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Model-Based Phase Velocity and Attenuation
Estimation in Wideband Ultrasonic

Measurement Systems
Jesper Martinsson, Johan E. Carlson, and Jan Niemi

Abstract—A parametric method to estimate frequency-
dependent phase velocity and attenuation is presented in
this paper. The parametric method is compared with stan-
dard nonparametric Fourier analysis techniques using nu-
merical simulations as well as real pulse-echo experiments.
Approximate standard deviations are derived for both
methods and validated with numerical simulations. Com-
pared to standard Fourier analysis, the parametric model
gives considerably lower variance when estimating atten-
uation and phase velocity. In contrast to nonparametric
techniques, the proposed estimator avoids the phase un-
wrapping problem because analytical expressions for the
continuous phase velocity and attenuation can be derived.

I. Introduction

In ultrasonic measurement systems, estimates of the
frequency-dependent attenuation and phase velocity are

often used to deduce the properties of interest. Accu-
rate estimates of these quantities, therefore, are impor-
tant. However, estimating attenuation and phase velocity
from noisy measurements, using standard nonparametric
techniques, often results in biased estimates with high un-
certainties. The bias occurs when the estimator (a non-
linear function) is applied on the measured data, skew-
ing the shape of the probability density function (PDF)
of the measurement noise. The high uncertainties and the
erratic behavior of the estimates are drawbacks of using
nonparametric methods, e.g., the discrete Fourier trans-
form (DFT), to estimate spectral densities [1]. For non-
parametric methods, the number of parameters are equal
(or proportional) to the signal sample size; hence, no av-
eraging is done to reduce the variance of the estimated
quantities. As a consequence, the variance of the estimate
will not tend to zero, as the signal sample size grows, as
in parametric methods, but to a constant level that is in-
versely proportional to the signal-to-noise ratio (SNR) [2].

Using nonparametric techniques, additional uncertain-
ties are introduced when estimating the phase velocity
from a wrapped phase. Although different approaches exist
to cope with wrapped phases [3]–[6], they all are based on
nonparametric spectral estimates and, hence, suffer from
bias and high uncertainties in low SNR frequency regions.
In [7], the authors investigate errors generated by nonlin-

Manuscript received March 30, 2006; accepted August 9, 2006.
The authors are with EISLAB, Department of Computer Science

and Electrical Engineering, Lule̊a University of Technology, SE-971
87 Lule̊a, Sweden (e-mail: Jesper.Martinsson@csee.ltu.se).

Digital Object Identifier 10.1109/TUFFC.2007.219

earities when estimating phase velocity and attenuation,
including also the timing jitter in a through-transmission
setup.

In this paper, a parametric phase velocity and atten-
uation estimator is proposed. The method is built on a
parameterization of the linear dispersion system that de-
scribes the relationship between two measured ultrasonic
signals. The idea is to reduce the variance of this relation-
ship before it is applied to the nonlinear functions (for cal-
culating phase velocity and attenuation), to obtain lower
uncertainties and to prevent bias, i.e., not skewing the
PDF (statistical linearity). The parameterization is based
on the ideas behind a common, finite-order approximation
[8] to the solutions of different measurement setups. The
result is a common model structure expressed as a continu-
ous, rational, transfer function in which the parameters are
estimated using standard system identification techniques.
The main advantages of this parameterization are: higher
accuracy, lower uncertainties, control over the phase un-
wrapping ambiguity, and a large data reduction (because
the system is completely described by the set of model
parameters).

The paper is organized as follows: In Section II, the
wave propagation model is described for dispersive media,
and its dependence on specific measurement setups and
boundary conditions is discussed. The models are gener-
alized into a linear systems notation from which attenua-
tion and phase velocity are deduced. The nonparametric
and parametric estimation techniques are described and
approximative expressions for the standard deviations for
the estimated attenuation and phase velocity are given for
both methods. In Section III computer simulations are
used to compare the two techniques and to validate the
approximative uncertainty expressions. Experimental re-
sults are found in Section IV followed by a discussion and
some concluding remarks.

