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Abstract 

Exerting control over the glycan moieties of antibody therapeutics is highly desirable 
from a product safety and batch-to-batch consistency perspective. Strategies to 
improve antibody productivity may compromise quality, while interventions for 
improving glycoform distribution can adversely affect cell growth and productivity. 
Process design therefore needs to consider the trade-off between preserving cellular 
health and productivity while enhancing antibody quality. In this work, we present a 
modelling platform that quantifies the impact of glycosylation precursor feeding – 
specifically, that of galactose and uridine – on cellular growth, metabolism as well as 
antibody productivity and glycoform distribution. The platform has been 
parameterised using an initial training data set yielding an accuracy of ±5% with 
respect to glycoform distribution. It was then used to design an optimised feeding 
strategy that enhances the final concentration of galactosylated antibody in the 
supernatant by over 90% compared to the control without compromising the integral 
of viable cell density or final antibody titre. This work supports the implementation of 
Quality by Design towards higher-performing bioprocesses. 

Graphical Abstract 

Exerting control over the glycan moieties of antibody therapeutics is highly desirable 

from a product safety and batch-to-batch consistency perspective. Strategies to 

improve antibody productivity may compromise quality, while interventions for 

improving glycoform distribution can adversely affect cell growth and productivity. 
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Introduction 

Monoclonal antibodies (mAbs) are the most successful biopharmaceutical products of 

the last decade (Walsh 2014, Urquhart 2018). Chinese hamster ovary (CHO) cells are 

the workhorse of recombinant protein production in the biopharmaceutical industry, 

owing to their ability to perform complex post-translational modifications and secrete 

proteins that are compatible with and bioactive in humans (Lai, Yang et al. 2013, 

Yusufi, Lakshmanan et al. 2017). CHO cells are usually grown in fed-batch cultures 

to replenish the depleted nutrients, prolong the cell culture period and maximise 

protein productivity. 

Most commercial mAbs are N-linked glycosylated in their constant fragment (Fc). 

Earlier studies have shown that N-linked glycosylation is strongly dependent on 

bioprocess conditions, such as temperature (Sou, Sellick et al. 2015), nutrient 

availability (Liu, Spearman et al. 2014) and catabolite accumulation (Yang and Butler 

2000). Bioprocess conditions affect the monosaccharide composition and relative 

abundance of the oligosaccharides, which in turn, can alter the safety and potency of 

the mAb. The presence of terminal galactose residues on mAb Fc glycans is known to 

increase complement-dependent cytotoxicity (Hodoniczky, Zheng et al. 2005) and 

antibody-dependent cytotoxicity (Thomann, Reckermann et al. 2016) and is, 

therefore, a desirable attribute in oncological products. In addition, galactosylation is 

a major source of mAb structural variability during scale-up and technology transfer 

(Gramer, Eckblad et al. 2011). Manufacturing variability can therefore affect product 

structure consistency and potentially impact efficacy (Shinkawa, Nakamura et al. 

2003, Goetze, Liu et al. 2011, Yu, Brown et al. 2012). Several efforts have been 

undertaken to increase galactosylation mainly by feeding galactose and uridine, the 
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metabolic precursors of uridine diphosphate galactose (UDPGal), to the cell culture 

(Wong, Wati et al. 2010, Gramer, Eckblad et al. 2011, Grainger and James 2013). 

UDP-Gal is the nucleotide sugar donor (NSD) required for galactosylation as the co-

substrate of the β-1,4 galactosyltransferase (GalT). However, the benefits of precursor 

addition towards galactosylation can be offset by metabolic perturbations, 

compromised cell growth and reduced product titre (Grainger and James 2013). 

Mathematical models are a useful tool that has been widely used to describe cell 

metabolism (Kontoravdi, N. Pistikopoulos et al. 2010, Nolan and Lee 2011) and N-

linked glycosylation (Krambeck and Betenbaugh 2005, del Val, Nagy et al. 2011, 

Spahn, Hansen et al. 2016, Kontoravdi and del Val 2018). Metabolic flux analysis 

(MFA) and flux balance analysis (FBA) are usually conducted to unveil the most 

active metabolic pathways in cells during culture. Glycosylation flux analysis (GFA) 

has also been proposed to calculate the intracellular fluxes and distributions of 

glycans (Hutter, Villiger et al. 2017, Kremkow and Lee 2018). In an effort to provide 

a holistic model for mAb production, Jedrzejewski, del Val et al. (2014) linked the 

extracellular concentrations of nutrients to glycosylation, using a model framework 

that included the nucleotide and NSD synthesis pathways as the channel between cell 

metabolism and glycosylation. The proposed concept opened a new path for 

monitoring mAb production and glycan distribution through mathematical models 

(Kaveh, Hengameh et al. 2013).  

Following the Quality by Design (QbD) paradigm, where the end-product quality is 

rationally built into the manufacturing process, a mathematical model that could 

describe the perturbations affected by different feeding strategies on cell metabolism 

and mAb glycosylation would be a valuable tool for process and design space 

This article is protected by copyright. All rights reserved. 



 
A

cc
ep

te
d 

A
rt

ic
le

 
optimization. In order to bridge this gap, herein we propose a combined experimental 

and computational strategy that captures the effects of feeding strategies on cell 

metabolism, intracellular NSD concentrations and mAb glycan distribution. The 

proposed mechanistic model is able to capture the metabolic alterations caused by the 

addition of uridine and galactose at different concentrations. The model has been 

trained with a set of experimental data, and its predictive capabilities have been 

validated against an independent feeding experiment that was designed using model-

based optimisation. The proposed model sets the groundwork for in silico glycan 

optimisation by means of metabolic control, speeding up process development and 

reducing glycoform variability. 

2. Materials and Methods 

2.1 Cell culture 

A Chinese hamster ovary CHO cell line (kindly donated by MedImmune, Cambridge, 

UK) producing an IgG antibody was used in this study. The cells were maintained in 

suspension culture in CD CHO medium (Life Technologies, Paisley, UK) at 36.5 °C 

and 5% CO2 on an orbital shaking platform rotating at 150 rpm and were passaged 

every 3 days. 50 µM methionine sulfoximine (MSX) was added for the first two 

passages post-revival. Experiments were conducted in 500 mL vented Erlenmeyer 

flasks with a working volume of 100 mL at a seeding density of 2×105 cells·mL-1. 

Cell concentration was determined using a Neubauer ruling haemocytometer, and 

viability was estimated by the trypan blue dye exclusion method using light 

microscopy. All cultures were supplemented with 10% v/v CD EfficientFeedC™ C 

AGT™ Nutrient supplement (Life Technologies, Paisley, UK) on all even culture 

days starting on day 2. Cell cultures were supplemented with 1 µM manganese(II) 
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chloride solution at seeding as well as varying amounts of D-(+)-galactose (6.5 mM to 

50 mM in total culture volume) and uridine (0.76 mM to 20 mM in total culture 

volume) (all Sigma-Aldrich, Dorset, UK). Cultures were terminated at day 12 or when 

cell viability dropped below 60%. In total, six different feeding strategies were 

followed: (i) no galactose and uridine addition (control experiment), (ii) addition of 

10mM galactose on days 4 and 8 (10G), (iii) addition of 10mM galactose and 5mM 

uridine on days 4 and 8 (10G5U), (iv) addition of 10mM galactose and 20mM uridine 

on days 4 and 8 (10G20U), (v) addition of 50mM galactose and 5mM uridine on days 

4 and 8 (50G5U) and (vi) addition of 6.5mM galactose and 0.76mM uridine on day 4, 

addition of 9.3mM galactose and 1.34mM uridine on day 6, addition of 9mM 

galactose and 2.8mM uridine on day 8 and addition of 8.7mM galactose and 10mM 

uridine on day 10 (independent experiment). 

