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ORIGINAL ARTICLE

Model-Based Network Meta-Analysis: A Framework
for Evidence Synthesis of Clinical Trial Data

D Mawdsley1*, M Bennetts2, S Dias1, M Boucher2 and NJ Welton1

Model-based meta-analysis (MBMA) is increasingly used in drug development to inform decision-making and future trial
designs, through the use of complex dose and/or time course models. Network meta-analysis (NMA) is increasingly being
used by reimbursement agencies to estimate a set of coherent relative treatment effects for multiple treatments that respect
the randomization within the trials. However, NMAs typically either consider different doses completely independently or lump
them together, with few examples of models for dose. We propose a framework, model-based network meta-analysis
(MBNMA), that combines both approaches, that respects randomization, and allows estimation and prediction for multiple
agents and a range of doses, using plausible physiological dose-response models. We illustrate our approach with an
example comparing the efficacies of triptans for migraine relief. This uses a binary endpoint, although we note that the model
can be easily modified for other outcome types.
CPT Pharmacometrics Syst. Pharmacol. (2016) 5, 393–401; doi:10.1002/psp4.12091; published online 1 August 2016.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
� Methods to assess consistency in MBMA are limited.

NMA methodology gives a self-consistent set of effect

size estimates, but limited work has been done to incor-

porate dose response.
WHAT QUESTION DID THIS STUDY ADDRESS?
� To allow dose response modeling within an NMA

framework.
WHAT THIS STUDY ADDS TO OUR KNOWLEDGE
� The methods presented here allow arbitrary dose-

response models to be incorporated into an NMA,

allowing prediction of compound efficacies across the
studied dose range.
HOW THIS MIGHT CHANGE DRUG DISCOVERY,
DEVELOPMENT, AND/OR THERAPEUTICS
� By making full use of trial data and pharmacological-
ly derived dose response models, these techniques
have the potential to accelerate the drug development
process, while being assured of the consistency of evi-
dence being used in the evidence synthesis.

Model-based meta-analysis (MBMA) has become an increas-
ingly important tool in drug development to inform study
design and decision-making since it was first proposed (by
Mandema et al.1). By including a dose and/or time response
model in the meta-analysis it is possible to compare treat-
ments at doses and/or times that have not been directly com-
pared in head-to-head trials, potentially reducing the number
of trials required, allowing the competitive landscape to be sur-
veyed, and reducing the risk of late stage trial failure.2 The
dose-response and time course patterns have been modeled
using a variety of functional forms, including maximum effect
(Emax)1 and linear3 models.

Network meta-analysis (NMA)4,5 provides a method to
combine evidence on relative effects from comparative ran-
domized controlled trials (RCTs) that form a connected net-
work (where a path can be drawn between any two
treatments). NMA is increasingly being used by reimburse-
ment agencies,6,7 where the focus is on making decisions
about relative efficacy and cost-effectiveness based on late
stage and post filing RCT evidence. In contrast, MBMA
tends to be used throughout the drug development process.
NMA combines all evidence simultaneously, which means

that both direct and indirect evidence contribute to relative

effect estimates. When there are “loops” in the network

then there is both direct and indirect evidence on the rela-

tive effects relating to that loop. For example, in Figure 1

there is direct evidence comparing sumatriptan with eletrip-

tan but also indirect evidence from the sumatriptan vs. pla-

cebo trials and the eletriptan vs. placebo trials. Where both

direct and indirect evidence exist, NMA provides a means

of assessing the agreement between both types of evi-

dence.8 Although model estimates of treatment effects will

be consistent, the underlying data may not be. Where there

are differences between direct and indirect evidence this is

termed “inconsistency.”
In contrast to MBMA, the synthesis of multiple doses of

the same agent is more limited within an NMA. Typically,

different dose levels are either “lumped,” (i.e., assumed to

have the same efficacy), or “split” where each agent by

dose combination is considered as a separate treatment.