II. Theory

A. Physical Model

The basic model for acoustic waves in a fluid is ob-
tained using the linearized continuity equation, the lin-
earized force equation, and a relationship between the
acoustic pressure and condensation. For linearly dynamic
fluids, this relationship is described by a linear system, and
a lossy wave equation is obtained:
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∂2P (x, ω)
∂x2 = −k2(ω)P (x, ω), (1)

where P (x, ω) is the Fourier transform of the acoustic pres-
sure p(x, t) and k(ω) is the complex frequency dependent
wave number. Here the arguments x, t, and ω are spa-
tial, time, and angular frequency variables, respectively.
The ordinary differential equation (ODE) in (1) has the
solution:

P (x, ω) = A1(ω)e−jk(ω)x + A2(ω)ejk(ω)x, (2)

where j =
√

−1. A1(ω) and A2(ω) are to be determined
by the boundary conditions.

Different measurement setups result in different bound-
ary conditions. For example, in a through-transmission
setup, assuming Neumann boundary conditions (perfect
reflectivity), the following linear dynamic relationship is
obtained between the transmitted and the received signal:

Y (ω) = cosh(jk(ω)d)U(ω), (3)

where U(ω) = P (0, ω) and Y (ω) = P (d, ω) are the Fourier
transformed acoustic pressures at distance x = 0 (trans-
mitted signal) and at distance x = d (received signal),
respectively.

Using a pulse-echo setup, there usually is only one sen-
sor that works both as a transmitter and receiver. For this
setup, an additional criterion of separable echoes is needed
to use an input-output (first and second echo) description.
For Neumann boundary conditions, the relationship can
be written as:

Y (ω) = e−jk(ω)dU(ω), (4)

where U(ω) = P (0, ω) and Y (ω) = P (d, ω) are the Fourier
transformed acoustic pressures of the first and second echo,
respectively.

B. Linear System

The relationships in (3) and (4) can be written in linear
input-output relationship as:

Y (ω) = H(d, ω)U(ω), (5)

where d denotes the distance, and H(d, ω) is the trans-
fer function connecting the signals. This is the result of
assuming linear acoustics.

Focusing on the pulse-echo setup, the transfer function
can be rewritten in a magnitude and phase representa-
tion as:

H(d, ω) = e−jk(ω)d = e�{k(ω)}de−j�{k(ω)}d

= |H(d, ω)|ej arg{H(d,ω)},
(6)

where �{·} and �{·} represents the real and imaginary
parts.

Using (6), the attenuation α(ω) and the phase velocity
cp(ω) are defined as:

α(ω) = −�{k(ω)} = − log |H(d, ω)|
d

,

cp(ω) = ω/�{k(ω)} = − ωd

arg{H(d, ω)} .
(7)

From (7) there are two possible ways to estimate atten-
uation and phase velocity. The first one is based on cal-
culating the phase velocity cp(ω) solely from estimates of
the attenuation α(ω), using the Kramers-Krönig relation-
ship between the real and imaginary parts of k2(ω) [4].
This approach is valid under the assumption that the at-
tenuation and phase velocity are slowly varying functions
of frequency. The advantage with this approach is that
the phase unwrapping problem, arising when calculating
the phase velocity from a wrapped phase, is avoided. How-
ever, a good estimate of the attenuation is still needed. The
phase unwrapping problem is well-known and has been ad-
dressed using other approaches [3], [5], [6].

The second approach, investigated in this paper, is to
estimate the transfer function H(d, ω) in (5) and use this
estimate together with (7), without any assumptions made
on the dispersion.

C. Nonparametric Techniques

The nonparametric technique is perhaps the most com-
monly used approach to estimate attenuation and phase
velocity. It is based on the linear relationship between the
input and output signal in (5), the discrete DFT, and the
definitions in (7).

The transfer function H(d, ω) is estimated using the
ratio of the Fourier transformed output and input signal.
Because the measured signals are both truncated and sam-
pled, the estimate is given by the DFT as:

Ĥ(ωl) =
YN (ωl)
UN (ωl)

, (8)

for ωl = 2πl/N and l = 0, 1, . . . , N − 1. Here ·̂ denotes
estimate, and YN (ωl) and UN(ωl) are the DFTs of the
sampled sequences {y[n]}N

1 and {u[n]}N
1 .