2.2 Metabolite and antibody quantification 

Antibody concentration in cell culture supernatant was determined using the BLItz® 

system and the Dip and Read™ Protein A (ProA) Biosensors (all Pall ForteBio, 

Portsmouth, UK). Extracellular glucose, glutamine, glutamate, ammonia and lactate 

concentrations were measured using the BioProfile 400 (NOVA Biomedical, MA, 

USA). Extracellular galactose concentration was determined using the Amplex® Red 

Galactose/Galactose Oxidase Assay kit (Life Technologies, Paisley, UK) according to 

the manufacturer’s instructions. Intracellular glutamine concentration was determined 

using the Glutamine EnzyChrom™ Assay Kit (Universal Biologicals, Cambridge, 

UK). Extracellular uridine concentrations were measured using an optimized high-

performance anion-exchange chromatography (HPAEC) method as described in del 

Val, Kyriakopoulos et al. (2013). 
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2.3 Nucleotide and NSD quantification 

Cell culture samples containing 2×106 viable cells were centrifuged at 800 rpm. In a 

washing step the resulting cell pellet was resuspended in 2 mL of ice cold 0.9% w/v 

sodium chloride and then immediately centrifuged at 800 rpm to remove supernatant 

residues. The cell pellet was resuspended in 400 µL of ice-cold 50% v/v aqueous 

acetonitrile (Sigma-Aldrich, Gillingham, UK). The solution was incubated on ice for 

10 minutes before centrifugation (4 °C, 10,000× g, 5 min). The nucleotide and 

nucleotide sugar containing supernatant was dried using a SpeedVac (Savant Inc. 

Laboratory, MI) and resuspended in 150 µL water. The final supernatant sample was 

filtered using a 0.22 µm syringe filter and stored at -80 °C prior to analysis. 

The HPAEC method described in del Val, Kyriakopoulos et al. (2013) was also used 

for intracellular nucleotide, nucleoside and nucleotide sugar quantification. Briefly, 

elutions were performed with gradients of 1.5 M sodium acetate solution (Sigma-

Aldrich, Gillingham, UK) in 3 mM potassium hydroxide (Sigma-Aldrich, Gillingham, 

UK) with a maximum ion concentration of 1 M sodium acetate using a CarboPac PA1 

column (Dionex, Bannockburn, IL, USA). A modified method was used for the 

quantification of GDP-Fuc and GDP-Man to prevent species co-elution with 

intracellular tryptophan. Elutions were performed with gradients of 1.5 M sodium 

acetate solution in 3 mM potassium hydroxide. Elutions of the sodium acetate 

solution were carried out using the following gradients: t0 min = 20%, t1 min = 66%, 

t6 min = 66%, t23 min = 20%, t30 min = 20%. Detection was performed at 262.1 nm. 
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2.4 Antibody glycan analysis 

Secreted antibody was purified from cell culture supernatant with a Protein A IgG 

Purification Kit (Thermo Scientific, Horsham, UK) and concentrated using 

Vivaspin® 2 ultracentrifugation spin columns 50kDa (Generon, Maidenhead, UK). 

Further glycan processing and glycan quantification was kindly performed by 

MedImmune (Cambridge, UK). The workflow involved the denaturation of purified 

and concentrated IgG samples, PNGase digestion and glycan labelling. 

Separation/quantification was performed using the LabChip® platform (PerkinElmer, 

Seer Green, UK) based on capillary electrophoresis. 

2.5 Mathematical Modelling 

Model construction, simulation, parameter estimation and optimization were 

conducted in gPROMS v.5.0.1 (Process System Enterprise Ltd, London, U.K., 

www.psenterprise.com/gproms). Unless otherwise stated, the model parameters were 

estimated using the maximum likelihood optimization formulation in gPROMS that 

maximises the probability that the mathematical model will predict the experimental 

measurements by assigning values to the physical and variance model parameters. 

The same solver was used to design the independent feeding strategy used for 

validation. The model framework comprises three sub-models: an unstructured cell 

growth, death and metabolism model, a model describing the NSD synthesis and an 

N-linked glycosylation model (del Val, Nagy et al. 2011, del Val, Fan et al. 2016). 

The cell culture model estimates the specific cell growth and specific mAb 

productivity that are used as inputs for the NSD synthesis model. The latter calculates 

the NSD concentration and the fluxes of NSDs from the cytosol to the Golgi 
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environment, which are fed to the N-linked glycosylation model to estimate the 

distribution of mAb glycoforms.  

2.6 Statistical Analysis 

The MedCalc Statistical Software v.18.2.1 (MedCalc Software bvba, Ostend, 

Belgium) was used for the estimation of the Concordance Correlation Coefficient 

(CCC) (Lawrence 1989) for a 95% confidence interval, to quantify the degree of 

agreement of the model framework with experimental results, alongside with the R2. 

CCC and R2 were used to quantify the agreement of two sets of variables, which in 

our case were the observed and the modelling results. The Pearson Correlation 

Coefficient (PCC) was additionally calculated and presented for completeness, even 

though it is limited to quantifying the correlation of two variable sets and lacks the 

ability to describe their agreement. OriginPro 2017 (OriginLab, Northampton, MA) 

was used for the calculation of PCC for a 95% confidence interval. 

3. Model construction and parameter estimation 

3.1 Cell culture model 

The cell culture model framework was adapted from previous work on fed-batch 

hybridoma cell cultures (Kontoravdi, N. Pistikopoulos et al. 2010). The model is 

comprised of three modules: a CHO cell growth and death model, a CHO cell 

metabolism model and a mAb production model. The control, 10G, 10G5U, 10G20U 

and 50G5U experiments were used for model construction and parameter estimation.  
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3.1.1 CHO cell growth and death 

CHO cell growth description was based on modified Monod equations that were 

defined by the limiting substrates and inhibiting metabolites. The equations of the 

model framework that describe CHO cell growth and death are listed below: 

𝑑𝑉
𝑑𝑡

= 𝐹𝑖𝑛 − 𝐹𝑜𝑢𝑡 (1) 

𝑑(𝑉𝑋𝑣)
𝑑𝑡

= (µ −  µ𝑑𝑒𝑎𝑡ℎ)𝑉𝑋𝑣 − 𝐹𝑜𝑢𝑡𝑋𝑣 (2) 

Eq.(1) describes the material balance for the cell culture volume V (L) according to 

the inlet 𝐹𝑖𝑛 (L·h-1) and the outlet 𝐹𝑜𝑢𝑡 (L·h-1) flow rates. Eq. (2) describes the 

material balance for the cell density 𝑋𝑣 (cell·L-1), where µ (h-1) and μdeath (h-1) indicate 

the specific cell growth and death rate, respectively. 

µ =  µ𝑚𝑎𝑥𝑓lim𝑓𝑖𝑛ℎ (3) 

𝑓lim = [𝐺𝑙𝑐]
[𝐺𝑙𝑐]+𝐾𝐺𝑙𝑐

[𝐴𝑠𝑛]
[𝐴𝑠𝑛]+𝐾𝐴𝑠𝑛

 (4) 

𝑓inh = 𝐾𝐼𝐴𝑚𝑚
[𝐴𝑚𝑚]+𝐾𝐼𝐴𝑚𝑚

𝐾𝐼𝐿𝑎𝑐
[𝐿𝑎𝑐]+𝐾𝐼𝐿𝑎𝑐

𝐾𝐼𝑈𝑟𝑑
[𝑈𝑟𝑑]+𝐾𝐼𝑈𝑟𝑑

 (5) 

Eq. (3), (4) and (5) describe the specific cell growth rate, where µ𝑚𝑎𝑥 (h-1) is the 

maximum specific cell growth rate, 𝑓lim (-) is the substrate limiting factor and 𝑓inh (-) 

is the metabolite inhibiting factor. Glucose and asparagine were regarded as the 

limiting substrates, while lactate, ammonia and uridine were considered to inhibit 

growth. The latter two were also regarded as toxic for cell growth. 𝐾𝐺𝑙𝑐 (mM) and 

𝐾𝐴𝑠𝑛(mM) are the Monod constants for glucose and asparagine, respectively. 𝐾𝐼𝐴𝑚𝑚 

(mM), 𝐾𝐼𝐿𝑎𝑐 (mM), 𝐾𝐼𝑈𝑟𝑑 (mM) are the inhibiting constants for the ammonia, lactate 
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and uridine, respectively. [𝐺𝑙𝑐], [𝐴𝑠𝑛], [𝐴𝑚𝑚], [𝐿𝑎𝑐] and [𝑈𝑟𝑑] are the extracellular 

concentrations (mM) of glucose, asparagine, ammonia, lactate and uridine, 

respectively. 

