)-(d)&(f)-(j): Slice views through the reconstructions of the tube phantom by different methods and for full or sub-sampled data.

The drawback of the above procedure is the difficulty to

choose a suitable regularisation term R(x), a regularisation

parameter λ > 0, that balances data fit and the regularisation

properties, and the potentially large number of iterations it

takes to converge.

As shown in, e.g., [11], [12], [13], iterative image re-

construction methods of the form (5) that solve variational

regularisation problems [42] like (4) can improve upon the

direct image reconstruction methods. For instance, we can

incorporate the physical constraint that the initial pressure

increase x is always positive by choosing R(x) to be 0 if x > 0
and ∞ otherwise. For this, proxR,α(y) = max(y, 0). With

the canonical choice d(y,Ax′) = 1
2‖Ax

′ − y‖22, (4) simply

becomes a non negative least squares (NNLS) solution. Figures

1(f), 1(i) demonstrate that with increasing number of iterations,

both limited-view artefacts and the systematic loss of contrast

disappear. However, they also show that the convergence in

deeper, non-central parts of the image is considerably slower

and the limited-view will still manifest in blurry edges. For

the sub-sampled data case shown in Figures 1(g), 1(j) we

see similar effects although in addition, noise-like artefacts

remain. As examined in [13], using noise-reducing, edge-

preserving regularisation like the (isotropic) total variation

(TV) functional R(x) = ‖∇x‖1 can further improve such

results as can be seen in Figures 1(h), 1(k). The main problem

of such iterative approaches is in terms of computation times,

compared to the linear backprojection by A∗y which requires

the solution of one wave equation, computing 20 iterations

of NNLS or TV requires in total 40 additional solutions of a

wave equation.

D. Model Based Learning

Regularisation functionals like TV are popular because they

often allow for a mathematical analysis of the minimisers of

(4) and have been designed to perfectly recover certain aspects

of x, e.g., its singularities [43]. As such, they often yield spec-

tacular results for simple numerical or experimental phantoms

like the ones shown in Figure 1. In many applications however,

typical images x have a more involved structure and the prior

information expressed by simple regularisers like TV does not

lead to optimal results. One example is given by sub-sampled

PAT measurements of vessel networks [13]. If we have a set

of typical PA images of vessel networks, we could try to learn

more suitable prior information and how to best incorporate it
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xk

∇d(y,Axk)
ReLU(conv5×5×5)

λ·(conv5×5×5)

ReLU

skip connection

xk+1

Fig. 2. Diagram of one convolutional neural network, denoted as Gθk
, representing one iteration of the deep gradient descent. Image size for input and

output is indicated in gray. The red arrows denote a convolutional layer with 5 × 5 × 5 kernels followed by a ReLU, the resulting channels in each layer
are indicated in the squares. The blue arrow denotes a convolutional layer followed by a scalar multiplication. The residual update (by the skip connection)
is then projected to the positive numbers by the last ReLU.

in an iterative image reconstruction approach that also utilizes

measurement information over the gradient of the data fit,

∇ 1
2‖Axk − y‖22 = A∗(Axk − y), (7)

at every step k.

Inspired by [44], [45] we take the structure of (5) as

a starting point: Each iteration consists of updating xk by

combining measurement information delivered through the

gradient∇d(y,Axk) with an image processing step. Instead of

deriving the concrete form of this combination from a fixed

penalty function (4), we propose to learn instead an update

function for each iteration

xk+1 = Gθk(∇d(y,Axk), xk). (8)

This implies that the effect of the regularising term is now

learned from the data during training. The functions Gθk

correspond to CNNs with different, learned parameters θk
but with the same architecture. The network structure is kept

simple and should mimic a proximal gradient update (5). Due

to the representation of each update by a CNN applied to the

current xk and the gradient ∇d(y,Axk), we call the whole

algorithm deep gradient descent (DGD).

In contrast to [23], [26], [45] we train the DGD layer by

layer (layer corresponding here to one iterate), i.e. we learn

the parameters θk for each iteration separately. In this way we

can exclude the photoacoustic operator from the training pro-

cedure. This is necessary to make the training feasible. Note,

that the photoacoustic operator has complexity O(N4 log(N))
[12], for a volume of size n = N × N × N , compared to

CT and MRI where A has complexity O(N3 log(N)) for a

volume of size n = N×N×N . Therefore we think that such

layer by layer training scheme is the only feasible approach

for iterative high-resolution 3D PAT imaging at the present

stage.