With the correct choice of sampling frequency and win-
dow size, the continuous ultrasonic pulse can be consid-
ered in practice both band and time limited, and the ef-
fect of leakage and aliasing errors occurring when trun-
cating and sampling it can be neglected. In this case, the
DFT coefficients gives a close to perfect representation of
the true spectrum of the pulse at the discrete frequencies
(Y (ωl) � YN (ωl)). For this to be fulfilled, the sample size
(N) of the measurement window should be chosen so that
the system response becomes negligible at the end of the
measurement (circular and linear convolution is equiva-
lent).

However, due to additive noise in the measurements,
the uncertainty of estimating H(d, ω) in (5) using (8) is
high, and the result is a very erratic function of ωl. This
behavior is one of the main drawbacks of using the DFT
as estimate of the spectral density [1], [2]. If the estimate
of H(d, ω) is uncertain, the attenuation and phase velocity
estimates in (7) will be uncertain as well.
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D. Parametric Techniques

In general, a parametric method can be descried as a
mapping from the measured data to the estimated param-
eter vector θ̂, where ·̂ denotes estimate. The parameter
vector is connected to a specific model structure M, where
for a fixed parameter vector θ = θ∗, M(θ∗) represents one
model within the structure M. An important step is to se-
lect a model structure M that represents the true system
S. One alternative is to choose a model structure based on
solutions to the partial differential equation (PDE), as in
(3) or (4), and model k(ω,θ) from physical characteristics
of the media, such as viscosity, heat conduction, and relax-
ation phenomena [9]. The drawback with this approach is
that these model structures are strictly dependent on the
specific measurement setup, i.e., the investigated media
and the assumed boundary conditions.

An alternative approach is to find a common model
structure based on the ideas behind the Mittag-Leffler the-
orem [8], with an expansion of the transfer functions in (3)
and (4) as:

H(x, ω) = cosh(jk(ω)x) =
∞∑

r=0

(jk(ω)x)2r

(2r)!
(9)

= ejk(ω)x =
∞∑

r=0

(jk(ω)x)r

r!
. (10)

For bandlimited signals, the transfer functions can be
approximated very well within the signal’s bandwidth, us-
ing an expansion (or rational transfer function) of finite
order. This leads to a common model structure M of the
form:

H(ω,θ) = e−jωτ B(ω,θ)
A(ω,θ)

= e−jωτ

∑nb

q=0 bq(jω)q∑na

q=0 aq(jω)q
,
(11)

where θ = [b0 · · · bnb
a0 · · · ana τ ]T . Here an additional

parameter τ is introduced to account for pure time delays.
The advantage with this structure is its independence

of any prior knowledge concerning the specific boundary
conditions and physical properties of the media under in-
vestigation. With this ability, it is possible to apply the
same structure to various experimental situations. A com-
mon drawback with this approximation is that the number
of model parameters is increased compared to an accurate
physical parametric description (if one exists).

To find the appropriate model order nb and na, a model
selection and validation step must be introduced. In the
selection process, a set of models with different orders
are tested and matched to the system S. The matching
or estimation is done using the measured data together
with a criterion of fit. How consistent the mapping is de-
pends on: the experimental condition (the data), the model
structure, and the criterion of fit. Given a set of matched
models, the models are validated using different statistical
techniques based on the assumptions made about the true
system S.

In this paper, the frequency domain sample maximum
likelihood method is used as the criterion of fit, see [10] and
Appendix A. The motivation for this choice is its well-
behaved statistical properties with the ability to handle
noisy input and noisy output problems (error-in-variable)
in measurement setups using repeated burst signals (re-
peated ultrasonic excitations). For the model selection
part, the minimum description length (MDL) criterion [10]
is used to find the appropriate order and prevent over-
parameterization. The model is validated using residual
analysis.

E. Uncertainty Bounds

When estimating a parameter, an expression of the un-
certainty of the estimate is very important. Often in ultra-
sonic measurement setups, it is possible to carry out many
repeated experiments or excitations under a short period
of time under which the medium under investigation can
be assumed to be unchanged.

