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Abstract This paper proposes an approach for reducing the computational com-
plexity of a model-predictive-control strategy for discrete-time hybrid systems with
discrete inputs only. Existing solutions are based on dynamic programming and
multi-parametric programming approaches, while the one proposed in this paper
is based on a modified version of performance-driven reachability analyses. The
algorithm abstracts the behaviour of the hybrid system by building a ’tree of
evolution’. The nodes of the tree represent the reachable states of a process, and
the branches correspond to input combinations leading to designated states. A cost-
function value is associated with each node and based on this value the exploration of
the tree is driven. For any initial state, an input sequence is thus obtained, driving the
system optimally over a finite horizon. According to the model predictive strategy,
only the first input is actually applied to the system. The number of possible discrete
input combinations is finite and the feasible set of the states of the system may
be partitioned according to the optimization results. In the proposed approach,
the partitioning is performed offline and a probabilistic neural network (PNN) is
then trained by the set of points at the borders of the state-space partitions. The
trained PNN is used as a system-state-based control-law classifier. Thus, the online
computational effort is minimized and the control can be implemented in real time.

Keywords Hybrid systems · Model predictive control · Reachability analysis ·
Probabilistic neural networks

1 Introduction

Hybrid systems were recognized as an emerging research area within the con-
trol community in the past decade. With improvements to the control equipment
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the complexity of modern computer-control systems increases. Various aspects of
discrete-event operation, such as controller switching, changing operating modes,
communication delays, and interactions between different control levels within the
computer-control systems are becoming increasingly important. Hybrid systems,
defined as systems with interacting continuous and discrete-event dynamics, are the
most appropriate theoretical framework to address these issues.

Many modelling formalisms for hybrid systems were proposed in the engineering
literature. Of particular interest are the discrete-time modelling formalisms. Dis-
crete hybrid automata (DHA) [28] can be considered as a basis for hybrid system
modelling as they can be modelled using the Hybrid System Description Lan-
guage (HYSDEL). Using an appropriate compiler, a DHA model described by the
HYSDEL modelling language can be translated to different modelling frameworks,
such as mixed logical dynamical (MLD), piecewise affine (PWA), linear complemen-
tarity, extended linear complementarity or max-min-plus-scaling systems [17, 28]. In
this paper the MLD modelling framework [5] will be adopted, as it is suitable for
solving optimal and model predictive control problems.

Optimal control approaches for hybrid systems have been thoroughly investigated
in recent years. The optimal control of hybrid systems in manufacturing is addressed
in Pepyne and Cassandras [21] Cassandras et al. [12] and Gokbayrak and Cassandras
[15], where the authors combine time-driven and event-driven methodologies to
solve optimal control problems. An algorithm to optimize the switching sequences
for a class of switched linear problems is presented in Lincoln and Rantzer [19],
where the algorithm searches for solutions that are arbitrarily close to the optimal
ones. A similar problem is addressed in Barton et al. [2], where the potential
for numerical optimization procedures to make optimal sequencing decisions in
hybrid dynamic systems is explored. A computational approach based on ideas
from dynamic programming and convex optimization is presented in Hedlund and
Rantzer [16]. Piecewise linear quadratic optimal control is addressed in Rantzer
and Johansson [25], where the use of piecewise quadratic cost functions is extended
from a stability analysis of piecewise linear systems. Optimal control based on a
reachability analysis, and where the inputs of the system are continuous, is addressed
in Bemporad et al. [4].

On the other hand, model predictive control was successfully applied to complex
constrained control problems in industry. This suggests the application of model-
predictive-control approaches also for hybrid systems. A model-predictive-control
technique is presented in Bemporad and Morari [5]; this is able to stabilize the MLD
system on the desired reference trajectories, and the online optimization procedures
are solved through mixed-integer quadratic programming (MIQP). In Bemporad
et al. [7] the authors show how to formulate an optimal control problem for a
constrained linear discrete-time system as a multi-parametric program and how to
solve such a program. The basic ideas were extended to PWA systems and thoroughly
investigated in Kerrigan and Mayne [18], Baotić et al. [1], Borrelli et al. [10, 11],
and Borrelli [9], where both optimal and model-predictive-control approaches are
discussed. The latter, in particular, have been successfully applied to many real
problems [20].

In this paper we study and discuss the solution to a model predictive control
for linear discrete-time hybrid systems with discrete inputs only, where the system
is described as a MLD system [5]. Many of the control approaches are limited to
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discrete-time hybrid systems because many of the complex mathematical issues are
removed. In many applications the command variables are intrinsically discrete,
either because such a system design is simpler or for other technological reasons.

The existing mixed-integer programming approaches can also be applied to
systems with discrete inputs, but only in cases with a small number of discrete inputs
and a small number of auxiliary internal system variables (δ and z variables in MLD
terminology - see Section 2). The reasons lie in the computational complexity of the
optimization problem. An new approach is described in this paper, which is more
efficient and also more general in terms of the allowable cost function.