III. IMPLEMENTATION

In a CNN, each layer is of the following form: Given the

input g and output h with channel index sets I, J respectively,

then

hi = ϕ



bi +
∑

j∈J

ωi,j ∗ gj



 , i ∈ I,

with a componentwise nonlinear function ϕ and convolution

∗. The whole parameter set θ of the network is therefore given

by the biases bi ∈ R and convolutional filters ωi,j ∈ R
sn (with

kernel size s and spatial dimension n) of each network layer.

The specific architecture we have chosen for the CNNs

performing the update in equation (8) is illustrated in Figure

2. In each iteration we input xk and ∇d(y,Axk) to a similar

pipeline, where both are spread to 16 and then 32 channels by

a convolutional layer with kernel size s = 5 and dimension

n = 3, equipped with a rectified linear unit as nonlinearity,

that is defined as

ReLU(x) = max(x, 0).

The output of both pipelines is added together and first reduced

to 16 channels, equipped with a ReLU, and then to 1 channel

without a nonlinearity, but a simple scalar multiplication. The

result is added to the current iterate and projected to the

positive numbers by a ReLU, similar to the proximal for

NNLS discussed in Section II-C.

The architecture in this study is motivated by a typical

network structure consisting of an analysis/encoding and a

reassembling/decoding part. In this analysis part, the number

of channels is increased between layers to refine the analysis of

the features extracted in the layer before. In the reassembling

part, these features must be merged/thresholded to produce

an output image, so the number of channels is decreased.

Since the main contribution of this work is not the specific

neural network architecture, we use a simple architecture

following this convention. In particular, the network structure

is kept rather small with the motivation in mind that each

Gθk primarily learns how to combine current iterate and

gradient as well as a data specific filters, in contrast to a large

post-processing network. Furthermore, a compact structure is

necessary to minimise the needed memory on the GPU.

A. Training of the deep gradient descent

Given a training set {yi, xi
true}i, we have two options to

train the parameters θk. The first is to pre-define a maximum

of iterations kmax and train all θk, for k = 0, . . . , kmax − 1,
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together to minimise the difference between xi
true and the

result of the last iteration xi
kmax

; that is we seek to find

Ekmax
= min

θ0,...,θkmax−1

∑

i

‖xi
kmax

− xi
true‖, (9)

for some suitable norm. The second approach is to train

the parameters sequentially: θ0 is trained to minimise the

difference between xi
true and xi

1 given data yi, for all indices

i. After that, θ1 is trained to minimise the difference between

xi
true and xi

2, given the optimal xi
1 found in the training of the

first CNN Gθ0 . That means the minimisation of (9) is split into

kmax independent optimisation problems w.r.t. disjoint subsets

of parameters θk, k = 0, . . . , kmax − 1, given by

min
θk

∑

i

‖xi
k+1 − xi

true‖, xi
k+1 = Gθk(∇d(y,Ax

i
k), x

i
k).

(10)

The first approach has the advantage that the network is

more flexible to achieve the best possible result after kmax

iterations, but during the training, the operators A and A∗

need to be evaluated many times, since for each training step

all xk and their corresponding gradients have to be computed

to evaluate (9). While the second approach is not optimal

in the sense that it does not lead to minimal training error,

it has two important advantages. Firstly, the computation of

the gradient A∗(Ax − y) and training decouple, which is

important in view of the cost of application of A and A∗

in PAT. Secondly, it provides an upper bound on the training

error (9). In fact, (10) can be viewed as a greedy approach

which seeks to obtain a minimum in each layer k given xk−1

from the previous training step. We note that this property

can be used to determine the number of layers kmax of the

DGD in training by controlling the training error from layer to

layer in contrast to choosing it a priori. Therefore, the second

approach could also be used as a pre-training stage to initialize

the weights for the first approach.

As the computational complexity of simulating acoustic

wave propagation in 3D prohibits computing the gradient

during any training scheme, we need to follow the second

approach here. The whole training procedure we use is sum-

marized in Algorithm 1 for a given number of maximum

iterations kmax and the reference solution xtrue.

