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ABSTRACT

We prove that n + 4 finger probes are sufficient to determine the shape of a convex

n-gon from a finite collection of models, improving the previous result of 2n + 1. Fur-

ther, we show that n − 1 are necessary, proving this is optimal to within an additive con-

stant. For line probes, we show that 2n + 4 probes are sufficient and 2n − 3 necessary.

The difference between these results is particularly interesting in light of the duality rela-

tionship between finger and line probes.
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1. Introduction

Tactile sensing is an important paradigm in robotics, and for reasons of economy and robustness is

often used instead of more sophisticated vision systems to explore unknown environments. Cole and Yap

[1] introduced the notion of a finger probe to model a tactile sensor, where a finger probe measures the first

point of contact between a directed line l and an object P. Since Cole and Yap’s work, a significant litera-

ture in geometric probing has developed, which studies the power of different sensor models for recon-

structing geometric objects. The most up-to-date collection of results in probing appear in [2].

We seek probing strategies which completely determine a convex polygon in as few probes as possi-

ble. Cole and Yap [1] proved that 3n finger probes are necessary and sufficient to determine an unknown

convex n-gon, given only the position of some point in the interior of the polygon. Probing strategies for

non-convex polygons have been developed by Alevizos, Boissonnat and Yvinec [3].

Since the environment of industrial robots is usually very restricted, we often have apriori knowledge

of the class of objects the robot will manipulate. Thus in most tactile sensing applications, we are con-

cerned with identifying an object and its orientation from a finite, pre-defined set of possible objects. Grim-

son and Lozano-Pérez [456] have studied model-based tactile sensing, and shown that heuristics can be

effective to distinguish between models. More efficient probing strategies can result for model-based deter-

mination problems. Bernstein [7] proved that 2n + 2 finger probes are sufficient to determine a convex n-

gon from a finite collection of models Γ, which is improved to 2n + 1 in [8]. Lyons and Rappaport [9]

showed that m − 1 probes are sufficient to identify a convex polygon from a set of m models, if each model

has a particular edge aligned with a known reference plane. This is a severe restriction, which if relaxed

leads to a mn − 1 probe determination strategy. In this paper, we prove n − 1 probes are necessary for

model-based determination of convex polygons and that n + 4 probes are sufficient. Therefore, our result is

optimal to within an additive constant.

Other sensor models are also of interest. A line probe measures the first time of intersection between

a line moving parallel to itself and an object. Thus the first line tangent to the object with a given slope is

returned. Li [10] showed that 3n + 1 line probes are necessary and sufficient to determine an unknown

convex n-gon. The problem of model-based determination with line probes was posed in [11], and previ-

ously no non-trivial bounds were known. In this paper, we also prove that 2n − 3 line probes are necessary

and 2n + 4 probes sufficient, which are again tight to within an additive constant.

These results are particularly interesting in light of the duality relationship, discovered independently

by Dobkin, Edelsbrunner, and Yap [12] and Greschak [13], that exists between line probes and finger

probes which all pass through a single point, the origin. For all previous determination problems, the finger

and line probing models have been identical in power to within one probe. However, our results show that

line probes are significantly weaker than unrestricted finger probes for model-based determination.
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Figure 1: Determining en, e1 and ψ1 using Bernstein’s strategy.

Figure 2: Bernstein’s strategy modified; three possible choices for e2.

2. Model-based Results for Finger Probes

In the model-based probing problem, we are given a  set of convex polygons Γ, and a point O which

lies in the relative interior of an unknown convex polygon P from Γ. We seek to determine P and its orien-

tation using as few probes as possible.

Our finger probing strategy is a refinement of Bernstein’s strategy [7]. There are two aspects to this

strategy. First, all the models are preprocessed to find an angle θmin small enough so that at most five

probes through O, each inclined with respect to the previous probe by θmin as in Figure 1, will determine

the first edge e1 of P. Since P is convex, three collinear contact points determine an edge, and as we will

show an appropriately small θmin can be computed from Γ which will guarantee three such points in five

probes. If five probes are actually used, then two neighboring edges will be determined.

