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ABSTRACT

Predictive environmental sensor networks provide complex
engineering and systems challenges. These systems must
withstand the event of interest, remain functional over long
time periods when no events occur, cover large geographical
regions of interest to the event, and support the variety of
sensor types needed to detect the phenomenon. Prediction
of the phenomenon on the network complicates the system
further, requiring additional computation on the microcon-
trollers and utilizing prediction models that are not typically
designed for sensor networks. This paper describes a system
architecture and deployment to meet the design require-
ments and to allow model-driven control, thereby optimizing
the prediction capability of the system. We explore the
application of river flood prediction using this architecture,
describing our work on a centralized form of the predic-
tion model, network implementation, component testing and
infrastructure development in Honduras, deployment on a
river in Massachusetts, and results of the field experiments.
Our system uses only a small number of nodes to cover
basins of 1000-10000 km2 using an unique heterogeneous
communication structure to provide real-time sensed data,
incorporating self-monitoring for failure, and adapting mea-
surement schedules to capture events of interest.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless communication;
C.3 [Special-Purpose and Application-based Systems]:
Real-time and embedded systems;
I.6.5 [Simulation and Modeling]: Model development;
J.2 [Physical Sciences and Engineering]: Earth and
atmospheric sciences

General Terms

Design, Experimentation, Measurement
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1. INTRODUCTION
Current work in sensor networks highlights the growing

applicability of networks to everyday problems. In the area
of monitoring and detecting environmental phenomena, work
on habitat monitoring of birds [25], zebras [23, 45], and a
redwood tree [40] exemplifies the usefulness of these systems.
We are interested in developing and deploying systems to
monitor large environmental events, and to deal with system
constraints required for real-world use of these networks.

Predictive environmental sensor networks require address-
ing several complicated design requirements. The network
must cope with element exposure, node failures, limited
power, and prolonged use. When the event damages the
environment, such as the case with floods or hurricanes,
this further complicates the requirements. This system must
withstand the event, which usually poses a hazard to net-
work survival especially those nodes directly measuring the
event. Additionally, the system must operate throughout
long disaster-free periods, measure a variety of variables
contributing to the disaster, thereby requiring heterogeneous
sensor support, and communicate over the large geographi-
cal regions in which these events occur. Our specific applica-
tion is river flooding with a main deployment target for the
system of rural and developing regions. With this applica-
tion in mind, we can further define the system requirements.
The system must withstand river flooding and the severe
storms causing the floods, monitor and communicate over a
10000 km2 river basin, predict flooding autonomously, and
limit costs allowing feasible implementation of the system in
a developing country.

Once the system meets these fundamental sensing design
requirements, it then needs to actually predict the event of
interest. Most algorithms for this do not conform easily to
a sensor network, instead focusing on a centralized comput-
ing system with significant processing power and complex
system models. This sort of computational power does not
exist everywhere we might want to install such a prediction
network, especially rural and developing countries, nor do we
want to install such computing power. We instead would like
to parsimoniously use the computing power on the sensor
network to perform this prediction by adaptively sampling
data from the network. Computing models on a network
suggests executing a simplified form of the underlying phys-
ical model and developing distributed implementations. Key
to this process involves eventually connecting the model to
the data collection such that the data drives when and what
is measured, how often the model computes predictions, and



when the system communicates predictions; project goals
not fully achieved in this paper.

In this paper we present a sensor network architecture
and instantiation for developing regions, a statistical mod-
eling algorithm for river flood prediction, and evaluations of
both. The flood prediction algorithm is based on a regres-
sion model that performs significantly better than current
hydrology research versions at 1 hour predictions and nearly
as good as these same research versions when our model
predicts 24 hours and those models predict 1 hour. For pro-
totyping and validation purposes, we tested this model using
7 years of data from the Blue River in Oklahoma. We split
the 7 years into 1 year of training data and 6 non-intersecting
years of verification data. Figure 1 demonstrates our mod-
eling results for a 24 hour prediction on a portion of the
verification data set, showing how our predicted peaks co-
incide with the observed reality. The implementation used
for this paper is centralized computation of sensor data from
multiple nodes.
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Figure 1: Blue River 24 Hour Prediction Results on
Verification Data Set

We built a sensor network for flood prediction that con-
sists of 9 nodes. An instantiation of the sensor network
consisting of 3 nodes was installed on the Charles River at
Dover, Massachusetts and gathered 5 weeks of data. This
data was later run through our model. Chosen primarily for
practicality reasons and speed of prototyping, the Charles
encompasses a basin of 1000 km2, only one order of magni-
tude less than our proposed basin, and provides support
from the United States Geological Survey (USGS) along
with verification of our measurements through their sensors.
A simplified version of the 9-node sensor network was also
deployed on the Aguán River basin in northern Honduras,
which we use as our test basin as this region provides a
representative case of a developing region with serious flood
problems (see Figure 2). This installation was used to test
the sensing, networking, deployment, and maintenance is-
sues in rural Honduras. We plan a followup deployment that
runs the flood prediction algorithm in-situ during January
2009. This paper describes our experiments in these two
deployments.

Figure 2: Aftermath of Hurricane Mitch in 1998 in
Northern Honduras

The rest of the paper is organized as follows. Section 2
presents previous work. Section 3 describes the prediction
algorithm. Section 4 discusses issues related to designing
and building a sensor network capable of running the flood
prediction algorithm from Section 3 in-situ. Section 5 dis-
cusses the field installation and experimental results.

2. PREVIOUS WORK
Previous work covers a wide variety of topics including

sensor networks for environmental monitoring, sensor net-
works for flood detection, and operational flood detection
systems.

Sensor Networks for Environmental Monitoring
Several sensor network systems have been designed for out-
door monitoring purposes especially animal monitoring.
While this work does not directly relate to ours, imple-
mentations sharing some interesting characteristics include
cattle ranch monitoring [34], cattle control [8, 31], sheep
monitoring [39], zebra herd monitoring [23, 45], seabird nests
[25], and frog vocalizations [19]. Of greater relevance is
work in environment monitoring where several projects have
implemented related systems.

Tolle [40] developed a sensor network to monitor a red-
wood tree. Installing nodes throughout the height of the
70 m tree, the system measured air temperature, relative
humidity, and solar radiation over a 44 day period. The
system logged data every 5 minutes and transmitted it via
GPRS modem to an external computer. All analysis was
performed off-line after the test period.