Algorithm 1 Training Procedure

1: x0 ← A∗y

2: function TRAININGCYCLE

3: k ← 0
4: while k < kmax do

5: Compute ∇d(y,Axk) = A∗(Ax− y)
6: function TRAINITERATE(∇d(y,Axk), xk, xtrue)

7: Train for given accuracy

8: end function(return θk)

9: xk+1 ← Gθk(∇d(y,Axk), xk)
10: k ← k + 1
11: end while

12: end function

B. Evaluation of the deep gradient descent

After training the parameter sets {θk}
kmax−1
k=0 , the learned

iterative reconstruction scheme can be evaluated as follows:

The new iterate xk+1 is computed by applying the network

Gθk to the current iterate xk and the gradient of the data fit,

in particular this means that the gradient has to be computed

in every iteration. This procedure is equivalent to Algorithm

1 without calling TRAINITERATE in line 6-8.

IV. EXPERIMENTS

In this study we are interested in reconstructing human in-

vivo data and hence we do not have a true target available

for the training of measured data. This lack of a ground

truth is one of the main challenges in supervised learning.

Nevertheless, we chose to train the DGD with supervised

learning using simulated data and hence a meaningful data

set is crucial for a successful training, for that purpose we

use segmented human vessel structures from CT scans as

discussed in the next section. The training and evaluation of

each network Gθk has been implemented with TensorFlow

[46] in Python. All computations are done on a Titan Xp GPU

with 12GB memory.

A. Training on segmented lung vessels

The training data needs to be as realistic as possible to

provide a meaningful basis for the algorithm. To achieve this

we have used the publicly available data from ELCAP Public

Lung Image Database1. The data set consists of 50 whole-lung

CT scans, from which we have segmented about 1200 volumes

of vessel structures with a Frangi vesselness filter [47], [48].

The segmented volumes were of size 40 × 120 × 120, and

were then scaled up by a factor of 2 to the final target size of

80×240×240. Out of these volumes we chose 1024 as ground

truth xtrue for the training and simulated limited-view, sub-

sampled data using the same measurement setup used in the in-

vivo data: We assume that each voxel has the isotropic length

dx = 84.75µm and that the full data is recorded at locations

on a grid with grid size 2dx on one of the two 240 × 240
sized outer planes of the volume (i.e., the scanning geometry is

similar to Figure 1(a)). In time, Nt = 486 pressure samples are

recorded with dt = 16.6ns. The full data is then sub-sampled

as illustrated in Figure 1(e) but by a sub-sampling factor of

4. We have added normally distributed noise to the measured

data, such that the resulting SNR was approximately 15 for

all measurements and we assumed a sound speed of c0 =
1580m/s. In a nutshell, we obtained the data y = Axtrue + ε,

where ε denotes the added noise.

The training set for one CNN Gθk then consists of current

iterate xk, the gradient of the data fit∇d(y,Axk) = A∗(Axk−
y), and the ground truth xtrue. We initialize the iteration with

x0 = A∗y.

Precomputing the gradient information for each CNN takes

about 10 hours.

1http://www.via.cornell.edu/databases/lungdb.html
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Initialization x0 = A∗y DGD x5 TV (50 iterations) Phantom

Fig. 3. Reconstruction results for a test image from the segmented CT data (not included in the training), presented images are top-down maximum intensity
projections. From left to right: Backprojection of the data and initialization of the network, result of DGD with 5 iterations, TV reconstruction with 50
iterations, phantom used to produce the data.

We trained the CNNs using TensorFlow’s implementation

of Adam [49]. For the training we used batches of size

2, since this already fills up the memory (12GB) of the

GPU completely. We trained each Gθk for 25000 iterations

(i.e. approximately 50 epochs) with an initial step size of

5 · 10−5 (learning rate), The minimised loss function, i.e.

the norm in (10), is chosen as the ℓ2-distance of new iterate

to the true solution xtrue,

loss(x) = ‖x− xtrue‖
2
2.

For training the first CNN Gθ0 we added an additional

constraint to avoid the local minima of zero solutions by

penalizing a small norm

lossadd(x) = −αmin(‖x‖2 − β, 0),

with small α, β > 0. The training of each CNN Gθk took

about 1 day on the GPU. We have trained 5 iterates, i.e.

kmax = 5, for the deep gradient descent. In total the whole

training took 7 days. We note, that this could be speed

up by initialisation of θk with θk−1 or by more advanced

optimisation strategies, see for instance the review [50]. At

this point we would like to note, that had we included the

operator A and A∗ in the training and trained all 5 iterates

together, then the time needed for 25000 iterations would be in

the order of 70 days, and used at least 5 times more memory.