µ𝑑𝑒𝑎𝑡ℎ = µ𝑑𝑒𝑎𝑡ℎ,𝑚𝑎𝑥 �
[𝐴𝑚𝑚]

[𝐴𝑚𝑚]+𝐾𝑑,𝐴𝑚𝑚
+ [𝑈𝑟𝑑]

[𝑈𝑟𝑑]+𝐾𝑑,𝑈𝑟𝑑
� (6) 

Eq. (6) describes the specific cell death rate, were µ𝑑𝑒𝑎𝑡ℎ,𝑚𝑎𝑥 (h-1) is the maximum 

specific cell death rate and 𝐾𝑑,𝐴𝑚𝑚 (mM) and 𝐾𝑑,𝑈𝑟𝑑  (mM) are the ammonia and 

uridine constants for cell death, respectively. 

3.1.2 CHO cell metabolism 

Cell metabolism was described by the material balances of substrates, products and 

amino acids that were calculated according to Eq. (7): 

𝑑(𝑉[𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒])
𝑑𝑡

= 𝐹𝑖𝑛�𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒𝑓𝑒𝑒𝑑� − 𝐹𝑜𝑢𝑡[𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒] + 𝑞𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒𝑉𝑋𝑣 (7) 

where, �𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒𝑓𝑒𝑒𝑑� (mM) is the concentration of each metabolite in the feed, 

[𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒] (mM) is the extracellular concentration of each metabolite in the 

culture and 𝑞𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒 (mmol·cell-1·h-1) is the specific production/consumption rate 

of each metabolite and is based on the intracellular metabolic links between the 

metabolites as discussed below. The sign convention used in the model for the 

specific rates is positive (+) for the secreted and negative (-) for the consumed 

metabolites, respectively. The specific production/consumption rates for each 

metabolite are listed below. In Eq. (8)-(16), 𝑌𝑋𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒 (cell·mmol-1) describes the 

yield of cell biomass on the metabolite and is assumed to remain constant for each 

metabolite during the cell culture process to avoid overparameterization. 
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𝑞𝐺𝑙𝑐 = (− 𝜇

𝑌𝑋𝐺𝑙𝑐
− 𝑚𝐺𝑙𝑐) ∙ ( 𝐾𝑐𝐺𝑎𝑙

𝐾𝑐𝐺𝑎𝑙+[𝐺𝑎𝑙]
)𝑛𝐺𝑎𝑙 (8) 

𝑛𝐺𝑎𝑙 = 1 − 𝑓𝐺𝑎𝑙
𝑞𝐺𝑎𝑙
𝑞𝐺𝑙𝑐

 (9) 

Eq. (8) and (9) describe the specific consumption rate of glucose. Moreover, the 

specific consumption rate of glucose was found to depend on the respective galactose 

rate, as described in Eq. (9). The link between the two metabolites is expected as 

galactose feeds into the glycolytic pathway through its enzymatic conversion into 

glucose 1-phosphate. The 𝐾𝑐𝐺𝑎𝑙
𝐾𝑐𝐺𝑎𝑙+[𝐺𝑎𝑙]

 term in Eq. (8) is used as a regulator when 

galactose is fed in the culture. In the absence of galactose the above term is equal to 1 

and does not affect the glucose specific rate. 𝑚𝐺𝑙𝑐 (mmol·cell-1·h-1) is the maintenance 

coefficient of glucose for other metabolic pathways of the cell, 𝐾𝑐𝐺𝑎𝑙 (mM) is the 

regulating concentration of galactose and 𝑛𝐺𝑎𝑙 (-) and 𝑓𝐺𝑎𝑙 (-) are factors that 

participate in regulating the specific uptake rate of glucose. 𝑛𝐺𝑎𝑙 accounts for the 

fraction of the galactose specific consumption rate and the respective glucose 

consumption rate. In Eq. (9) when the galactose consumption rate increases, 𝑛𝐺𝑎𝑙 

decreases and consequently from Eq. (8) 𝑞𝐺𝑙𝑐 increases. The majority of glucose 

transporters (GLUTs) in mammalian cells show affinity to both glucose and galactose 

and therefore a regulation of the glucose and galactose flux from the GLUTs is 

possible (Wieczorke, Dlugai et al. 2003, Zhao and Keating 2007). 

𝑞𝐺𝑙𝑛 = 𝜇
𝑌𝑋𝐺𝑙𝑛

+ 𝑞𝐴𝑚𝑚𝑌𝐺𝑙𝑛/𝐴𝑚𝑚 (10) 

where, 𝑌𝐺𝑙𝑛/𝐴𝑚𝑚 (mmolGln·mmolAmm
-1) is the yield of glutamine from ammonia.  

𝑞𝐿𝑎𝑐 = � 𝜇
𝛶𝑋𝐿𝑎𝑐

− 𝑌𝐿𝑎𝑐/𝐺𝑙𝑐𝑞𝐺𝑙𝑐�
(𝐿𝑎𝑐𝑚𝑎𝑥1−[𝐿𝑎𝑐])

𝐿𝑎𝑐𝑚𝑎𝑥1
+ 𝑚𝑙𝑎𝑐

𝐿𝑎𝑐𝑚𝑎𝑥2−[𝐿𝑎𝑐]
𝐿𝑎𝑐𝑚𝑎𝑥2

 (11) 
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where, 𝑌𝐿𝑎𝑐/𝐺𝑙𝑐 (mmolLac·mmolGlu

-1) is the yield of lactate from glucose, 𝐿𝑎𝑐𝑚𝑎𝑥1 

(mM) and 𝐿𝑎𝑐𝑚𝑎𝑥2 (mM) are kinetic constants for the lactate consumption that occurs 

during the stationary phase (Zagari, Jordan et al. 2013) and 𝑚𝑙𝑎𝑐 (mmol·cell-1·h-1) is 

the maintenance coefficient of lactate for other metabolic pathways of the cell.  

𝑞𝐴𝑚𝑚 = 𝜇
𝑌𝑋𝐴𝑚𝑚

− 𝑌𝐴𝑚𝑚/𝑈𝑟𝑑 𝑞𝑈𝑟𝑑 (12) 

where, 𝑌𝐴𝑚𝑚/𝑈𝑟𝑑 (mmolAmm·mmolUrd
-1) is the yield of ammonia from uridine.  

𝑞𝐺𝑙𝑢 = − 𝜇
𝑌𝑋𝐺𝑙𝑢

 (13) 

𝑞𝐺𝑎𝑙 = − 𝜇
𝑌𝑋𝐺𝑎𝑙

[𝐺𝑎𝑙]
[𝐺𝑎𝑙]+𝐾𝐺𝑎𝑙

 (14) 

where, 𝐾𝐺𝑎𝑙 (mM) is a Monod constant. The [𝐺𝑎𝑙]
[𝐺𝑎𝑙]+𝐾𝐺𝑎𝑙

 term functions as a regulator of 

the specific consumption rate of galactose.  

𝑞𝑈𝑟𝑑 = 𝜇
𝑌𝑋𝑈𝑟𝑑

[𝑈𝑟𝑑]
[𝑈𝑟𝑑]+𝐾𝑈𝑟𝑑

 (15) 

where, 𝐾𝑈𝑟𝑑 (mM) is a Monod constant that regulates the effect uridine concentration 

on the specific consumption rate of uridine, with the same way that was previously 

described for galactose. 

