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Abstract
We describe a method for normalization in 3D PET for use with maximum
a posteriori (MAP) or other iterative model-based image reconstruction
methods. This approach is an extension of previous factored normalization
methods in which we include separate factors for detector sensitivity, geometric
response, block effects and deadtime. Since our MAP reconstruction approach
already models some of the geometric factors in the forward projection,
the normalization factors must be modified to account only for effects not
already included in the model. We describe a maximum likelihood approach
to joint estimation of the count-rate independent normalization factors, which
we apply to data from a uniform cylindrical source. We then compute
block-wise and block-profile deadtime correction factors using singles and
coincidence data, respectively, from a multiframe cylindrical source. We have
applied this method for reconstruction of data from the Concorde microPET
P4 scanner. Quantitative evaluation of this method using well-counter
measurements of activity in a multicompartment phantom compares favourably
with normalization based directly on cylindrical source measurements.

1. Introduction

Accurate normalization is essential for accurate quantitative three-dimensional (3D) PET.
Inaccuracies in normalization factors can result in artefacts, poor uniformity and increased
noise in the reconstructed images. Traditional solutions to the normalization problem include
direct and component-based methods. In direct methods a known source of activity is
scanned, then the normalization factors are estimated as the ratio between the ideal number of
coincidences and those actually measured (Defrise et al 1991). The main problem with this
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method is that it requires that a very large number of counts be detected to achieve acceptable
statistical accuracy for each line of response (LOR). To maximize the number of counts over
all LORs, direct approaches typically use a uniform cylindrical source. Unfortunately, this
introduces its own problems since the observation model is complicated by a substantial scatter
fraction.

Hoffman et al (1989) proposed a component-based method that divides the normalization
factors into detector efficiency and spatial distortion correction, where the latter accounts
for the radial mispositioning due to the geometry of the scanner. This model reduces the
number of counts required by reducing the degrees of freedom in the normalization model so
that the normalization factors are computed by averaging over multiple LORs. Casey et al
(1995) and Badawi and Marsden (1999) extended this concept to develop sophisticated models
accounting for a wide variety of factors affecting detection efficiency. Casey’s normalization
model includes intrinsic detector efficiency, a geometric factor, crystal interference and a
deadtime factor. Badawi and Masden (1999) added time-alignment factors and a count-rate
dependent block-profile to this model.

These models are complex and involve the sequential estimation of multiple types of
normalization factors, often from different datasets. This can lead to inconsistent estimates
since the normalization models are multiplicative. While optimal estimation of individual
components, e.g. the detector efficiencies (Defrise et al 1991, Badawi 1998) have previously
been investigated, joint estimation of all factors in the component-based models has not, to the
best of our knowledge, previously been described. Here we present a unified model in which all
factors are estimated simultaneously within a maximum likelihood framework. This model is
specifically matched to the model-based maximum a posteriori (MAP) reconstruction method
described by Qi et al (1998). The combination of our previously described system model with
matched normalization allows us to explicitly account for the imperfections in the line-integral
model using an accurate physical and statistical model for coincidence detection. In this way
we build on our previous model, which included effects of detector solid angle, photon pair
non-colinearity and intercrystal scatter and penetration, to also include effects arising from the
block design, individual detector efficiencies, geometric effects and deadtime.

We describe our model-based approach below and present the results of experiments in
which we applied this approach to data from the microPET P4 small animal scanner (Concorde
Microsystems, Knoxville, TN).

2. Methods

2.1. Normalization within a statistical image reconstruction framework

We have developed a MAP estimation algorithm to reconstruct 3D PET images (Qi et al 1998).
In this approach, the data are modelled as

y = Px + r + s (1)

where y is the mean of the data, x is the source distribution, r is the mean of the randoms and
s is the mean of the scattered events. P is the system matrix describing the probability that an
unscattered event is detected, which we factor as

P = PnormPblurPattnPgeom (2)

where Pgeom is the geometric projection matrix describing the probability that a photon pair
reaches the front faces of a detector pair in the absence of attenuation and assuming perfect
photon pair colinearity. Pblur models photon pair non-colinearity, intercrystal scatter and
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Figure 1. Illustration of the symmetries used in computing the geometric response.

crystal penetration, Pattn contains attenuation correction factors for each detector pair, and
Pnorm is a diagonal matrix containing the normalization factors for unscattered events.

