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Abstract  

The Geometric Hashing paradigm for model-based recognition of objects in cluttered scenes is dis~ 
cussed. This paradigm enables a unified approach to rigid object recognition under different viewing 
transformation assumptions both for 2-D and 3-D objects obtained by different sensors, e.g. vision, 
range, tactile. It is based on an intensive off-line model preprocessing (learning) stage, where model in- 
formation is indexed into a hash-table using minimal, transformation invariant features. This enables the 
on-line recognition algorithm to be particularly efficient. The algorithm is straightforwardly parallelizable. 
Initial experimentation of the technique has led to successful recognition of both 2-D and 3-D objects in 
cluttered scenes from an arbitrary viewpoint. We, also, compare the Geometric tIashing with the Hough 
Transform and the alignment techniques. Extensions of the basic paradigm which reduce its worst case 
recognition complexity are discussed. 

1 Introduct ion  

Object recognition is a major task in computer vision. The ability to recognize objects in cluttered scenes 

is essential to the functionality of a flexible robotic system. In most practical industrial applications we 

may assume that the objects to be recognized are known in advance. This model-based approach proved to 

be promising, and the best currently known object recognition systems are model-based (for comprehensive 

surveys see [4, 6]). Ideally, such systems should be able to deal with substantial occlusion, and recognize 

rigid, articulated and even deformable objects under different viewing transformations. The recognition 

algorithms should be efficient enough to enable on-line recognition of objects belonging to large libraries. 

In order to discuss object recognition algorithms one has to give some mathematical description of an 

object. Let us assume that some interest features cau be extracted from the images, so that both the model- 

objects and the observed (cluttered) scene can be represented by sets of these interest features. In the most 

general (and least informative) case the interest features will be just points or lines. In such a situation, the 

recognition of a partially occluded object in a scene amounts to the discovery of a match between a subset 

of the scene interest features and a subset of the interest features of some model object. The discovered 

match should be consistent with some (viewing) transformation. Given m interest features on a model and 

n interest features in the scene, there are O(n m) ways to match the model features to the scene features. 

Since such an exponential complexity is unacceptable for object recognition algorithms, various approaches 

were suggested to prune the space of possible matches. Some of thememploy efficient tree search techniques, 

where the pruning is based on geometric constraints ([8]). However, for recognition of partially occluded 

objects, the search still remains exponential in the number of scene features (see [9]). 

To overcome this exponential complexity, one may observe, that a transformation of a rigid object is 

usually defined by the tra~lsformation of a small number of the object's features (points). This geometric 

observation is at the core of the, so called, Hough Transform or pose clustering ([2, 27, 22]), the alignment 

([13, 14]), and the Geometric Hashing ([19, 18, 20]) techniques. 

In this paper we address the recognition of objects in cluttered scenes using the Geometric Hashing 
technique. In its present form, the Geometric Hashing paradigm enables a unified approach to rigid object 

recognition under different viewing transformation assumptions both for 2-D and 3-D objects, obtained by 
different sensors, e.g. vision, range, tactile ([20]). This technique is especially suitable for dealing with 
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par t ia l ly  occ luded objects in cluttered scenes due to its representation scheme which encodes geometric 

constraints between local features. The Geometric Hashing paradigm is based on an intensive off-line 

model preprocessing (learning) stage, where model information is indexed into a hash-table using minimal, 

transformation invariant features. This enables the on-line recognition algorithm to be particul£rly efficient. 

The recognition time depends directly on the complexity of the scene to be recognized, and increases only 

sub-linearly with the number of model-objects in the data base. It is also straightforwardly parallelizable, 

and can be quite easily implemented on a fast special purpose hardware. Initial experimentation of the 

technique has led to successful recognition of both 2-D and 3-D objects in cluttered scenes from an arbitrary 

viewpoint ([19, 18, 20]). 

In this paper we first survey the basic ideas of the Geometric Hashing technique. Then, we compare 

it with two other efficient model based object recognition techniques, the, Hough Transform paradigm 

([2, 27, 22]), and the alignment technique ([13, 14]). We discuss the advantages and deficiences of these 

different techniques compared to each other.  FinaLly, we present some extensions of the basic technique, 

which can further reduce its time complexity. 

2 The Geometric Hashing Paradigm 

Recently, the, so called, Geometric Hashing technique for model based object recognition was introduced 

by Lamdan, Schwartz and Wolfson. Efficient algorithms were developed for recognition of flat rigid objects 

assuming the atone approximation of the perspective transformation ([19, 18]), and the technique was also 

extended to the recognition of arbitrary rigid 3-D objects from single 2-D images ([20]). 

