
M o d e l - B a s e d  O b j e c t  P o s e  in  25 L i n e s  o f  C o d e  * 

Daniel F. DeMenthon and Larry S. Davis 

Computer Vision Laboratory 
Center for Automation Research 
University of Maryland, College Park, MD 20742-3411, USA 

A b s t r a c t .  We find the pose of an object from a single image when the rel- 
ative geometry of four or more noncoplanar visible feature points is known. 
We first describe an algorithm, POS (Pose from Orthography and Scaling), 
that  solves for the rotation matrix and the translation vector of the object 
by a linear algebra technique under the scaled orthographic projection ap- 
proximation. We then describe an iterative algorithm, POSIT (POS with 
ITerations), that uses the pose found by POS to remove the "perspective 
distortions" from the image, then applies POS to the corrected image in- 
stead of the original image. POSIT generally converges to accurate pose 
measurements in a few iterations. Mathematica code is provided in an Ap- 
pendix. 

1 Introduction 

Computation of the position and orientation of an object (object pose) using images of 
feature points when the geometric configuration of the features on the object is known 
(a model) has important applications, such as calibration, cartography, tracking and 
object recognition. Researchers have formulated closed form solutions when a few feature 
points are considered in coplanar and noncoplanar configurations (see [51 for a review). 
However, numerical pose computations can make use of larger numbers of feature points 
and tend to be more robust; the pose information content becomes highly redundant; 
the measurement errors and image noise average out between the feature points. Notable 
among these computations are the methods proposed by Tsai [7] and by Yuan [9]. 

The method we describe here can also use many noncoplanar points and applies a 
novel iterative approach. Each iteration comprises two steps. 

1. In the first step we approximate the "true" perspective projection (TPP)  with a 
scaled orthographic projection approximation (SOP). Finding the rotation matrix 
and translation vector from image feature points with this approximation is very 
simple. We call this algorithm "POS" (Pose from Orthography and Scaling) (see [6] 
for similar solutions without scaling, and [8] for similar equations applied to object 
recognition without pose computation). 

2. We use the approximate pose from the first step to displace the T P P  image feature 
points toward the positions they would have if they were SOP projections. 

We stop the iteration when the image points are displaced by less than one pixel. Since 
the POS algorithm in the first step requires an SOP image instead of a T P P  image to 
produce an accurate pose, using the displaced points of the second step instead of the T P P  
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points yields an improved pose at the second iteration, which in turns leads to displaced 
image points closer to SOP points, etc. We call this iterative algorithm "POSIT" (POS 
with ITerations). Four or five iterations are typically required to converge to an accurate 
pose. 

2 N o t a t i o n s  

In Fig. 1, we show the classic pinhole camera model, with its center of projection O, its 
image plane G at a distance f (the focal length) from O, its axes Oz and Oy pointing 
along the rows and columns of the camera sensor, and its third axis Oz pointing along 
the optical axis. The unit vectors for these three axes are called i, j and k. 

An object with feature points Mo, M1 . . . .  , Mi . . . .  , Mn is positioned in the field of 
view of the camera. The coordinate frame of reference for the object is centered at M0 
and is (Mou, Mov, Mow).  We call M0 the reference point for the object. Only the object 
points M0 and Mi are shown in Fig. 1. The shape of the object is assumed to be known; 
therefore the coordinates (Ui, Vi, Wi) of the point Mi in the object coordinate frame of 
reference are known. The coordinates of the same point in the camera coordinate system 
are called (Xi ,  Yi, Zi). 
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Fig. 1. Perspective projection and scaled orthographic projection for object point Mi and object 
reference point M0. 