Despite the reduced computational complexity the application of the proposed
control algorithm in real time remains difficult, particularly in cases where a short
sampling time is imposed by the dynamics of the system. The mixed-integer pro-
gramming approaches try to solve this by multi-parametric programming, which is
applied offline, and the control law is explicitly expressed as a function of the system
state [9]. However, the offline computational effort is large and with the increased
number of discrete inputs and discrete internal auxiliary variables it is not possible
to obtain a solution in a reasonable time. The reason is in the large number of multi-
parametric programs that need to be solved when the control law is computed in
a dynamic programming fashion. In this paper an alternative method is proposed,
where the partition of the state space is determined by the control-law calculation
based on a reachability analysis, and a probabilistic neural network (PNN) is trained
by a set of points close to the borders of the state-space partitions. The PNN is then
used as a system-state-based control-law classifier in real time.

The paper is organized as follows. In Section 2 we address the MLD modelling
framework, as the model predictive approaches based on this model will be discussed
in the paper. The problems of the model predictive control of hybrid systems with
discrete inputs and the proposed solution are addressed in Section 3. The proposed
algorithm is applied to a system of two furnaces, and the results are discussed in
Section 4. The conclusions are given in Section 5.

2 MLD Systems

Discrete-time models of hybrid systems are a combination of logic, finite-state
machines, linear discrete-time dynamic systems and constraints [5]. The interaction
between continuous and discrete/logic dynamics is shown in Fig. 1, where both parts
are connected through interfaces. The MLD modelling framework is based on the
idea of translating logic relations, discrete/logic dynamics, A/D (analog to digital
(logic)), D/A conversion and logic constraints into mixed-integer linear inequalities.
These inequalities are combined with the continuous dynamical part, which is
described by linear difference equations. The resulting MLD system is described by
the following relations:

x(k+1)= Ax(k)+B1u(k)+B2δ(k)+B3z(k) (1a)

y(k)=Cx(k)+D1u(k)+D2δ(k)+D3z(k) (1b)

E2δ(k)+E3z(k)≤ E1u(k)+E4x(k)+E5, (1c)
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Fig. 1 Hybrid control
system—discrete and
continuous dynamics interact
through interfaces

where x(k) ∈ R
nc × {0, 1}nb is a vector of continuous and logic states, u(k) ∈ R

mc ×
{0, 1}mb are the inputs, y(k) ∈ R

pc × {0, 1}pb are the outputs and δ ∈ {0, 1}rb and
z ∈ R

rc are the logic and continuous auxiliary variables, respectively. The inequalities
(1c) can also include physical constraints over continuous variables (states and
inputs). Given the current state x(k) and the input u(k), the time evolution of Eq. 1 is
determined by solving δ(k) and z(k) from Eq. 1c, and then updating x(k + 1) and y(k)

from Eq. 1a, Eq. 1b. The MLD system Eq. 1 is assumed to be well posed if for a given
state x(k) and a given input u(k) the inequalities Eq. 1c have a unique solution for
δ(k) and z(k). Because they are so extensive, the details of the translation techniques
from logic relations, discrete/logic dynamics, A/D [analog to digital (logic)], D/A
conversion and logic constraints into mixed-integer linear inequalities, are not given
here. For a more detailed description of the MLD form and translation techniques
the reader is referred to Bemporad and Morari [5].

MLD models can be efficiently built by using the HYSDEL modelling language,
which allows a description of the DHA hybrid dynamics in textual form. Using an
associated compiler this form can be translated into MLD form [5]. For a more
detailed description of the syntax and the functionality of the HYSDEL modelling
language and the associated compiler (HYSDEL tool) the reader is referred to
Torrisi and Bemporad [28].

Several control approaches referenced in the paper are based on a PWA represen-
tation of hybrid systems. Due to the equivalence of the MLD and PWA modelling
frameworks [17], similar control approaches can be used for MLD systems. Like with
MLD systems, PWA models can be efficiently built using the HYSDEL modelling
language, since the resulting MLD model can be efficiently converted into a PWA
form [3]. Furthermore, a direct translation from a HYSDEL model (DHA) to the
PWA form is possible, without the intermediate MLD step [24]. For a more detailed
description of PWA systems, the reader is referred to Sontag [26] and Ferrari-Trecate
et al. [14] and the references therein.

3 Model Predictive Control of Hybrid Systems

Predictive control amounts to finding the control sequence V H−1
0 = {v(0),

..., v(h), ..., v(H − 1)} in a horizon H, which transfers the initial state x(k|k) as close
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as possible to the final state x f in a horizon time T = H · Ts (Ts is the sampling time),
thus minimizing the performance index. Only the first sample of the optimal control
sequence V H−1

0 is actually applied to the plant at the time step k. At the time k + 1 a
new sequence is evaluated to replace the previous one.

3.1 Multi-parametric Mixed-integer Programming Approach

In this section the multi-parametric program solution to the predictive control
problem will be briefly reviewed. The aim is to demonstrate the approach’s strengths
and weaknesses when dealing with hybrid systems that have discrete inputs.

In Borrelli [9] the author presents a constrained model predictive problem, which
is based on a PWA model that is subject to hard input and state constraints. A cost
function is defined as

J
(
x(k), V H−1

0

)
� ‖x(k+H|k)−x f ‖p

P

+
H−1∑

h=0

‖x(k+h|k)−x f ‖p
Q+‖v(h)−u f ‖p

R (2)

where ‖x‖p
Q denotes the p–norm of the vector Qx if p = 1,∞ or x′ Qx for p = 2.