In a model based object recognition system one has to address two major interrelated problems, namely, 

object representation and matching. The representation should be rich enough to allow reliable distinction 

between the different objects in the data~base, yet terse to enable efficient matching. A major factor in a 

reliable representation scheme is its ability to deal with partial occlusion. 

The Geometric Hashing paradigm presents a unified approach to the representation and matching prob- 

lems, which applies to object recognition under various geometric transformations both in 2-D and 3-D. The 

objects are represented as sets of geometric features, such as points or lines, and their geometric relations are 

encoded using minimal sets of such features under the allowed object transformations. This is achieved by 

standard methods of Analytic Geometry invoking coordinate frames based on a minimal number of features, 

and representing other features by their coordinates in the appropriate frame. 

In the sequel we present the Geometric Hashing method mainly for point matching. This is done for two 

reasons. First,. the 'point matching' case a~ows a succinct mathematical representation of the basic method, 

without getting overburdened with extraneous details. Second, since a single point is a 'least informative~ 

feature', we present the method in the most difficult case. Clearly, better results can be achieved by using 

more stable and more informative features such as lines and various groupings (see Section 4.1). 

2.1 R e c o g n i t i o n  u n d e r  t h e  Af f ine  T r a n s f o r m a t i o n  

To illustrate the method we first discuss flat object recognition under the affine transformation (rotation, 

translation, scale, and shear). It is well known that the perspective projection is well approximated by a 

parallel projection with a scale factor (see [16, 12, 23, 28]). This approximation is especially suitable for flat 

bodies, which are relatively far from the camera. Hence, we may assume, that two different images of the 

same fiat object are in an affine 2-D correspondence, namely, there is a non s ingular  2 × 2 matrix A and 

a 2-D (translation) vector b, such that each point x in the first image is translated to the corresponding 

point Ax  + b in the second image. 

Let us assume that the modal objects and the scene are described by sets of interest points, which are 

invariant under the affine transformation. The choice of the interest operator is not essential to our method. 

Corners, points of sharp concavities and convexities, or points of inflection are suitable candidates (see [19]). 

From now on we rephrase the model-based recognition problem to the point-set matching task, where one 

is given a set of known (model) point-sets and an observed (scene) point-set. The recognition task can be 

stated as the following subset isometry problem : 

Is there a transformed (rotated, translated, scaled, "and sheared) subset of some model point-set which 
matches a subset of the scene point-set ? 



528 

As was mentioned before we have to address two major interrelated problems: representation and efficient 

matching. 

2.1.1 Representation of geometric constraints 

Our goal is to represent a set of planar points belonging to a rigid body by few intrinsic parameters. This 

representation should efficiently encode the geometric .constraints of a rigid body, be affine invariant, and 

enable handling of occlusion. 

Assume that we have an arbitrary set of m points belonging to a rigid body. An affine transformation of a 

planar rigid body is uniquely defined by the transformation of three ordered nomcollinear points ([16, 29]). 

Moreover, one can pick any triplet of non-collinear points in the set and represent all the other points 

using this triplet. Specifically, let e0o, elo,em be an ordered triplet of such points. Then, any point v 

in the plahe can be represented in this afllne basis, namely, there is a pair of scalars (a, /3) , such that 

v = (~(el0 - e00) -I- fl(e01 - e00) + e00. 
The above coordinates are invariant under an affine transformation. Accordingly, we will represent the 

m points of our set by their coordinates in the affine basis triplet (e0o, ei0,e01). Natura~y, the coordinates 

of the basis points are (0, 0), (1,0) and (0,1), respectively. 

This representation allows comparison of occluded objects, since the point coordinates of an occluded 

object in the scene will have a partial overlap with the coordinates of the stored model , if both are 

represented in .a coordinate frame which is based on the same triplet of points. This dependence of the 

representation on a specific basis triplet may, however, preclude recognition when at least one of the basis 

points is occluded. Hence we represent the object points by their coordinates in all possible affine basis 

triplets. More specifically, given a model object, the following preprocessing is applied to each model object: 

a) Extract the objects interest points. (Assume that m interest points were found.) 

b) For each ordered non-collinear triplet of model points (affine basis) compute the coordinates of all other 

m -  3 model points in the affine coordinate frame defined by the basis triplet. Use each such coordinate 

(after a proper quantization) as an address (index) to a hash-table, and record in the table the pair 

(model, basis), namely, the model and the affine basis at which the coordinate was obtained. 