Bernstein also observed that if two probes (F1, F2) are aimed parallel to a previously determined

edge ei but at a height less than some hmin, both probes will contact the next edge ei+1 of P, determining

ei+1 and implicitly the vertex between ei and ei+1. Bernstein’s strategy proceeds to walk around the poly-

gon determining each edge in two probes, for a total of 2n + 2 probes.

We improve Bernstein’s strategy by showing that vertex vi+1 between ei and ei+1 can be determined

from the initial angle ψ1, ei and Γ in exactly one probe. Determine en and e1 in five probes using Bern-

stein’s strategy; these labels are defined after probing. Overlay all models which possess the same initial

angle ψ1 between en and e1, as in Figure 2. Relative to edge ei (e1 in Figure 2), we have a number of

choices for the next edge ei+1.

Figure 3: Starting configurations for Bernstein’s strategy.

Aim a probe Fi (F1 in Figure 2) that is parallel to and above ei and is at a height below both the low-

est model vertex (S1 in Figure 2), and below any intersection of candidate edges (S2 in Figure 2). Such a

probe will intersect P at a point unique to only one candidate edge, which can be determined by substitut-

ing the coordinates of the collision point into the equations for the candidate edges, although the length of

this new edge is still unknown. Thus vertex vi+1 and the orientation of edge ei+1 have been found at a cost

of one probe, and we can walk around P determining each new vertex at the cost of a single probe.

It remains to be specified how to determine θmin [8]. For any point s in polygon P∈Γ, define β P
s as

the smallest angle spanned by any edge of P by a point s. Further, let β P
min = Min{ β P

s , s∈P}. In a convex

polygon, the point which gives rise to the minimum angle must be on a vertex or edge of P. Finally define

βmin = Min {β P
min, |P∈Γ} and θmin = βmin/5. The factor of 1/5 ensures that five probes, each inclined at

θmin with respect to the previous one, will all remain within an angular sector of βmin. Such an angular sec-

tor can cross only one vertex boundary. By testing each pair of edges for each model, θmin can be com-

puted in O(n2m) time.

Theorem 1: n + 4 finger probes are sufficient to determine a convex polygon P from a set of models Γ.
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Proof: The previous discussion demonstrated that it is possible to determine P in one probe per vertex,

once the initial vertex v1 has been determined. Figure 3 illustrates the possible results for our initial probes,

each aimed at O at an angle of θmin often from the previous probe. Three collinear points determine e1

after either three, four, or five probes. When five probes are required, the orientation of en and the angle

between e1 and en also results. When four probes suffice to determine e1, a fifth probe can be sent at an

angle −θmin relative to F1, also determining en. When three probes suffice to determine e1, Bernstein’s

strategy can be employed to determine en with two more probes. Thus we can determine two edges i.e. the

first vertex v1 in exactly five probes. As discussed above, the other n − 1 vertices can be identified with one

probe each, for a total of n + 4 finger probes.

To determine the time complexity of this strategy, consider that there are m models in the set, each of

at most n sides. The initial stage finds the angle ψ1 between edges en and e1 with O(n2m) inv ested in com-

puting θmin. All internal angles of the polygons that match ψ1 are then superimposed to give the overlay

diagram of Figure 2. Each polygon can have up to n angles matching ψ1, so the overlay diagram consist of

at most nm superimposed polygons. For the second phase, each probe is aimed below the lowest intersec-

tion point, which can be computed taking the minimum over all 

nm

2



possible intersection points. This

process of finding the lowest intersection point must be repeated for each edge as we walk along the poly-

gon, for a total time complexity of O(n3m2). We remark that a global value for the minimum intersection

point can be precomputed in O(m2n2) time, so that each probe takes O(1).

Figure 4: Models for finger probe lower bound.

Theorem 2: n − 1 finger probes are necessary to determine a convex polygon P from a set of models Γ.