Lumping increases the between-study heterogeneity and

the risk of inconsistency in the network. Interpretation of

the results from a lumped NMA (a weighted average across
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all doses included for each agent) is also unsatisfactory. In
contrast, a split analysis will typically have smaller
between-study heterogeneity, but will estimate effect sizes
with lower precision, because each contrast is informed by
fewer trials. A split network may even become disconnect-
ed, meaning that some treatments cannot be compared.

Del Giovane et al.9 have proposed models that treat dif-
ferent doses of the same agent as “similar” (exchangeable)
using a hierarchical model with dose within agent, and by
modeling adjacent doses with a random walk process, but
the interpretation of estimates from these models can be
difficult. Owen et al.10 proposed a hierarchical model that
assumes a monotonic but nonparametric dose response
between nodes representing different doses of the same
drug, however, this does not allow prediction of effects at
doses not included in the RCTs. Thorlund et al.11 assumed
a linear dose response model on the log-odds scale in an
NMA for doses at half or double each drug’s “common”
dose. This approach allows for prediction at doses not
included in the RCTs, but a linear model may be too
restrictive and is not biologically plausible in many
applications.

We propose a new framework, model-based network
meta-analysis (MBNMA), that combines the advantages of
MBMA and NMA. We illustrate our approach with an exam-
ple that uses a binary endpoint to compare the relative effi-
cacies of triptans for migraine relief. We also describe how
the Bayesian framework proposed can be used to model
other output types, such as continuous outcomes.

The study is organized as follows. We begin by setting
out NMA and MBMA models before describing our MBNMA
framework. We then describe our illustrative example and
present results. We end with a discussion contrasting the
different methods and outline challenges for future work.

MATERIALS AND METHODS
Description of models
Model-based meta-analysis. MBMA has typically been used

in pharmaceutical decision-making, whether it be to inform

study design, define decision criteria for a successful study

with a new compound, or simply learning about different

attributes of competitor drugs. For much of drug develop-

ment, the emphasis is on learning rather than confirming,12

leading to the focus being less on a single end of study

endpoint for an approved dose and more on dose response

and time-course as well as relevant covariates. In the

future, however, it is likely that MBMA will play an increas-

ing role in regulatory submissions and reimbursement

decisions.
It is possible to synthesize different dose and/or time

points within a single meta-analysis, by modeling plausible

dose or time responses.1 The Emax model is widely used

to model the effect of a drug as a function of dose, x, and

takes the following form:

Response5E0i 1
Emax50ti ;k 1xi ;k

ED50ti ;k 1xi ;k
(1)

The model assumes there is an Emax relative to placebo

response (E0) corresponding, physiologically, to the drug

saturating the body’s receptors.13 The ED50 parameter rep-

resents the dose at which half the maximum effect is

reached.
Because RCTs are designed to provide estimates of rela-

tive effects, not absolute effects, the estimated outcome for

E0i of Eq. 1 is treated as a “nuisance” parameter. For each of

the other arms, a relative effect is estimated for the treatment

on that arm relative to the control arm treatment, thereby

ensuring that the principle of concurrent control is respected.

From a learning perspective there is often a desire to assess

covariates that may influence the size of the placebo

response. This might be with the aim of designing a study

with a population in which placebo response tends to be low-

er. There tend to be two approaches to fitting E0i. One is to

assume the placebo response is different for each study

(modeling heterogeneity as independent, the nuisance

parameter approach) while the other is to fit with random

effects (hence, modeling heterogeneity as random but similar

across studies). In this latter approach, the principle of con-

current control is violated, which can lead to biased estimates

of relative effect.14 The extent to which this will be a problem

will depend on the variation in sample size ratios between

groups within trials, across the studies.15 Although this has

been discussed from a linear model point of view, the authors

are not aware of any such research into the significance of

this issue in nonlinear MBMA models. Often the placebo

effect is of interest in itself, making it attractive to put a ran-

dom effects model on the placebo arm. This is better

achieved by a separate analysis of the placebo arms, which

delivers estimates of placebo effect, but avoids introducing

bias in the estimation of the relative effects.
Time-course of response is often fitted using an Emax