The complexity of this preprocessing step is of order rn 4 per model. Each of the m points is represented 

in m 3 different bases. The major advantage of this somewhat redundant representation is its ability to allow 

efficient recognition of objects in an occluded scene. 
Note, that the preprocessing step is done without any knowledge of the scene to be recognized. Hence, 

it can be executed off-line, so that its execution time does not add to the actual recognition time. New 

models added to the data-base can be processed independently without recomputing the hash-table. 

The hash table preparation stage may be viewed as a learning stage of the algorithm. In this stage 

relevant information of the models is memorized in its various representations. The triplet of points, which 

serves as an (affine) basis, for a given representation may be viewed as a (geometric) focus of attention. The 

hash table serves as a memory of the model-objects under different loci of attention. 

2.1.2 Matching 

The matching stage of the algorithm uses the hash table, prepared in the representation (learning) stage. 

Given a scene of interest points one chooses an affine basis (focus of attention) in the scene, and tries to 

match the coordinates of the scene points to those memorized in the hash table. Specifically, given an image 

of a scene with partially occluded objects one does the following : 

a) Extract its interest points. (Assume we have n such points.) 

b) Choose an arbitrary ordered triplet of non-collinear points in the scene and compute the coordinates of 

the scene points referring to this triplet as an affine basis. (If appropriate, one might, of course try 

some ~intelligent' choice of the affine basis, rather then chosing it at random.) 

c) For each.such coordinate check the appropriate entry in the hash-table~ and for every pair (model, a~ne 
basis), which appears there, tally a vote for the model and the affine basis as corresponding to the 

pair which was chosen in the scene. (The accumulator of the votes will have ~]~1 m3 entries, where 

N is the number of models and mi is the number of interest points on the i 'th model.) 
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Figure 1: The General Scheme of the Algorithm 

d) If a certain pair (model, aJfine basis) scores a large number of votes, conjecture that this pair corresponds 
to the one chosen in the scene. The affine transformation between the coordinate frames based on 

these triplets is assumed to be the transformation between the appropriate model and the scene. 

e) Consider all the model-image point pairs which voted for the affine transformation of Step (d), and find 
the affine transformation giving the best least-squares match between all these corresponding point 
pairs (see [19]). Since the computation of this transformation is based on more than 3 point pairs, it 
will, hopefully, be more accurate. 

f)  Transform all the edges of the model according to the affine trmasformation of Step (e) and ver i fy  them 
versus the scene edges. If the verification fails, go back to Step (b) and begin the procedure for a 
different image affine basis. This final verification is done not only for the interest points but for all 
the relevant model edges. (See Fig. 1 for a general scheme of our procedure.) 

It is important to mention that in general we do not expect the voting scheme to give only one candidate 
solution (see [21]). Its goal is to reduce significantly the number of candidates for the verification step (f), 
which might be quite tedious and time consuming (see [10]). 

Since the voting is done simultaneously for all models and all possible bases on a model, for the  

a lgo r i t hm to  be successful  it  is enough to pick th ree  po in ts  in the  scene,  be longing  to  some 
model .  In such a case the model with the appropriate affine basis gets a high score in the voting procedure. 
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The voting process, per basis-triplet, is linear in the number of points in the scene. Hence, the overall 

recognition time is dependent on the 'density' of model points in the scene. 

The presented method assumes no a.priori classification of the model and scene points to reduce the 

number of candidates for matching basis-pairs. In this" difficult case its worst case complexity is O(n4). ff 

some classification or perceptual grouping of features is available, it can be incorporated into this method 

by concentrating only on some special basis-triplets ([18]). We further discuss this issue in Section 4. 

The method is parallel in a straightforward manner. It has few serial steps as can be seen from the 

diagram of Fig. 1. A prototype of the affine matching algorithm has been implemented on the highly 

parallel Connection Machine by Bourdon and Medioni ([5]). 

Because of the duality between lines and points in the a~ne  plane, all the algorithms, tha t  were developed 

for point matching, apply directly to line matching. Namely, given a line a x + by = 1, one may view it 

as a point (a ,b)  in the dual space. Since line extraction is, usuaU~, more reliable than point extraction, 

one may benefit from this dual approach. 