3 S c a l e d  O r t h o g r a p h i c  P r o j e c t i o n  a n d  P e r s p e c t i v e  P r o j e c t i o n  

Consider a point Mi of the object (Fig. 1). In "true" perspective projection (TPP),  its 
image is a point rai of the image plane G which has coordinates 

=~ = f x d z ~ ,  ~ = f ~ / z ~  (1) 
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Scaled orthographic projection (SOP) is an approximation to TPP. One assumes that  
the depths Zi of different points Mi of the object are not very different from one another, 
and can all be set to the depth Z0 of the reference point M0 of the object. In SOP, the 
image of a point Mi is a point pi of the image plane G which has coordinates 

(2) 

The ratio s = f /Zo  is the scaling factor of the SOP. The reference point M0 has the 
same image m0 with coordinates x0 and F0 in SOP and TPP. The image coordinates of 
the SOP projection p~ can also be written as 

�9 ~ = ~0 + s (x~ - x 0 ) ,  y~ = y0 + s(Y, - Y0) (3) 

The geometric construction for obtaining the T P P  image point mi of Mi and the 
SOP image point pi of Mi is shown in Fig. 1. Classically, the T P P  image point rni is 
the intersection of the line of sight of Mi with the image plane G. In SOP, we draw a 
plane K through M0 parallel to the image plane G. This plane is at a distance Z0 from 
the center of projection O. The point Mi is projected on K at Pi by an orthographic 
projection. Then Pi is projected on the image plane G at pi by a perspective projection. 
The vector mopl is parallel to MoPi and is scaled clown from MoPi by the scaling factor 
s = f /Zo .  Eq. (3) simply expresses the proportionality between these two vectors. 

4 A p p r o x i m a t e  P o s e  f r o m  S O P  ( P O S )  

We find an approximate pose by assuming that the T P P  image points mi can be ap- 
proximated by the SOP image points Pl (Fig. 1). Our goal is to recover the coordinates 
of the three unit vectors i , j ,  k of the camera coordinate system in the object coordinate 
system using the SOP approximation. Indeed these three vectors expressed in the object 
coordinate system are the row vectors of the rotation matrix R .  The translation vector 
T for the object is the vector OM0. Once we find the scaling factor of the SOP, this 
vector OM0 is simply a scaled up version of the image vector Omo.  We call this pose 
calculation method POS (Pose from Orthography and Scaling). 

We modify the two expressions of Eq. (3). After expressing the coordinates Xi - X0 
and Yi - Y0 of the vector MoMi as dot products of MoMi with unit vectors i and j ,  we 
obtain 

z i - z 0 = s i .  MoMi, Y i - Z 0 = s j ' M o M i  

We define I and J as scaled down versions of the unit vectors i and j 

x = s l ,  a = s j  (4) 

which yields 

z i - z 0 = I . M o M i ,  Y i - Y 0 - J - M o M i  (5) 

These can he viewed as linear equations where the unknowns are the coordinates of vector 
I and vector J in the object coordinate system. The other parameters are known. 

Writing Eq. (5) for the object points M0,M1,M2, M i , . . . , M n  and their images, we 
generate a linear system for the coordinates of the unknown vector I and a linear system 
for the unknown vector J:  

A I = x ,  A S = y  (6) 
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where A is the matrix of the coordinates of the object points Mi in the object coordinate 
system and x and y are the vectors of the x and y coordinates of the image points m~ 
offset by the coordinates of the image point m0. 

Generally, if we have at least three visible points other than M0, and all these points 
are noncoplanar, matrix A has rank 3, and the solutions of the linear systems in the least 
square sense are given by 

I = B x ,  J = B y  

where B is the pseudoinverse of the matrix A. We call B the object matrix. Knowing 
the geometric distribution of feature points Mi, we can precompute this pseudoinverse 
matrix B. 

Once we have obtained least square solutions for I and J,  the unit vectors i and j are 
simply obtained by normalizing I and J. As mentioned earlier, the three elements of the 
first row of the rotation matrix of the object are then the three coordinates of vector i 
obtained in this fashion. The three elements of the second row of the rotation matrix are 
the three coordinates of vector j. The elements of the third row are the coordinates of 
vector k of the z-axis of the camera coordinate system and are obtained by taking the 
cross-product of vectors i and j. 