𝑞𝐴𝑠𝑛 = − 𝜇
𝑌𝑋𝐴𝑠𝑛

− 𝑌𝐴𝑠𝑛/𝐴𝑠𝑝𝑞𝐴𝑠𝑝 (16) 

where, 𝑌𝐴𝑠𝑛/𝐴𝑠𝑝 (mmolAsn·mmolAsp
-1) is the yield of asparagine from aspartate. 

𝑞𝐴𝑠𝑝 = − 𝜇
𝑌𝑋𝐴𝑠𝑝

− 𝑌𝐴𝑠𝑝/𝐴𝑠𝑛𝑞𝐴𝑠𝑛 (17) 

where, 𝑌𝐴𝑠𝑝/𝐴𝑠𝑛 (mmolAsp·mmolAsn
-1) is the yield of aspartate from asparagine. 
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3.1.3 mAb production 

mAb synthesis was described with the material balance of the extracellular mAb 

concentration and the respective specific production rate: 

𝑑(𝑉[𝑚𝐴𝑏])
𝑑𝑡

= −𝐹𝑜𝑢𝑡[𝑚𝐴𝑏] + 𝑞𝑚𝐴𝑏𝑉𝑋𝑣 (18) 

𝑞𝑚𝐴𝑏 = 𝑌𝑚𝐴𝑏𝑋𝜇 +  𝑚𝑚𝐴𝑏 (19) 

where, [𝑚𝐴𝑏] (pg·L-1) is the extracellular mAb concentration, 𝑞𝑚𝐴𝑏 (pg·cell-1·h-1) is 

the specific productivity of mAbs, 𝑌𝑚𝐴𝑏𝑋 (pg·cell-1) is the yield of mAbs from cell 

growth and 𝑚𝑚𝐴𝑏 (pg·cell-1·h-1) is a non-growth associated term.  

3.2 NSD metabolic model 

The NSD metabolic model uses the specific production rate of mAbs and the specific 

cell growth rate as inputs. Throughout the NSD model, the nucleotides are assumed to 

be in excess, as supported by our experimental measurements (data not shown) and 

therefore were not included in the rate calculations. The rates are based on simple 

Michaelis-Menten saturation kinetics and the substrates used are the intracellular NSD 

concentrations, the extracellular concentrations of glucose, galactose and uridine and 

the intracellular concentration of glutamine. Apart from glutamine, the intracellular 

concentrations of the metabolites were not estimated in order to avoid 

oversimplifications and overparameterization. The intracellular concentration of 

glutamine was linked to the respective extracellular through this simple equation: 

[𝐺𝑙𝑛𝑖𝑛𝑡𝑟𝑎] = 𝑓𝐺𝑙𝑛[𝐺𝑙𝑛] (20) 
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where, [𝐺𝑙𝑛𝑖𝑛𝑡𝑟𝑎] (mM) is the intracellular concentration of glutamine and 𝑓𝐺𝑙𝑛 is the 

secretion factor of glutamine to the extracellular environment.  

The rates were calculated according to the proposed NSD metabolic pathway (Fig. 1) 

and the kinetic mechanisms that have been reported for each enzyme (Kanehisa and 

Goto 2000, Schomburg, Chang et al. 2002).  

The rates (mmolNSD·Lcell
-1·h-1) as shown in Fig. 1 are listed below: 

𝑟1 = 𝑉𝑚𝑎𝑥1
[𝐺𝑙𝑛𝑖𝑛𝑡𝑟𝑎]

𝐾𝑀1𝐺𝑙𝑛+[𝐺𝑙𝑛𝑖𝑛𝑡𝑟𝑎]
 (22) 

𝑟1𝑠𝑖𝑛𝑘 = 𝑉𝑚𝑎𝑥1𝑠𝑖𝑛𝑘
[𝑈𝐷𝑃𝐺𝑙𝑐𝑁𝐴𝑐]

�𝐾𝑀1𝑠𝑖𝑛𝑘+[𝑈𝐷𝑃𝐺𝑙𝑐𝑁𝐴𝑐]��1+[𝐶𝑀𝑃𝑁𝑒𝑢5𝐴𝑐]
𝐾𝐼1𝑠𝑖𝑛𝑘

�
 (23) 

𝑟2 = 𝑉𝑚𝑎𝑥2
[𝐺𝑙𝑐]

𝐾𝑀2𝐺𝑙𝑐+[𝐺𝑙𝑐]
 (24) 

𝑟2𝑏 = 𝑉𝑚𝑎𝑥2𝑏
[𝑈𝐷𝑃𝐺𝑎𝑙]

𝐾𝑀2𝑏𝑈𝐷𝑃𝐺𝑎𝑙�1+
[𝑈𝐷𝑃𝐺𝑙𝑐𝑁𝐴𝑐]

𝐾𝐼2𝐴
+[𝑈𝐷𝑃𝐺𝑎𝑙𝑁𝐴𝑐]

𝐾𝐼2𝐵
+[𝑈𝐷𝑃𝐺𝑙𝑐]

𝐾𝐼2𝐶
+[𝑈𝐷𝑃𝐺𝑎𝑙]

𝐾𝐼2𝐷
�+[𝑈𝐷𝑃𝐺𝑎𝑙]

 (25) 

𝑟3 = 𝑉𝑚𝑎𝑥3
[𝐺𝑙𝑐]

𝐾𝑀3𝐺𝑙𝑐+[𝐺𝑙𝑐]
 (26) 

𝑟4 = 𝑉𝑚𝑎𝑥4
[𝑈𝐷𝑃𝐺𝑙𝑐𝑁𝐴𝑐]

𝐾𝑀4𝑈𝐷𝑃𝐺𝑙𝑐𝑁𝐴𝑐+[𝑈𝐷𝑃𝐺𝑙𝑐𝑁𝐴𝑐]
 (27) 

𝑟5 = 𝑉𝑚𝑎𝑥5
[𝑈𝐷𝑃𝐺𝑙𝑐𝑁𝐴𝑐]

𝐾𝑀5𝑈𝐷𝑃𝐺𝑙𝑐𝑁𝐴𝑐�1+
[𝐶𝑀𝑃𝑁𝑒𝑢5𝐴𝑐]

𝐾𝐼5
�+[𝑈𝐷𝑃𝐺𝑙𝑐𝑁𝐴𝑐]

 (28) 

𝑟6 =  𝑉𝑚𝑎𝑥6
[𝑈𝐷𝑃𝐺𝑙𝑐]

𝐾𝑀6𝑈𝐷𝑃𝐺𝑙𝑐�1+
[𝑈𝐷𝑃𝐺𝑙𝑐𝑁𝐴𝑐]

𝐾𝐼6𝐴
+[𝑈𝐷𝑃𝐺𝑎𝑙𝑁𝐴𝑐]

𝐾𝐼6𝐵
+[𝑈𝐷𝑃𝐺𝑎𝑙]

𝐾𝐼6𝐶
�+[𝑈𝐷𝑃𝐺𝑙𝑐]

 (29) 

𝑟6𝑠𝑖𝑛𝑘 = 𝑉𝑚𝑎𝑥6𝑠𝑖𝑛𝑘
[𝑈𝐷𝑃𝐺𝑎𝑙]

𝐾6𝑠𝑖𝑛𝑘�1+
[𝑈𝐷𝑃𝐺𝑙𝑐]
𝐾𝐼6𝑠𝑖𝑛𝑘

�+[𝑈𝐷𝑃𝐺𝑎𝑙]

[𝐺𝑎𝑙]
[𝐺𝑎𝑙]+𝐾𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑜𝑟

 (30) 
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𝑟7 = 𝑉𝑚𝑎𝑥7

[𝐺𝐷𝑃𝑀𝑎𝑛]