Given a set of M independent noisy but identically ex-
cited experiments, from which a parameter can be esti-
mated, there are different ways to estimate the parameter
and its uncertainty. The straightforward way is to esti-
mate the parameter for each noisy experiment, resulting
in M estimated parameters, and use the mean value as
the final estimate and the sample standard deviation as
a measure of its uncertainty. However, this approach is
not recommended if the estimator is a nonlinear function
of the noisy data because the nonlinearity in general de-
stroys the consistency and efficiency of the estimate [11].
When dealing with nonlinearities, a better way is to first
reduce the noise variance by averaging techniques (aver-
aging M experiments), then estimate the parameter by
applying the nonlinearity. This approach reduces the bias
effect introduced by the nonlinear transformation and re-
sults in consistent (as M → ∞) estimates. The consistency
property comes at the cost of losing the normality, intro-
duced by averaging the M parameters using the first ap-
proach. The approximative uncertainty can be estimated
from the derivative of the nonlinearity and the estimated
uncertainty of the data.

The expressions in (7) for the attenuation and phase
velocity are nonlinear functions of the linear system H
in (5); and, on top of that, the estimates of H described
in Section II-C and Section II-D are nonlinear functions
of the measured data. Given the estimated uncertainty of
the measurement noise, the approximate uncertainty of the
attenuation and phase velocity can be derived using a first
order Taylor approximation as:

σ2
α(ω) ≈ 2

∂α(H(ω))
∂H(ω)

σ2
H(ω)

[
∂α(H(ω))

∂H(ω)

]∗
,

σ2
cp(ω) ≈ 2

∂cp(H(ω))
∂H(ω)

σ2
H(ω)

[
∂cp(H(ω))

∂H(ω)

]∗
, (12)

where ·∗ denotes Hermitian transpose and σ2
H(ω) is esti-

mated from (8) or (11) using the estimated standard de-
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Fig. 1. Mean value of 100 measured first echoes: (left) the sampled
time signal; (right) the power spectral density.

viations of the noise and similar approximations as above,
see Appendix B. The expressions for the partial derivatives
in (12) are found in Appendix B.

III. Simulations

In this section the nonparametric and parametric tech-
niques to estimate the attenuation and phase velocity are
compared using computer simulations. The validity of the
asymptotic expressions in (12) are examined together with
the observed numerical standard deviation using 500 inde-
pendent simulations.

A. The Simulation Model

To get a similar excitation of the simulated system, com-
pared to the real experiments, the simulated, noise-free in-
put signal (or first echo) was chosen as mean value of 100
measured first echoes from the real experiment, see Fig. 1.

To validate the assumption in Section II-B, that the
true model can be approximated with a rational transfer
function of finite order, the simulated model structure did
not belong to the rational transfer function family. The
simulation model was constructed as:

H(ω,θ, x) = e−jk(ω,θ)x = e−jωx/c(ω,θ), (13)

where x is the distance between the signals and c(ω,θ) is
the complex speed of sound. In the simulation, the complex
speed of sound was modeled as [9]:

c(ω,θ) =
c0√
2

[
1 + jωη +

1 + jωτ1

1 + jωτ2

]1/2

, (14)

with θ = [c0 η τ1 τ2]T as a parameter vector containing the
thermodynamic speed of sound (c0), viscosity (η), and two
additional parameters (τ1,2) contributing to a simulated
relaxation phenomenon. In the simulations, the parame-
ters were set to θ = [1500, 1 · 10−12, 3.75 · 10−8, 3.7125 ·
10−8]T .

Before the estimation procedure was started, an equal
amount of white Gaussian measurement noise was added
to the simulated input and output signal. The same SNR,
14 dB relative to the input signal, was used as estimated
in the real experiments. Each simulation consists of 100
repeated noisy excitations, similar to the real experiment.

Fig. 2. Whiteness test of the residuals. The residuals are the differ-
ence between the modeled and measured transfer functions weighted
by its standard deviation [10]. The dots are the amplitude of the cross
correlation R of the residuals, and the line marks the 95% confidence
level, where |R|2 ∼ χ2(2).

B. Model Selection and Validation

For the parametric estimation technique, described in
Section II-D, a model selection and a validation step were
added to find the appropriate model order. The model se-
lection procedure, using the MDL [10], indicates that a
model order of 3, or na = nb = 3 is enough to capture
the dynamics of the true simulated system within the ex-
cited frequency band. The residual analysis in the model
validation step can be seen in Fig. 2. The residual is the
difference between the modeled (parametric) transfer func-
tion and the measured (nonparametric) transfer function
weighted by its standard deviation. For a model order of
3, the whiteness within the 95% bound might be ques-
tionable. However, the final value of the cost function is
within its 95% confidence interval, indicating no model
errors. Increasing the model with one order gives higher
confidence on the whiteness test, but the final value of
the cost function exceeds its lower 95% bound, indicat-
ing over-parameterization. For this reason, the estimated
model order of 3 given by MDL was chosen.