Now the translation vector of the object can be obtained. It is vector OM0 between 
the center of projection, O, and M0, the origin of the object coordinate system. This 
vector, OM0, is aligned with vector Ore0 and is equal to ZoOmo/f,  i.e. Om0/s.  The 
scaling factor s is obtained by taking the norm of vector I or vector J. The POS method 
uses at least one more point than is strictly necessary to find the object pose. At least 
four noncoplanar points including M0 are required for this method, whereas three points 
are in principle enough if the constraints that i and j be of equal length and orthogonal 
are applied (see [3] for a simple pose solution for three or more coplanar points). Since 
we do not use these constraints in POS, we can verify a posteriori how close the vectors 
i and j provided by POS are to being orthogonal and of equal length. Alternatively, we 
can verify these properties with the vectors I and J which are proportional to i and j 
with the same scaling factor s. We construct a goodness measure G, for example as 

G = IX.JI + I I . X -  J "JI 

The goodness measure G becomes large when the results are poor and can be used for 
quickly testing the quality of the computed pose and for detecting wrong correspondences 
between image points and object points. 

The POS algorithm provides a eomputationally inexpensive method for directly ob- 
taining the translation and rotation of an object; the accuracy of POS may be sufficient 
for tracking the motions of an object in space, finding initial estimates for iterative meth- 
ods, or testing whether image and object points can be matched. Furthermore, when an 
object is far from the camera, it is useless to try to improve on the pose found by POS. 

5 F r o m  A p p r o x i m a t e  P o s e  t o  E x a c t  P o s e :  T h e  P O S I T  A l g o r i t h m  

5.1 Basic  Idea 

In this section, we present an iterative algorithm, POSIT (POS with Iterations) , which 
uses POS at each iteration. Less than five iterations are typically sufficient. The basic 
idea for iterating toward a more accurate pose is the following: 
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If we could build an SOP image of the object feature points from a TPP image, 
we could apply the POS algorithm to this SOP image and we would obtain an 
exact object pose. 

Computing an exact SOP image requires knowing the exact pose of the object. However, 
once we have applied POS to the actual image, we have an approximate depth for each 
feature point, and we position the feature points at these depths on the lines of sight. 
Then we can compute an SOP image. At the next iteration, we apply POS to the SOP 
image to find an improved SOP image. The algorithm generally converges after a few 
iterations and provides an accurate SOP image and an exact pose. 

5.2 F ind ing  an  S O P  image  f rom a T P P  image  

Eq. (1) and Eq. (2) show that the SOP vector Cpi is aligned with the TP P  vector Cm~ 
and the proportionality factor is Zi/Zo: 

gl 
Cpl = ~-~0 Cml (7) 

The coordinates Zi can be computed by 

Zl = Z0 + k .  MoMi (8) 

where k is the unit vector along the optical axis Oz. Expressed in the object coordinate 
system, k is the third row of the rotation matrix of the object, and MoMI is a known 
vector. Eq. (7) and Eq. (8) yield for the SOP image points p~ 

Cpl = (1 + ~ (k -  MoMi) )Cml  (9) 

where we have replaced 1/Zo by s / f ,  the ratio of the scaling factor of the SOP by the 
camera focal length. 

Expression (9) provides at each iteration of the POSIT algorithm the approximated 
positions of the SOP image points pi in relation to the image points ml if we use the 
third row of the computed rotation matrix and the computed scaling factor. 

6 I l lustrat ion of  the  Iteration Process  in P O S I T  

To illustrate the iteration process of POSIT, we apply the method to synthetic data. The 
object is a cube; the points of interest are the eight corners (one can easily experiment 
with eight visible corners using light emitting diodes). The projection on the left of Fig. 2 
is the given image for the cube (the shown projections of the cube edges are not used by 
the algorithm). The distance-to-size ratio for the cube is small, thus some parallel cube 
edges show strong convergence in the image. One can get an idea of the success of the 
POS algorithm by computing TPP  image of the cube at the found poses at successive 
iterations (Fig. 2, top row). Notice that from left to right these projections become more 
similar to the given image. POSIT does not compute these images. Instead, POSIT 
computes SOP images using Eq. (9 (Fig. 2, bottom row). Notice that from left to right 
the edges of the cube become more parallel in these SOP images, since orthographic 
projection preserves parallelism. 
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Fig. 2. TPP images (top) and SOP images (bottom) for cube poses computed at successive 
steps by POSIT algorithm. 