(𝐾𝑀7𝐺𝐷𝑃𝑀𝑎𝑛+[𝐺𝐷𝑃𝑀𝑎𝑛])�1+[𝐺𝐷𝑃𝐹𝑢𝑐]
𝐾𝐼7

�
 (31) 

𝑟7𝑠𝑖𝑛𝑘 = 𝑉𝑚𝑎𝑥7𝑠𝑖𝑛𝑘
[𝐺𝐷𝑃𝐹𝑢𝑐]

𝐾𝑀7𝑠𝑖𝑛𝑘+[𝐺𝐷𝑃𝐹𝑢𝑐]
 (32) 

where, 𝑉𝑚𝑎𝑥, 𝑖 (mmolNSD·Lcell
-1·h-1) is the maximum turnover rate of reaction 𝑖, [𝑁𝑆𝐷] 

(mM) are the cytosolic NSD concentrations, 𝐾𝑀𝑖𝑁𝑆𝐷 (mM) are the saturation constants 

of the NSD in the 𝑖 reaction, 𝐾𝐼𝑖 (mM) is the inhibition constant in the 𝑖 reaction and 

𝐾𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑜𝑟 (mM) is a fixed parameter that deactivates the regulating [𝐺𝑎𝑙]
[𝐺𝑎𝑙]+𝐾𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑜𝑟

 

term when no galactose is fed. The 𝑟𝑖𝑠𝑖𝑛𝑘 terms (not shown in Fig. 1) describe the flux 

of NSD used in reactions that are not included in the chosen metabolic framework and 

were found to affect GDPFuc, UDPGal and UDPGlcNAc concentration. 

The contribution of uridine and galactose to NSDs concentration was described with 

separate reaction rates (mmolNSD·Lcell
-1·h-1) that are described below: 

𝑟𝑖𝑈𝑟𝑑 = 𝑉𝑚𝑎𝑥,𝑖𝑈𝑟𝑑
[𝑈𝑟𝑑]

𝐾𝑀,𝑖𝑈𝑟𝑑+[𝑈𝑟𝑑]
 (33) 

where, 𝑖 stands only for reactions 1,2,4 and 6.  

𝑟6𝐺𝑎𝑙 = 𝑉𝑚𝑎𝑥6𝐺𝑎𝑙
[𝐺𝑎𝑙]

𝐾𝑀6𝐺𝑎𝑙�1+
[𝑈𝐷𝑃𝐺𝑎𝑙]
𝐾𝐼6𝐷

+[𝐺𝑎𝑙]
𝐾𝐼6𝐸

+[𝑈𝑟𝑑]
𝐾𝐼6𝐹

�+[𝐺𝑎𝑙]
 (34) 

The material balance of each NSD is derived from Fig. 1 and follows the general 

form: 

𝑑([𝑁𝑆𝐷])
𝑑𝑡

= ∑ 𝑣𝑖𝑟𝑖𝑖 − 𝐹𝑜𝑢𝑡𝑁𝑆𝐷 (35) 
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where, 𝑣𝑖 is the stoichiometric coefficient for reaction 𝑖, 𝑟𝑖 is any of the reactions 

depicted in Fig. 1 and 𝐹𝑜𝑢𝑡𝑁𝑆𝐷 (mmolNSD·L-1·h-1) describes the flux of each cytosolic 

NSD into the Golgi apparatus and represents the transport rate of each NSD 

consumed for the glycosylation of host cell protein (HCP), glycolipids and mAb 

product, as shown in Eq. (36): 

𝐹𝑜𝑢𝑡𝑁𝑆𝐷  = [𝑁𝑆𝐷]
𝐾𝑇𝑃𝑁𝑆𝐷+[𝑁𝑆𝐷]

(
𝑁𝐻𝐶𝑃/𝐿𝑖𝑝𝑖𝑑𝑠𝑁𝑆𝐷𝜇

𝑉𝑐𝑒𝑙𝑙
+  

𝑁𝑝𝑟𝑒𝑐𝑢𝑟𝑠𝑜𝑟𝑁𝑆𝐷𝑞𝑚𝐴𝑏

𝑉𝑐𝑒𝑙𝑙
 +  𝑟𝑁𝑆𝐷𝑘

𝑚𝐴𝑏,𝑔𝑙𝑦𝑐) (36) 

where, 𝐾𝑇𝑃𝑁𝑆𝐷 (mM) is the transport protein saturation constant. The first sum term of 

Eq. (36) describes the flux of NSD used for HCPs and glycolipids synthesis, where 

𝑉𝑐𝑒𝑙𝑙 (L) is the cellular volume and 𝑁𝐻𝐶𝑃/𝐿𝑖𝑝𝑖𝑑𝑠𝑁𝑆𝐷 (mmolNSD·cell-1) is the nucleotide 

sugar donor stoichiometric coefficient for HCP and glycolipids synthesis, as described 

by del Val, Polizzi et al. (2016). The second term describes the NSD demand for the 

formation of the precursor oligosaccharide (Glc3Man9GlcNAc2), where 𝑁𝑝𝑟𝑒𝑐𝑢𝑟𝑠𝑜𝑟𝑁𝑆𝐷 

(mmolNSD·cell-1) is the stoichiometric coefficient of the NSDs that participate in 

precursor oligosaccharide synthesis (del Val, Polizzi et al. 2016). The third term of 

Eq. (36) describes the fluxes of NSDs in the latter stages of N-linked glycosylation 

and are described by Eq.(37) (del Val, Nagy et al. 2011): 

𝑟𝑁𝑆𝐷𝑘
𝑚𝐴𝑏,𝑔𝑙𝑦𝑐 = �𝑉𝐺𝑜𝑙𝑔𝑖

𝑉𝑐𝑒𝑙𝑙
� ∫ ∑ 𝜈𝑘,𝑗 ∙ 𝑟𝑗(𝑧)𝑁.𝑅.

𝑗=1 𝑑𝑧𝑧=1
𝑧=0  (37) 

where, 𝑟𝑁𝑆𝐷𝑘
𝐺𝑙𝑦𝑐  (mmolNSD·L-1·h-1) is the rate of the NSD k that is used for mAb 

glycosylation, k can be any NSD, 𝑉𝐺𝑜𝑙𝑔𝑖 (L-1) is the Golgi volume, 𝜈𝑘,𝑗 

(mmolNSD·mmolOS
 -1) is the stoichiometric coefficient of NSD k required as a co-

substrate in reaction j, 𝑧 is the normalized Golgi length and 𝑟𝑗(𝑧) (mmolOS·L-1·h-1) is 
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the rate of glycosylation reaction j along the length of the Golgi that is calculated in 

the N-linked glycosylation model.  

However, the use of Eq. (37) in the current modelling framework substantially 

increases simulation time because the numerical solution requires convergence 

between the fluxes calculated by Eq. 36 and the integral over z. Eq. (38) is proposed 

to reduce the simulation time while maintaining a mechanistic relationship between 

the NSD and glycosylation sub-models. NSD flux for mAb glycosylation is assumed 

to be a function of oligosaccharide’s concentration in the end of the normalized Golgi 

length (𝑧=1) as the residence time of an oligosaccharide molecule in the Golgi 

(22min, (del Val, Nagy et al. 2011)) is significantly lower than the time scale within 

which experimentally observed changes in NSD concentrations occur. 

𝑟𝑁𝑆𝐷𝑘
𝑚𝐴𝑏,𝑔𝑙𝑦𝑐 =  𝑉𝑒𝑙𝐺𝑜𝑙𝑔𝑖 �

𝑉𝐺𝑜𝑙𝑔𝑖
𝑉𝑐𝑒𝑙𝑙

�∑ 𝜈𝑘,𝑖 ∙ 𝑂𝑆𝑖(1)𝑁.𝑂𝑆
𝑖=1  (38) 

where, 𝑉𝑒𝑙𝐺𝑜𝑙𝑔𝑖 (Golgi length·min-1) is the linear velocity with which the molecules 

travel through the Golgi apparatus, 𝜈𝑘,𝑖 (mmolNSD·mmolOS
 -1) is the stoichiometric 

coefficient of NSD k required to produce the oligosaccharide 𝑖 and 𝑂𝑆𝑖(1) 

(mmolOS∙L-1) is the concentration of the oligosaccharide 𝑖 in the end of the normalized 

Golgi length as calculated by the N-linked glycosylation model. 