C. Simulation Results

In Fig. 3 we can see the estimated attenuation and phase
velocity from one simulation using the nonparametric tech-
nique. Examining the attenuation estimate, we can see a
good fit in the area in which there is a high SNR and
poorer, more erratic behavior in the lower SNR regions.
In these low SNR regions, a large bias is present, which is
the result of trying to estimate the attenuation from just
measurement noise on the input and output. This effect
shows the importance of uncertainty expressions for the
estimates to find its valid frequency region.

The phase velocity figure reveals a similar erratic be-
havior. Although the bias in this case is a result of the
noise-sensitive, phase-unwrapping step, in which the phase
unwrapping errors accumulate over the low SNR frequen-
cies, giving a “random walk” behavior. However, this bias
is neither an over- nor underestimation, as in the attenu-
ation case, but it fluctuates randomly from simulation to
simulation.

In Fig. 4, the attenuation and phase-velocity estimates
are shown for the same simulation as in Fig. 3, but us-
ing the proposed parametric technique. Compared to the
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Fig. 3. Nonparametric estimation of the attenuation and phase veloc-
ity from one simulation. The bold solid line shows the true parameter,
the bold dashed line shows the nonparametric estimation, and the
thin dashed line shows the theoretical standard deviation calculated
using the expressions in (12).

Fig. 4. Parametric estimation of the attenuation and phase veloc-
ity from one simulation. The bold solid line is the true parameter,
the bold dashed line (coinciding with the bold solid line) is the para-
metric estimation, and the thin dashed line (coinciding with the bold
solid line) is the theoretical standard deviation calculated using (12).

nonparametric estimates, both level of fit and uncertain-
ties are highly improved for both estimates. The improved
fit in the low SNR regions is the fruit of weighting the
cost function with the inverse of the sample covariance
matrix of the noise, in the maximum likelihood estima-
tion of the transfer function in (11), see Appendix A. The
overall decrease in standard deviation is the result of using
a parameterized model structure compared to a nonpara-
metric estimation procedure. In Fig. 4 it is difficult to see
the shape of the standard deviations because the graphs
coincide with the plotted quantities at the given scale. A
better comparison between both methods standard devia-
tions can be seen in Fig. 5 and Fig. 6.

Fig. 5. Nonparametric comparison between the observed numerical
and the calculated theoretical standard deviations, for attenuation
and phase velocity. The bold solid line is the numerical standard
deviation estimated from 500 independent simulations. The bold and
thin dashed lines are the mean value and standard deviation of 500
theoretical calculations.

Fig. 6. The same comparison as in Fig. 5, but with a wideband signal
(burst of white noise).

D. Validation of Approximate Uncertainties

To validate the approximate theoretical expressions of
the uncertainties in (12), the observed numerical standard
deviation is compared with the mean and standard de-
viation of theoretical expressions using 500 independent
simulations.

In Fig. 5, the numerical and theoretical standard devi-
ations are compared using the nonparametric technique.
Examining the attenuation plot, a good fit is obtained in
high SNR regions; and an overestimation can be observed
in the lower SNR regions. The overestimation is the re-
sult of when the statistical linearity fails, and higher order
derivatives in (12) must be used.

In the phase-velocity plot, a large deviation can be ob-
served between the theoretical and numerical standard de-
viations. This is a consequence of the phase-unwrapping
step, not taken into account in the theoretical expression.
Because the simulated input signal is of bandpass char-
acter, the phase-unwrapping errors at the low frequencies
(low SNR) accumulate over the entire frequency band, giv-
ing high standard deviation even in the high SNR region.
To support this explanation, a comparison between the
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Fig. 7. Parametric comparison between the observed numerical and
the calculated theoretical standard deviations for attenuation and
phase velocity. The bold solid line is the numerical standard devia-
tion estimated from 500 independent simulations. The bold and thin
dashed (coinciding) lines are the mean value and standard deviation
of 500 theoretical calculations.

numerical and theoretical standard deviations can be seen
in Fig. 7 using simulations with a wideband signal. In this
plot only an underestimation can be observed in the highly
attenuated (low SNR region) in which the statistical lin-
earity fails.