2.2 E r r o r  A n a l y s i s  

So far, we have discussed our algorithm in its 'noiseless' version. However, since real scene measurements 

are noisy, this noise will affect both the implementation of the algorithm and its performance. We give 

here a short description of the issues raised by noise analysis, and their handling. A more extensive noise 

analysis, including simulation results, is given in ([21]): 

We assume that  the models can be acquired under 'ideal' circumstances (from a CAD model, for ex- 

ample), hence the preprocessing step is noiseless. In the recognition step, image coordinates of interest 

points are measured. These coordinates are represented by 2 - D vectors. One may define a norm on this 

2 - D vector space. We will usually use either the Euclidean (L2), or the maximum coordinate (Loo) norm. 

Assume that  image point measurements introduce an error of at most e in the given norm. 

The computation of the coordinates of an interest point v = (vl, v2) in the affine basis e0o, elo, eol can be 

formulated as a solution of the linear system of 2 equations in 2 unknowns A x  = b. The two columns of the 

matrix A are the difference vectors of the basis interest points e= = el0 - e00 and % = e01 - e00 respectively, 

and the free vector is b = v - e00. These vectors are represented in image coordinates, while the solution 

vector x = (a,/3) gives the representation of the point v in the affine basis e00, el0, e01 coordinates. 

Taking the errors into account, one has to solve the following linear system : 

(A + ~A)(x + ~x) = b + ~:b 

where ~A , $ x ,  and ~b are the errors of the matrix A and the vectors x and b respectively. By the nature 

of our point measurements, we may assume that  the absolute values of entries of the matrix SA and the 

vector 6b are less than some given measurement error e. The stability and accuracy of solutions to systems 

of linear equations is a well investigated problem of Numerical Analysis. An extensive treatment of such 

'approximate' linear systems is given, for example, in [17]. A good estimate of the maximal error in the k'th 

coordinate o f x  ([17], p. 45) is Deltaxk < (1 + X)Cke, (k = 1,2), where x = I Xl [ + [ x2 [, is the sum of 

the absolute values of the unknowns, and ck = [ Ckl [ + [ ck2 [, is the sum of the absolute values of the 

k' th row in the inverse matr ix G = A -1 . This inequality gives an estimate of the maximal error which 

can be in~trodueed by the image measurement noise into the coordinates of the hash-table address x. Hence, 

the voting procedure reflects this noise. Namely, for aa address x = (x l ,  x2 ), all the bins with addresses 

( x l  4- A x l ,  x2 4- Ax2 ) participate in the voting. This ensures that  votes for a correct model basis are not 

missed due to noise. In practice, tighter bounds, usually, apply ([17]). Note, tha t  the amount of error e is 

defined by the known imaging process, hence the worst case $A and ~b can be computed in advance. Since 

for a given basis triplet and aaa additional image point both C and x can be computed, we can evaluate the 

relative merit of voting for a given coordinate, and eliminate those (unstable) coordinates which are going 

to introduce excessive noise. It should be noted that  if a certain basis-triplet belonging to some model did 

not get enough votes, we still have a chance to recover this model from another basis-triplet. 

Since, the appropriate voting bins for each address can be evaluated in advance, we do not expect a 

correct basis triplet to achieve less votes than the corresponding number of unoccluded model points (except 

the elimiuated 'unstable '  votes). There still remains the possibility of a ' random' basis-triplet achieving a 

large number of votes. Such a 'wrong' candidate will be discovered by two verification procedures tha t  

are ilicorporated in the algorithm (see (e) and (f) of Section 2.1.2). Although 'wrong' candidates will be 
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discovered in the verification steps and discarded, we would still like to show that the probability of a 

'random' configuration to get a high vote is small. Such a discussion and simulation results are presented 

in [21]. 

2.3 G e n e r a l  F r a m e w o r k  

The algorithm that was illustrated in the previous section is suitable not only for the affine 2-D case. It 

represents a unified approach which applies also to many other useful transformations encountered in object 

recognition problems. The only difference from one application to another is the number of features (points) 

that have to be taken as a basis for the coordinate frame. This, of course, affects the complexity of the 

algorithm in the different cases. 

The following list gives a number of examples in wl~ich this general paradigm applies. Almost in all the 

cases we will discuss point matching. Use of other features, such as lines,, can be understood by analogy. 

We discuss first recognition of 2-D objects from 2-D data. 

1) Translation in 2-D - the technique applies with a one point basis. This point may be viewed as the 

origin of the coordinate frame. Itence~ the worst case complexity of the recognition step is O(n2). 