Selavo [32] created a sensor network for measuring light
intensity. Each node can connect to 8 resistive or voltage-
based sensors, communicating data locally via Zigbee and
remotely via a single Stargate at 2.4 GHz with delay toler-
ance of the data arrival at the base station. They performed
a field experiment of 1 day with 7 nodes and have installed
19 sensor nodes in another experiment (but no results were
available at time of publication). No data analysis occurred
on the nodes.

Guy [16] built a sensor network system that has been
installed in four different locations to date. In the James
Reserve, a forest setting, the system measured temperature,



humidity, rain, and wind using up to 27 nodes over 1.5
years. The project installed 2 nodes for 1.5 years in a high-
desert farm and 24 nodes in the UCLA Botanical Gardens
for 3 months. Finally, a 12-node system was installed in
a Bangladesh rice paddy for 2 weeks to measure nitrate,
calcium, and phosphate (this experiment also described in
[29]). These nodes used 433 MHz communication systems to
share the data measured and a base station sent the data for
offline analysis. The goal of the researchers for the system
was portability and rapid deployment, focusing on a very
different set of requirements than our system.

Werner-Allen [44] installed a wireless sensor network on
a volcano in Ecuador, running 16 nodes for a 19 day test.
Their system focused on scientific effectiveness, specifically
the quality of the data and quantity measured allowing for
delays in data gathering as long as correctly timestamped.
The nodes measured seismic and acoustic data, transmit-
ting to each other at 2.4 GHz and back to the base station
through a single repeater node at 900 MHz. Detection of
recordable signals did occur on the system, but no further
data analysis occurred within the network.

While the above systems do share some characteristics
to the system and problem we describe, none envision the
level of heterogeneity our system requires, the minimalistic
number of sensors available for the extensive network area,
the real-time need for the data, or the computational au-
tonomy and complexity necessary to perform the prediction
operation.

Sensor Networks for Flood Detection Previous work
on sensor networks for flood detection is sparse with only
two different examples discovered in the literature. Castillo-
Effen [9] suggests an architecture for a system, but is un-
clear on the basin characteristics and no hardware details
are suggested. Closest to our work is a paper by Hughes
[20], describing a flood-predicting sensor network that uses
Gumstix sensor nodes, which require significant power but
allow for a Linux operating system to run on the node. As
described, the system had been tested in the lab, but no field
tests were performed by time of the paper. The planned field
test would consist of 13 nodes along 1 km of the river. It is
unclear what flood prediction model they are using and if it
is currently running on their lab test system. Given lack of
information on the flood prediction side, the known details
of the hardware platform dismiss it as an immediate solution
to the problem introduced here as it has limited geographic
range, high cost, and power requirements that may be, in
the long-term, unsustainable.

Current Operational Systems for Flood Detection
While not specifically sensor network installations, under-
standing the current operational systems helps clarify the
problem space in which we are working. The lack of pub-
lished information on operational flood systems makes gen-
eralizations difficult, but three systems seem to summarize
the approaches currently taken.

One type involves a highly technical solution with signif-
icant resource support such as seen in the US. For this sys-
tem, companies develop sensor, communication, and com-
putation technology based on the ALERT protocol, which
defines the data structure and polices of environmental mon-
itoring systems [3]. The US Emergency Alert System pro-
vides communication of the alerts throughout the nation us-

ing television and radio channels by creating special technol-
ogy and policies, requiring the installation of the technology
in stations across the country along with weekly testing, and
ensuring protocol compliance at all levels [13]. Implementa-
tion of specific systems trickles through each level of govern-
ment: federal, state, and county. Given the large number of
counties in the US, systems and policies do vary, but the ma-
jority rely on large numbers of personnel (some highly tech-
nical) and significant technical resources. Usually, counties
implement the direct measurement system with help from
the USGS and create polices on how their county defines
a disaster and evacuation procedures. Actual prediction
usually depends on qualified hydrologists examining the data
(thus removing measurement errors) and running it through
a complicated physical model described below.

Another type is the system commonly seen in Central
America, especially Honduras [4], relying on volunteers and
limited technology. Volunteers read the river level off of
markings painted on bridges and the rain level from water
collecting gages (also emptying the gage) at several intervals
during a day, radioing that information to a central office run
by the government. In that office, a person listens to the
radio, records the values in a book, and compares them to a
defined policy whereby the river level measured corresponds
to a color alert. This color alert is radioed to the head
office of the government branch, which then decides on the
need for an evacuation alert in that region and implements
some form of emergency alert procedures. Overall this sys-
tem relies on very little technology and extensive policies to
warn communities, working best in small river basins where
measurements indicate flooding in that area (as opposed to
downstream of the measurement area).
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Figure 3: Example of Current Physically-based
Model: Sacramento Soil Moisture Accounting
(SAC-SMA)

A third solution exists in Bangladesh, a country regularly
devastated by flooding due to its low sea level and large
rivers. To combat this, the Danish Hydraulic Institute ini-
tially outfitted the country with local telemetry stations in
1995 and created a MIKE 11-based flood forecasting system
[22]. However, this system experienced sustainability prob-
lems along with issues due to the fact that the headwaters



of its major flood-causing rivers originate in India, creating
complexities with monitoring. A solution to this was cre-
ated by a global community of researchers and government
institutions, collating all of the satellite information and
forecasts generated by the US to provide short, medium, and
long-term flood predictions of the major basins [17, 43]. A
system called the Flood Forecasting and Warning Response
System distributes the alert through reports submitted to
various government agencies along with a variety of public
media sources [11]. This takes advantage of the ubiquity of
satellite information, which looks to provide input data for
flood forecasting systems of the future [18]. The success of
the system does rely on very regular satellite passes, still not
common in all parts of the world, and a large amount of US
resources, also not available everywhere.