The result of the DGD for simulated data is shown in Figure

3 for an example that was not included in the training set.

B. Post-processing by Deep Learning

To complement this study, we have also implemented the

first approach of learning in image reconstruction, see Section

I-A, viz. taking an initial direct reconstruction and train a

network to remove artefacts and noise. Especially popular for

improving these initial reconstructions is a CNN introduced as

U-Net [51]. We refer to the original paper for the architecture,

but roughly summarized its strength lies in a series of skip

connections in a multilevel decomposition. For our application,

we have followed the modified U-Net architecture proposed by

[20] for post-processing of 2D X-ray tomography, that learns

to compute an update to the initial reconstruction. We made

DGD x5 TV (full data), λ = 2 · 10−4

Fig. 4. Reconstruction from real measurement data of a human palm, without
adjustments of the training data. The images shown are top-down maximum
intensity projections. Left: Result of the DGD trained on images without added
background. Right: TV reconstruction as reference from fully sampled data.

the necessary modifications for a three-dimensional setting and

implemented training and evaluation with TensorFlow.

To be consistent with the previous section our direct re-

construction, which we seek to improve upon, is obtained

by the application of the adjoint x0 = A∗y. The modified

U-Net is then trained on the set of pairs {xi
0, x

i
true}i. Due

to memory restrictions we were only able to train one pair

at a time. The loss function is chosen as the combination

loss(x)+lossadd(x), see previous section. The training is then

performed with Adam for 75 epochs and a learning rate of

10−4; this took 3 days. The results for simulated data will be

discussed in Section V-B.

C. Application to in-vivo data

We now apply our method to in-vivo data of a human

palm. The details of the measurement set-up and procedure

are described in [14], [52]. All other features like spatial

dimensions of reconstruction volume, temporal sampling or

the sub-sampling pattern are exactly the same as for the

simulated data (cf. Section IV-A).

In-vivo data has different characteristics that are not per-

fectly represented by the training on synthetic data and hence

a direct application of the trained network does not lead to
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Initialization x0 = A∗yreal DGD x5 Updated DGD x̂5

TV sub-sampled, λ = 5 · 10−5

20 Iterations
Updated U-Net

TV fully-sampled data, λ = 2 · 10−4

20 Iterations

Fig. 5. Example for real measurement data of a human palm. The images shown are top-down maximum intensity projections. First row: from left to right, the
initialization from sub-sampled data, the output of DGD trained on background added data after 5 iterations, and updated DGD G

θ̂k
after 5 iterations. Second

row: from left to right, TV reconstruction of sub-sampled data with a emphasis on the data fit, updated U-Net reconstruction, reference TV reconstruction
of fully-sampled limited-view data. All TV reconstructions have been computed with 20 iterations.

satisfactory results, as illustrated by comparing it to a TV

reconstruction in Figure 4. In particular, we see that the

network has not learned to effectively threshold the noise-

like artefacts in the low absorption regions i.e. regions with

low concentration of chromophores. To train our approach

to remove these features we simulated the effect of the low

absorbing background as a Gaussian random field with short

spatial correlation length, clipped the negative parts, scaled it

to maximal value 0.1 and added it to each segmented volume

xtrue where ever the intensity of xtrue did not exceed 0.1
(i.e., the maximum intensity of xtrue stays 1). The synthetic

CT volumes with the added background were then used for the

data generation, i.e. yiback = Axi
back + ε, whereas the clean

volumes xtrue are used as reference for the training. Here

ε is again chosen (see Section IV-A) such that the resulting

measurement yiback had a SNR of approximately 15. We expect

the network trained on the modified pairs {yiback, x
i
true}i to

be capable of effectively removing the background.

Furthermore, since the expected contrast in the images is

crucial for the trained reconstruction procedure, we scaled

the measurement as follows. First we computed the standard

deviation of the measurement data for all simulated targets.

Then we rescaled the sub-sampled real measured data to have

a similar standard deviation. This rescaled data is then used

for reconstructing with the DGD. The result after 5 iterations

is shown in Figure 5.

The results can be further improved performing a transfer

training of the previously trained networks Gθk . This however

requires some reference reconstructions from the same or a

similar system. We were able to perform such a transfer

training with a set of 20 (fully sampled) measurements of

a human finger, wrist, and palm from the same system. We

then sub-sampled the data (fourfold) to obtain the training

data yreal. As reference we took weakly regularised TV

reconstructions from the fully sampled data, xTV . To update

the DGD we have performed an additional 10 epochs of

training on the pairs {yreal, xTV }, with a reduced learning

rate of 10−5. Such transfer training takes only 90 minutes

to update the entire DGD. We denote the updated CNNs by

G
θ̂k

and the resulting outputs by x̂k. The effect of the updated

DGD is shown in Figure 5.

