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Abstract—Model-based prognostics approaches rely on
physics-based models that describe the behavior of systems and
their components. These models must account for the several
different damage processes occurring simultaneously within a
component. Each of these damage and wear processes contribute
to the overall component degradation. We develop a model-
based prognostics methodology that consists of a joint state-
parameter estimation problem, in which the state of a system
along with parameters describing the damage progression are
estimated, followed by a prediction problem, in which the joint
state-parameter estimate is propagated forward in time to predict
end of life and remaining useful life. The state-parameter estimate
is computed using a particle filter, and is represented as a
probability distribution, allowing the prediction of end of life and
remaining useful life within a probabilistic framework that sup-
ports uncertainty management. We also develop a novel variance
control algorithm that maintains an uncertainty bound around
the unknown parameters to limit the amount of estimation
uncertainty and, consequently, reduce prediction uncertainty. We
construct a detailed physics-based model of a centrifugal pump
that includes damage progression models, to which we apply our
model-based prognostics algorithm. We illustrate the operation
of the prognostic solution with a number of simulation-based
experiments and demonstrate the performance of the approach
when multiple damage mechanisms are active.

Index Terms—model-based prognostics, particle filters, vari-
ance control, centrifugal pumps

I. INTRODUCTION

Systems health management is integral to ensuring sys-

tem safety while meeting system objectives. Traditionally,

health management has consisted solely of fault detection

and diagnosis. More recently, the extension to fault prognosis

has become an important area of research. Prognostics is

focused on predicting when a fault, damage, or wear of a

component, subsystem, or system will progress to a point that

is deemed unsafe, or in which the system does not function as

specified. This time point is called end of useful life (EOL),

and the time remaining until that point is called remaining

useful life (RUL). With accurate predictions of EOL/RUL,

future maintenance activities can be optimally planned, and

component or system life can be extended by modifying its

workload [1], [2].

Model-based prognostics approaches employ domain

knowledge about a system, its components, and how they

fail through the use of physics-based models that capture the
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underlying physical phenomena [3]–[6]. Component damage

progresses along several different dimensions, driven by dif-

ferent degradation phenomena. Further, due to manufacturing

variances and differences in usage and environmental condi-

tions, the damage progression rates for the different damage

mechanisms vary among components of the same type. This

poses considerable challenges to data-driven algorithms, be-

cause they try to generalize damage progression over a large

set of cases [7]. Therefore, model-based approaches, which

adapt online to the specific component being monitored, are

able to obtain predictions with much higher accuracy, given

correct models.

A model-based approach thus requires the development of

models capturing the possible damage progression processes.

During online monitoring, they must track both the state and

unknown parameters whose values are unique to the specific

component, obtaining a joint state-parameter estimate that may

be used for prediction. Extending previous work in [3] and

preliminary results in [8], we develop a model-based prog-

nostics methodology that computes the joint state-parameter

estimate using particle filters. The estimate is represented as

a probability distribution, allowing the prediction of EOL and

RUL within a probabilistic framework that supports uncer-

tainty management. The use of particle filters for prognostics

is not new (e.g., [4], [6]), and has been validated in real

systems [9], however, previous approaches are developed for

tracking only a single damage mode, whereas in this paper,

we present a more general framework that can handle multiple

damage modes simultaneously.

In particle filter-based parameter estimation, an artificial

random walk evolution is assigned to the unknown parameters,

which is necessary for convergence of the parameter estimates

and proper tracking afterwards. But, the optimal variance of

the random walk depends on the actual parameter value, which

is unknown. As previously recognized [10]–[13], it is desirable

to tune the value of this variance online in order to promote

quick convergence of the parameter estimate and ensure a

small tracking variance. To reduce the amount of this artificial

uncertainty, we introduce a novel variance control algorithm,

differing significantly from these previous techniques, that

maintains an uncertainty bound around an unknown parameter

being estimated, allowing the particle filter to tune itself online

to improve performance.

We demonstrate our prognostics methodology on a centrifu-

gal pump. Centrifugal pumps are used in a wide range of

applications, from water supply to spacecraft fueling systems.

Because pumps typically see high usage, they can particularly

benefit from prognostics and health management solutions to
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ensure system performance, extended component lifetime, and

limited downtime. We develop a detailed physics-based model

of a centrifugal pump used for cryogenic spacecraft propellant

loading that includes models of the most significant damage

progression processes. With the centrifugal pump as a case

study, we apply our approach to a number of simulation-based

experiments under concurrent damage progression processes.