In the parametric case, a good fit is seen between the ap-
proximative theoretical expressions and the observed nu-
merical standard deviation. The good fit is a consequence
of an overall low σ2

H(f) in the parametric case, so the sta-
tistical linearity applies over the whole frequency range.

IV. Experiments

To test the method experimentally, experiments were
performed in weakly dispersive pulp fiber suspensions. The
experiments were carried out using the pulse-echo tech-
nique in a custom-designed test cell, shown in Fig. 8. A
detailed description and specification of the cell is found
in [12].

A. Measurement Setup

The experimental setup consists of a broadband piezo-
electric transducer with a center frequency of 10 MHz
(V311), manufactured by Panametrics, Waltham, MA.
The transducer is mounted on a buffer rod made of casted
plexiglass, and the sample space is located between the
buffer rod and a stainless steel reflector, see Fig. 8. A
pulser/receiver 5072PR from Panametrics was used to ex-
cite the transducer and amplify the received signal. The
signal then was digitized using a CompuScope 14100 oscil-
loscope card, by Gage Applied Technologies Inc., Lachine,
QC, Canada, with 14-bit resolution and a sampling rate

Fig. 8. Lattice diagram of the pulse-echo measurement system used
in this study.

Fig. 9. Whiteness test of the residuals. The dots are the amplitudes
of the cross correlation R of the residuals, and the line marks the
95% confidence level, where |R|2 ∼ χ2(2).

of 100 MHz. All data were stored in a computer for off-
line analysis. In the experiment, 100 ultrasonic pulses were
captured. A digital thermometer F250, by Automatic Sys-
tems Laboratories Ltd., Croydon, England, monitored the
temperature both in the suspension under test and in the
room. The temperature in the pulp suspension under test
was 19.93 ± 0.03◦C. To accurately determine the distance
d2 in the cell, pure, distilled water was used as a reference
because it has a well-known relationship between speed of
sound and temperature [13]. Using the temperature of the
calibration fluid and a cross-correlation technique to deter-
mine the time-of-flight for an ultrasonic pulse, the distance
d2 was found to be 0.03010±0.00004 m. The pulp suspen-
sion was carefully poured into the measurement cell, then
stirred slowly to remove air bubbles and break up flocs in
the suspension.

The pulp samples used in this study were produced from
thermomechanical pulp (TMP). The pulp suspension is a
99.5% water and 0.5% fiber mixture, with fiber lengths
that vary between 1 and 3 mm and a diameter of 20–
50 µm. The fiber size distributions were analyzed using
a Kajaani Fiberlab instrument, Metso Corporation, Ka-
jaani, Finland.

B. Model Selection and Validation

In Fig. 9, the result of the whiteness test is presented
together with a 95% confidence level. From this figure,
the residual analysis cannot detect any unmodeled dynam-
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Fig. 10. Comparison between the measured (dots) and predicted
(line) second echo. The second echo is predicted using the measured
first echo and the estimated parametric model. The lower plot shows
the prediction error.

ics. However, the final value of the cost function (146.5)
is larger than the expected value (112.6), indicating the
presence of nonlinearities [10].

In Fig. 10, the predicted and measured second echo are
shown together with the prediction error. The prediction
is made using the estimated parametric model and the
measured first echo. Examining the graphs, a good fit is
obtained by the prediction, and no systematic variation
from the pulse shape is visible in the prediction errors (note
the difference in scale).

C. Experimental Results

In Fig. 11, the estimation results of the attenuation
and phase velocity are compared using the nonparamet-
ric and parametric techniques. Although the experimental
system is quite different from the simulated system, similar
behavior of the different estimation techniques is visible.
The bias, or underestimation, of the attenuation in the
low SNR region is present using the nonparametric tech-
nique. Also, the phase-unwrapping problem for the non-
parametric technique is visible in the phase-velocity plot,
producing a large bias. To support this explanation, the
speed of sound is estimated with standard cross correla-
tion and added to the figure. For weakly dispersive fluids,
the cross-correlation method estimates an accurate aver-
age (over frequency) velocity. The dip in the frequency
range 0 < f < 0.1 MHz for the nonparametric attenuation
estimate is the result of both presampling and postsam-
pling processing, i.e., high-pass filtering and detrending to
remove unwanted low-frequency disturbance and trends.
For this reason, constraints are put on the parametric
method to ignore this region in the identification process,
explaining its flatness within the region.