3.3 N-linked glycosylation model 

The estimated NSD concentrations are fed to the N-linked mAb glycosylation model 

that was adapted from del Val, Nagy et al. (2011), in order to estimate the mAb 

glycoform distribution. The adapted model relates the cytosolic concentration of 

NSDs with the glycan distribution, considering that the concentration of NSDs inside 

the Golgi apparatus is 20 times greater than the cytosolic concentration (Waldman and 
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Rudnick 1990). The measured NSD concentration is the total intracellular NSD 

concentration that accounts both the concentration of NSDs in the cytosolic and Golgi 

environment respectively. As proposed by del Val et al. (2016), the current model 

assumes a constant Golgi volume and a variable linear velocity through Golgi 

(𝑉𝑒𝑙𝐺𝑜𝑙𝑔𝑖), to describe the different rates at which secretory cargo (the mAb) traverses 

the Golgi apparatus (Presley, Cole et al. 1997).  

3.4 Parameter estimation 

3.4.1 Culture and NSD model 

The CHO cell culture and NSD metabolic model include 102 unknown parameters, 

from which 85 parameters were estimated by fitting the model equations to the 

available experimental data (close to 900 data points in total), using the Parameter 

Estimation entity in gPROMS v.5.0.1. The remaining 17 parameters were assigned 

fixed values according to literature. In order to obtain satisfactory parameter 

confidence intervals, the model was separated in modular sections and parameter 

estimation was carried out sequentially as described below: The parameters of the 

CHO cell culture model and the NSD metabolic model that were not related to 

galactose and uridine were estimated based only on the control experiment. Using the 

values defined in the first step, the parameters that were introduced due to galactose 

and uridine feeding were estimated based on the four feeding experiments. Therefore, 

parameter estimation was strongly based on the control experiment and no parameter 

differs between the control and the feeding experiments. Subsequently and as a final 

step, 18 parameters of the N-linked glycosylation model were estimated as further 

described in section 3.4.2. 
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The standard deviation of each experimentally measured variable was used to 

calculate a variance model for that measurement, which was used in the estimation of 

related model parameters. In all kinetic rate expressions, both maximum turnover 

rates and Monod saturation constants were unknown, making the problem of 

parameter estimation structurally unidentifiable because the linear dependence 

between the rate and the substrate concentration below saturation only gives us an 

estimate of their ratio. Therefore, the majority of Monod constants were hypothesised 

not to differ more than one order of magnitude from the metabolite or NSD 

concentration used in each rate, in order to estimate more realistic values for both 𝐾𝑚 

and 𝑉𝑚𝑎𝑥. However, the estimated values are not intended to accurately represent 

these kinetic parameters owing to the lack of structural and therefore also numerical 

identifiability.  

3.4.2 N-linked Glycosylation model 

The method used for estimating the unknown parameters of the glycosylation model 

was based on a previously presented method by del Val, Fan et al. (2016). However, a 

slightly modified method was used for the estimation of the GalT distribution (no 

sialylation was observed). The enzyme parameters were estimated by obtaining the 

minimum amount of enzyme required to achieve the experimental Galactosylation 

Index (GI) that is described by Eq. (37): 

𝐺𝐼 =  0.5∗𝛥[𝑚𝑜𝑛𝑜𝑔𝑎𝑙𝑎𝑐𝑡𝑜𝑠𝑦𝑙𝑎𝑡𝑒𝑑 𝑂𝑆]+1∗𝛥[𝑑𝑖𝑔𝑎𝑙𝑎𝑐𝑡𝑜𝑠𝑦𝑙𝑎𝑡𝑒𝑑 𝑂𝑆]
𝛥[𝑚𝐴𝑏]

 (39) 

where, the numerator describes the secreted concentration (mM) of galactosylated 

mAb glycoforms that were secreted during the chosen interval, and the denominator 
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describes the total secreted mAb during that interval. The calculation of the secreted 

mAb glycoforms in each interval was based on Fan, Jimenez Del Val et al. (2015). 

In addition to the estimation of two dissociation constants (𝐾𝑑,𝑖) for GalT, the 

dissociation constants for FucT and GnTI were also estimated, owing to the high 

concentrations of fucosylated glycans and the low concentrations of Man5 glycans 

that were observed experimentally. The data from the interval that presented the 

highest specific mAb productivity was used for 𝐾𝑑,𝑖𝐹𝑢𝑐𝑇 and 𝐾𝑑,𝑖𝐺𝑛𝑇𝐼 estimation. 

Considering also the high accumulation of UDPGal that was observed experimentally 

during the feeding strategies, the estimation of two 𝐾𝑑,𝑘𝐺𝑎𝑙𝑇 was found to be of great 

importance. The interval that presented the highest galactosylation was chosen for 

𝐾𝑑,𝑘𝐺𝑎𝑙𝑇 estimation. The remaining parameters were set to their nominal values (del 

Val, Nagy et al. 2011). 

4. Results 

4.1 Model Fitting 

The model was simulated for all feeding strategies that were used for model 

construction and parameter estimation to evaluate the fitting of the model to the 

training data.  

CHO cell culture model simulation 

The simulation results present very good agreement with the experimental 

measurements for all feeding strategies as can be seen in the obtained CCC and R2 

values in Table 1. Selected estimated kinetic parameters that were used for model 

simulation are depicted in Table 2 (all parameter values can be found in Table S1 in 
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the Supplementary Material). Cell density, ammonia, lactate and glutamine 

extracellular concentrations match closely with the experimental measurements and 

indicate that the model framework construction and parameter estimation were 

successfully conducted as shown in Fig. 2 and Fig. S1 in the Supplementary Material. 

Importantly, the model captures the metabolic shift from lactate production to 

consumption in the end of the exponential growth phase and the ammonia increase 

due to uridine addition. The model is also able to describe the inhibitory impact of 

galactose feeding on glucose consumption. Finally, product titre is in quantitative 

agreement for all the feeding experiments indicating that mAb specific production 

rate follows a linear relationship with the specific growth rate as assumed in Eq. (19).  

The CCCs, R2 and the PCCs were calculated for cell density and mAb concentration, 

in order to quantify the agreement of the model results with the experimental 

measurements. CCC is used to correlate the values of the model results and the 

experimental measurements and PCC to correlate the trends of the simulated and 

experimental curves. The calculated CCC and PCC coefficients and R2 are presented 

in Table 1. 

As shown in Table 1, all agreement coefficients for cell density and mAb 

concentration are above 0.9 with the exception of cell density in the 10G experiment, 

where CCC is just below 0.9 and the 10G20U experiment, for which the model is 

unable to capture the steep death phase. The calculated PCCs are higher than the 

respective CCCs, as expected, and show that the model correctly captures the trend of 

the examined variables versus time. 
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NSD synthesis model simulation 

Simulation results for UDPGal, UDPGlc, UDPGlcNAc and UDPGalNAc 

concentrations are presented in Fig. 3. The model captured the increase of UDPGal 

concentration due to galactose feeding when no uridine was added. Moreover, the 

increase of UDPGal concentration in the experiments that included uridine addition 

was well described in the simulations. Higher concentrations of UDPGlcNAc owing 

to uridine addition were successfully calculated while GDPMan and GDPFuc 

estimated concentrations were in the same order of magnitude as the experimental 

measurements (Fig. S2, Supplementary Material). The significant increase of 

UDPGalNAc that is not used as a sugar donor in N-linked glycosylation and UDPGlc 

was also described. Regarding the concentration of UDPGlc in the 10G (B) 

experiment, the model indicated a slight increase of the concentration over time while 

the experimental results followed a fluctuating trend leading to a 50-75% difference 

between the simulation and experimental results in the stationary and death phase of 

the cell culture. However, the concentration of UDPGlc is fluctuating in a narrow 

range when compared to the other feeding experiments and therefore this discrepancy 

is not regarded as significant. The estimated maximum turnover rates for the reactions 

between NSDs as depicted in Fig. 1 are displayed in Table 2. 