2) Transtation and rotation in 2-D - a two point basis can be used, however, one point with a direction 

(obtained, say, from an edge segment) has enough information for a unique definition of a basis. 

3) Translation, rotation and scale in 2-D - the key observation here is that since the similarity transfor- 

mation is orthogonai, two points (or, a line segment) are enough to form a basis which spans the 2-D 

plane. (The first point is assigned coordinates (0,0) and the second (1, 0). The third basis point (0,1) 

is uniquely defined by these two points.) Hence, the Geometric Hashing technique can be applied with 

a two point basis, resulting in a recognition stage of complexity O(n3). 

4) Affine transformation in 2-D - was discussed in Section 2.1. See [19, 18] for some recognition results. 

5) Projective transformation in 2-D - a 4 point basis is needed to recover a projective transformation 

between two planes (see, for example, [7]). 

In case 3-D data (such as range or stereo) of the objects is available the recognition of 3-D objects from 

3-D images has to be considered. Development of techniques for this case is especially important in an 

industrial environment, where 3-D data can be readily obtained and used. 

6) Translation in 3-D - exactly as the 2-D case. One point basis will suffice. 

7) Translation and rotation in 3-D - this is the interesting case representing a rigid motion. A two non- 

collinear line basis is enough. 

8) Translation, rotation and scale in 3-D - a two non-collinear and non-planar line basis (or a point and a 

line) gives a minimal set. 

In the previous discussion we considered cases where both the data of the object and the data of the scene 

have been given in the same dimension, either 2-D or 3-D. However, in the recognition of 3-D objects from 

single 2-D images we have the additional problem of the reduced dimension in the image space compared 

with the model space. A number of methods have been developed to tackle this problem by the Geometric 

Hashing technique (see [20]). One of this methods, based on the recovery of the correct viewing angle and 

the appropriate similarity transformation, has bee~ implemented and successfully tested (see [20]). 

Specifically, in the model learning stage the viewing sphere is tesselated into (few hundred) discrete 

viewing angles. For a fixed angle, the viewing transformation is well approximated by the orthographic 

projection. Hence, two different images of the same object taken from the same viewing angle are in a 2-D 

similarity correspondence (case (3)). The usual model representation scheme is applied here, except for the 
additional information of the viewing angle, which is also memorized in the hash-table. Namely, given a 

two point basis, the coordinates of all other interest points are computed and the information (model, basis, 

viewing angle) is stored in the hash-table at the addresses defined by the appropriate coordinates. In the 

recognition stage, the usual procedure for the 2-D similarity case is applied, although the votes this time are 

accumulated for the triplets (model, basis, viewing angle) (see [20] for details). Since the number of possible 

viewing angles is fixed, the method retains the recognition complexity of O(n a) (2-D similarity). 
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3 Comparison w i t h  O t h e r  M e t h o d s  

In this section we compare the geometric hashing with the alignment technique and with the generalized 
Hough Transform. Since all these techniques share some common ingredients it is important to understand 

their differences and relative advantages. 

3.1 C o m p a r i s o n  w i t h  t h e  H o u g h  T r a n s f o r m  

Since the Geometric Hashing method involves a voting procedure it immediately invokes association with the 

generalized Hough Transform (see [2] or [3] pp. 128-131) or, so called, pose clustering techniques ([27, 22]). 

We consider in detail the differences between the Geometric Hashing and pose clustering techniques. 

3.1 .1  T h e  P o s e  C l u s t e r i n g  ( H o u g h )  M e t h o d  

In the pose clustering (Hough Transform) approach, recpgnition of an object in a scene is achieved by finding 

a transformation between a model-object and the scene, which maps a large enough number of the model 

interest features into scene interest features. The transformation is discovered by voting for its parameters, 

which are consistent with hypothetical pairings of subsets of object and image interest features. 
Let us consider the example of object recognition under the affine (rotation, translation, scaling, and 

sheafing) transformation using the Hough paradigm. Assume as in Section 2.1 that both the models and 

the scene are represented by interest points. An affine transformation can be represented by six independent 

parameters. Hence, the Hough technique regards an affine transformation as a point in the 6-D space, each 

parameter describing a coordinate of this 6-D point. Although the parameters may achieve a continuum of 

values, each coordinate (parameter) axis is quantized into a finite number of values, thus creating 6-D bins 

(volumes) of admissible transformations. 