We evaluate algorithm performance using established prognos-

tics metrics [14].

The paper is organized as follows. Section II formally

defines the prognostics problem and describes the prognostics

architecture. Section III describes the modeling methodology

and develops the centrifugal pump model for prognostics. Sec-

tion IV describes the particle filter-based damage estimation

method and develops the variance control scheme. Section V

discusses the prediction methodology. Section VI provides

results from a number of simulation-based experiments and

evaluates the approach. Section VII describes related work,

and Section VIII concludes the paper.

II. PROGNOSTICS APPROACH

Prediction is a general problem, but, in systems health man-

agement, we are interested in a particular kind of prediction,

namely, EOL. The goal of fault prognostics is to predict when

the EOL of a system of interest is reached. In this section, we

first formally define the prognostics problem. We then describe

a general model-based prognostics architecture.

A. Problem Formulation

We assume the system model may be generally defined as

ẋ(t) = f(t,x(t),θ(t),u(t),v(t))

y(t) = h(t,x(t),θ(t),u(t),n(t)),

where x(t) ∈ Rnx is the state vector, θ(t) ∈ Rnθ is the

parameter vector, u(t) ∈ Rnu is the input vector, v(t) ∈ Rnv

is the process noise vector, f is the state equation, y(t) ∈ Rny

is the output vector, n(t) ∈ Rnn is the measurement noise

vector, and h is the output equation. This is a general nonlinear

model with no restrictions on the functional forms of f or h,

or on how the noise terms are coupled with the states and

parameters. The parameters θ(t) evolve in an unknown way,

but are typically considered to be constant in practice.

In prognostics, we are interested in when the performance

of a system lies outside some desired region of acceptable

behavior. Outside this region, we say that the system has

failed. The desired performance is expressed through a set

of c constraints, C = {Ci}
c
i=1, where Ci is a function

Ci : R
nx × Rnθ → B

that maps a given point in the joint state-parameter space,

(x(t),θ(t)), to the Boolean domain B , [0, 1], where

Ci(x(t),θ(t)) = 1 if the constraint is satisfied. If

Ci(x(t),θ(t)) = 0, then the constraint is not satisfied and

the system has failed. For example, a constraint may require

that a crack size is less than some critical value, or a valve

opens within some specified time limit.

These individual constraints may be combined into a single

threshold function TEOL, where

TEOL : Rnx × Rnθ → B,

defined as

TEOL(x(t),θ(t)) =

{

1, 0 ∈ {Ci(x(t),θ(t))}
c
i=1

0, otherwise.
.

That is, TEOL evaluates to 1, i.e., the system has failed, when

any of the constraints are violated. This threshold defines an

acceptable region of the joint state-parameter space, A, that

satisfies the performance constraints, i.e.,

A = {(x(t),θ(t)) : TEOL(x(t),θ(t)) = 0}.

At some point in time, tP , the system is at (x(tP ),θ(tP ))
and we are interested in predicting the time point t
at which this state will evolve to (x(t),θ(t)) such that

TEOL(x(t),θ(t)) = 1, i.e., the time point at which the system

exits region A. Using TEOL, we formally define EOL with

EOL(tP ) , inf{t ∈ R : t ≥ tP ∧ TEOL(x(t),θ(t)) = 1},

i.e., EOL is the earliest time point at which TEOL is met. RUL

is expressed using EOL as

RUL(tP ) , EOL(tP )− tP .

Problem (Fault Prognostics). The fault prognostics problem is

to, at prediction time tP , compute EOL(tP ) and/or RUL(tP ).

Fig. 1 describes these concepts with a two-dimensional

example where x(t) =
[

x1(t) x2(t)
]T

and θ = ∅. Initially,

at time t0, the system is at some state x(t0). It then evolves to

some point x(tP ) at the present time tP . As time progresses,

the system evolves along some trajectory within the joint state-

parameter space. Eventually, the system will reach a point at

time t, x(t), that does not belong to A, and it is this time point

that is EOL and must be predicted. In general, the system may

follow a complex path in the multi-dimensional joint state-

parameter space. In the end, a systems health management

framework may attempt to alter the path the system takes

within A in order to extend the life to some alternate time

t′ > t, as shown in the figure, e.g., by reducing the system

workload.

B. Prognostics Architecture

In order to predict EOL/RUL, we require the cur-

rent joint state-parameter description at prediction time tP ,

(x(tP ),θ(tP )), and the system inputs u(t) for all t ≥ tP .