Computation Requirements of Current Operational
Flood Prediction Model We discuss flood prediction mod-
els in general in Section 3; however of most relevance to
this work are current operational models, especially that
used on our prototype data sets. In the US, the current
operational model works by modeling the different meth-
ods of rainfall surface runoff to determine how much water
will enter the river, thus increasing the level. Called the
Sacramento Soil Moisture Accounting model (SAC-SMA),
it predicts runoff out to 12 hours based on rainfall over
the area. It creates three different water compartments (see
Figure 3 [10]): a zone describing the direct runoff from rain
falling on impervious soils, a zone describing water flowing
into the river after exceeding the soil moisture capacity of
pervious soils, and a zone describing runoff occurring after
soil moisture capacity is exceeded above water impervious
regions [15]. The model describes each zone using several
differential equations along with several more complex equa-
tions describing the interconnection of these zones into a
single surface runoff value. These clearly cannot easily run
on a sensor network.

Determining the actual computation time of these equa-
tions is difficult as examining two papers that outline some
information on this provides different information. Experi-
ments by Vrugt [42] on autocalibration methods using this
model resulted in 25 minutes for calibration on a Pentium
IV 3.4 GHz computer. This calibration appears to involve
running the model. Other work by Ajami [2], also in the area
of parameter autocalibration includes a figure displaying the
run time and calibration time for a number of calibration
methods where it appears that running the model requires
on the order of hours. However the paper doesn’t specify
numbers. Of the two papers, the first paper is more specific
regarding computational numbers but much less detailed on
procedure whereas the second is clearly using the SAC-SMA
model over the same data set we also use. Either way, the
information from both suggests that the model requires more
computational power and time than available on a sensor
network.

Additionally, these equations use 11 parameters, not all
corresponding to actual physical, measurable quantities [27].
To calibrate these parameters and the model requires at
least 8 years of rainfall and runoff data for calibration, ide-
ally 8 years of further data for verification, detailed topo-
graphic maps, and hand-calibration by trained hydrologists
[14]. The resulting model operates only on that basin; model
creation for a different basin requires 8 years of calibration

data for the new river and expert hand-calibration. This
again does not work for a sensor network nor regions where
such data does not exist (and putting sensors in for 8 years
to gather enough information is impractical).

3. PREDICTION MODEL
In this section we describe a model and an efficient al-

gorithm for flood prediction that uses data from the nodes
of a spatially distributed sensor network. This approach
is computationally leaner than conventional approaches to
flood modeling and prediction, utilizing real-time data from
multiple sensor nodes.

Rainfall driven floods1 are the most common seasonal
events. They occur when the soil no longer has the ca-
pacity to absorb rainfall. To predict flooding, a model re-
quires knowing how much rain falls and what the soil’s time-
dependent response to the rainfall will be.

Current physically-based models deduce the rainfall-induced
above and below ground flows of water into the river, and
subsequent stream flow using numerical implementations of
the equations governing transport through the soil and the
river channels [30, 35] (see Figure 3 for an example [10]).
Modeling these processes using physics creates a challenge
from a simulation point of view. The model requires de-
tails of the topography, soil composition, and land cover,
along with meteorological conditions and hydrometeorolog-
ical quantities such as soil moisture [21].

In the development of these rainfall-runoff models, ongo-
ing work covers a range of models from lumped to spatially-
distributed variations [30, 35]. Although popular in aca-
demic research, the need for calibrating spatially-distributed
models to individual basins, model sensitivity to basin con-
ditions, and the tremendous computational burden involved
in running them makes wide-spread application complicated
and, in resource-strapped underdeveloped areas, nearly im-
possible.

In contrast, statistics gleaned from the observed record
can lead to the development of low-dimensional distributed
models, which are local in the sense of being valid for a
given site. Such models intrinsically self-calibrate because
the evolving record of observations allows them to adapt
to the latest conditions. This creates portability from one
locality to the next, from one season to the next, and from
one climate regime to the next. Statistical models can yield
low computational complexity, making them well suited for
on-site and real-time implementations. Several of such sta-
tistical models running on different portions of the basin can
collaborate in a distributed inference network to estimate
flow at unobserved portions of the basin. Thus statistical
models can also yield spatially-extended estimates. These
benefits cut across the traditional justification for physically-
based models and motivate their use in our work.

A growing body of evidence indicates that statistical mod-
els are useful in earth systems. This is true of flood predic-
tion and, although the evidence [6, 7, 33, 36, 37, 38] here
is sparse, we can see mature applications in other areas. In
particular, statistical models have proven among the best in
forecasting hurricane intensity (which presents similar chal-
lenges to flood forecasting) [12] and are used for guidance in
operational cyclone forecasting [24].

1Storm surges are not considered in this work.



The simplest set of statistical models is that of linear
regressions [5], appearing in various forms for hydrologi-
cal modeling [6]. Within this category, multiple linear re-
gression models assume that a linear equation can describe
the system behavior, weighting the past N observations of
all relevant input variables taken at time t to produce a
prediction of the output variable at time t + TL. We can
also consider adding past predictions and/or past predic-
tion errors as inputs within this model. To determine the
weighting factors, some amount of data is designated as the
training set for the model, defined here as the data seen in
time TT (an application-defined parameter), and a simple
inversion-multiply operation provides the coefficients from
this data, which is the prediction model until recalibration
occurs, defined as a time window of length TR. In case
the data provided contains local perturbations limiting the

Algorithm 1 Flood Prediction Algorithm

1: φ : past flow
2: θ : air temperature
3: ρ : rainfall
4: N : # past flow values used
5: Q : # rainfall values used
6: P : # air temperature values used
7: Y : predicted flow
8: e : prediction error
9: TT : training time window

10: TL : prediction lead time
11: TR : recalibration time window
12:
13: TTL = TT − TL;
14: ⊲ Compute initial coefficients and prediction
15: φN ← [φ(1 : TTL −N), ..., φ(1 + N : TTL)]
16: θP ← [θ(1 : TTL − P ), ..., θ(1 + P : TTL)]
17: ρQ ← [ρ(1 : TTL −Q), ..., ρ(1 + Q : TTL)]
18: X ← [φN , θP , ρQ]
19: C = ((X ∗XT )−1

∗XT ) ∗ Y (1 + TL : TT )
20: Y (1 + TL : TT ) = X ∗ C

21: ⊲ Recompute using prediction error
22: e = Y (1 + TL : TT )− φ(1 : TT − TL)
23: X ← [φN , e, θP , ρQ]
24: C = ((X ∗XT )−1