Additionally, for a full comparison we have performed an

update training of the U-Net with the same parameters as

above, i.e. 10 epochs and a reduced learning rate of 10−5.

The update training of the network took only 20 minutes and

the result is shown in Figure 5.

V. DISCUSSION OF RESULTS

The results shown in Figure 3 and Figure 5 suggest that the

formulation of a gradient descent scheme as a CNN in each

iteration does produce competitive results with a considerable

reduction in iterations needed, as we will discuss in this
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Initialization x0 = A∗y Iterate x1 Iterate x5

Difference: x0 − xtrue Difference: x1 − xtrue Difference: x5 − xtrue

Fig. 6. Progress of iterations in the DGD for a test image from the segmented CT data. Images shown are top-down maximum intensity projections. The
top row shows reconstructions and the bottom row shows difference images to the true solution. Difference images are on the same scale, with blue for a
negative difference and red for positive. Left: initialization and input to the DGD, maximal value of difference is 0.8492. Middle: output after one iteration
with DGD, maximal value of difference is 0.6171. Right: result after 5 iterations of DGD, maximal value of difference is 0.4124.

section. Furthermore, it is robust in the transition to real

measurement data, which is one of the most important aspects

in inverse problems and image reconstruction.

During the reconstruction procedure, a major improvement

is achieved in the first step, as shown in Figure 6. After one

iteration of the DGD the background is cleared and the contrast

is mostly restored, but there are still a few noisy patches

around the vessels visible. The difference image also indicates

that there are still parts insufficiently recovered on the outer

area close to the boundary; these are typical limited view

artefacts. After the 5th iteration these artefacts are considerably

reduced and the error inside the domain is mostly uniform.

In the following, we discuss some particular aspects in more

detail.

A. Quantitative analysis of simulated data

For a quantitative evaluation of the performance we have

computed the relative ℓ2-error for the simulated example

shown in this study, see e.g. Figure 4. More precisely the

reconstruction quality is evaluated using a scaled and unbiased

relative error defined by

err(x) = min
a,b

‖ax− xtrue − b‖2
‖xtrue‖2

, (11)

as suggested in [20]. This unbiased error is used to not dis-

advantage TV and NNLS reconstructions in the comparison.

While the networks know the absolute contrast from the train-

ing data, classical iterative methods often either need many

iterations to recover it from the data or suffer from systematic

contrast errors. Consequently, the optimal parameters for the

reconstructions of DGD and U-Net are in most cases a = 1
and b = 0 and hence err reduces to the standard relative ℓ2-

error. For a full comparison, we have computed the mean error

for 16 test samples that were not included in the training set.

We compare the two networks, U-net and DGD, with TV and

NNLS reconstructions, as described in Section II, with the

regularisation parameter for TV chosen such that err(x) is

minimized. The resulting errors are plotted in Figure 7. After

one iteration U-Net achieves clearly the best result, but already

with 2 iterations DGD achieves a smaller error down to a

substantially smaller error after 5 iterations. TV and NNLS

converge considerably slower, but achieve the U-Net quality

after 50 iterations and will likely go lower.

The computational time is dominated by the application of

A and its adjoint A∗ . Computing either takes about 12 seconds

on the Titan Xp GPU, see Table I for the complete compu-

tation times for each reconstruction approach. Note however,

that as our implementations involve communication overhead

between Matlab and Python, theses timings give an indication

for the methods’ efficiency rather than an absolute comparison.

Consequently, a reduction in iterations has a considerable

impact on the total computation time. In this respect, the U-
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Net structure is clearly the cheapest with just one application

to compute x0 = A∗y. Iterative algorithms require additionally

two applications for each iterate to compute the gradient

∇d(y,Axk) = A∗(Axk−y). Thus, having similar results after

2 iterations with DGD and 50 iterations of TV, see Figure 7,

leads to a prospective speed-up by 20 (including the initial

reconstruction x0 = A∗y). We note that the computation

time for U-Net can be considerably reduced by using a k-

space method [53] for the initial reconstruction.