However, there are several issues that make this problem

difficult. First, (x(tP ),θ(tP )) is not known exactly because we

measure only y(tP ) and these measurements are corrupted by

the sensor noise n(tP ). So, we can only compute a probability

distribution p(xtP ,θtP |y0:tP ) that is estimated based on the

history of measurements up to tP , y0:tP . Second, the process

noise v(t) will corrupt the evolution of (x(tP ),θ(tP )) for t >
tP . Third, the future inputs of the system are usually uncertain.

So, at best, we can obtain only a probability distribution of

EOL or RUL, i.e., p(EOL(tp)|y0:tP ) or p(RUL(tP )|y0:tP ).
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Fig. 2. Prognostics architecture.

Fig. 1. Conceptual two-dimensional example of system trajectories to EOL.

These issues lead to the prognostics architecture shown

in Fig. 2. In discrete time k, the system is provided with

inputs uk and provides measured outputs yk. The damage

estimation module uses this information, along with the system

model, to compute an estimate p(xk,θk|y0:k), represented as

a probability distribution. The prediction module uses the joint

state-parameter distribution and the system model, along with

hypothesized future inputs, to compute EOL and RUL as prob-

ability distributions p(EOLkP
|y0:kP

) and p(RULkP
|y0:kP

) at

given prediction times kP .

In many cases, a fault detection, isolation, and identification

(FDII) module may be used in parallel to determine which

damage mechanisms are active, represented as a fault set F.

The damage estimation module may then use this result to

limit the dimension of the joint state-parameter space that must

be estimated. In this paper, we focus on the damage estimation

and prediction modules, and assume that prognostics begins

at t = 0 and that the FDII module does not inform the

prognostics, i.e., all possible damage progression paths must

be tracked starting from t = 0.

The scope of the prognostics application may be an entire

system, a subsystem, or a single component. The problem

formulation and architecture are general enough to consider

any given scope. In this paper, we limit the scope to a single

component.

Fig. 3. Centrifugal pump.

III. PUMP MODELING

In order to apply the model-based prognostics architecture,

we must develop a model of the system under consideration.

This includes identifying the state vector x(t), the parameter

vector θ(t), the output vector y(t), the state equation f , the

output equation h, and the set of performance constraints C. In

our modeling methodology, we first describe a nominal model

of system behavior. We then extend the model by including

damage progression functions within the state equation f that

describe how damage variables d(t) ⊆ x(t) evolve over

time. The damage progression functions are parameterized by

unknown and possibly time-varying wear parameters w(t) ⊆
θ(t). We use a centrifugal pump as a case study. In this section,

we first describe the nominal model of the pump, and then

describe its damage progression models.

A. Nominal Model

Centrifugal pumps are used in a variety of domains for

fluid delivery. We develop a model of a pump used for cryo-

genic spacecraft propellant (liquid oxygen) loading located at

Kennedy Space Center. A schematic of a typical centrifugal

pump is shown in Fig. 3. Fluid enters the inlet, and the rotation

of the impeller forces fluid through the outlet. The impeller is

driven by an electric motor, typically a three-phase alternating-

current induction motor. The radial and thrust bearings help to

minimize friction along the pump shaft. The bearing housing

contains oil which lubricates the bearings. A seal prevents

fluid flow into the bearing housing. Wear rings prevent internal

pump leakage from the outlet to the inlet side of the impeller,

but a small clearance is typically allowed to minimize friction

(a small internal leakage is normal).
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Fig. 4. Induction motor equivalent circuit.

The state of the pump is described by

x(t) =
[

ω(t) Tt(t) Tr(t) To(t)
]T

,

where ω(t) is the rotational velocity of the pump, Tt(t) is

the thrust bearing temperature, Tr(t) is the radial bearing

temperature, and To(t) is the oil temperature.

The rotational velocity of the pump is described using a

torque balance,

ω̇ =
1

J
(τe(t)− rω(t)− τL(t)) ,

where J is the lumped motor/pump inertia, τe is the electro-

magnetic torque provided by the motor, r is the lumped friction

parameter, and τL is the load torque. In an induction motor,

a voltage is applied to the stationary part, the stator, which

creates a current through the stator coils. With a polyphase

supply, this creates a rotating magnetic field that induces a

current in the rotating part, the rotor, causing it to turn. A

torque is produced on the rotor only when there is a difference

between the synchronous speed of the supply voltage, ωs

and the mechanical rotation, ω. This difference, called slip,

is defined as

s =
ωs − ω

ωs

.