model or a simpler exponential model. It is not unusual to

model dose and time with a single MBMA.16,17
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Network meta-analysis. NMA was first introduced by Hig-

gins and Whitehead4 and was further developed by Lu and

Ades18 and Dias et al.19,20 In order to respect the principle

of concurrent control, a relative effect relative to the control

arm treatment effect (which is treated as a nuisance

parameter) is calculated. The general model is:

gðhi ;k Þ5
li when k51

li1di ;k when k � 2

(
(2)

where g is a link function that transforms the outcome onto an

appropriate scale (e.g., the logistic function for the log-odds

scale for binary outcomes, or the identity function for continu-

ous outcomes),19 h is a parameter that the data provide

information on directly through the likelihood (e.g., mean or

proportion), li is the effect on arm 1 of study i, which we treat

as a nuisance parameter, and di,k is the relative effect for arm

k of study i, relative to the reference treatment of the study.

Either a fixed effect model, or, if there is heterogeneity in rela-

tive effect estimates between studies, a random effects model

can be fitted. For a fixed effect NMA model all the studies are

assumed to be estimating the same underlying effect for the

treatments that they compare, so we set:

di ;k 5dti;1;ti ;k (3)

where ti,1 and ti,k are the treatments in the first and kth

arms of the ith trial and db,k is the relative effect of

Figure 2 Schematic diagram illustrating how Eq. 7 picks out the correct relative effect for each comparison. In sub-figure i, dose xi of
agent 1 is compared to placebo. In ii, two different doses of agent 1 are compared. In iii and iv, different doses of agents 1 and 2 are
compared.
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treatment k relative to treatment b. The fixed-effect model
extends naturally to a random-effects model, where we have:

di;k � Nðdti;1;ti ;k ;r
2Þ (4)

so that each study is estimating a true underlying effect, and
these are assumed to be exchangeable. The r2 represents
the between study variability in relative effects, which is usu-
ally assumed to be common to all comparisons. The random
effects generated by multi-arm trials are correlated; this must
be accounted for in the model, as described in Dias et al.19

An NMA consisting of s treatments can be defined in
terms of s21 basic parameters, d1,2,d1,3,. . .d1,s21, which
estimate the effects of all treatments relative to the refer-
ence treatment. All other treatment contrasts are defined
as functions of the basic parameters, ensuring consistency

of all the estimated contrasts.19 This follows from the

assumption of exchangibility5:

dc;k 5d1;k 2d1;c (5)

Model-based network meta-analysis. We extend the MBMA

and NMA frameworks to an MBNMA as follows. Following

the NMA framework, we specify an appropriate likelihood

and scale for our data and model. In our illustrative exam-

ple, we have a binary outcome, so we use a binomial likeli-

hood and logistic link function, and interpret our relative

effects, d, as log-odds ratios.

logitðpikÞ5
li when k51

li 1di ;k when k � 2

(
(6)
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As with the NMA approach, other likelihoods and link func-
tions, appropriate to the outcome scale (e.g., continuous
outcomes using a normal likelihood, and natural link), can
be used (see Eq. 2 and Dias et al.20).

We treat the log-odds of an event in arm one of each trial
as a nuisance parameter. In a fixed effect model, the relative
effect for arm k relative to arm 1 in study i is modeled as:

di ;k 5f ðxik ; tik Þ2f ðxi1; ti1Þ (7)

where tik and xik are the agent index and dose,
respectively.

The f(xik, tik) represents the functional form of the dose-
response relationship (assumed common to all agents).

Eq. 7 ensures that the correct comparison is made
between the agent and dose on arm k with the agent and
dose on arm one, as illustrated in Figure 2.