Since an affine transformation is uniquely defined by the correspondence of triplets of points, each corre- 

spondence of a triplet of model points with a triplet of scene points provides a candidate affine transformation. 

Hence, in the Hough technique each triplet of model points is compared with each triplet of scene points, 

an a~ne transformation is computed for each such comparison, and votes are cast for the appropriate bins 

(according to some noise model) in the 6-D transformation table. For a model of m points and a scene of n 

points, m3n 3 transformations are computed. If both m and n are of order n, the voting complexity is O(n 6) 
(assuming constant time for each table access). 

A well known problem of the Hough technique is the large size of the transformation table (6-D in the 

affine case). Hence, the usual practice (see, for example, [22]) is to recover the transformation parameters 

sequentially by first projecting the votes of the transformation table onto a small number (usually, one) of 

parameters, recovering this parameter, and proceeding in a similar manner for the remaining parameters. 

This, in turn, introduces the problem of false peaks in the collapsed parameter space. 

3.1.2 Differences be tween  t h e  Hough  t echn ique  and  G e o m e t r i c  Hash ing  

At first glance there are noticeable similarities between the Geometric Hashing technique as described in 

Section 2.1 and the pose clustering (Hough) technique as described in the previous subsection. Both use 

large tables, and both use voting procedures to recover the correct transformation. In this subsection we 

will state the major differences between both techniques, resulting in a different complexity, and different 

approaches in their statistical evaluation. 
One of the main differences is the independent processing of the model and scene information by Geomet- 

ric Hashing. The model hash-table is prepared without any knowledge of the scene, due to the transformation 

invariant shape representation (see subsection 2.1.1). This allows the recognition .to be performed on all the 

models and all the different encodings of models (by different bases) simultaneously, while in the pose clus- 
tering technique one has to check sequentially each model against the scene, and each model basis against 

the considered image basis, making the recognition time linearly dependent on the number of models in the 

data base, and cubically dependent on the number of model points. Given N models, order of m points on 

a model, and order of n points in the scene, the recognition time of the Hough technique is O(N x m 3 × n3), 

while the worst case time complexity of Geometric Hashing is O(n4) 1. 

1Assuming constant time for each hash-table bin processing. This is a reasonable assumption, as can be seen from the remark 
on weighted voting at the end of this section. 
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Another major difference is in the voting procedure. In the pose clustering one is voting for certain 

a-priori unknown transformation parameters, hence a large table (6-D for affine transformation) is kept. In 

Geometric Hashing one is voting only for a-priori known model object representations (by bases). Thus, for 

example, an m-point model has only m 3 admissible representations (and thus possible transformations) under 

the affine transformation. It should be noted that in Geometric Hashing the equivalent of the transformation 

parameter table of the Hough technique is not the hash-table, but the discrete accumulator of the votes 

for different bases. The size of this accumulator is relatively smalt and well defined in advance ( see (c) of 

section 2.1.2). Also, the voting in this accumulator is done only for one image basis at a time. This 

voting procedure compares one given image basis versus all possible model bases, looking for peaks in the 

compatibility score. On the other hand, in the Hough procedure one compares all image bases against all  

model bases, each of such pairings voting for one possible transformation. This introduces more background 

noise and makes it more difficult to discover the peaks. 

There is no equivalent for the hash table of the Geometric Hashing in the pose clustering technique. 

However, one should note , a number of properties. First, the dimensionality of this table is a function of 

the dimensionality of the image. It is, usually, 2-dimensional for intensity images, and 3-dimensional for 

range data. Second, this table is prepared in advance for a given database. Hence, its bin size can be 

controlled as a function of the specific database. In particular, one may introduce a weighted voting scheme 

(see [15, 11]). In such a scheme bins which are not informative, namely, bins, representing coordinates with 

a big number of (model, basis) candidates, will achieve a small weight, or, even, zero weight to preclude 

their time consuming processing, while votes of 'small' bins will have bigger weights. 

3.2 C o m p a r i s o n  w i t h  A l i g n m e n t  

Recently considerable work was done using the, so called, alignment method ([13, 14]). As the two other 

methods mentioned, this method utilizes minimal sets of features which suffice to establish a unique trans- 

formation between a model and its alleged instance in a scene. 

3.2.1 The Alignment 

In the alignment technique a transformation is hypothesized based on the correspondence of minimal sets 

of features, and then the candidate correspondence is verified in regard to the other features. 