The calculated CCCs, R2 and PCCs of UDPGal and UDPGlcNAc concentrations 

shown in Table 1 are above 0.9 for all experiments with the exception of the 

agreement coefficient of UDPGal concentration in the 10G experiment that is 0.897. 

The high values of the coefficients and R2 indicate that the NSD model can 

successfully describe the NSD synthesis pathway and capture the significant 

alterations caused by precursor feeding. 
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Glycoform distribution 

Fig. 4 compares the simulated and experimental distributions of G0, G0F, G1F, G2, 

G2F and Man5 mAb glycoforms on days 7, 9, 11 and 12 of cell culture. The majority 

of glycoform distributions that were calculated by the N-linked glycosylation model 

were within ±5% of the corresponding experimental measurements. Only the 

distribution of the G1F glycoform on day 7 in the 50G5U experiment presented a 

6.8% underestimation compared to experimental results. Experimentally, specific 

production rate of galactosylated mAb (Supplementary Table S3) was reduced 

alongside with the decreasing cell viability (Supplementary Figure S3) post galactose 

and uridine feeding. 

The simulation results presented a general underestimation of the experimental 

measurements probably due to insufficient estimated enzyme availability. Enzyme 

distribution parameters were estimated only according to the control experiment to 

reduce overfitting. Therefore, the increased availability of GlcNAc and galactose was 

not depicted in enzyme concentrations and resulted in slight underestimations for 

some distributions in the feeding experiments. The estimated enzyme distribution 

parameters and dissociation constants are presented in Supplementary Table S2. The 

remaining parameters of the glycosylation model have been assigned to their nominal 

values (del Val, Nagy et al. 2011). Glycoform distributions could not be subjected to 

statistical analysis, as the number of measurements (4) was relatively small. 

4.2 Model predictive capability 

A model-based dynamic feeding strategy aimed to maximise galactosylation was 

implemented experimentally and the data was used to verify the predictive 

capabilities of the developed mathematical model. The dynamic optimisation was 
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carried out in the relevant function within the gPROMS modelling environment. The 

objective function we sought to maximise was the concentration of galactosylated 

mAb species (mg·L-1), as described in Eq. (40).  

𝑔𝑎𝑙𝑎𝑐𝑡𝑜𝑠𝑦𝑙𝑎𝑡𝑖𝑜𝑛 =

 1 × [𝑚𝑜𝑛𝑜𝑔𝑎𝑙𝑎𝑐𝑡𝑜𝑠𝑦𝑙𝑎𝑡𝑒𝑑 𝑚𝐴𝑏] + 2 × [𝑑𝑖𝑔𝑎𝑙𝑎𝑐𝑡𝑜𝑠𝑦𝑙𝑎𝑡𝑒𝑑 𝑚𝐴𝑏] (40) 

There were three control variables: the feed flow rate and the concentrations of 

galactose and uridine in the feed. The problem formulation allowed for the feed to be 

added or not (binary decision) on alternate days starting on day 2. The concentration 

of galactose and uridine in the feed was allowed to range between 0 and 500 mM and 

0 and 100 mM, respectively. The resulting feeding strategy includes four pulse 

additions of varying feed concentrations (details shown in Figure 5). Fig. 5 compares 

model predictions with measured data for that experiment. Cell density and titre 

concentration predictions are in good agreement with the experimental measurements.  

The model captures the timing of the different growth phases and the impact of 

galactose and uridine feeding on cell density with sufficient accuracy. Despite the 

addition of these two precursors, which can negatively affect growth, the cell density 

remains unaffected compared to the control thanks to the inclusion of these 

dependencies in the mathematical formulation used for optimisation. Glycan 

distributions measured on days 7, 9, 11 and 12 are then compared to those predicted 

by the model (Fig. 5). Model accuracy is within ±3.5% with the exception of day 12 

measurement of G0F that is overestimated by 5.3%. The experimentally measured 

galactosylated-mAb concentration at day 12 of cell culture exceeds the respective 

model prediction by 33% due to the unexpected higher total mAb concentration and 

G1F distribution observed. We hypothesise that the underestimation of the 
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galactosylation percentage is due to intracellular regulation of glycosyltransferase 

enzymes and/or NSD transporter proteins, which are not included in the model. 

Indeed, if the concentration of GalT used for model simulation is increased by only 

15%, the simulation results are in significantly better agreement with the experimental 

findings, particularly for G0F and G1F species (Fig. 5). The CCCs, R2 and PCCs of 

cell density and mAb concentration presented in Table 1, are above 0.95 indicating 

that the model successfully predicts cell density and mAb concentration over the 

culture period. The proposed experimental/modelling platform can therefore be used 

to design optimal NSD precursor feeding strategies that control glycosylation. 

To this end, Fig. 6 illustrates the impact of the optimized feeding strategy on the 

percentage and the concentration of the galactosylated mAb. In both cases, the 

optimized feeding strategy presents higher galactosylation compared to the control 

experiment. Unlike the control experiment where the galactosylation percentage 

decreases through time, the optimized feeding strategy leads to an increasing 

galactosylation percentage and galactosylated mAb concentration during the cell 

culture period. 

5. Discussion 

A mechanistic mathematical model to describe cell metabolism, mAb production, 

NSD synthesis and N-linked glycosylation has been proposed. The model was trained 

to data from a wide range of culture conditions in order to capture the responses of all 

described pathways to different feeding strategies of galactose and uridine addition. 

Then, the model’s predictive capability was successfully validated with an 

independent experiment. The predictive experiment included different additions of 

galactose and uridine in a range of concentrations and on different culture days 
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compared to the experiments that were used for model training. The model results for 

the predictive experiment showed very good agreement with the experimental 

measurements. The agreement was quantified by calculating the corresponding CCCs 

and R2, which were generally over 0.95 (Table 1). Moreover, the majority of the 

predicted glycoform distributions deviated up to ±3.5% from the measured data (Fig. 

4). The high values of all CCCs, R2 and PCCs indicate that model successfully 

reproduces the experimental measurements and can therefore be potentially used as a 

predictive and optimization tool. To the authors’ knowledge, this is one of the first 

studies to dynamically capture variations in mAb glycoform distribution and the first 

to accurately reproduce and predict the impact of different NSD precursor feeding 

strategies. 

The model suggests that a relationship between the glucose flux through the 

glycolytic pathway and galactose supplementation exists and is regulated from the 

fraction of galactose and glucose consumption rates. Experimental results indicate 

that galactose addition results in a decreased glucose consumption rate, an effect that 

has been previously observed in CHO cells (Wong, Wati et al. 2010, Gramer, Eckblad 

et al. 2011). In addition, a simple model for mAb production was used to avoid 

overparameterization. The results of mAb concentration tracked closely the 

experimental measurements indicating that mAb production rate is linearly correlated 

to specific cell growth rate. 

The proposed NSD synthesis model was used to calculate the concentrations of the 

sugar donors that participate in N-linked glycosylation, in particular UDPGal and 

UDPGlcNAc, that are extensively affected by the addition of galactose and uridine. 

Jedrzejewski et al. (2014) attempted to describe a detailed NSD metabolic pathway 
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for hybridoma cells but this led to an extensive and overparameterized reaction 

network with 34 material balances and 60 reactions. The reduced metabolic network 

that was used in this modelling approach includes only 7 material balances and 16 

reactions, including the effects of galactose and uridine in NSD pools. Monod type 

equations were used to describe the NSD synthesis reaction rates, including the 

competitive or non-competitive inhibitions from other NSDs. 