For a random effects model, we assume that there is
between-study variability around the estimated relative
effects after accounting for the agents and doses that have
been compared via the dose-response model, given by:

di ;k � Nðf ðxik ; tik Þ2fðxi1; ti1Þ;r2Þ (8)

Multi-arm trials are dealt with in the same way as a stan-
dard NMA.19

In principle, any function of dose and treatment could be
used. We consider the linear model:

eletriptan sumatriptan frovatriptan

almotriptan zolmitriptan naratriptan

rizatriptan zolmitriptan (full dose range) 

-2

-1

0

1

-2

-1

0

1

-2

-1

0

1

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

0.0 0.5 1.0 1.5 2.0 0.0 2.5 5.0 7.5 10.0
Standardized dose

Lo
g-

od
ds

 o
f r

es
po

ns
e

Emax

Linear w. int

Lumped

Split
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dose range. Medians and 95% credible intervals are shown. The mean from a random effects model for placebo response across all
placebo controlled trials was used to produce predictions for a typical trial.
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f ðxik ; tik Þ5btik 1dtik xik (9)

and a linear model excluding the intercept term, btik .
For the Emax model we take:

fðxik ; tik Þ5
Emaxtik xik

ED50ti ;k 1xik
(10)

Because ED50 is a dose, it is necessarily positive, so we
model this parameter on the log-scale. We do not make
such an assumption for Emax to allow the possibility that
treatments may have either beneficial or harmful effects.
We note that the Emax model will require a rich data struc-
ture to estimate all the parameters, and, in many practical
cases, may not be fully identifiable. We therefore consider
models that assume that one or both of Emax and ED50
are exchangeable across agents within drug class, Emaxt

� NðlEmax; r
2
EmaxÞ, and/or ED50t � NðlED50; r

2
ED50Þ. This

allows the model to “borrow strength” across agents in
order to improve estimation.21–23

Estimation
MBMAs are typically estimated using frequentist methods
in nonlinear modeling software, such as NONMEM,24 R25,
and S-Plus,26 although they could also be specified using
Bayesian methods.

NMA models have been estimated using frequentist and
Bayesian approaches. We follow Dias et al.19 and adopt a
Bayesian approach. We fit our models using JAGS 3.4.0,27

which has a very similar modeling language to WinBUGS
(code included in the Supplementary Material). The lan-
guage’s flexibility allows us to extend the NMA framework
to MBNMA. Vague normal prior distributions (N(0,1000))
are given to the basic parameters d1,k, nuisance parame-
ters li. We model the between-study SD and the SDs on
the exchangeable parameter distribution using a uniform(0, 4)
prior. As meta-analysis models may be sensitive to the choice
of prior for this parameter, the analysis was repeated for the
Emax MBNMA model using a half-normal prior with precision
100, with almost identical results.

The parameter estimates from the models can be used
to make predictions for response for dose by agent combi-
nations. This is achieved by applying the estimated relative
effect for each treatment to an estimate of the placebo
effect. We obtain the placebo effect estimate using a ran-
dom effects model for the placebo arms in the trials that
included placebo, calculated separately to the MBNMA. We
use the mean of the random effects distribution to simulate
predictions for a “typical” trial. An alternative approach is to
draw simulations from the whole distribution to capture the
uncertainty in this estimate together with uncertainty in the
relative effect estimates to form prediction intervals.