The effects of solid angle variation at the detectors relative to the position of each voxel
along a line of response, and of variations in the angle between the detector surface and the
LOR, are accounted for in Pgeom. Similarly, the effects of crystal penetration that result
in mispositioning of events towards the edge of the field of view are included in Pblur.
Consequently, these need not be included in the normalization factors as they are in previous
factored methods (Casey et al 1995). Nevertheless, there are geometric factors that are not
accounted for in (2), for example the gaps between detectors and the effects of the block
design. These and other factors affecting sensitivity need to be included in the normalization
factors.

Our approach to computing the normalization factors is to use (1) to map a known source
distribution through the system matrix P and then choose the normalization factors to account
for the differences between this mapping and the observed data. The source we use is a
uniform cylinder. To account for statistical variability in the data, the normalization factors
are computed in a maximum likelihood framework.

The normalization factors for unscattered events form the diagonal elements of the matrix
Pnorm and are modelled as

Pnorm(i, i) = εd1i εd2i g(l, j, k)iτb1i ,b2i dd1i dd2i (3)

where we have used i to index the LORs. The specific detectors forming this LOR are denoted
d1i and d2i ; b1i and b2i are the blocks containing these detectors. The components of this
model are as follows.

Geometric factors g(l, j, k)i . The index (l, j, k)i represents the radial position l, the view
angle j, and the sinogram index k, associated with LOR i. The sensitivity of each LOR is a
function of the position of the two detectors in the block, the oblique angle of the LOR and the
distance of the LOR from the centre of the field of view of the scanner. Our geometric factor
combines the geometric and block-interference patterns of (Casey et al 1995) into a single
factor. Since the scanner is highly symmetric both axially and transaxially, many LORs are
equivalent in these respects. The microPET P4 has an 8 × 8 block design with 168 blocks
arranged as 32 rings with 336 detectors in each ring. Figure 1 illustrates a four-fold symmetry
of the LORs with respect to a single block A. There is another factor of two symmetry which
arises from LORs originating from block A but in the detector positions shown in blocks
B, C, D and E. These patterns are repeated for each block. Thus there are a maximum of
0.5 × 8 × 168 equivalent LORs, where the 0.5 factor results from including each LOR twice
when considering all detector blocks. The finite axial extent of the scanner results in missing
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symmetries in oblique LORs. In addition, some of the symmetries are redundant within a
single ring of blocks. As a result there are an average of 2.3 × 168 geometric symmetries for
each LOR in the P4 scanner.

Detector efficiency εd1i , εd2i . These quantities describe the intrinsic efficiencies of the
two detectors forming the LOR. The total number of such factors is equal to the number of
detectors.

Time-alignment factor τb1i ,b2i . The time alignment factor is based on the model proposed
by Badawi et al (1999) to account for differences in timing synchronization between different
blocks. As the timing windows become misaligned between any pair of blocks, the detection
efficiency drops. We assume an independent time-alignment factor for each pair of blocks.

Deadtime factor dd1i dd2i . The deadtime factors are estimated separately as described in
section 2.4.

2.2. Scattered and random events

Since we estimate the normalization factors from data acquired using a cylindrical source, it
is important to accurately model the effects of random and scattered events in the calibration
data using (1).

For a known source distribution, we compute the expected scatter distribution using a
fast Monte Carlo code that includes a multiple scatter model (Holdsworth et al 2002). The
observed scatter differs from the computed scatter by a normalization factor. We assume
that the normalization factors for scattered events differ from those for unscattered events,
since scattered events detected by each detector pair come from a large volume in the object
(Ollinger 1995), which makes the geometric factors unnecessary. Consequently, we model
the mean of the detected scattered events as

si = εd1i εd2i τb1i ,b2i dd1i dd2i s̃i (4)

where s̃i are the scattered events computed using the Monte Carlo scatter model.
We acquire the delayed events as a separate randoms sinogram when collecting the

cylindrical source calibration data, or equivalently when histograming the listmode stream
collected from the scanner. We then compute the mean of the randoms process by a maximum
likelihood technique, as described by (Mumcuoglu et al 1994), based on estimation of the
singles rates at each detector in the randoms sinogram. The estimated mean randoms sinogram
can then be substituted in (1) as a known quantity, independent of normalization factors other
than deadtime.