Proof: Γ will consist of two models, each regular (n − 1)-gons with an additional vertex raised above a sin-

gle edge e of each polygon. The raised vertex will be close to the center of e and infinitesimally above e,

such that any line passing through two raised vertices intersects the interior of P. The raised vertices added

to the two models are not identical, as in Figure 4.

In our lower bound proof, we assume that the position of the n − 1 regular vertices are freely given to

the prober, so that to complete determination only the position of the raised vertex must be found. Because

the raised vertex lies only slightly above an (n − 1)-gon edge, only one of the n − 1 possible positions of the

raised vertex can be tested with a single probe. Thus an adversary can adjust the orientation of the model

so the n − 2 non-raised edges will be probed before the location of the raised edge is known. Then another

probe must be spent to distinguish between the two models. Thus n − 1 probes are necessary to determine

P.

3. Model-based Results for Line Probes

There is a duality relationship between finger probes through O and line probes, which means the

lower bound of Theorem 2 immediately dualizes to line probes. Although we might hope that the strategy

of Theorem 1 can be adapted to line probes, this strategy aims probes close to edges, which in general will

not pass through O. In this section, we prove that ∼2n line probes are necessary and sufficient for determi-

nation.
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3.1. An Upper Bound for Line Probes

The structure of our strategy is based on developing constraints from superimposing all possible ori-

entations of models, as in Theorem 1. We observe that the position of a vertex can be identified with a sin-

gle line probe l, if it could be known that l was oriented in such a manner that no two candidate vertices

define a line with the same slope as l. An additional probe may be necessary to confirm that two vertices

define an edge of P.

We define a diagonal as a line segment joining two vertices of a polygon P. After an initialization

procedure which determines diagonal AB of P, we may use AB as a reference to superimpose all models

with diagonals of equal length, as in Figure 5. This divides the problem of determining P into two parts,

determining the vertices of P above and below the diagonal. Each new vertex vi of P defines two new

diagonals, viva and vivb, where vavb is the current diagonal being probed. The algorithm recurs on each

diagonal until determination is completed. The diagonals encountered during the execution of this proce-

dure define P and its triangulation.

Figure 5: Three polygons P1, P2, and P3 overlayed on diagonal AB.

Figure 6: Determining the first two vertices of P.

The initialization phase of our strategy determines the first vertex v1 of P by sending line probes

inclined at φmin with respect to the previous probe, until three probes pass through the same point, v1. The

angle φmin =
π − ψmax

5
, where ψmax is largest internal angle of all models, has the property that five succes-

sive line probes each inclined at φmin to the previous one can only cross a single edge boundary. Ideally,

only three probes are necessary to identify an initial vertex. However similar to Theorem 1, in the worst

case L1, L2 and L3 do not pass through the same point; see Figure 6. By sending L4 inclined at +φmin with

respect to L3 and L5 inclined at -φmin with respect to L1, we can identify two adjacent vertices, and the

edge between them for the cost of five probes. No other edges can be crossed since it takes at least 5φmin to

cross an edge boundary. It will be shown that each vertex or edge can be confirmed for the cost of a single

probe. Thus we can take the cost of an initial vertex to be three probes. The extra vertex and edge of Figure

6 will either be identified during initialization by L1 and L5, or be confirmed by two other probes later in

the algorithm. By performing the initialization procedure twice, once from the top of the polygon and once

from the bottom, we can determine two distinct initial vertices defining the initial diagonal AB.

Figure 7: Subproblem with known diagonal vavb.

The strategy will recur on each diagonal, aiming probes at shallow-enough angles to determine new

vertices if they exist. To find this angle, consider the situation of Figure 7, where (va, vb) is the current

diagonal. Let M be the set of all possible model vertices which lie above (va, vb). For any points vi , v j ∈
M∪va, let α ij be the angle defined between lines (va, vb) and (vi , v j). Let αmin = Min(α ij > 0) for all vi , v j

∈ M∪va. A probe aimed at an angle αmin/2 above (va, vb) will contact exactly one vertex of M∪va. If it

contacts va, vavb must be an edge of P.
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Theorem 3: 2n + 4 line probes are sufficient to determine a convex polygon P from a set of models Γ.