Model checking
Goodness of fit of MBMA is typically assessed using stan-
dard frequentist methods, such as likelihood ratio tests.
Model fit of Bayesian NMA and MBNMA can be assessed
by inspecting the posterior mean of the residual deviance,28

where lower values indicate better model fit. Models can
also be compared using the Deviance Information Criterion
(DIC),29,30 which represents a compromise between model

fit and complexity; smaller values are preferred, with differ-
ences of three or more considered meaningful. With nonlin-
ear models it is important to use the “plug-in” method for
the effective numbers of parameters used to calculate DIC,
as JAGS and WinBUGS default values can be unreliable
for these models.28

Methods for assessing the consistency of evidence
included in an MBMA are less well developed than in NMA.
In NMA, the consistency of direct and indirect evidence in
the whole network can be assessed by comparing the fit of
the NMA model to an unrelated mean effect (UME) model
(also known as an inconsistency model).31 The UME model
estimates each treatment contrast using only direct evi-
dence, while still assuming a common between-study vari-
ance parameter. This approach makes no use of indirect
evidence, and is equivalent to simultaneously performing
separate pairwise meta-analyses, assuming a common
between-study variance. The overall model fit and between-
study heterogeneity are compared to the full NMA model.
The mean contribution of each data point to the posterior
mean residual deviance can also be compared; when some
points have substantially larger deviance contributions
under the NMA model than the UME model this may be
indicative of inconsistency.

This approach can be extended to an MBNMA. We com-
pare the mean contributions to posterior mean residual
deviance from each data point in the MBNMA models to a
UME model, which relaxes the assumption of consistency
and which assumes no functional relationship between
dose and response (i.e., in which the treatments are equiv-
alent to those in the split NMA).

Illustrative example
We illustrate our model using published clinical trial data for
the efficacy of triptans in migraine pain relief.11 The head-
ache free at two hours’ endpoint was used to compare the
efficacy of the agents as a function of dose. We used data
from patients who had a least one migraine attack, who
were not lost to follow-up, and who did not violate the trial
protocol.11 Where this information was not available, the
data were augmented with modified intention to treat data
(i.e., excluding patients who, although randomized, did not
suffer at least one migraine attack).

Our data-set consists of 70 RCTs, comparing 7 triptans
and placebo. Figure 1 shows the network of comparisons
in the data, ignoring the doses of each comparison. Figure
3 shows plots of the log-odds of response as a function of
dose for each agent. A nonlinear dose response can be
seen in some agents, however, for some agents the limited
amount of data makes it difficult to infer an appropriate
dose response model.

The trials contained dose information, which was stan-
dardized to multiples of each agent’s “common” dose; the
single dose indicated by the US Food and Drug Administra-
tion (with the exception of sumatriptan, where, following
Thorlund et al.,11 a common dose of 50 mg was used).

We performed “lumped” and “split” NMAs using the code
from the NICE TSD series.20 In the lumped model, we
treated all doses for each drug as equivalent. When trials
contained multiple arms for the same drug, we assumed
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that the relative effect for these arms was zero, noting that

such trials would still contribute to our estimate of between

study heterogeneity. In the split network, each combination

of drug and standardized dose was treated as a separate

treatment in our network of comparisons.
MBNMAs were fitted using (i) a linear dose response on

the log-odds scale (with and without an intercept term) and

(ii) an Emax MBNMA, using the whole dose range available

for each drug. As we had a limited dose range, the ED50

parameter in the Emax MBNMA proved difficult to estimate

reliably. We therefore fitted models that assumed that either

or both parameters were exchangeable about respective

common means.
All models were run on three independent chains for

40,000 iterations following 40,000 burn-in iterations, with a

thinning parameter of 10. Gelman’s r̂ statistic32 and visual

inspection of the chains were used to assess convergence.

RESULTS

Table 1 shows goodness of fit statistics for the lumped and

split NMAs, and for the MBNMAs described above, howev-

er, we were unable to identify the between agent SD for

the “Emax (Emax exch.)” model, so results for this model

must be interpreted with caution. Table 2 shows the esti-

mate of the class means and SDs for the models with class

effects.
Comparing the lumped and split NMA, the split NMA has

the smaller DIC, indicating that, taking model complexity

and fit into consideration, it should be preferred over the

lumped model. As we would expect, the lumped model,

which treats the different doses (and hence responses) of
each agent as equivalent, has a larger between-study het-
erogeneity than the split model.