7 P e r f o r m a n c e  C h a r a c t e r i z a t i o n  

We try to follow the recommendations of Haralick for performance evaluation in com- 
puter vision [4]. We compute the orientation and position errors of the POS and POSIT 
algorithms for a cube (see [3] for more experiments). One corner of the cube is taken as 
the reference point and is allowed to slide along the optical axis at 10 distances from the 
center of projection, from four times to 40 times the size of the cube. These distance-to- 
size ratios are used as the horizontal coordinates in the error plots. Around each of these 
reference point positions, the cube can swivel at 40 random orientations. 

We obtain synthetic images by perspective projection with a focal length of 760 pixels. 
Note that only a wide-angle camera with a total angular field of more than 500 would 
be able to see the whole cube when it is closest to the camera. We specify three levels 
of random perturbation and noise in the image. At noise level 1, the computed image 
coordinates are rounded to integer values. At noise level 2, perturbations of 4- 1 pixel are 
added to the image coordinates. At noise level 3, the amplitudes of the perturbations are 
4- 2 pixels. 

For each of the images, the orientation and position of the object are computed by 
the POS algorithm, then by the POSIT algorithm until it converges. We then compute 
the axis of the rotation required to align the coordinate system of the object in its actual 
orientation with the coordinate system of the object in its computed orientation. The 
orientation error is defined as the rotation angle in degrees around this axis required 
to achieve this alignment [3]. The relative position error is defined as the norm of the 
translation vector required to align the computed reference point position with the actual 
reference point, divided by the distance of the actual reference point position from the 
camera. For both POS and POSIT, we show the average errors with their standard 
deviation error bars as a function of the distance-to-size ratios (Fig. 3). 

8 R e s u l t s  

At very low to medium range and low to medium noise, POSIT gives poses with less 
than 20 rotation errors and less than 2% position errors. POSIT provides dramatic im- 
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Fig. 3. Orientation and position errors for a cube at various distances at three image noise 
levels. 

provements over POS when the objects axe very close to the camera, and almost no 
improvements when the objects are far from the camera. When the objects are close to 
the camera, the so-called perspective distortions are large, and the approximation that 
the image is an SOP is poor; therefore the performance of POS is poor. When the ob- 
jects are very far, there is almost no difference between SOP and TPP; thus POS gives 
the best possible results, and iterating with POSIT cannot improve upon them. Also, 
when the object is far, pose errors increase with the distance ratios, since at long range 
perturbations of a few pixels are a large percentage of the image size. 

9 Convergence Analysis 

We now explore with simulations the effect of the distance of an object to the camera 
on the convergence of the POSIT algorithm (Fig. 4). The convergence test consists of 
quantizing (in pixels) the coordinates of the image points in the SOP images obtained 
at successive steps, and terminating when two successive SOP images are identical (see 
Appendix A). A cube is displaced along the camera optical axis. One face is kept parallel 
to the image plane. The abscissa in the plots is the distance from the center of projection 
to that face, in cube size units. Noise of -4- 2 pixels is added to the perspective projection. 
Four iterations are required for convergence until the cube is at three times its size from 
the center of projection. The number gradually climbs to eight iterations for a distance 
of 1, and 20 iterations for 0.5. Then the number increases sharply to 100 iterations for 
a distance ratio of 0.28 from the center of projection. Up to this point the convergence 
is monotonic. At still closer ranges the mode of convergence changes to a nonmonotonic 
mode, in which SOP images are subjected to somewhat random variations from iteration 
to iteration until they hit close to the final result and converge rapidly. The number of 
iterations ranges from 20 to 60 in this mode, i.e. less than for the worse monotonic case, 
with very different results for small variations of object distance. We label this mode 
"chaotic convergence" in Fig. 4. Finally, when the distance ratio becomes less than 0.12, 
the algorithm clearly diverges. Note, however, that in order to see the close corners of 
the cube at this range, a camera would require a total field of more than 150 ~ i.e. a focal 
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length of less than 1.5 m m  for a 10 m m  CCD chip, an improbable configuration. In all our 
experiments, the POSIT algorithm has been reliably converging in a few iterations in the 
range of practical camera and object configurations. We are in the process of analyzing 
the convergence process by analytical means, but so far have succeeded only for objects 
and orientations chosen to yield simple expressions. Convergence seems to be guaranteed 
if the image features are at a distance from the image center shorter than the focal length. 
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F i g .  4. Number of iterations as a function of distance to camera at very close ranges (left) and 
for a wider range of distances (right). 