Proof: The first two vertices of P can be determined in three probes each as discussed above. Each second

phase probe, aimed at αmin/2 with respect to a current diagonal vavb, will either be incident upon one vertex

of M or else pass through one of the vertices of vavb. In the first case, we have determined a new vertex of

P and defined two new diagonals, while in the second case we have confirmed that the two vertices of the

diagonal are adjacent on P. Since there are n − 2 vertices and n edges of P which must be confirmed, and

each second phase probe confirms either an edge or vertex of P, 6 + n + n − 2 = 2n + 4 probes are sufficient

to determine P.

Each of the m convex n-gon models defines at most O(n log n) diameters of a given length [14].

Thus a given diagonal may define O(mn2 log n) points in M . For any set of r points, the minimum slope

αmin can be determined in O(r log r) using the algorithm of Cole, Salowe, Steiger and Szemeredi [15].

Thus with O(n) probes and O(mn2log(n)log(mn2 log n)) steps to determine αmin for each probe, we have a

time complexity of O(mn3log(n)log(mn2 log n)) for the algorithm. We remark that a global value for αmin

can be precomputed in O(mn3log(mn2 log n)) time, so that each probe takes O(1) time.

3.2. A Lower Bound for Line Probes

A lower bound on the complexity of determination of an n-gon can be shown by specifying a set of

models, and describing an adversary which forces any probing strategy to take a giv en number of probes to

determine P from the given set of models. We shall prove a ∼2n lower bound on determination with line

probes, which requires a more complicated set of models than the proof of Theorem 2.

Consider three regular (n − 1)-gons, of diameters 1, 1 + x, and 1 + 2x where 0 < x << 1, nested within

each other as in Figure 8. vk
i is the i th vertex of the k th largest (n − 1)-gon. Observe that we can now

construct 3n−1 distinct convex (n − 1)-gons (vk1
1 , vk2

2 , . . . , vkn−1
n−1 ) where ki ∈ {1,2,3}. We now convert each of

these (n − 1)-gons to an n-gon, by adding a single raised vertex to some edge of the polygon. Now define a

raised edge e as having associated with it a raised vertex vr , a distance 0 < ε << x above the center of e. By

raising each of the possible edges, each of these (n − 1)-gons gives rise to n − 1 distinct n-gons. Eliminat-

ing duplicates from the resulting set of (n − 1)3n−1 polygons defines the set of models for our lower bound

proof.

Figure 8: Models for line probe lower bound.

Figure 9: The size of a raised edge, 0 < θ < φ

What is the significance of the raised edge? A raised edge forces any probing strategy to probe both

the edges and the incident vertices. The condition 0 < ε << x must hold because if ε were much larger as in

Figure 9, a single probe Li could determine if v1
i or v2

i existed, and whether the resulting edge ei were

raised.

For the given set of models, each of the n − 1 major vertices of P has three possible positions, and

any of the n − 1 edges may be the raised edge. Thus any determination strategy can be considered as
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Figure 10: Case of Lemma 4

solving a series of subproblems, each of which is of one of the following types:

• Two consecutive major vertices of P are known, but it is not determined whether this edge e is raised.

Determine whether e is raised.

• One major vertex of P is known, but the adjacent major vertex and the adjoining edge of P are not

known. Determine the unknown vertex and edge.

• Two consecutive major vertices and the connecting edge of P are not known. Determine the vertices

and the edge.

The adversary will force any strategy to take one probe to determine each vertex and edge, after ini-

tialization. This involves showing that these subproblems require at least one, two, and three probes respec-

tively. Since there are two possible models in the first case, and any probe which will determine whether e

is raised is restricted to such a narrow range that this probe cannot help in determining any other vertices of

P, at least one probe is necessary to test if e is raised. The second and third cases are resolved below.

Lemma 4: At least 2 line probes are required to determine an unknown edge and a single incident vertex.