Of the two linear models considered, the model that
included the intercept term fitted the data better; it had a
lower DIC and smaller between-study heterogeneity. All the
Emax MBNMAs have a similar level of between-study het-
erogeneity, which is slightly larger than in the split model.
The Emax MBNMA that assumes a class effect on ED50
gave lower heterogeneity and lower DIC statistics than
those that did not.

We see that, according to the DIC statistic, the Emax
MBNMA, which assumes exchangeable Emax and ED50
parameters, is the best compromise between-model fit and
complexity and has the smallest between-study heteroge-
neity. We therefore do not consider the other Emax
MBNMAs in the remainder of this article.

We include a visual predictive check of this model in the
Supplementary Figure S1, which suggests the model cap-
tures the data well. A plot of deviance contributions as a
function of standardized dose (Supplementary Figure S2)
shows that vast majority of deviance contributions are �1
(we would expect each data point to contribute �1 to the
residual deviance), although there are some larger resid-
uals for placebo response suggesting greater than
expected baseline variability. The observed total residual
deviance is 191.92; comparable to the number of data
points (182).

Figure 4 shows predictions for a typical trial of the pro-
portion of headache-free patients as a function of dose for
each agent under the lumped and split NMA and the linear
(with intercept) and Emax MBNMAs. The Emax MBNMA

Table 2 Class means and SDs

lEmax rEmax lED50 rED50

ED50 exch. 0.766 (0.331–4.725) 1.639 (1.022–17.7)

Emax exch. 1.653 (1.155–2.393) 6.942 (1.167–19.028)

Emax and ED50 exch. 2.114 (1.446–2.838) 0.518 (0.051–1.412) 0.676 (0.315–1.552) 1.539 (1.028–4.916)

Emax, maximum effect; ED50, dose at which half maximum effect obtained.

Estimates of ED50 have been converted to the natural scale. Medians and 95% credible intervals are shown. Owing to difficulties estimating rEmax, we used a

uniform(0,20) prior for this parameter.

Table 1 Model fit statistics for the NMA and MBNMAs considered in the main text

Model DIC pD Residual deviance Between-study SD

Lumped NMA 330.51 141.47 189.04 0.373 (0.289–0.469)

Split NMA 325.21 135.63 189.58 0.27 (0.178–0.376)

Linear MBNMA 337.70 154.68 183.02 0.556 (0.46–0.672)

Linear MBNMA w. intercept 320.98 132.29 188.69 0.274 (0.192–0.371)

Emax MBNMA 327.70 136.89 190.81 0.285 (0.193–0.392)

Emax (ED50 exch.) 321.75 130.23 191.52 0.249 (0.159–0.35)

Emax (Emax exch.) 327.51 136.45 191.06 0.292 (0.188–0.418)

Emax (Emax & ED50 exch.) 318.70 126.77 191.92 0.242 (0.16–0.335)

UME 345.58 136.46 209.12 0.22 (0.098–0.34)

DIC, Deviance Information Criterion; Emax, maximum effect; ED50, dose at which half maximum effect obtained; MBNMA, model-based network meta-

analysis; NMA, network meta-analysis; pD, parameters; UME, unrelated mean effect.

The DIC and effective number of pDs are calculated using the plug-in method. Mean residual deviance and median between-study heterogeneity (with 95%

credible intervals) are reported. The data contain 182 data points; we would expect each to contribute � 1 to the residual deviance.
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tends to have a smaller prediction interval than the linear or
split models, and appears to capture the agents’ observed
dose responses well.

The UME model gave a lower estimated between-study
SD than the MBNMA models, suggesting evidence of
inconsistency. The results should therefore be interpreted
cautiously and further exploration of inconsistency is
required (e.g. using node-splitting).