Q, R and P are weighting matrices with the following properties: Q = Q′ ≥ 0,
R = R′ > 0, P ≥ 0 for p = 2, and are full column rank for p = 1,∞. h = 0, ..., H − 1
is the prediction step, x(k + h|k) � x(k + h, x(k), Vh−1

0 ) is the predicted state at h,
y(k + h|k) is defined similarly, and V H−1

0 = {v(0), ..., v(H − 1)} is the optimal input
sequence defined by the optimization algorithm.

Applying the MLD modelling framework the following model predictive problem
is formulated:

J∗(x(k)) � min
V H−1

0

J
(
x(k), V H−1

0

)
(3a)

subj. to

x(k+h+1|k) = Ax(k+h|k)+B1v(h) + B2δ(k+h|k)

+B3z(k+h|k)E2δ(k+h|k)+E3z(k+h|k)

≤ E1v(h)+E4x(k+h|k)+E5. (3b)

Following the predictive control approach, only the first element in the sequence
V H−1

0 is applied as an input to the system, i.e., u(k) = v(0).
Later, the problem Eq. 3 can be formulated as a MIQP when p = 2 norm is used

[5], or a Mixed-Integer Linear Program (MILP) when p = 1,∞ norm is used:

min
V

V ′ H1V + V ′ H2x(k) + x′(k)H1x(k) + f ′
1V + f ′

2x(k) + c

subj. to GV ≤ S + Fx(k), (4)

where V = [�T , �T , �T ]T with � = [v(0)T , ..., v(H−1)T ]T (note that � represents
the input sequence V H−1

0 ), � = [δ(0)T , ..., δ(H−1)T ]T , � = [z(0)T , ..., z(H−1)T ]T ,
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and H1, H2, H3, f1, f2, c are matrices of suitable dimensions. H1, H2, and H3 are
null matrices if problem Eq. 4 is an MILP [9].

Given the value of the current (initial) state x(k), the MIQP (or MILP) Eq. 4 can
be solved to obtain the optimal input sequence V , i.e., � ⇒ V H−1

0 . By applying multi-
parametric programming [7, 9, 13], where the current (initial) state x(k) is considered
as a parameter, the explicit form of the optimal state feedback u(x(k)) of the problem
Eq. 4 can be obtained. For p = 2 norm the optimization problem is treated as a multi-
parametric MIQP (mp-MIQP), while for p = 1,∞ norm the optimization problem
can be treated as a multi-parametric MILP (mp-MILP). The solution to the mp-
MILP (mp-MIQP) is the explicitly defined control law of the form [1]:

u(x(k)) = F 0
i x(k) + G0

i if x(k) ∈ P 0
i , (5)

where P 0
i , i = 1, ..., N0, is a polyhedral partition of the feasible set of the states x(k)

at the time step k, and is different for p = 1,∞ or p = 2 norm [11].
By looking at the definition of the optimization vector V in Eq. 4 and considering

the current state x(k) as a parameter, we can see that the mp-MILP (MIQP)
approach solves the problem in extended (x, v, δ, z) space, which is numerically very
difficult to handle and increases the size of the problem drastically. The reason is
two fold. Firstly, the complexity of the optimization problem grows exponentially
with the number of binary variables. Therefore, including binary variables δ, which
are actually explicitly defined by the MLD system, state x and input v, into the
optimization problem is not efficient. Secondly, the continuous variables z actually
represent equality constraints that were translated into two sets of inequalities (the
consequence of the MLD modelling framework [5]) and which are also explicitly
defined by the MLD system, state x and input v. In Baotić et al. [1] an efficient
algorithm for computing the solution for the p = 1,∞ norm case and in Borrelli
et al. [10, 11] and Borrelli [9] for p = 2 norm is given. Both approaches solve the
problem in (x, v) space and the problems presented previously are removed. The
algorithms are based on a dynamic programming approach and mp-LP(QP) solvers.
The limitation of the mentioned algorithms is that they are efficient only for hybrid
systems where the states x(k) and the inputs u(k) are defined in x(k) ∈ R

nc and u(k) =
v(0) ∈ R

mc , respectively. In spite of these limitations, however, the approaches were
successfully applied to many real problems [20].

When dealing with hybrid systems that also contain binary states or binary inputs,
i.e., x(k) ∈ R

nc × {0, 1}nb and u(k) ∈ R
mc × {0, 1}mb , the above-mentioned efficient

algorithms are not practical. It is possible to write a standard dynamic-programming
recursion (backwards in time) but such a computation would be prohibitive for
all but the simplest of problems. This is a consequence of the drastic increase in
the complexity of the corresponding multi-parametric programs that have to be
solved, and furthermore, a large number of such programs need to be solved during
dynamic programming recursion. For example, in the case of binary inputs, all
the possible combinations of binary inputs must be enumerated [11]. Due to the
increased computational complexity, a different approach is preferable when dealing
with binary states or binary inputs. Such an alternative approach for the case where
the hybrid system can be influenced through binary (discrete) inputs only will be
discussed in the following.
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3.2 Performance-driven Approach

The algorithm that will be introduced in what follows is based on a performance-
driven reachability analysis [23]. The algorithm abstracts the behaviour of the hybrid
system by building a “tree of evolution”. A cost-function value is associated with
each node of the tree, and based on this value the exploration of the tree is driven.
Based on the cost-function value the imperspective branches of the tree are pruned
to reduce the computational complexity. As soon as the exploration of the tree
is finished, the corresponding input is applied to the system and the procedure is
repeated.