TABLE I
EVALUATION TIMES: INCLUDING INITIALIZATION x0 = A∗y AND

COMMUNICATION OVERHEAD FOR DGD AND U-NET

DGD TV NNLS U-NET

5 iterations 5 iterations 5 iterations

TIME IN SEC. 184.19 165.72 147.7 19.75

0 1 2 3 4 5 10 25 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 DGD
TV
NNLS
U-Net
Initialisation

Scaled relative error

Iterations

er
r(
x
)

Fig. 7. Convergence plot of mean error for 16 samples from simulated test
data. The x-axis shows number of iterations (note the nonlinear scale). The
y-axis denotes the unbiased relative ℓ2-errors (11). The parameter for TV has
been chosen such that the best error is achieved for the given iterations.

B. Comparison to post-processing by Deep Learning

First using a direct reconstruction and then applying a DNN

to remove artifacts is a valid approach in many applications,

especially if one is interested in fast and prospectively real-

time reconstructions. This approach only needs an initial direct

reconstruction and one application of the trained network.

Especially for full-view data, this is a promising approach, but

even in our limited-view case this approach proves to be quite

powerful. A comparison of DGD and U-Net for simulated

data is shown in Figure 8 (top row). The resulting image is

cleaned up and many vessels are properly reconstructed. Some

smaller details are missing and can not be recovered from the

initial reconstruction. The difference to the true target is also

shown in Figure 8 (bottom row). The differences are most

pronounced in the outer parts of the domain as a consequence

of the limited view geometry. In comparison the reconstruction

by DGD has a much smaller overall error, but this is especially

true in the center of the domain. The maximal error of the U-

net reconstruction is 0.6012 (on the scale of [0, 1]) and of the

DGD reconstruction 0.4081. In conclusion we can say that the

U-net architecture performs very well and is even capable of

removing some limited-view artefacts, but is ultimately limited

by the information contained in the initial reconstruction.

C. In-vivo data

Even though the results for simulated data are very im-

pressive, applying the DGD trained on images with a clean

background is not sufficient for real data as shown in Figure

4. The reason is that the algorithm interprets all structures in

the data as important and enhances them equally. Adding a

background to the training data set in order to teach the DGD

thresholding those structures immensely improves the results

and even fine details that were not visible before are now

recovered after 5 iterations, as seen in Figure 5. Nevertheless,

just an adjustment of the simulated data is not sufficient

as can be seen from the quantitative measures in Table II,

computed with respect to the reference reconstruction from

fully-sampled limited-view data. Thus, further improvement

can be achieved by an update of the DGD if one has a set of

similar measurements from fully sampled data available. This

update training has a considerable impact on the reconstruction

quality as can been seen in Table II. Both learned methods

show excellent reconstruction quality after transfer training

and are able to successfully remove the undesired background

structures. In comparison to the iterative reconstruction with

TV both learned methods achieve a higher PSNR and SSIM

to the reference reconstruction from fully-sampled data. Note-

worthy, the lowest unbiased relative ℓ2-error (err), see (11), is

achieved by the classical TV minimisation with an emphasis

on the data term, this is likely due to the fact that the reference

is a TV reconstruction from fully-sampled data.

TABLE II
QUANTITATIVE MEASURES FOR IN-VIVO EXPERIMENT: IN COMPARISON

TO REFERENCE TV RECONSTRUCTION FROM FULLY-SAMPLED

LIMITED-VIEW DATA.

PSNR SSIM ERR REL. ℓ2-ERROR

DGD x5 32.93 0.723 0.76 1.54

UPDATED DGD x̂5 41.40 0.945 0.56 0.58

U-NET 40.81 0.933 0.62 0.62

TV SUB-SAMP., λ = 5 · 10−5 38.05 0.912 0.52 0.86

TV SUB-SAMP., λ = 10−4 37.68 0.902 0.58 0.89

D. Generalisation and robustness

Deep Learning approaches are especially powerful in a

fixed measurement protocol and consistent targets, as illus-

trated for the simulated test data. The big question is how

robust these networks are with respect to perturbations of

measurement procedures or targets. First experiments indicate

that the iterative network allows for small perturbations in

the forward operator such as varying sub-sampling patterns

(of same sub-sampling rate) or deviations in sound speed,

as well as slightly varying noise level in the data. However,

each variation will lead to slight deterioration of reconstruction

quality. In contrast, the one step approach by U-Net was found

much more sensitive to variations. In particular, we have found

that a change in sampling pattern leads to a mean (for 16
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U-Net DGD x5 Phantom