2.3. Normalization factor estimation

We compute the normalization factors described in the previous section using a joint maximum
likelihood optimization procedure. This differs from the common practice of using rotating
rod sources to compute geometric factors and cylinder data to compute geometric efficiencies
(Casey et al 1995, Badawi and Marsden 1999) and provides self-consistent estimates of the
unknown parameters. Moreover, by basing the estimation on the model (1), the normalization
is matched to the specific forward projection model that we subsequently apply during
reconstruction. We note also that this same approach can be used as part of an analytic
reconstruction method where we simply substitute the adjoint of the backprojection operator
in place of P in (1).
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Since the sinogram formed from the prompt-only events does include randoms, we can
accurately model the measurements as Poisson using (1) to give the log likelihood

L(θ) =
N∑

i=1

yi log yi − yi (5)

where θ represents the set of all normalization factors. The source distribution x in (1) is the
known cylindrical source. We estimate the parameters by maximizing L(θ) using a grouped
coordinate ascent method, updating each of the three groups of factors in turn using steepest
ascent with a Newton–Raphson line search (Fessler et al 1997). We find in practice that
effective convergence is reached in five iterations with three sub-iterations of line search at
each main iteration.

2.4. Deadtime estimation

We assume for the purposes of computing the count-rate independent normalization factors,
that the cylindrical source is of sufficiently low activity that deadtime effects are minimal.
This assumption is reasonable for the LSO detectors in the microPET P4 scanner for which
deadtime factors are considerably lower than they would be for a BGO system.

Deadtime is affected by the properties of the PMTs and detection electronics
(Badawi and Marsden 1999). Rather than adopt the exponential model that was developed by
Casey et al (1995), we instead use an empirical quadratic correction method (Tai et al 1998)
which relates observed and true singles rates at each block by

λt = λa

1 + αλa + βλ2
a

(6)

where λt is the true singles rate, λa is the detected singles rate, and α and β are experimentally
determined parameters. We allow a separate deadtime calibration of this type for each detector
block in the system, estimated from the measured singles rate for that detector block.

Block detectors also exhibit an additional deadtime effect, characterized by gradual
mispositioning of events towards the middle of the block as the count rate increases
(Germano and Hoffman 1990, Badawi and Marsden 1999). This mispositioning contributes
to a count-rate dependent variation of sensitivity across the detector blocks, which we report
on below. Our results indicate that these variations are significant so that we include these
factors in our deadtime correction.

Thus our overall deadtime model for each detector di , similar to that in Badawi and
Marsden (1999), is the product of the mispositioning deadtime dmp(di) and PMT and
electronics deadtime dpp(bi):

ddi
= dmp(di) × dpp(bi) (7)

where bi is the block containing detector di . The deadtime correction factor for each LOR is
then the product of the factors for the two detectors forming the LOR.

We estimate the factors dpp(bi) by observing the singles rate at each detector block over
a series of I frames, taken as an F-18 source decays over the expected range of activities for
the scanner. Since the LSO detectors have a natural background activity, we model the true
activity at the block as

λ(t) = A e−φt + C (8)
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Figure 2. Illustration of the components of the count-rate independent normalization factors.
Top row: normalized histograms showing distribution of the values of each factor; bottom row:
normalization factors for a single sinogram. Left: detector efficiency; middle: geometric factors;
right: time-alignment factors.

Figure 3. Normalization factors. Left: combined intrinsic, geometric and time-alignment factors
jointly estimated from 70M count dataset; right: factors computed directly from a 600M count
dataset.

where A is the initial singles rate, φ is the decay constant, and C is the background activity.
Integrating this activity over the duration of each frame from time ti to ti + T and applying the
deadtime model (6) we obtain the series of equations

A

−φT
[(e−φ(ti+T ) − e−φti )] + C = λa,i

1 + αλa,i + βλ2
a,i

(9)

for i = 1, . . . I where λa,i is the observed total singles rate at the ith frame and α, β,C and
A are the constants to be estimated for each block. This set of equations is solved using
nonlinear least squares to obtain a separate pair of parameters for each detector block. The
mispositioning deadtime parameters were computed as described by Badawi (1998).