∗XT ) ∗ Y (1 + TL : TT )
25: Y (1 + TL : TT ) = X ∗ C

26:
27: for t = TT + 1 to ... do ⊲ Forecast
28: if (t%TR) == 0 then
29: ⊲ Recalibrate coefficients
30: e = Y (t− TT : t)− φ(t− TT − TL : t− TL)
31: φN ← [φ(t− TTL : t−N), ..., φ(t− TTL + N : t)]
32: θP ← [θ(t− TTL : t− P ), ..., θ(t− TTL + P : t)]
33: ρQ ← [ρ(t− TTL : t−Q), ..., ρ(t− TTL + Q : t)]
34: X ← [φN , e, θP , ρQ]
35: C = ((X ∗XT )−1

∗XT ) ∗ Y (t− TT : t)
36: end if
37: ⊲ Compute Forecast
38: e = Y (t)− φ(t− TL)
39: φN ← [φ(t−N), ..., φ(t)]
40: θP ← [θ(t− P ), ..., θ(t)]
41: ρQ ← [ρ(t−Q), ..., ρ(t)]
42: X ← [φN , e, θP , ρQ]
43: Y (t + TL) = X ∗ C

44: end for

effectiveness of the coefficients, we can smooth the data
using a low-pass filter.

We developed a model using this technique, with inputs of
past flow (φ), air temperature (θ), and rainfall (ρ), defining
their orders as N , P , and Q respectively, and a single output,
predicted river flow (Y ) (see Algorithm 1). This model, as
we implemented it, self-calibrates, can use very little training
data (on the order of weeks), performs a very simple set of
operations, and requires storing only the amount of data
necessary for training. Considering the complexity of the
current model as explained in Section 2 and the goal of
computation on the sensor network, the use of such simple
models is easily motivated.

Test Data and Setup
To analyze our algorithms, we use 7 years of rainfall, tem-
perature, and river flow data for the Blue River in Ok-
lahoma [26, 41]. This river and data come from an on-
going project called the Distributed Model Intercomparison
Project (DMIP) run by the National Oceanic and Atmo-
spheric Administration to compare hydrological models [30,
35]. The DMIP test provides more hydrometerological data
for the models than our model uses, allows for calibration
based on 1 year of data, and requires a 1 hour prediction of
river level for assessment [30, 35].

We define three different criteria for determining the qual-
ity of our algorithms: the modified correlation coefficient
(taken from DMIP [35]), the false positive rate of prediction,
and the false negative rate of prediction. For the modified
correlation coefficient, as with the standard form used in
probability, the value ranges from -1 to 1 with 1 meaning
the two data series are identical. With this metric, since
we use the definition from DMIP, we can also compare our
models to those listed as a reference of quality. False posi-
tive and negative detections provide a more common sense
criteria as minimizing these increases the confidence of the
end user in the system predictions. To define the false rates,
we determine the flood level for the Blue River from the
National Weather Service’s online prediction work.

Model Calibration
We implemented the model as described above in Matlab,
starting with defining the training window and recalibration.
To help define the proper training window, TT , we ran our
experiments over several time windows: one month, one
season (3 months), two seasons (6 months), three seasons
(9 months), and a complete year. This covers all reasonable
time periods for any generic river and any greater period of
time becomes intractable for our system. For now, either we
do not recalibrate the coefficients after the initial training
or we recalibrate after we observe a new full training time
window. Figuring out the optimal value for this we leave for
future work.

Given these two parameter definitions, we analyzed the
remaining parameters describing the models to determine
optimal values. To pick the best values, we sweep the order
(the number of past values used) for each of the three input
variables with and without including the error of the past
prediction. We find the optimal for each of the three met-
rics: the highest modified correlation coefficient, the lowest
number of false positives, and the lowest number of false
negatives.



In addition to the model with these parameters, we com-
puted predictions using two naive approaches: climatology
(or predicting the average of all previously seen flow obser-
vations at that hour and date in past years) and persistence
(or assuming that the flow will stay at its currently observed
value). We also compare to the DMIP results, choosing the
models that had the best modified correlation coefficient
value for the Blue River (described in Section 5.1). The
LMP model offers the best results; however this model is
an instantiation of the SAC-SMA model described earlier
(see Section 2), demonstrating the current operational cen-
tralized method. For this reason, we include the model
built by the National Weather Service Office of Hydrologic
Development, called the OHD model, in order to demon-
strate the best distributed model in current research. Our
testing computes predictions for time periods of 1 hour (for
comparison with DMIP) and 24 hours (as a more realistic
prediction window).

Section 4 discusses the requirements for implementing Al-
gorithm 1 on a sensor network.

4. SENSOR NETWORK ARCHITECTURE
Algorithm 1 requires rainfall, air temperature, and water

flow data collected and transmitted in real-time over the
entire river basin area multiple times per hour. Since the
flow of a river may change significantly over a period of
several minutes, this suggest a sampling rate on the order of
minutes. In order to support distributed, robust, real-time
data collection, transmission, and, eventually, processing for
large geographic regions corresponding to real river basins,
we further define the following system requirements:

• Monitor events over large geographic regions of ap-
proximately 10000 km2

• Provide real-time communication of measurements cov-
ering a wide variety of variables contributing to the
event occurrence

• Survive (on the order of years) long-term element ex-
posure, the potentially devastating event of interest,
and minimal maintenance

• Recover from node losses

• Minimize costs

• Predict the event of interest using a distributed model
driven by data collected

• Distribute among nodes the significant computation
needed for the prediction

The distance requirement, the inability to populate the
entire area with sensors, and cost limitations, suggest a two-
tiered approach with a small number of long-range nodes
surrounded by a cluster of sensing nodes2. The long-range
nodes communicate over long distances on the order of 25 km
using 144 MHz radios, have more power, and, therefore, can
provide more online time for computation. The sensing
nodes operate at 900 MHz, cover a more dense area, use

2With these three requirements, it is impractical to
implement a homogeneous scattered sensor network.

low power, and have a smaller physical footprint. In addi-
tion to the field nodes, we integrate office and community
nodes with the 144 MHz network. These nodes provide user
interfaces to the system. Our goal is the development of
a system capable of running a distibuted version of Algo-
rithm 1 in-situ. We have designed such a system; however,
currently the flood prediction computation is centralized,
but uses data from distributed sources. We want to avoid
centralized prediction for two reasons: (1) to avoid a single
point of failure and (2) to enable data-driven parsimonious
calibration on the lower power 900 MHz network. Figure
4 shows a concept overview for this collection of four node
types and how they communicate.