Fig. 11. Comparison between the nonparametric (bold dashed line)
and parametric (bold solid line) estimation of attenuation and phase
velocity on the experimental data. The thin dashed and solid lines
mark the theoretical standard deviation (±σ). The circle is the speed
of sound estimated using standard cross correlation.

V. Discussion

The advantages with the proposed method are first,
its ability to accurately estimate the frequency-dependent,
phase-velocity and attenuation from noisy measurements.
Second, its independence of any prior knowledge concern-
ing the measurement setup and physical properties of the
medium under investigation, under the condition that the
data can be related as in (5). Although its performance
is shown under dispersive conditions in simulations, the
experimental results are presented from weakly disper-
sive measurements using only one measurement arrange-
ment. However, as long as the linearity is preserved, more
complex dynamic media (including highly dispersive ones)
should only increase the model order in the selection and
validation step. To further experimentally validate the
method, measurements from dispersive media under differ-
ent experimental arrangements would be of interest. This
will be considered in future work. However, due to the gen-
erality of the proposed model structure, this should not
cause any problems.

When estimating the attenuation and phase velocity in
suspensions, it is common to relate or calibrate these es-
timates to those of pure water to reduce effects from the
measurement setup, reflection coefficients, and losses from
diffraction. This type of calibration was not applied to the
estimation result presented in this paper, as the intention
was to compare two different estimation methods. How-
ever, if the suspension estimates were to be calibrated to
water, the uncertainties of the estimates in water are of-
ten negligible in comparison to the suspensions, due to the
high SNR difference. The same principles of estimating
the transfer function are applied, but with scaled or cali-
brated input and output signals as U(ω) = Us(ω)/Uw(ω)
and Y (ω) = Ys(ω)/Yw(ω), where Us(ω), Ys(ω) are the
measured first and second echoes in the suspension, and
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Uw(ω), Yw(ω) are the corresponding measurements in dis-
tilled water.

However, if the water uncertainties are of the same
magnitude as those for the suspension, these uncertainties
should be included when calculating the approximate un-
certainties in (12). For the nonparametric and parametric
methods, the uncertainties can be included using similar
approximation as in (22) and (21) in Appendix B.

For the parametric method, high calibration noise has
an additional effect of destroying the efficiency of the
weighted least squares (WLS) cost-function for the maxi-
mum likelihood (ML) method in (15). The WLS cost func-
tion is a consequence of identifying the transfer function in
the frequency domain. Discrete Fourier transformed mea-
surement noise tends toward normality, by the central limit
theorem, resulting in the WLS cost in the frequency do-
main. However, the calibration or scaling is applied after
the DFT, and the quotient changes the normality and thus
the efficiency of the cost function. To compensate for the
change in the probability densities by changing the cost-
function is difficult; hence, it still is recommended to use
the WLS due to its favorable properties [11], at the cost
of losing some efficiency.

Another approach in this case would be to esti-
mate a separate parametric transfer function for both
suspension and water, and do the calibration after-
ward to preserve normality and efficiency, i.e., H(ω) =
Hs(ω,θs)/Hw(ω,θv), or alternatively using a nonparamet-
ric model for water H(ω) = Hs(ω,θs)/Hw(ω). The draw-
back compared with prescaling the signals, is an increased
complexity of the estimation problem and an increased
number of model parameters because prescaling reduces
the dynamical content by capturing the differences in the
media and ignoring possible linear dynamic effects from
the measurement setup.