3.2.1 Complexity of the Control Problem with Discrete Inputs

The solution to a control problem at every time step k is the control sequence
V H−1

0 = {vb (0), . . . , vb (H − 1)}, where u(k) = vb (0) represents the discrete input to
the system at step k. The subscript b is used to emphasize the fact that we are dealing
with binary inputs only. If the system has mb discrete inputs and no continuous
inputs, that means vb (h) ∈ {0, 1}mb and V H−1

0 ∈ {0, 1}mb ·H . Because all the inputs
are binary, there are 2mb ·H possible combinations for V H−1

0 . Hence the optimization
problem is NP-hard and the computational time required to solve the problem grows
exponentially with the problem size.

3.2.2 Optimization Using a Reachability Analysis

As a result of the constraints Eq. 1c all the combinations of inputs are not, in general,
feasible. One way to rule out infeasible inputs is to use a reachability analysis. Such an
approach for hybrid systems with continuous inputs is presented in Bemporad et al.
[4, 8]. The idea consists of reach-set computation and switching detection, based on
the repetitive use of linear programming, coupled to a quadratic programming solver,
which selectively drives the exploration. A similar idea is used here, but the presented
approach relies on the efficient discrete-time simulation of the underlying MLD
model, without the use of linear programming. Instead of using a linear-program
feasibility test, the values of the MLD auxiliary variables are explicitly calculated
from the previous state and the MLD data structure [22].

Through a reachability analysis it is possible to extract the reachable states of the
system; although enumerating all of them would not be effective, as many of them
will be far away from the optimal trajectory. Therefore, it is reasonable to combine
a reachability analysis with procedures that can detect reachable states that do not
lead to the optimal solution and remove them from the exploration procedure. The
approach of Bemporad et al. [8] achieves this by adjoining a partial cost to each node,
and then the partial cost is calculated by LP or QP optimization, depending on the
type of optimization problem. In the case of binary inputs, a MILP or MIQP solver
should be used, which increases the computational burden significantly. Limiting to
cases with discrete inputs only, the use of mixed-integer programming is unnecessary,
and in this paper a more efficient branch and bound optimization algorithm is
applied, which explores the derived tree-of-evolution structure directly. Within this
approach, the concept of the tree of evolution is slightly modified, i.e., the nodes do
not represent reachable regions in the state space but points in the state space that
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are reached by a certain input combination. The calculation of the partial cost is then
straightforward; it is determined by the path from the initial node to the observed
node of the tree. The procedure of generating and exploring the tree of evolution
will be described in detail in the following section.

3.2.3 Tree of Evolution

By exploiting the reachability analysis technique we are able to abstract the possible
evolution of the system over a horizon of H steps into a tree of evolution [23], as
shown in Fig. 2. The nodes of the tree represent states that are reachable from a
given initial state, and the branches connect two nodes if a transition exists between
the corresponding states. Each branch has an associated discrete input applied to
the system causing the transition. For a given root node N0, representing the current
(initial) state x(k|k), the reachable states xi(k + h|k) are computed and inserted into
the tree as nodes Ni, while the corresponding discrete inputs vi

b (h) are associated
with the corresponding branches connecting two nodes. i ∈ {1, 2, ...} represents the
successive index of the nodes and branches inserted into the tree. To each new node
Ni a cost value Ji is associated. The value is calculated based on the state and the
input sequence that has brought the system to the corresponding state. The search
for the optimal control sequence is propagated from a selected node of the tree,
whose selection is based on the associated cost value Ji, e.g., a node with the lowest
Ji may be selected. As soon as a new starting node is selected, new states reachable
from the selected node are computed and inserted as new nodes. The construction
of the tree of evolution proceeds according to a depth-first strategy until one of the
following conditions occurs:

• The step horizon limit is reached (h = H).
• The value of the cost function at the current node is greater than the current

optimal value (Ji ≥ Jopt, where initially Jopt = ∞).

A node that satisfies one of the above conditions is labelled as explored. If a node
satisfies the first condition, the associated value of the cost function Ji becomes the

Fig. 2 The tree of evolution
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current optimal value (Jopt = Ji), and the control sequence V H−1
0 that leads from

the initial node N0 to the current node Ni becomes the current optimizer. The
exploration continues with the selection of another unexplored node until all the
nodes are explored. When this is accomplished, the control sequence V H−1

0 leading
to the node with the associated Ji = Jopt becomes the optimal one and the input
u(k) = vb (0) is applied as an input to the system. In a standard model-predictive-
control approach the optimization is applied online at every time step so the whole
optimization procedure, generating a new tree of evolution, is repeated at k + 1.