Community

Computation

RainTempPressure

900 MHz

144 MHz

Office

Computation

Computation

Computation

Communication

Range

~8 km

~25 km

Sensors:

Figure 4: Idealized Sensor Network Consisting of
Two Communication Tiers and Four Node Types;
Communication Ranges Not to Scale

All four node types have a common base board and ar-
chitecture that we then expand by daughter-boards as ap-
propriate. The rest of this section describes our design and
implementation for these system components. Figure 5 gives
a more detailed overview.

4.1 Base System
All nodes begin with the same base electronics designed

to provide for a variety of options. An ARM7TDMI-S mi-
crocontroller core, specifically the LPC2148 from NXP, pro-
vides the necessary computation power for the board [28].
The LPC2148 has a limited number of physical serial ports,
which we extend to 8 by adding a Xilinx CoolRunner-II
CPLD to the system and configure it as a serial router.
The base board sends all free pins to the daughter-board
connectors allowing for a variety of operations (e.g. digital
input/output and analog conversion) and potential multi-
plexing of each I/O on specialized boards. A mini-SD Card
and FRAM (Ferroelectric Random Access Memory) supply
data and configuration storage.

In terms of power, most nodes operate in a simple pat-
tern of wake-up, transmit, perform some operations (such
as sensor measurements), and then sleep. We quantify some
of these operations in Table 1, showing the power budget for
a sensing node where transmission occurs every 10 minutes
and measure every 5.
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Finally, a charging circuit on the board allows photo-
voltaic charging of lithium-polymer batteries, which power
the system at 3.7 V, along with measurement of charge cur-
rent.

Component Time Active
(min per 1 hr)

Current(mA) mAh

LPC2148
Transmit

12 40 8

LPC2148
Measure

3 40 2

LPC2148
Power-Down

45 0.04 1.8

AC4790
Receive

3 30 1.5

AC4790
Transmit

1.5 1300 32.5

Table 1: Sensing Node Power Budget

In addition to the base hardware constructed, the system
runs a custom base software package developed in C using
the WinARM libraries. This package consists of: serial
libraries which hide the underlying CPLD serial router, a
custom EFAT file system for SD-Card logging, sensor access
libraries, power regulation, and a scheduler system based on
the real-time clock and internal timers.

4.2 Communication
The two-tier communication structure uses 900 MHz and

144 MHz systems. As the 900 MHz system is used by almost
all nodes, the base system provides that communication
using a AC4790 900 MHz wireless module [1]. This wire-
less module provides RF and interface protocols, handling
issues such as retries, error detection, and peer-to-peer com-
munication. It operates at a fixed data rate, optimally
76.5 kbits/sec but dropping to approximately 500 bytes/sec
once the internal Aerocomm messaging overhead is consid-
ered. For the software, much of the transmission protocol
is provided by Aerocomm, but we did implement several
wrapper libraries for the AC4790 in order to interface with
it and add our own simple packet structure.

A small subset of the nodes require 144 MHz communica-
tion. This frequency usually provides voice communication,

so we designed a modem to allow data communication within
this frequency over Kenwood TM271A VHF radios. The
modem uses a MX614 Bell 202 compatible integrated circuit
to convert 1200 baud serial signals to FSK modulated signals
for radio transmission. This allows for data transmission
across a cheap, long-range communication method without
the recurring costs of a satellite or mobile telephone system.
For the radio, we added several libraries to the existing
base software structure, most specifically wrapper functions
to use the modem at a higher level than raw serial data.
We developed our own very simple packet structure and
communication protocol, defining addresses based on the
pre-existing unique base board identifiers and setting a fixed
number of retries.

Transmitting, the 144 MHz radio uses 25 W, although, in
our system, this only occurs 6 times every hour for a period
of 15 seconds. To power the radio, the system needs 12 V
instead of the base board requirement of 3.7 V so we use
a daughter-board to power the base board for these nodes.
This allows us to completely power-down the radio when
not transmitting, so the power budget does not change sig-
nificantly from Table 1, adding 52 mAh for 144 MHz trans-
mission. The 12 V power requirement of the radio means
system cannot use the same lithium-polymer batteries as
the sensing nodes so this system uses lead-acid batteries
along with 6 W photovoltaic panels. Additionally, to ensure
radio communication over the 25 km range, these systems
ideally need antennas located at least 5 m high in the air,
requiring antenna towers for the system with added benefits
of ensuring proper sunlight for the photovoltaic panels and
theft protection for the system.

4.3 Sensing Nodes
Sensing nodes measure the variables needed to detect and

predict the event of interest. In addition to the measure-
ments, the nodes log the raw data, compute data statistics
over each hour and inter-transmission time period, and an-
alyze data for indications of potential sensor failures. These
nodes regularly transmit via 900 MHz with all nodes in
immediate range, creating mini-networks of sensors within
the greater system (the combination of few nodes and large
areas ensures each node only joins one mini-network). The
two operations of transmitting and measuring occur inde-
pendently, enabling easy modification of the time windows
for both the transmission time and the measuring time. By



regularly transmitting, nodes provide monitoring of each
other through examining the data for errors and noticing the
failure of any node not transmitting within an appropriate
window. Repeated measurements of odd values such as
the maximum possible value of the sensor or rapid rates of
change trigger a warning that the sensor may not function
anymore, which the node can then transmit via the 900 MHz
network to other nodes nearby.

In addition to the standard base board hardware features,
this node requires hardware supporting multiple sensors and
multiple sensor types. Our nodes accomplish this through
a daughter-board attached to the base system that expands
the available I/Os through an I2C integrated circuit and
creates several ports for sensors ranging from resistive to
interrupt to voltage. In case the sensor requires a more
complicated interface, we include RS485 and RS232 circuits
for external communication to sensors.

We now consider the specific sensors necessary for the
application of river flooding: rainfall, air temperature, and
water pressure. Other measurements could aid the predic-
tion of river flooding; however, we chose only these three
sensor types because of the ease of finding them, connecting
to them, and installing them. Additionally, these sensors
tend to be inexpensive. So far our modeling work supports
using only these three; should this change, our focus on
design generality allows for the easy addition of other sensors
both from a hardware and a software standpoint.