VI. Conclusions

A comparison between the proposed parametric esti-
mator and the standard nonparametric Fourier analysis
technique has been illustrated using both computer sim-
ulations and real experiments. The proposed estimator
enables accurate estimation of the frequency-dependent
attenuation and phase velocity with considerably lower
variance compared to standard Fourier analysis methods.
Robust phase-velocity estimation is ensured because the
phase-unwrapping problem is avoided and replaced by cal-
culation of the phase of an analytical expression. A data
reduction with a factor 15 is observed for the present case.
This improvement comes at the cost of a model selection
and validation step, not necessary for nonparametric meth-
ods. Approximate expressions for the uncertainty for both
methods were derived, valid for high SNRs or a large num-
ber of repeated experiments. The expressions were vali-
dated by numerical simulations, showing good accuracy
under similar SNR conditions as in the experiment.

Appendix A

Maximum Likelihood Cost Function

The maximum likelihood cost function is expressed as:

VML(θ) =
N−1∑
l=0

|E(ωl,θ)|2
σ2

E(ωl,θ)
, (15)

where:

E(ωl,θ) = A(ωl,θ)Y (ωl) − B(ωl,θ)e−jωlτU(ωl),
(16)

is the equation error and:

σ2
E(ωl,θ) = σ2

Y (ωl)|A(ωl,θ)|2 + σ2
U (ωl)|B(ωl,θ)|2

−2�{σ2
Y U(ωl)A(ωl,θ)B∗(ωl,θ)}, (17)

its uncertainty. Estimations for σ2
U (ωl), σ2

Y (ωl) and
σ2

Y U (ωl) are found in Appendix B.

Appendix B

Calculation of Approximate Uncertainties

The partial derivatives in (7) w.r.t H(ω) are given by
(omitting ω as an argument in the expressions):

∂α(H)
∂H

= − 1
2xH

(18)

∂cp(H)
∂H

= − xjω

2 arg{H}2H
. (19)

Here a complex derivative of a real scalar function f
w.r.t a complex parameter z is defined as:

∂f(z)
∂z

=
1
2

[
∂f(z)

∂a
− j

∂f(z)
∂b

]
, (20)

where z = a+jb with a and b being the real and imaginary
parts of z, respectively.

The estimated uncertainty for the input and output
measurement noise is estimated using the sample variance.
Given a set of M independent noisy but identically excited
experiments, the input and output noise variances are es-
timated as:

σ̂2
U =

1
M − 1

M∑
m=1

|Um − Ū |2,

σ̂2
Y =

1
M − 1

M∑
m=1

|Ym − Ȳ |2,

σ̂2
Y U =

1
M − 1

M∑
m=1

[Ym − Ȳ ][U∗
m − Ū∗],

(21)

where Um and Ym represent the discrete Fourier trans-
forms of the p:th input and output signal, and U , Y de-
notes the sample mean (over M experiments).
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The estimated uncertainty for the nonparametric trans-
fer function is estimated using a first order Taylor series
expansion of the transfer function in (8), including mea-
surement noise as:

H =
Y

U
=

Y0 + NY

U0 + NU
=

Y0[1 + NY /Y0]
U0[1 + NU/U0]

≈ Y0

U0
[1 + NY /Y0 − NU/U0] ,

(22)

where U0, Y0 represents the noise-free signals, and NU , NY

represent the measurement noise. An approximative un-
certainty for H can be expressed using (22) as:

σ2
H = E{|H − E{H}|2}

≈
∣∣∣∣ Y0

U0

∣∣∣∣
2 [

σ2
Y

|Y0|2
+

σ2
U

|U0|2
− 2�

{
σ2

Y U

Y0U∗
0

}]
, (23)

where E{·} denotes expectation. The estimated uncer-
tainty is obtained by dividing (23) with M and replacing
U0, Y0 with Y ,U and using the estimated measurement
uncertainties (21).

The parametric transfer function uncertainty is esti-
mated from (11) using a first order Taylor approxima-
tion as:

σ2
H ≈ ∂H

∂θ
Cθ

[
∂H

∂θ

]∗
, (24)

where ·∗ denotes Hermitian transpose. An approximate ex-
pression for the covariance matrix of θ can be obtained
from an approximation of the Hessian (Fisher information
matrix) of the cost-function [in (15)] as:

Cθ ≈ 1
2
�

{[
∂

∂θ

(
E(θ)
σE(θ)

)]∗ [
∂

∂θ

(
E(θ)
σE(θ)

)]}−1

.
(25)

The expressions for E(θ) and σE(θ) can be found in
Appendix A.
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