3.2.4 Cost Function and Node-selection Criterion

The selection of the cost function and the node-selection criterion have a great
influence on the size of the tree of evolution and, indirectly, on the time efficiency
of the control algorithm. The best node-selection criterion is to propagate the tree
of evolution in a direction that minimizes the value of the cost function. At the same
time the cost value Ji associated with a node is used to detect nodes that are not going
to lead to the optimal solution. To achieve that, the cost function must have certain
properties that we describe below.

In the case of a classical optimal control problem we typically choose a cost
function of the form:

J
(
x(k), V H−1

0

) = ‖x(k+H|k)−x f ‖p
P +

H−1∑

h=0

‖x(k+h|k)−x f
∥∥p

Q+‖vb (h)−u f
∥∥p

R (6)

where ‖x‖p
Q represents the p–norm for p = 1, 2,∞, and where Q, R and P are

weighting matrices with the same properties as in Eq. 2.
For a node Ni inserted into the tree of evolution at the prediction step h < H the

associated cost value (based on Eq. 6) is

Ji

(
x(k), Vh−1

0 , h
)

=
h∑

j=0

‖x(k+ j|k)−x f ‖p
Q+

h−1∑

j=0

‖vb ( j )−u f ‖p
R. (7)

It is reasonable to detect the nodes Ni that do not lead to the optimal solution at the
step instance h < H (H is horizon) by comparing Ji(h) to Jopt. When the cost value
becomes greater than the current optimal one (Ji ≥ Jopt) we want to ensure that by
continuing the exploration no better solution than the current one can be found.
To achieve this the cost function Eq. 7 has to be monotonically increasing with the
prediction step. The cost function Eq. 6, Eq. 7 fulfils the mentioned condition for
p = 1, 2,∞ norm, i.e.,

Ji

(
x(k), Vh

0 , h + 1

)
− Ji

(
x(k), Vh−1

0 , h
)

(8a)

h+1∑

j=0

‖x(k+j|k)−x f ‖p
Q+

h∑

j=0

‖vb ( j )−u f ‖p
R−

h∑

j=0

‖x(k+j|k)−x f ‖p
Q−

h−1∑

j=0

‖vb ( j )−u f ‖p
R

(8b)

‖x(k+h+1|k)−x f ‖p
Q + ‖vb (h)−u f ‖p

R ≥ 0 for h = 1, ..., H − 2. (8c)
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and at the horizon, the corresponding difference is ‖x(k+H|k)−x f ‖p
P + ‖vb (H−1)−

u f ‖p
R ≥ 0.

3.3 Multi-parametric Solution Using PNNs

Despite the efficiency of the proposed performance-driven approach to model
predictive control the related computational burden is often too high for the control
to be implemented in real time. This motivates the search for a multi-parametric
solution that could be calculated offline.

As shown previously, the solution of a multi-parametric programming approach
is of the form Eq. 5, where we want to obtain the explicit solution of the control law
and where the state of a system x(k) represents the independent variable. In the case
of purely discrete inputs the explicit control law is simplified to:

u(x(k|k)) = G0
i if x(k) ∈ P 0

i , (9)

where P 0
i , i = 1, ..., N0, is a partition of the feasible set of the states x(k) at the time

step k and is different for p = 1,∞ or p = 2 norm. The question is how to represent
the partitions P 0

i . The multi-parametric programming approaches presented in
Section 3.1 describe the explicit control law Eq. 5 as a PWA function, where the
partitions P0

i are represented by a set of inequalities.
On the other hand, with the performance-driven approach presented in

Section 3.2, a single value of an optimal control input can be calculated given the
current state x(k) of a system with purely discrete inputs. Since the explicit control
law Eq. 9 maps the state space to a finite set of discrete values, partitions P0

i may be
characterized by solving the optimal control problem for a set of points in the state
space. If the points with the same value of the corresponding optimal control law
are used as a class of prototypes, a control law in the form Eq. 9 can be effectively
approximated by using PNNs, as will be shown in the next section.

3.3.1 PNN as a Control-law Classifier

The number of partitions P 0
i equals the number of discrete control laws G 0

i . The
partitions P 0

i are in general complex and may also be non-convex. It is therefore a
demanding task to classify in real time the current state-space vector into a certain
class and define the optimal discrete input value. The most appropriate way to
define the class of input to the current state vector is the PNN [27]. The PNN is a
pattern-classification algorithm that belongs to a huge group of nearest-neighbour-
like algorithms. It corresponds to the neural-network family because of its natural
mapping onto a two-layer feed-forward network. The PNN defines the distance, i.e.,
the likelihood function, of the current state-space vector x from a class of prototypes
x i

j, where i stands for the class, j = 1, ..., Ni, where Ni represents the number of
prototypes, and d stands for the dimensionality of the measurement space:

Li(x) = 1

Ni(2π)d/2σ d

Ni∑

j=1

e−
(

x−xi
j

)2
/2σ 2

(10)
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The conditional probability for class i is equal

Pi(x) = Li(x)
∑M

j=1 L j(x)
, (11)

where M stands for the number of classes. The observed pattern corresponds to the
class with the highest conditional probability.