A p p e n d i x  A :  A M a t h e m a t i c a  p r o g r a m  i m p l e m e n t i n g  P O S  a n d  

P O S I T  

Compute the pose of an object given a list of 2D image points, a list of corresponding 
3D object points, and the object matrix (the pseudoinverse matrix for the list of object 
points). The first point of the image point list is taken as a reference point. The outputs 
are the pose computed by POS using the given image points and the pose computed by 
POSIT. 

GetPOSIT [imagePoint s_, obj ectPoints_, obj ectMatrix_, f ocalLength_] :- Nodule [ 
{objectVectors, imageVectors, IVect, 3Vect, ISquare, JSquare, I J, 
illageDifference, roel, roe2, row3, scalel, scale2, scale, oldSOPIzlagePoints, 
SOPImagePoints, translation, rotation, firetPose, count-O, converged - False}, 
objectVectors - (#-objectPoints [[l]])k /@ objectPoints; 
oldSOPImagePo int sffiimagePoint s ; 
(* loop until difference between 2 SOP images is less than one pixel *) 
While [! converged, 

If [count--O, 
(* we get image vectors from image of reference point for POS: *) 
imageVectors = (# - imagePoints[[l]])& /@ izlagePoints, 
(* else count>O, we compute a SOP image first for POSIT: *) 
SOPIllagePoints - imagePoints (I + (objectVectors.row3)/translation[[3]]); 
imageDifference - Apply [Plus, Abe [Round [Flatten[SOPImagePoints] I- 

Round [Plat ten [oldSOPImagePoint e]] ] ] ; 
oldSOPImagePoints ffi SOPImagePoints; 

imageVectors - (# - SOPImagePoints[[l]])~ /@ SOPImagePoints 
]; (* end else count>O*) 
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{IVect, JVect} - Tranepoee[objectMatrix . ~ageVectors ] ;  
ISquare - IVect . IVect ;  3Square - 3Vect. JVect; I3 - IVect. JVect; 
{scalel, scale2} - Sqrt[{ISqu~re, JSquare}]; 
{row1, rog2} = {IVect/ecalel, JVect/scale2}; 
row3 ffi RotateLeft[rogl] RotateRight[row2] - 

RotateLeft[row2] RotateRight[rogl];(* cross-product *) 
rotatlon={rowl, row2, roe3}; 
scale - (scalel + scale2)/2.0; (* scaling factor in SOP *) 
translation - Append[imagePointe[[1]], focalLength]/scale; 
If[count-=0, firstPose - {rotation, translation}]; 
converged = (count>0) ~& (imageDifference<l); 
count++ 

]; (* End While *) 
Return[{firetPose,{rotation, translation}}]] 

(* Example of inpu t :* )  

fLength ffi 760; 
cube ={{0,0 ,0},{10,0 ,0},{10,10,0},{0,10,0},{0,0 ,10},  

{10,0,10},{10,10,10},{0,I0,10}}; 
cubeMatrix - PeeudoInverse[cube]//N; 
cubeImage = {{0,0},{80,-93},{245,-77},{185,32},{32,135}, 

{99,35},{247, 62},{195, 179}}; 

{{POSRot,POSTrans},{POSITRot,POSITTrane}} = 
GetP0SIT[cubeInage, cube, cubeMatrix, fLength];  
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