Photovoltaic Panel

Rainfall

Sensor

Otter Box

with Electronics

Figure 6: Rainfall Sensor Node Consisting of
Electronics, Sensor, and Photovoltaic Board

Rainfall sensors measure using reed magnetic switches,
which cause an interrupt after every 1 mm of rainfall. Tem-
perature sensors measure resistively, modifying an ADC level,
which translates into a temperature after calibration. We
placed the electronics within Otter boxes to ensure protec-
tion from the elements and added Bulgin connectors for the
sensor, antenna, and photovoltaic boards (see Figure 6).

Measuring water pressure allows us to compute the water
level. While our simulation work described in Section 3
uses river flow since that is the data available from the
USGS, measuring flow requires several sensors to get a cross-
sectional profile of the river in order to understand flow at
a single location on the river. Level, however, requires only
one measurement to understand the state of the river yet
relates to flow through easily defined and understood curves

(the USGS actually measures level as well and performs
this conversion prior to posting the data online). Therefore
we use the two values interchangeably. To perform the
level measurement requires a special underwater installa-
tion. In order to maintain solar power and wireless com-
munication, we developed an external pressure sensor box
(see Figure 7) to communicate via RS485 with the sensing
node. Our pressure board consists of another LPC2148
microcontroller, RS485 interface, and instrumentation am-
plifier. The LPC2148 is much more powerful than necessary,
but allows us to maintain a consistent software system. We
complete the box by attaching a Honeywell 24PCDFA6A
pressure sensor and output the RS485 lines along with power
and ground through a Seacon underwater connector. Hon-
eywell’s pressure sensor measures 13.8-206.8 MPa of water
pressure directly instead of the more typical air pressure,
allowing us to bypass the use of extensive tubing to ensure
no water touches the sensor.

RS485 and

Power Connector Honeywell

Pressure

Sensor

LPC2148
Instrumentation

Amplifier

Figure 7: Pressure Sensor Box to Communicate with
Sensor Node

4.4 Computation Nodes
Computation nodes connect the mini-networks of sensors,

providing the communication backbone of the system (see
Figure 8). These nodes will also perform the distributed
computation of the prediction. Currently, as data arrives
from nearby sensors and other computation nodes, the node
maintains a record of all values, computes some data statis-
tics, and examines the data correctness. Eventually, it will
run this data through the model, compute the uncertainty
of the model prediction, and request additional data from
sensing nodes to reduce the uncertainty.

On the communication side, nodes communicate both via
the 900 MHz network and to each other via the 144 MHz
network. The 144 MHz modem and the power switching
circuitry for radio control require a different daughter-board
from the sensing nodes although we also include the various
sensing ports and RS485 communication seen on the other
daughter-board.

The communication range requirement drives the sepa-
ration of these nodes from the sensing nodes with the ad-
ditional focus of the computation due to the extra power
available from the radios and in order to enable data-driven
model calibration within the lower power 900 MHz network.
Currently the node uses the same microprocessor as the sens-



ing nodes for prototyping purposes. As we further develop
the prediction models and distributed algorithms, should we
discover a need for more computational power, we could
easily add an additional microprocessor to the daughter-
board or even a GumStix.

4.5 Government Office Interface Nodes
These nodes provide a user interface to the network. This

interface will focus on the government and relief agencies
who will maintain the system, providing data and predic-
tions regarding the event of interest along with detailed
information to monitor the system and display those nodes
no longer functioning.

The office nodes communicate via 144 MHz with the com-
putation nodes to provide any external requests for data
and receive all of the existing network data. In addition to
providing information to the office, receiving all the data
will allow the office nodes to predict for the entire region
using a centralized algorithm as a redundancy mechanism
to the local distributed predictions. Additionally, with the
possibility of internet access in an office, these nodes could
provide external verification for data through online infor-
mation, using satellite and other remote data available to
verify the computation results, checking for errors such as a
flood prediction when no rain has fallen.

4.6 Community Interface Nodes
An effective use of this system requires an intuitive com-

munity interface. We have not developed this system com-
ponent yet as user-interface issues are not our current focus.
However, our design requirements for these nodes can be
summarized as follows. These nodes provide an interface to
the communities interested in the detection and prediction
of the events. They utilize the same hardware and base
software as the government nodes, but will provide a simpler
user interface. The interface will display the known state of
the geographic area, event predictions, event detections, and
post-event monitoring. To avoid confusion, the interface will
not supply detailed information regarding the network, such
as node status or the data underlying the computations.
Based on the location of the communities within the net-
work, these nodes may also double as any of the other node
types.

Kenwood

TM271A Radio

Radio Power

Relay

Computation

Electronics

Aerocomm

AC4790 Radio

Figure 8: Computation Node

5. INSTALLATION AND RESULTS
We designed and performed three sets of experiments with

the following goals: (1) test the flood prediction algorithm
using a large set of physical river flow data (Section 5.1), (2)
demonstrate long-term data collection of river flow data with
a sensor network (Section 5.2), and (3) test the networking
capabilities of our two-tier sensor network in a rural setting
(Section 5.3). These are the three key components necessary
to demonstrate integrated system performance for flood pre-
diction. We are currently working on this integration and
expect a comprehensive test in Honduras in January 2009.
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Figure 9: Autocorrelation of Blue River Data

5.1 Blue River
In this section, we use a large data set of real river data to

test the validity of our prediction algorithm. For our river
we examine the Blue River in Oklahoma, which encompasses
1233 km2 at 153 m above sea level. No watersheds exist
above this basin. The area has an average summer temper-
ature of 82 ◦F and an average winter temperature of 36.7 ◦F
with the occasional blizzard and tornados.

The DMIP data set for this river consists of 7 years of
data from May 1993 to July 2000, measured from 1 river
flow sensor, 6 rainfall sensors, and a weather station. We use
only temperature from the weather station as we discovered
that the other measurements are highly correlated with tem-
perature. For the rainfall measurements, we average them
before entering them into the model, as we expect to do
when collecting the data on the sensor network.