The PNN is actually a standard Bayesian classifier. It can perform the pattern
classification. When applied in its standard form, the PNN does not need to be trained
using classical learning algorithms. The training vectors simply become the weight
vectors in the first layer of the network. This is an advantage of the PNN, but it
could also be a disadvantage when dealing with a huge number of training data. This
can be solved by using clustering algorithms to reduce the amount of the training
data. The quality of the optimal control law approximation depends on the quality
of the partitions P0

i approximation in the feasible state space. This means that each
partition should be defined as exactly as possible, which is particulary important near
to the boundaries of partitions.

3.3.2 Training of a PNN

The training of a PNN is easy and instantaneous because the weight vectors in
the first layer of the network are defined by the training vectors. The only free
parameter is σ , the variance of the Gaussian, which is defined heuristically during
the training procedure by the evaluation of some criterion, as it is the number of
classification errors during the cross-validation. The PNN classifier can be used in
real time because as soon as one pattern representing each class has been observed,
the network can begin to generalize to a new pattern. The shape of the decision
boundary can be as complex as desired. The boundaries between the subspaces can
be modelled more or less exactly and are defined by parameter σ .

Working with a PNN is simple and obvious, especially when working within the
MATLABT M environment. The main task that has to be performed is to provide
classes of prototypes. In our case the defined class of prototypes is defined by the
states x(k) for which the discrete control law is the same, i.e., Xi = {x(k) : u(k) = G 0

i }
for i = 1, ..., Ni, where Ni is the number of different control laws. It is reasonable to
provide, for each class of prototypes, the states x(k) that are as close as possible to
the border with other classes.

These prototype states or training states can be defined using a simulation. For
a chosen initial state x(0), which represents the state of the system at instance k,
the appropriate control law G 0

i is calculated by applying the performance-driven
reachability-based model predictive approach presented earlier. The pair (x(0), G 0

i )
represents one element in the class of the prototypes i. How many elements will be
in each class of prototypes and how we will chose the initial states x(0) can differ
from case to case. Of course it is reasonable to find as many boundary initial states
x(0) with the associated control laws G 0

i in as few simulation runs as possible. The
boundary states can be defined by iterative division of the subspace between two
neighboring states which imply different optimal discrete control laws. The iterative
procedure is repeated until a certain tolerance partitioning is reached.
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3.3.3 Proposed Control Design Procedure

The above-proposed design procedure and the related boundary points’ calculation
are summarized in two algorithms. Starting with the process model and the problem
statement Eq. 3 the first algorithm summarizes the main design steps:

Algorithm 1:

Describe the controlled process as a MLD system;
Choose a cost function;
Formulate model predictive control problem Eq. 3;
Call Algorithm 2 to provide classes of prototypes;
Train PNN;
Implement PNN as a real-time control-law classifier;

Another algorithm is called to provide classes of prototypes that are required to
train the PNN. These may be constructed in different ways. The algorithm used in
this paper is sketched as follows:

Algorithm 2:

Read state limits from the MLD system;
Define initial subspace based on lower and upper state bounds;
Define initial grid step as a difference between lower and upper bounds;
repeat

Determine new (smaller) grid step;
for all subspaces do

Choose a subspace;
Create step based grid in the subspace;
for all grid points do

x(0) := chosen grid point;
G0

i := optimal control value;
(* calculated by the performance driven reachability analysis *)
Add the pair (x(0), G 0

i ) to the list of points;
if new border point then

Add the subspace defined by x(0) and grid step to the list of
new subspaces;

end
end

end
subspaces := new subspaces;

until grid step ≤ tolerance
Form classes of points with the same G 0

i ;
Remove interior points;

In the proposed algorithm, the lower bound, the upper bound, the grid step and
the tolerance are vectors of size n × 1, where n = nc + nb is the number of states.
Subspaces where the border points are searched for are rectangular in shape and are
given by pairs of lower and upper bounds. In the beginning there is only one initial
subspace defined by the state bounds of the corresponding MLD model. During
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the iterative search, new subspaces are generated whenever the border is detected,
i.e., whenever the calculated G0

i differs from the value at the already-processed
neighbouring points in the grid. The search continues until a required tolerance is
reached. Finally, the set of points is classified according to the adjoined control value
G0

i , and the points surrounded by points of the same class are removed.
The use of a multi-parametric solution using PNNs on an example of the alternate

heating of two furnaces will be presented in the section below.