Proof: We will actually consider the more restricted case where the unknown incident vertex has a choice

between two, and not three, possible locations, as illustrated in Figure 10. Let vi−1 be the known vertex and

vi and ei the unknown vertex and edge, with vr1
i or vr2

i the possibly raised vertex. The general case of three

possible locations for the unknown vertex cannot be solved in fewer probes, and the restricted case here

will be required in the proof of Lemma 5.

Table 1 summarizes the contact points returned by the adversary for probes of different orientations.

Orientation angles are measured with respect to vi−1O as shown in Figure 10. Orientations > 90 degrees or

< 90 − φ degrees provide no information about the current edge ei and thus need not be considered. Define

θ a
i as the angle va

i vi−1O where O is the origin of P.

Note that for the orientations of interest, if a second probe is not sent, we will not be able to distin-

guish whether the edge under consideration is normal or raised. Thus two probes are necessary to deter-

mine a single unknown vertex and its adjoining edge.

Probe orientation and contact points

1st Probe 1st Contact 2nd Probe 2nd Contact

≥ θ 1
i − φ r vi−1 ≥ θ 2

i vi−1

≥ θ 1
i − φ r vi−1 < θ 2

i v2
i

< θ 1
i − φ r v1

i ≥ θ 1
i vi−1

< θ 1
i − φ r v1

i < θ 1
i v1

i

Table 1: Adversary strategy for unknown edge and a single incident vertex.

Figure 11: Case of Lemma 5

Lemma 5: At least 3 line probes are required to determine an unknown edge and two incident vertices.
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Probe orientation and contact point for 1st probe

1st Probe 1st Contact Status

≥ θ v1
i−1 discard v1

i , reduces to case of Lemma 4 with unknown vertex locations v2
i , v3

i

< θ v1
i discard v1

i−1, reduces to case of Lemma 4 with unknown vertex locations v2
i−1, v3

i−1

Table 2: Adversary strategy for unknown edge and two incident vertices.

Proof: Consider Figure 11 and the adversary strategy of Table 2, which describes the response to the first

probe when an edge and both incident vertices are unknown. Here the adversary returns one outermost ver-

tex and discards the other. This reduces the problem to an unknown edge and a single incident vertex.

From Lemma 4, we know that at least two more probes are needed to determine the remaining vertex and

connecting edge, for a total of at least three probes.

Note the requirement that the case of Lemma 5 reduce to that of Lemma 4 after the first probe forces

us to use three instead of two nested (n − 1)-gons to form our models. We are now in a position to prove

the lower bound theorem.

Theorem 3: 2n − 3 line probes are necessary to determine a convex polygon P from a set of models Γ.

Proof: Each model in our adversary set contains n − 1 major vertices and one raised vertex. The adversary

can easily ensure that the raised edge of the particular model will be identified only after n − 2 edges have

been verified to be unraised. Thus n − 2 edges need be verified, and the location of the raised edge would

have then been located by elimination. The raised edge contributes a single vertex to the n-gon, the posi-

tion of which can be inferred from the fact the edge is raised. However, each of the n − 1 major vertices

need to be verified. Since each verification requires at least a single probe, then at least

n − 2 + n − 1 = 2n − 3 line probes are required for determination.

4. Conclusions

We hav e proven bounds, tight within an additive constant, on the number of finger and line probes

required for model-based determination for convex polygons. The disparity between these bounds is inter-

esting in light of the duality relationship between them. Our lower bound proof for line probes required an

exponential number of models. It would be interesting to know whether fewer models suffice.

The problem of model-based probing strategies remains open for more advanced models. The x-ray

probe [16] returns the length of intersection between a line and an object. Since an x-ray probe can be sim-

ulated by two finger probes, Theorem 2 can be used to prove a lower bound of ∼n/2 for model-based deter-

mination. The question is whether this is achievable. Since an x-ray probe through a known point behaves

as a finger probe, ∼n x-ray probes suffice for model-based determination using the ideas in [16]. Since each

x-ray probe passes through two different edges, perhaps a ∼n/2 probe strategy is possible. Further, the

model-based problem is open for half-plane probes [17].

We thank the referees for thorough reports which improved the presentation of our results.
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