Training
Window
(Weeks)

Order
(Memory)
of Flow
Data

Order
(Memory)
of Tem-
perature
Data

Order
(Memory)
of Rainfall
Data

4 5 1 14
12 5 1 14
24 5 1 14
36 2 2 16
52 2 2 16

Table 2: Order Calibration Results for Blue River



Training Window (Weeks) Modified
Correlation
Coefficient

False Positives False Negatives

Our Model 4, 12, 24, 36, 52 0.998 0 0
DMIP Ave Uncalibrated 0.58 - -
DMIP OHD Uncalibrated 0.71 - -
DMIP LMP Uncalibrated 0.77 - -
DMIP Ave Calibrated 0.70 - -
DMIP LMP Calibrated 0.86 - -
DMIP OHD Calibrated 0.86 - -
Climatology 1 Hour 52 0.32 0 13
Persistence 1 Hour 0 0.998 0 0

Table 3: 1 Hour Prediction Results for Blue River

To determine the viability of 24 hour predictions, we ex-
amine the autocorrelation of the data set. As Figure 9
demonstrates, while the values decrease, at 24 hours the
river correlates to itself at a value of 0.627, which implies a
reasonable amount of data exists for using past informa-
tion to predict that range. This also provides room for
improvement in the predictability of the river; if the river
had autocorrelation values of 0.9 or so at 24 hours, we could
simply use persistence to predict, but here clearly have room
for bettering the prediction.

We then calibrated the model as described in Section 3 to
determine the optimal number of past measurements (or or-
der) for each variable for the different training windows. For
the 1 hour prediction, all time windows performed equally
well using the last flow value, last temperature value, and
last rainfall value. In fact, examination of the resulting
coefficients demonstrates that only the latest flow value is
used; basically, at one hour, persistence provides the best
approach. Table 2 lists the orders that resulted in the best
modified correlation coefficient for the 24 hour prediction
case. We determined that better results always occurred
when including as an input the error of the prediction asso-
ciated with the latest observation and that our simple recali-
bration scheme did not improve results. Finally, maximizing
the modified correlation coefficient provided the best overall
results compared to minimizing the false rates.

Tables 3 and 4 show the overall results for this river,
comparing our model and two naive approaches as well as
the best cases for calibrated and uncalibrated DMIP mod-
els. In Table 3, examining the modified correlation coeffi-
cient, persistence and our model perform the best for 1 hour
predictions. At 24 hours, our model performs better than
persistence at all training time windows and both clearly
perform better than climatology. Figure 1 demonstrates
these results, showing our model with 52 weeks of training
data and no recalibration. Additionally, although the DMIP
results only apply to 1 hour predictions, comparing DMIP
to the 24 hour predictions shows our model and persistence
outperforming the average uncalibrated DMIP model. The
average calibrated and best models from DMIP outperform
our model with the average calibrated better than our model
by 3%. This may seem like an unusual comparison; however,
the lack of 24 hour prediction DMIP models limits us to this
comparison, which does show that our 24 hour prediction is
competitive with the 1 hour DMIP predictions.

5.2 Dover Field Test
We tested the long-term behavior of the system, specifi-

cally the sensing and 900 MHz communication, at Dover,
Massachusetts on the upper Charles River from October
through November 2007. This site allows us both to quickly
identify any system issues without a trip to Honduras and to
run longer tests, collecting data for our prediction modeling
work and discovering any long range system issues. The
data gathered at Dover allows us to connect the system and
modeling work by running the information gathered there
with our sensor network system through our Matlab model.

We installed 3 distinct sensor nodes (1 rainfall, 1 tempera-
ture, and 1 pressure sensor) within 900 MHz radio communi-
cation range at the locations shown in Figure 10. At the time
of testing, we could not achieve the claimed 32 km range of
the Aerocomm radios, seeing a maximum fully functional
range of 1.6 km. While not ideal it is still sufficient for
testing purposes; we continue to explore this issue for future
field experiments. The pressure sensor we placed within a
USGS sensing station, using their concrete shed as a base
for our system. The other sensors we located across the
river, with the rainfall sensor across from the pressure sensor
and the temperature sensor upstream of both. While we
could have collocated the rainfall and temperature sensors,
we chose to keep them separate in order to maximize our
testing of the 900 MHz network and better understand any
problems related to the specific sensors.

Temperature
Sensor

Rainfall
Sensor

Pressure
Sensor

10 m

Figure 10: Locations of Sensors at Dover Site; Map
Based on GPS Measurements and Surveying



Training Window (Weeks) Modified
Correlation
Coefficient

False Positives False Negatives

Our Model 52 0.64 25 9
Our Model 36 0.61 25 9
Our Model 24 0.59 18 14
Our Model 12 0.59 18 14
Our Model 4 0.59 18 14
Climatology 52 0.32 0 13
Persistence 0 0.58 17 7

Table 4: 24 Hour Prediction Results for Blue River
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Figure 11: Data Collected from Dover Test Site

With the system we gathered 5 weeks worth of data before
ending the field experiment due to winter weather. Figure
11 shows the hourly rainfall, pressure, and temperature mea-
sured by the nodes over the complete experiment. While no
flood occurred during this time period, we do see a variety
of interesting behaviors such as a large amount of rainfall
occurring at hour 251 and a period of no change occurring
right before from hours 90 through 250. We then run this
data through two of the models discussed in Section 3 for
three prediction times using 4 weeks of training data. With
4 weeks of training, we computed the ideal orders of each
of the variables as shown in Table 5. Ideally we would have
more data in order to use more reasonable test windows and
a larger range of training windows as we did with the Blue
River, but, with the onset of winter, the upper Charles River
freezes, limiting us to this amount of data until spring. Table
6 shows the results of these modeling runs, demonstrating
again that with regression models we can improve over in-
herent autocorrelation of the river state.

We also verified our power information. Over a 5 day pe-
riod, we saw a total discharge of 3153 mAh, which results in
an average current of 26 mA. Charging over the same period
resulted in a total of 1248 mAh. Two factors contributed to
this less than ideal result: the extensive tree cover in the
area limited effective panel placement, and many days saw
heavy cloud cover and rain. We plan to increase the battery

Prediction
Time

Order of
Site Pressure
Data

Order of
Tempera-
ture Data

Order of
Rainfall
Data

1 1 0 3
16 3 0 5
24 2 0 5

Table 5: Order Calibration Results for Dover Site

capacity and develop some tree installation strategies for
future deployments.