4 Example: Alternate Heating of Two Furnaces

The presented model-predictive-control approach was applied to a temperature-
control example proposed in Hedlund and Rantzer [16] and studied in Bemporad
and Morari [6]. The temperature of the two furnaces should be controlled to a given
set point by alternate heating. Only three modes of operation are allowed: heat only
the first furnace, heat only the second furnace, do not heat. The furnaces can only be
fed by a fixed amount of energy u0. The system is described by the following PWA
model:

[
ẋ1

ẋ2

]
=

[−1 0
0 −2

] [
x1

x2

]
+

[
1
0

]
u0, if the first furnace is heated (12a)

[
ẋ1

ẋ2

]
=

[−1 0
0 −2

] [
x1

x2

]
+

[
0
1

]
u0, if the second furnace is heated (12b)

[
ẋ1

ẋ2

]
=

[−1 0
0 −2

] [
x1

x2

]
+

[
0
0

]
u0, if there is no heating (12c)

The system Eq. 12 has two continuous states that correspond to the temperature
of the furnaces, x1 corresponds to the temperature of the first furnace and x2 to
the temperature of the second, and two binary inputs, heat furnace 1 and heat
furnace 2, which cannot be active simultaneously. The system Eq. 12 was converted
to discrete time using the step-invariance method with the sample time Ts = 0.08 s
and was modelled using the HYSDEL modelling language [28] (see Appendix). The
HYSDEL compiler returned the following MLD system:

x(k+1) =
[

0.9231 0
0 0.8521

]
x(k) +

[
1 0
0 1

]
z(k) (13a)

⎡

⎢⎢⎢
⎢
⎣

0 0
−1 0

1 0
0 −1
0 1

⎤

⎥⎥⎥
⎥
⎦

z(k) ≤

⎡

⎢⎢⎢
⎢
⎣

−1.0000 − 1.0000
−0.0615 0

0.0615 0
0 − 0.0591
0 0.0591

⎤

⎥⎥⎥
⎥
⎦

u(k) +

⎡

⎢⎢⎢
⎢
⎣

1
0
0
0
0

⎤

⎥⎥⎥
⎥
⎦

(13b)

where z(k) is an auxiliary continuous variable representing the influence of the
amount of power u0 on the temperature (state x) with regard to the binary input
u = [u1, u2]T , representing the heating of the first or the second furnace, respectively.
The matrices Ei=1,...,5 are suitably defined by the MLD transformation procedure
[5, 28] and u0 = 0.8.
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Table 1 Possible discrete
inputs

Inputs 1 2 3

u1 1 0 0
u2 0 1 0

4.1 Complexity of the Predictive Control Algorithm

The solution to the model predictive control is a sequence V H−1
0 . At each sampling

instance two inputs can influence the system, i.e., one for the first and one for the
second furnace (see Appendix). The horizon applied was set to H = 3, H = 5 and
H = 7, respectively. Considering the number of discrete inputs and the length of
the horizon there exist 22·3 = 64, 22·5 = 1024 and 22·7 = 16384 possible combinations
of the sequence V H−1

0 . Of course not all the input combinations are possible, e.g.,
considering three possible input combinations (see Table 1) and horizons H = 3, 5, 7
there exist 33 = 27, 35 = 243, 37 = 2187 feasible control sequences, and many of them
lead to non-optimal solutions.

4.2 Cost-function Selection

The goal is to optimally control the temperature of two furnaces to the desired values
x f = [1/4, 1/8]T , minimizing the following quadratic performance index:

J = ‖x(k+H|k)−xf ‖2
P +

H−1∑

h=0

‖x(k+h|k)−xf ‖2
Q, (14)

where h represents the prediction step, the horizon was set to H = 3, 5, 7, respec-
tively, and the weighting matrices were set to Q = P = [

5 0
0 10

]
.

4.3 Results

A control algorithm was tested with a simulation using MATLAB 6.1 on a Pentium
4, 2.4-GHz machine. The tree of evolution was calculated during each time sample,
resulting in an optimal control sequence that brings the system from the current
(initial) state x(k) as close as possible to the desired state x f in the finite horizon.

Table 2 The complexity and time efficiency

Horizon CPU Avg. CPU Average Maximum number of Comparison: CPU time
time time per number nodes in the tree CPU time by MIQP
(200 sample of by MIQPa (CPLEX)
steps) explored

nodes

H = 3 2.5 s 0.0125 s 12 27 (2mb H = 64) 37.5 s 3.5 s
H = 5 6.4 s 0.032 s 36 243 (2mb H = 1024) 252 s 8.6 s
H = 7 14.8 s 0.074 s 91 2187 (2mb H = 16384) 1252 s 19.7 s
ahttp://control.ee.ethz.ch/∼hybrid/miqp/

http://control.ee.ethz.ch/~hybrid/miqp/
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Only the first input vector was applied to the system. The complexity and the time
efficiency of the proposed model-predictive-control approach for all the horizons are
given in Table 2, where the results are given for kmax = 200, i.e., for the time interval
t = [0, 16] s. The shown CPU times are the times for solving the stated model-
predictive-control problem by online optimization. The solution was not calculated
offline as a parametric solution but the optimization problem was solved for a single
point in the state space at each time sample. Calculation times for the reachability-
based approach are shown and for comparison, the time needed to calculate the
equivalent solutions using the MIQP [5] is given. Two MIQP solvers were used, a
solver written in Matlab, and a commercial CPLEX solver. It is clear that the speed
of the calculation strongly depends on the solver implementation. Nevertheless, the
proposed reachability-based approach performs better, despite being implemented
in Matlab script.