Let us, again, consider the case of affine 2-D matching ([13]), and assume that both the model and the 

scene are represented by interest points. As in the pose clustering technique one picks a triplet of points is 

the scene and a triplet on the model, and computes the aYfine transformation between these two triplets. 

Given the candidate affine transformation, all the other model points are transformed and matched with 

the image points. This match should be done according to an error model analogous to the one given in 

Section 2.2 (see [25]). If the number of matching interest points is above a certain threshold, additional edge 
verification is invoked. 

The time complexity of alignment for the affine case is O(N × n 3 × m4), where N, m, n are as in the 
previous subsection. 

3.2.2 Differences between the Alignment and the Geometric Hashing 

The alignment technique and the geometric hashing are based on the same geometric principles. If they 

employ the same error model and candidate transformation acceptance thresholds, both techniques should 

eventually accept (or reject) the same candidate transformations. The basic difference between the methods 

is in their algorithmic approach. While in the alignment method an exhaustive enumeration is applied 

over all the possible pairings of minimal sets of model and image features, in the geometric hashing the 

recognition stage is significantly sped up by using the previously prepared hash-table which encodes the 

relevant information about the model objects. Another major advantage of the geometric hashing algorithm 

is its ability to process all the model objects simultaneously. By picking a 'correct' basis in the scene 

the voting procedure of geometric hashing discovers both the model it belongs to, and the appropriate 

transformation between this model and the scene~ while in the alignment method one has to  process the 

'candidate' models and triplet bases sequentially. For example, in the affine matching case, which was 
mentioned before, the worst case complexity of recognition is of order N x n 7 for the alignment method, 
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and O(n 4) for geometric hashing. Here we assume that the number of model points, and scene points are of 

order n and the number of models in the data-base is N. 

A frequently expressed concern about hash-table voting is the possibility of having a large number of 

(model, basis) candidates for a certain index (coordinate). Note, that if the same error model is used, the 

alignment procedure will have to deal with exactly the same number of candidate transformations. 

On the other hand, when memory is a concern, it is better to use the alignment procedure which 

has almost no storage requirements , except the image and model edge data. The efficiency of the geometric 
hashingis achieved by memorizing the model information into a hash-table using appropriate representations. 

It gives this method the ability to determine for a given scene minimal feature set (basis) a corresponding 

feature set on one of the models, by considering only the other scene features which 'vote' for the correct 

interpretation. This 'voting' procedure requires existence of few additional model features in the scene image 

except the basis. In the extreme case, when such additional features do not exist, the algorithm will first 

try interpretations which scored high but are uncorrect. Since these interpretations will be rejected by the 

verification step, in its fast version the algorithm will fail to recognize the model object. In such a case one 

may decide to backtrack and check candidate solutions with less votes. Eventually, the correct solution will 

be found after an exhaustive search resulting in the same worst case complexity as the alignment method. 

To conclude, the geometric hashing is considerably, more efficient than the alignment, when the scene 

contains 'enough' model features for efficient recognition by voting ('enough' usually mea~s about 6-10). It 

is also efficient for multiple model processing. In case the number of model features is exceptionally small 

(for example, only one basis appears in the scene), both methods will have the same worst case complexity. 

The above analysis holds for the techniques in their 'pure' form. Obviously, various 'intelligent' basis 

choice methods, can speed up both the alignment and the geometric hashing. For example, in the HYPEtt 

alignment method ([1]) the bases for the similarity transformation are defined by 'privileged' physical seg- 

ments in the image. A version of Geometric Hashing (see [26]) exploits, so called, super-segments. The basic 

observation is that all these improvements can be equally well incorporated in both techniques. 

4 Reduction of Complexity 

In the previous sections we have represented the Geometric Hashing technique in the most general case. 

We have used the technique for 'minimal information' features, such as points or lines. Obviously, if more 

informative features are available, the complexity of the algorithms presented can be further improved. 

In this section we examine some of the complexity reductions for the 2-D affine matching case. Obvious 

analogues exist for other cases as well. 

4.1  I n f o r m a t i v e  F e a t u r e s  

The discussion of the previous sections assumed existence of interest points in the image, One needs three 

such features to define uniquely an a/fine 2-D transformation. However, more informative features may be 

available. For example, if one can reliably extract a segment, its endpoints supply two basis points. If one 

can extract a triangle, the basis is determined completely. One possibility of reliably extracting triangles, 

based on concavities is discussed in the next subsection. 