3. Experimental studies

3.1. Cylinder calibration experiments

Using the method described above, we estimated normalization factors for the microPET P4
scanner. A 262 cc cylinder, diameter 5.5 cm and length 11.4 cm, containing 2.5 mCi F-18
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Figure 4. Deadtime correction factors. Top: results from fitting the quadratic deadtime model
to singles data from a 2.5 mCi cylinder; shown are the measured versus quadratic fit to observed
singles rates for eight different block detectors. Here a true singles rate of 16 × 104 corresponds
to about 2.5 mCi activity; bottom left: transaxial block profile factors computed from coincidence
data for a measured singles rate of 20 K for eight different detector rings. The eight profiles are
displayed separately by adding multiples of 0.1 to each profile so that they do not overlap. Bottom
right: axial block profile from same data as left.

solution was scanned for 10 h. Data were initially collected in listmode format and then
re-sorted into prompt and delayed event sinograms for each frame. Singles rates for each
block were also obtained for each frame. The data from the last two hours of the study were
used to form the prompt and delayed sinograms used in estimating the count-rate independent
normalization factors.

For comparison, we generated normalization factors directly from a frame of 2 h duration
with start time 2 half-lives after the start of acquisition. This frame contained approximately
600M counts compared to 70M in the frame used to estimate the model-based normalization
factors. The higher counts are necessary for the direct normalization method since the
factor for each LOR is proportional to the total detected counts at that LOR and hence
more sensitive to photon counting noise than the model-based factor computed using our
method.

Ten additional frames were also generated from the listmode data, with each frame of
20 min duration and start point 0.5 half-lives after the start of the previous frame. The average
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Figure 5. Comparison of reconstructed cylindrical phantom data. Top left: direct normalization,
high count (139M); top right: model-based normalization, high count; bottom left: direct
normalization, low count (42M); bottom right: model-based normalization, low count.
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Figure 6. Axial profiles formed by integrating over transaxial images in each plane. Left: high
count frame; right: low count frame.

singles rate for the first frame for each block was 1.43 × 105, the average singles rate for the
last frame was 827, which was largely due to background radiation from the LSO detectors.
These data were used to compute the deadtime factors.
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Table 1. Means and standard deviations of absolute ROI values from reconstruction of the high
count frame.

Method Hot (µCi cc−1) Cold (µCi cc−1) Back 1 (µCi cc−1) Back 2 (µCi cc−1)

Direct norm 3.41 ± 0.14 0.22 ± 0.04 1.77 ± 0.10 1.79 ± 0.11
Model-based norm 3.70 ± 0.06 0.20 ± 0.03 1.84 ± 0.04 1.87 ± 0.04
Well counter 3.87 0 1.83 1.83

3.2. Cylindrical phantom experiment

Using the model-based and direct normalization factors, we reconstructed a 4.5 cm diameter
cylindrical phantom that contained hot and cold cylindrical inserts using the MAP approach
described in Qi et al (1998) with a system matrix adapted to the size and LSO detector
properties of the microPET P4 scanner. Scatter correction was based on the fast Monte Carlo
method (Holdsworth 2002) applied to a preliminary reconstruction. The phantom listmode
data was re-sorted into frames of 30 min duration each. One early frame (total counts: 139M)
and one late frame (total counts: 42M) were reconstructed. Deadtime correction was applied
to the earlier frame but not the latter frame in which deadtime factors were insignificant.

4. Results and discussion

In figure 2 we show the individual factors in our normalization model obtained from low activity
cylinder scan data using joint maximum likelihood estimation. Figure 3 shows the combined
normalization factors, formed as the product of these individual factors, in comparison to
the higher count direct method. While the model-based approach uses far fewer counts, the
resulting normalization files are less noisy because of the fewer effective number of parameters
that must be estimated.

Figure 4 shows the block-wise and block-profile components of the deadtime correction
factors. Figure 4(a) shows the excellent count-rate linearity for the LSO block detectors in
the scanner over a wide activity range. The block-profile results indicate that these factors
introduce significant count-rate dependent variations in sensitivity as a function of position in
the block which should be included as part of the normalization process.