The average number of explored tree-of-evolution nodes per sample and the max-
imum number of nodes are also shown in the table. The number of explored nodes is
significantly smaller in all cases, which shows the effect of pruning the imperspective
branches of the tree. As a result, the average CPU time per sample remains small

0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

0.2

x1

H=3

0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

0.2

x1

H=5

0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

0.2

x1

H=7

0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

0.2

x1

H=5 - multi-parametric

x2 x2

x2 x2

a b

c d

Fig. 3 Temperature trajectory for the furnaces using the model predictive controller
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enough, i.e., smaller than the sample time, to enable the implementation of the
control in real time for the given horizons. It should be noted, however, that for
the longer horizons this is not the case anymore.

The resulting optimal trajectories are shown in Fig. 3a,b and c for a horizon
H = 3, 5 and 7, respectively.

4.4 Multi-parametric Approach Using PNNs

The solution of the multi-parametric approach is the form Eq. 9. In the case of the
alternate heating of two furnaces the temperature of the two furnaces should be con-
trolled to a given set point by applying only one of the three possible discrete inputs
to the system (see Table 1). This means that the multi-parametric solution has three
different control laws, i.e., G0

0 = [0 1]T , G0
1 = [1 0]T and G0

2 = [0 0]T , and therefore
three different prototype classes. To be able to train the PNN, the corresponding
regions in the state space have to be identified. The goal is to determine the prototype
classes, i.e., the pairs (x(0), G0

i ) where the states x(0) lie as close as possible to the
border with other classes, in as few simulation runs as possible.

Considering we do not know anything about the position and the shape of the
partitions P 0

i , we start to search the border (initial) states x(0) over the whole
state space (x1, x2) using a sequential approach. The control law is calculated in
every step and the border is detected when the control law is changed between two
calculation steps. The state space was first searched using the initial (larger) step.
Then in the smaller border areas (the areas where the border was detected) the
procedure was repeated using a smaller step. The procedure was repeated until the
obtained information about the borders was exact enough. The search procedure
used the reachability-based model-predictive-control approach, presented earlier,
with the horizon set to H = 5. Figure 4a shows the initial states x(0) used during
the simulation and the corresponding control laws G 0

i . In the final set of prototype
classes only those pairs (x(0), G 0

i ) that lie on the border (see Fig. 4b) were included.
In this way the size of the PNN is reduced and the performance of the PNN is
improved.
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Fig. 4 Simulation states (a) and border states (b) used for learning PNN
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Fig. 5 The output function
of the PNN
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The time used for training the PNN with the data presented in Fig. 4b was 0.43 s.
The result is the PNN, which classifies the initial state x(k) into the classes i = 0, 1, 2,
and thus selects an appropriate control law G 0

i . The output function of the obtained
PNN is shown in Fig. 5. The result of the predictive control using the trained PNN,
for the time interval t = [0, 16] s, was obtained in 1.3 s and is shown in Fig. 3d.
In comparison with the result shown in Table 2 for H = 5 this is approximately
five times faster. At this point we should point out that the time needed for the
preparation of the PNN, i.e., searching for the prototype pairs and training the PNN,
was 91.3 s. This is performed only at the beginning (offline), later in the control loop
only the trained PNN is used. As a consequence, the longer prediction horizons can
also be used for real-time control.

5 Conclusions

The model-predictive-control approach for hybrid systems with discrete inputs only
was discussed. Obviously, the complexity of the model-predictive-control problem
grows extremely rapidly with the number of binary (discrete) variables; therefore, a
special approach is needed.

In the paper a model predictive approach is proposed where the optimization
problem associated with the prediction is solved by abstracting the behaviour of the
hybrid system into a ’tree of evolution’. The main advantage of this approach is that
the tree can be cut from both sides, top and bottom, which results in a considerable
reduction in the size of the tree. To further reduce the online computational burden
the solution using a multi-parametric approach is presented, where a PNN is used
to capture the partition of the state space. The learning is performed offline, while
during the operation of the controller the system state is time-efficiently classified
into a class that selects an appropriate control law.

The efficiency of the proposed algorithm, including the PNN-based multi-
parametric approach, was demonstrated on the example of the alternate heating
of two furnaces. The obtained results are comparable to the results obtained in
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Hedlund and Rantzer [16] and Bemporad and Morari [6]. Future research will focus
on exploring the possibilities of real applications of the proposed approach.

Appendix: HYSDEL Code of a Two Furnace System ([6])

SYSTEM furnace {
INTERFACE {
STATE {

REAL x1 [-1, 1]; /* temperature furnace 1 */
REAL x2 [-1, 1];} /* temperature furnace 2 */

INPUT {
BOOL heat1, heat2;} /* binary inputs */

PARAMETER {
REAL Ts=0.08; /* sample time */
REAL b1=1-exp(-Ts); /* constants of discretization */
REAL a1=exp(-Ts);
REAL b2=(1-exp(-2*Ts))/2;
REAL a2=exp(-2*Ts);
REAL u0=0.8;}} /* fixed amount of energy */

IMPLEMENTATION {
AUX {
REAL u1, u2;} /* aux. variables */

DA {
u1={IF heat1 THEN b1*u0};
u2={IF heat2 THEN b2*u0};}

CONTINUOUS {
x1=a1*x1+u1;
x2=a2*x2+u2;}

MUST {
~heat1|~heat2;}}

}
}
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