4.1.1 Concav i t i e s  

In the case of an  affine transformation each concavity supplies us with a stable feature from which an 

a~ne invariant basis can be recovered. A concavity is, usually, bounded by a single segment of the convex 

hull which we call (following [24]) the concavity entrance. It is a simple geometric observation that the 

concavity entrance segment is invariant  under affine transformations (see [18]). Moreover, if the concavity 

is unoccluded, it uniquely defines an affine basis triplet, since the point of the concavity, which is on the 

most distant tangent line, parallel to the concavity entrance, is also affinely invariant (if this ~ point is not 

unique one may choose the leftmost such point). The computation of a concavity based affine triplet is 

stable and computationally efficient, since it is based on convex hull extraction. 
Now, if one chooses affine basis triplets defined by concavities, the worst case computational burden of 

recognition becomes linearly dependent on the number of concavities in the scene, instead of having a cubic 

dependence on the number of interest points. This computational burden can be even further reduced by 
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introducing affine invariant shape signatures of concavities, and comparing only those concavities having 

similar signatures (see [18]). 

Even if a concavity is partially occluded, we can still extract relevant information from it. For example, 

if only the entrance segment is visible, its endpoints serve as two points of the affine basis (they suffice, for 

example, for a similarity invariant basis). Hence~ one may choose affine triplets based on a concavity entrance 
segment plus one additional interest point, thus still significantly reducing the worst case recognition time 

complexity, compared to the general case of three interest point affine bases. 

4.2 S h a p e  S i g n a t u r e s  

In the previous section we mentioned that one may distinguish different concavities by using agine invariant 

shape signatures so that only affine bases derived from similar concavities have to be matched. This shape 
signature technique applies also to other cases, where the examined feature has more than minima] infor- 

mation. To illustrate this point, let us consider the geometric hashing procedure for the case of planar rigid 

motion (rotation and translation) using two point bases. 

In many industrial applications one is faced with the restricted problem of object recognition under 

translation and rotation only (case (2) of section 2.3). This might be the case in recognition of flat objects 

moving on a conveyor belt under a stationary camera. One m%v apply the geometric hashing technique for 

this case, using two point bases. However, in this case two points have additional information which remains 

invariant under rigid motion. This information is the distance between the points. Thus, different 2-point 

bases can be initially distinguished by the distance between the basis points. This is the shape signature of 

such a basis. Hence, one may introduce an additional coordinate into the hash-table address (index), which 

specifies the shape signature (or, one may ca~ it, geometric color) of the basis for which the coordinate was 

computed. This allows to reduce the voting procedure to relevant bases only. 

Analogous shape signature coordinates can be introduced also in other cases when the basis supplies 

more than the minimal information needed. Of special interest is the case of 3-D object recognition from 

range data. There~ a 3 point basis can be used. However, since the possible transformation is rotation and 

translation only, each 3 point basis has a unique signature, which is defined by the measures of the basis 

triangle. Only identical triangles have to be matched. This case has an exciting application in Molecular 
Biology for the problem of structural comparison between protein molecules ([.9]). 

4.3 P r o j e c t i o n  to  a S u b s p a c e  

When the number of interest points on the models is large, one may exploit invariant properties of subspaces, 

assuming that enough interest points are located on such subspaces. For example, in the 2-D affine case, 

one may use affine invariant properties of lines such as the one given in the following 

L e m m a  (see p.73 in [16]): Two straight lines which correspond in an affine transformation are 'similar', 

i.e. corresponding segments on the two lines have the same length ratio. 

Moreover, the same statement holds for sets of parallel lines. Hence, if we have a set of points, which are 

located on parallel lines in a model, and another set of points on parallel lines in the scene, we can efficiently 

check the conjecture, that some of these points correspond. 

In this case the information stored in the hash-table for each coordinate will be (model, line, basis-pair), 
and the voting will be done accordingly. Note that a pair of points define an affine invariant line basis, hence 

the complexity of recognition is reduced by a factor of'n. The price for this reduction, is the restriction to 

points on parallel lines, which may be practical, when a large number of interest points is involved. This is 

exactly the case, when complexity reduction is most desirable. 

5 C o n c l u s i o n s  and  F u t u r e  Research  

We have surveyed the Geometric Hashing paradigm, and compared it with the Hough Transform and Align- 
ment techniques. Certain extensions of the Geometric Hashing allowing further reduction of recognition 
complexity have been discussed. Future research should include additional extensions of the technique. In 
particular, recognition of articulated objects composed of rigid parts with internal degrees of freedom is 
under current investigation. 
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