In figures 5 and 6 we show the effects of applying the model-based and direct normalization
factors to the high- and low-count frame data from the phantom. In both cases, the images were
reconstructed using 30 MAP iterations with all algorithm parameters otherwise equal. Figure 5
shows a single transaxial plane from the reconstructed phantom image. These results indicate
improvement in transaxial uniformity and reduction in noise. Figure 6 shows axial uniformity
in terms of the total activity of each of the 63 reconstructed transaxial sections. The model-
based normalization produces improved axial uniformity compared to the direct normalization
method. The axial uniformity of the direct normalization method could be improved by
scatter correcting the cylindrical calibration scan. We will examine the impact of this in
future work. We note however that while scatter in the normalization file may produce slow
variations in axial uniformity, it is unlikely to produce the slice-to-slice variability exhibited in
figure 6.

To quantify the uniformity of the image, four ROIs were chosen in each plane of the
reconstructed image: one at the centre of the hot spot, another at the centre of the cold spot
and two in the background. The mean and standard deviation of the activity in each ROI were
computed, as were the aggregate mean and standard deviations for the four ROIs across all
transaxial sections. We compared the values to decay-corrected well-counter measurements
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Table 2. Means and standard deviations of absolute ROI values from reconstruction of the low
count frame.

Method Hot (µCi cc−1) Cold (µCi cc−1) Back 1 (µCi cc−1) Back 2 (µCi cc−1)

Direct norm 0.87 ± 0.034 0.01 ± 0.006 0.40 ± 0.033 0.41 ± 0.034
Model-based norm 0.97 ± 0.025 0.04 ± 0.007 0.43 ± 0.018 0.44 ± 0.018
Well counter 1.03 0 0.49 0.49
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Figure 7. Plot of means and standard deviations of each ROI as a function of axial position, high
count frame. Left: direct normalization; right: model-based normalization. Also shown as solid
lines are the well counter values for each ROI. Note: the hot and cold inserts occupy approximately
half the length of the scanner (planes 1–34).
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Figure 8. Plot of means and standard deviations of each ROI as a function of axial position, low
count frame. Left: direct normalization; right: model-based normalization. Also shown as solid
lines are the well counter values for each ROI.

for each region. Tables 1 and 2 show the aggregate mean and standard deviation of absolute
ROI values for the high and low count frames, respectively. Figure 7 shows the ROI values of
the high count frame as a function of axial position. Figure 8 shows the corresponding values
for the low-count frame. Note that the inserts extend approximately half of the axial extent of
the scanner so that hot and cold ROIs are shown only for the first 34 planes.
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These results indicate both improved axial uniformity and reduced standard deviation
using the model-based approach. The warm background and hot regions also show better
quantitation since they are closer to the well counter measured activity. The new normalization
does however indicate increased bias in the cold region for the low-count frame. Again,
we suspect that scatter has a significant impact here, negatively impacting on the hot and
background regions for the direct method (in which the normalization factors are not scatter
corrected) while resulting in superior quantitation in the cold region. These results highlight
the importance of accurate scatter handling for quantitation, even in small animal scanners
where scatter is a lesser problem than in human studies.

5. Conclusion

We have described a component-based approach to normalization which can be specifically
tailored to a model-based reconstruction method. By jointly estimating all components we
obtain self-consistent estimates of these parameters. Calibration and phantom experiments
indicate significant improvements in axial uniformity, noise due to normalization and
quantitative accuracy when compared to normalization based directly on a high-count uniform
cylinder. The method also has the advantage over the direct approach in that a shorter duration
scan can be used since the factored model has far fewer parameters than the total number of
LORs in the data.

One potential disadvantage of our approach is that the true source distribution and its
position in the scanner must be known accurately since this distribution is forward projected
and compared to the measured data in order to compute the normalization factors. The method
is also dependent on the accuracy of the scatter model, but this is also the case for the direct
method in which scatter will affect the measured sensitivity of each LOR. With our model-based
approach we could use alternative source distributions such as rotating planar or line sources
in which scatter fractions are far lower. Provided the parameters remain identifiable, which
does not necessarily require that all LORs are illuminated, the same approach can be used.
These alternative source distributions, however, present other practical problems including
the difficulties of producing a planar source with sufficient uniformity and of providing an
appropriate trajectory for a line source to ensure that all parameters are identifiable.
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