Difference: U-Net Difference: DGD x5 Difference: U-Net

Difference: DGD x5

Fig. 8. Comparison of reconstructions for a test image from the segmented CT data. Images are top-down maximum intensity projections and the difference
images are on the same scale, with blue for a negative difference and red for positive.. Left: top and bottom shows the result by applying U-Net to the
initialization x0 and the difference to the phantom, maximal value of difference is 0.6012. Middle: shows the result of the DGD after 5 iterations and the
difference to the phantom, maximal value of difference is 0.4081. Right bottom: difference images as side projections for the results of DGD and U-Net.

samples) deterioration in err by 0.5% for DGD and U-Net by

5% for the simulated test data. We think that this is due to

the fact, that the gradient in each iteration encodes the model

variations and as such small perturbations are corrected in

the iterative network. If larger changes in the measurement

protocol are expected, it is recommended to either retrain the

network or perform an update training, as has been done for

the in-vivo data.

Furthermore, the iterative method seems to be more robust

with respect to structural differences between the target and

the training set. This is illustrated in Figure 9, where we have

tested the networks trained on the clean segmented vessels on

a tumor phantom [13]. With 5 iterations we achieve a similar

err as TV after 20 iterations. As it can be seen, the network

does reproduce vessels with similar characteristic as in the

training set, this might be due to the learned prior-like filters.

Whereas the U-Net reconstruction does not perform well with

the new image structures.

VI. CONCLUSIONS

In limited-view, sub-sampled photoacoustic tomography it is

essential to incorporate the physical model into the reconstruc-

tion procedure to reduce artefacts with an appropriate regular-

isation strategy. Here we considered three possible strategies:

i) iterative total variation, ii) backprojection followed by a

learned denoiser, iii) learned iterative reconstruction. In terms

of image quality and robustness to perturbations in the model

i) and iii) were superior to ii). Method ii) was fastest at

the cost of inferior image quality and flexibility. Method iii)

was considerably faster than i). Thus, we believe that learned

iterative reconstructions are a realistic technique for 3D PAT.

The choice between learned post-processing versus learned

iterative reconstruction is a matter of speed versus quality.

This study is particularly focused on method iii) and we

have shown that incorporating the physical model as the

gradient of the data fit and learning an iterative algorithm

consisting of several convolutional neural networks leads to

a superior reconstruction quality with a considerable speed-up

compared to classical, and well established, iterative recon-

struction schemes. With minor modifications we were able to

apply the learned algorithm to experimental in-vivo data of

a human wrist and obtained far more detailed reconstructions

from sub-sampled data than by TV minimisation of the same

data.

Additionally, we have investigated method ii) that consists

of post-processing a fast and basic direct reconstruction with a

CNN, in particular we implemented an architecture introduced

as U-Net that has been proven to work well on medical images.

In our study this approach shows promise to produce a fast

and good initial reconstruction, but since many features are
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Phantom DGD x5 U-Net TV

Fig. 9. Reconstruction of a tumor phantom with features that are not included in the training data. DGD and U-Net reconstructions are done with the networks
trained on the segmented vessel phantoms. The TV reconstruction is computed with 20 iterations and a regularisation parameter λ = 10

−4. Reconstruction
errors with the unbiased err are: DGD 0.4925, U-Net 0.6584, TV 0.4749.

not present in simple direct reconstructions, for limited-view,

sub-sampled data, this approach is limited by the quality of the

initial reconstruction. Even though certain features can not be

recovered, post-processing with Deep Learning is promising

for applications where low latency is more important than a

best quality reconstruction, such as navigational tasks dur-

ing surgery. Furthermore, our study suggests that iterative

networks are more robust with respect to changes in the

measurement setup or imaged target.

As inherent in all learning approaches, the limitation of the

proposed method is dictated by the quality of the training data

and the possibility to perform an update training. In future

research we will consider combing the U-Net architecture

with a model based approach. For instance by replacing the

CNNs representing one iteration in our deep gradient descent

with a U-Net like structure. For high resolution 3D imaging

this would need computational resources exceeding a local

workstation. Consequently, if the computational resources are

available including the forward operator in the training will

likely improve results even further.
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[23] Jonas Adler and Ozan Öktem. Solving ill-posed inverse problems using
iterative deep neural networks. Inverse Problems, 33(12):124007, 2017.
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