Overall, the field experiment was a useful indicator of
the potential to predict flooding using statistical methods
as we suggest with a sensor network system, demonstrating
reasonable results up to 24 hour prediction windows with
four weeks of training data. Larger flow variations would
help further demonstrate this, although we would prefer to
avoid that sort of flooding in Massachusetts. Additionally,
connecting the Dover site to MIT using the communication
nodes would provide a good test of a larger portion of the
system and, given that we can use the amateur radio band,
should occur over the next few months.

5.3 Honduras Field Tests
Our experiments in Honduras tested the two-tier architec-

ture, deployment and maintenance issues, and issues specific
to implementing these systems in developing countries. The
work there began in January 2004 with the tower instal-
lation occurring in August 2005, the first communication
test in March 2006, the test with sensing nodes and the
office installations in March 2007, and the water prototypes
throughout. All infrastructure remains with only the elec-
tronics removed to MIT for further work. We collaborate
with a local non-governmental organization, the Fundación
San Alonso Rodŕıguez (FSAR), to install the systems and
understand deployment issues.

On the communication side, we verified our two-tier ap-
proach. We first focused on the usability of the 144 MHz
radios. To communicate at these ranges reliably, the radio
antennas need line-of-sight high in the air, which requires
antenna towers and limits the ability to test this portion
of the system in the US. With FSAR help, we arranged
access to land and built 5 meter antenna towers at two
river sites where we plan to install water level sensors for
144 MHz radio communication (see Figure 12) along with
10 meter towers at the FSAR office and the government
emergency management office in Tocoa. With these towers,



Prediction
Time (Hours)

Modified Correlation
Coefficient

Our Model 1 0.9925
Our Model 8 0.770
Our Model 16 0.596
Persistence 1 0.9923
Persistence 8 0.733
Persistence 16 0.554

Table 6: Comparison of Model Results for Dover
Data

we verified both the communication range and the ability of
our modems to communicate data over this range. Sending
from our furthest tower 53 km away, with the radios set to
the lowest 25 W transmission setting, we received all data
packets transmitted. With no towers further away, we were
unable to determine the maximum range possible, at this
time. Due to hurricanes in 2005, we also proved that the
towers and antennas will survive hurricane force winds.

Next, we added 4 sensing nodes to the system for a 4
day test. While no interesting weather occurred, this did
verify collecting data from the sensing nodes, transmitting
that data over 900 MHz to the computation nodes, and
retransmitting that data over 144 MHz.

Figure 12: 5 Meter Antenna Tower for Computation
Nodes

At the offices, in addition to the towers, we worked to
design and install secondary solar power systems. We would
prefer to use grid power if it exists, but need solar power
backup for the daily fluctuations of that system along with
the major outages associated with disasters. FSAR worked
with a local company to purchase panels, batteries, and
a charge controller. We added an off-the-shelf inverter, a
power strip, and very simple custom electronics to switch to
solar at the absence of grid power. We installed these sys-
tems at both offices and are running long-term usage tests.
At the government office, we also installed a permanent radio
and laptop for development of that interface, using it both
for longer term radio tests and exploring issues with the
interface.

Figure 13: Installation of Water Level Prototype by
FSAR Employees

Another area of testing has been the water measuring
system. We have created five different prototypes of this
system installing each for several months in Honduras with
the help of FSAR (see Figure 13). Through these proto-
types, we settled on measuring water pressure as a method
of obtaining river level. Other options such as resistive water
level sensors were rejected due to corrosion issues, while
ultrasonic sensors were rejected due to the indirect nature of
the measurement along with reduced ability in high winds.
These prototypes allowed us to understand the complexities
of installing something in a flooding river since box move-
ment reduces the efficacy of the measurement. Structures
must hold the sensor in a fixed spot while ensuring the
system does not sink in the soft ground of the river and
that it is retrievable for maintenance. We developed two
different solutions allowing us to install the system on a
bridge for greater reliability and also in the middle of the
river when the situation necessitates.

All of this work has helped create the infrastructure nec-
essary to achieve our goal of a demonstration system. Next,
we plan to perform a long-term test of the communication
system in Massachusetts with the algorithm distributed on
the system and then install everything in Honduras in time
for hurricane season.



6. CONCLUSION
We described in this paper an architecture for predictive

environmental sensor networks over large geographic areas.
These systems are node-limited due to region size and cost
constraints. They also have significant system requirements
due to the real-time need for the data, destructive events,
and long operational lifetime.

Our sensor network solution addresses these requirements,
consisting of two communication tiers, four node types, and
support for a variety of sensor types. We focused on the
event of river flooding, specifically in Honduras. The paper
describes our work on the flood prediction algorithm that
will eventually run on the system and the implementation
of the sensor network architecture for this application. Lo-
cally, we installed 3 nodes on the upper Charles river at
Dover and gathered 5 weeks of data, which we ran through
our prediction algorithm, demonstrating both our system
functionality and algorithmic functionality. In Honduras, we
built several key pieces of infrastructure, including the radio
antenna towers, and tested several system components.

Future work involves adding the flood prediction algo-
rithm to the network and connecting the Dover sensors through
the computation nodes to MIT. This will provide a sufficient
enough test for us comfortably plan a permanent system
installation in Honduras, a further test of the practicality
and robustness of the system.
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[42] J. A. Vrugt, B. O. Nualláin, B. A. Robinson, W. Bouten,
S. C. Dekker, and P. M. Sloot. Application of parallel
computing to stocahstic parameter estimation in
environmental models. Computers and Geosciences,
32:1139–1155, October 2006.

[43] P. J. Webster and R. Grossman. Forecasting river discharge
into Bangladesh on short, medium and long time scales.
Climate Forecasting Applications in Bangladesh, January
2003. Online at http://cfab.eas.gatech.edu/cfab/
Documents/InfoSheets/CFAB_forecast.pdf.

[44] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and
M. Welsh. Fidelity and yield in a volcano monitoring sensor
network. In OSDI ’06: Proceedings of the 7th Symposium
on Operating Systems Design and Implementation, pages
381–396, Berkeley, CA, USA, 2006. USENIX Association.

[45] P. Zhang, C. M. Sadler, S. A. Lyon, and M. Martonosi.
Hardware design experiences in ZebraNet. In SenSys ’04:
Proceedings of the 2nd International Conference on
Embedded Networked Sensor Systems, pages 227–238, New
York, NY, USA, 2004. ACM Press.