However, the NSD model presents issues of structural unidentifiability and therefore 

the calculated values of the parameters are not a representation of their actual values, 

specifically with respect to 𝐾𝑀𝑖𝑁𝑆𝐷. Moreover, the model is limited to a relatively 

small number of metabolites and amino acids, which, however, are routinely 

monitored industrially, and could be further expanded to account the majority of 

amino acids that participate in cell metabolism and the metabolic intermediates of the 

TCA cycle. As previously mentioned, the occasional deviations in glycan 

distributions are attributed to the limitations set by the chosen parameter estimation 

method that does not include the effect of galactose and uridine feeding on the 

expression of glycosyltranferases and transport proteins of nucleotide sugars (Clark, 

Griffiths et al. 2005). 

Unstructured mathematical models are usually limited to the cell line and 

experimental data that are used for model construction and parameter estimation. 

Although the proposed modelling framework can adapt to different feeding 

concentrations of galactose and uridine, of its applicability to other cell lines and 

products remains to be tested. As a first step, a parameter sensitivity analysis can be 

performed to select the most significant parameters to be re-estimated based on a 

relatively smaller set of experimental data for a different system.  

This article is protected by copyright. All rights reserved. 



 
A

cc
ep

te
d 

A
rt

ic
le

 
Despite these drawbacks, the model presented herein successfully captures the impact 

of galactose and uridine feeding on the secreted mAb glycoform distribution through 

the use of mechanistic relationships in cell metabolism and NSD synthesis. It captures 

a wide range of dynamic feeding regimes and was successfully used to design an 

operating strategy that enhances the percentage of galactosylation up to 64% and the 

concentration of galactosylated mAb up to 93% with no impact on other key 

performance indicators, in contrast to the experiments used for model development in 

which we saw a significant decrease in viable cell density and, consequently, antibody 

concentration as a result of galactose and uridine feeding. Therefore, the proposed 

modelling platform can be a vehicle for applying the QbD paradigm to optimize the 

design space for the production of the desired glycan distribution. 
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Figures 

Figure 1. Simplified NSD metabolic pathway. The reactions are indicated by solid 

lines and the transport rates by dotted lines. The transport of extracellular metabolites 

is not included in model formulation. 
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Figure 2. Model simulations (red line) and experimental measurements (black 
squares) for the viable cell density, extracellular mAb, glucose and lactate 
concentrations. Row A presents the fitting of the model to the control experiment, row 
B the fitting of the model to the 10G experiment, row C the fitting of the model to the 
10G5U experiment, row D the fitting of the model to the 10G20U experiment and 
row E the fitting of the model to the 50G5U experiment. 

 

Figure 3. Model simulations (red line) and experimental measurements (black 
squares) for UDPGal, UDPGlc, UDPGlcNAc and UDPGalNAc concentration. Row A 
presents the fitting of the model to the control experiment, row B the fitting of the 
model to the 10G experiment, row C the fitting of the model to the 10G5U 
experiment, row D the fitting of the model to the 10G20U experiment and row E the 
fitting of the model to the 50G5U experiment. 

 

Figure 4. Model simulation of glycan distribution for all feeding experiments, 
including the control. Experimental data for the 10G (288h), 10G20U (216, 264 and 
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288h) and 50G5U (288h) experiments is missing as the respective cell cultures were 
terminated earlier due to reduced (below 70%) cell viability. 

 

Figure 5. Model prediction and experimental measurements for the optimization 
experiment used to validate the model. The graph presents the model simulation (red 
line) and experimental data (black squares) for (A) cell density and (B) mAb 
concentration while the arrows indicate the days that galactose and uridine were 
added. Graph (C) depicts the glycan distribution in the optimization experiment, 
comparing the experimental data with the model predictions for unchanged GalT 
concentration and for a 15% increase in the concentration of GalT. Experimental 
conditions: Vfeed = 10% Vculture; [Gal]feed,day2 = 0 mM, [Gal]feed,day4 = 6.53 mM, 
[Gal]feed,day6 = 9.30 mM, [Gal]feed,day8 = 8.98 mM and [Gal]feed,day10 = 8.69 mM; 
[Urd]feed,day2 = 0 mM, [Urd]feed,day4 = 0.76 mM, [Urd]feed,day6 = 1.34 mM, [Urd]feed,day8 = 
2.81 mM and [Urd]feed,day10 = 10 mM.  
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Figure 6. (A) Experimental degree of galactosylation (%) in the control (blue bars) 

and the optimization (red bars) experiment. (B) Experimentally measured 

concentration of galactosylated species (mg·L-1) in the control (blue bars) and the 

optimization (red bars) experiment. 

 

Tables 

Table 1. Concordance correlation coefficients to evaluate the agreement of experimental 
measurements and model results 

Concordance correlation coefficients 

Experiment CCCXv CCCmAb CCCUDPGal CCCUDPGlcNAc 

Control 0.986 0.998 0.965 0.973 

10G 0.892 0.958 0.897 0.919 

10G5U 0.960 0.990 0.942 0.968 

10G20U 0.741 0.974 0.982 0.941 

50G5U 0.971 0.986 0.995 0.990 

Predictive 
experiment 

0.959 0.968 - - 
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Pearson correlation coefficients 

Experiment PCCXv PCCmAb PCCUDPGal PCCUDPGlcNAc 

Control 0.990 0.999 0.971 0.985 

10G 0.971 0.970 0.930 0.983 

10G5U 0.978 0.994 0.949 0.982 

10G20U 0.946 0.988 0.989 0.965 

50G5U 0.975 0.991 0.997 0.992 

Predictive 
experiment 

0.972 0.996 - - 

R squared (R2) 

Experiment R2
Xv R2

mAb R2
UDPGal R2

UDPGlcNAc 

Control 0.992 0.999 0.998 0.968 

10G 0.979 0.968 0.963 0.922 

10G5U 0.984 0.995 0.961 0.976 

10G20U 0.970 0.988 0.998 0.952 

50G5U 0.980 0.992 0.990 0.985 

Predictive 
experiment 0.984 0.984 - - 

 

 

This article is protected by copyright. All rights reserved. 



 
A

cc
ep

te
d 

A
rt

ic
le

 
Table 2. Selected estimated parameters of the CHO cell culture and NSD metabolic models 

Estimated 
parameter 

Value Units 95% 
Confidence 
Interval 

μmax 6.50×10-2 h‐1 7.44×10-4 

μdeath,max 1.50×10-2 h‐1 2.56×10-3 

KGlc 14.04 mM 5.05×10-1 

KAsn 2.62 mM 7.18×10-2 

KIAmm 3.17 mM 2.49×10-1 

KILac 1×103 mM N/A 

KIUrd 41.09 mM 2.42 

Kd,Amm 14.28 mM 3.00 

Kd,Urd 27.86 mM 3.71 

YmAb,X 3.39 (pg·cell‐1 )  3.21×10-1 

mmAb 4.10×10-1 (pg·cell‐1·h‐1) 6.57×10-3 

Vmax1 9.22×10-1 (mmolNSD·Lcell
‐1·h‐1) 1.24×10-2 

Vmax2 1.70×10-2 (mmolNSD·Lcell
‐1·h‐1) 9.78×10-4 

Vmax2b 59.48 (mmolNSD·Lcell
‐1·h‐1) 6.10 

Vmax3 5.50×10-2 (mmolNSD·Lcell
‐1·h‐1) 2.60×10-3 
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Vmax4 2.65×10-2 (mmolNSD·Lcell

‐1·h‐1) 2.12×10-3 

Vmax5 1×10-4 (mmolNSD·Lcell
‐1·h‐1) 7.80×10-6 

Vmax6 5.13 (mmolNSD·Lcell
‐1·h‐1) 1.95×10-1 

Vmax7 4.60 (mmolNSD·Lcell
‐1·h‐1) 4.78×10-1 
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