DISCUSSION

We have shown how the NMA framework can be extended
using ideas from the MBMA literature to incorporate dose-
response models. By applying the consistency equations
from NMA at the level of the dose-response curve we
construct a model that ensures that the agents’ dose-
responses are modeled in a coherent manner. In this
framework, both direct and indirect evidence may inform
our parameter estimates. The consistency of the direct and
indirect evidence can be assessed with an unrelated mean
effects model,33 although this does not make full use of the
modeled dose-response. We note that other approaches to
assessing the consistency of direct and indirect evidence
exist, such as node splitting,8 which assesses the consis-
tency of each contrast where both direct and indirect
evidence exists. Further work is required to extend the
node-splitting methodology to MBNMA.

We illustrated our method using a dichotomous end point
(“headache-free at 2 hours”) using a binomial likelihood.
However, the methods are applicable to any generalized lin-
ear model with an appropriate likelihood and link function.
Dias et al.19,20 provide example WinBUGS codes for NMAs
for many outcome types, such as using a normal likelihood
to model a continuous endpoint. The methods presented
here could be similarly adapted for other outcome types.

Many early phase studies report repeated measures over
time. There have been applications of MBMA, which can
simultaneously model dose and time course information.1,16

In this article, we considered a single outcome at a single
time point. We note that Jansen et al.34 modeled the
time-course of interventions for knee osteoarthritis using
fractional polynomials,35 which allowed for between-study
heterogeneity on one of the fractional polynomial parame-
ters. We plan to extend the MBNMA framework to simulta-
neously model dose and time course.

The MBNMA approach provides a more flexible modeling
approach than either lumped or split NMAs. In a lumped
NMA, we are unable to make predictions as a function of
dose. Split NMAs do not assume any form of dose-
response relationship, and so can only be used to make
predictions at trialed doses. This limits the utility of such
models in a drug-development context, where we may wish
to make predictions at doses that have not yet been trialed
for future studies. In a policy context, we are interested in
licensed doses of agents, and so prediction for doses not
included in RCTs is not an issue, however, including early
phase studies with dose-response information may improve
precision of estimates of relative efficacy for doses that we
are interested in, and may help to connect the network of

evidence, allowing a wider range of agents to be compared.

Furthermore, agents may not have been compared with an

appropriate dose of a comparator agent and prediction of

the relative efficacy of the agent under consideration

against alternative doses of the comparator agent may be

of interest. MBNMA models facilitate such comparisons.
The MBNMA approach we have outlined makes full use

of all trial data, and models a dose response curve. The

functional form chosen for the dose response could be

informed by goodness of fit statistics (as in our example)

and/or by pharmacological arguments. In this example, we

found that the linear model with intercept fitted the data bet-

ter than the model without an intercept, even though the

intercept term is problematic to interpret from a pharmaco-

logical perspective; it can be thought of as representing

nonlinearity as the dose falls to zero.
By modeling between-study heterogeneity at the level of

the adjusted outcome, we measure it on the same scale as

the outcome, making its interpretation more straightforward.

We had previously investigated models that allowed for

between-study heterogeneity in the Emax and/or ED50

parameters, but found they suffered from parameter identifi-

cation issues, and create difficulties for multi-arm trials.
In this example, where all drugs were triptans, we

assumed that each of the model parameters was

exchangeable about its own class-specific mean in order to

improve estimation and parameter identifiability. This

extends naturally to the case where there are several clas-
ses of drugs being evaluated, where it might be appropriate

to assume exchangeability within each drug class. In future

work, we plan to conduct a simulation study to better

understand the model’s data requirements if we wish to

avoid assuming exchangeability.
In summary, we have presented an MBNMA framework

that combines evidence from RCTs comparing treatments

(agent and dose combinations), respects randomization in

the included RCTs, allows estimation and prediction of rela-

tive effects for multiple agents across a range of doses,

uses plausible physiological dose-response models, allows

assessment of model fit and evidence consistency, and

therefore has a valuable role in drug development and reim-

bursement decisions.
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