The expression for the torque τe is derived from an equivalent

circuit representation for the three-phase induction motor,

shown in Fig. 4, based on rotor and stator resistances and

inductances, and the slip s [15]:

τe =
npR2

sωs

V 2
rms

(R1 +R2/s)2 + (ωsL1 + ωsL2)2
,

where R1 is the stator resistance, L1 is the stator inductance,

R2 is the rotor resistance, L2 is the rotor inductance, n is

the number of phases (typically 3), and p is the number of

magnetic pole pairs. For a 3600 rpm motor, p = 1. The

dependence of torque on slip creates a feedback loop that

causes the rotor to follow the rotation of the magnetic field.

The rotor speed may be controlled by changing the input

frequency ωs, e.g., through the use of a variable-frequency

drive.

The load torque τL is a polynomial function of the flow rate

through the pump and the impeller rotational velocity [16],

[17]:

τL = a0ω
2 + a1ωQ− a2Q

2,

where Q is the flow, and a0, a1, and a2 are coefficients derived

from the pump geometry [17].

The rotation of the impeller creates a pressure difference

from the inlet to the outlet of the pump, which drives the

pump flow, Q. The pump pressure is computed as

pp = b0ω
2 + b1ωQ− b2Q

2,

where b0, b1, and b2 are coefficients derived from the pump

geometry. The parameter b0 is proportional to impeller area

A [18]. Flow through the impeller, Qi, is computed using the

pressure differences:

Qi = c
√

|ps + pp − pd|sign(ps + pp − pd),

where c is a flow coefficient, ps is the suction pressure, and

pd is the discharge pressure. The small (normal) leakage flow

from the discharge end to the suction end due to the clearance

between the wear rings and the impeller is described by

Ql = cl
√

|pd − ps|sign(pd − ps),

where cl is a flow coefficient. The discharge flow, Q, is then

Q = Qi −Ql.

For the particular pump under consideration, pump temper-

atures are monitored as indicators of pump condition. The oil

heats up due to the radial and thrust bearings and cools to the

environment:

Ṫo =
1

Jo
(Ho,1(Tt − To) +Ho,2(Tr − To)−Ho,3(To − Ta)),

where Jo is the thermal inertia of the oil, the Ho,i terms are

heat transfer coefficients, and Ta is the ambient temperature.

The thrust bearings heat up due to the friction between the

pump shaft and the bearings, and cool to the oil and the

environment:

Ṫt =
1

Jt
(rtω

2 −Ht,1(Tt − To)−Ht,2(Tt − Ta)),

where Jt is the thermal inertia of the thrust bearings, rt is

the friction coefficient for the thrust bearings, and the Ht,i

terms are heat transfer coefficients. The radial bearings behave

similarly:

Ṫr =
1

Jr
(rrω

2 −Hr,1(Tr − To)−Hr,2(Tr − Ta))

where Jr is the thermal inertia of the radial bearings, rr is the

friction coefficient for the radial bearings, and the Hr,i terms

are heat transfer coefficients. Note that rt and rr contribute to

the overall friction coefficient r.

The overall input vector u is given by

u(t) =
[

ps(t) pd(t) Ta(t) V (t) ωs(t)
]T

.

The measurement vector y is given by

y(t) =
[

ω(t) Q(t) Tt(t) Tr(t) To(t)
]T

.

Fig. 5 shows nominal pump operation, with the parameters

(estimated from pump data) given in Table I. The input

voltage (and frequency) are varied to control the pump speed.

The electromagnetic torque is produced initially as slip is 1.

This causes a rotation of the motor to match the rotation of

the magnetic field, with a small amount of slip remaining,

depending on how large the load torque is. As the pump

rotates, fluid flow is created. The bearings heat up as the pump

rotates and cool when the pump rotation slows.
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Fig. 5. Nominal pump operation.

TABLE I
NOMINAL PUMP PARAMETERS

Parameter Value

J 50 kg m2

r 8.0× 10−3 N m s
n 3 phases
p 1 pole pair

R1 3.6× 10−1 Ω
R2 7.6× 10−2 Ω
L1 + L2 6.3× 10−4 H

a0 1.5× 10−3 kg m2

a1 5.8 kg/m

a2 9.2× 103 kg/m4

b0 12.7 kg/m

b1 1.8× 104 kg/m4

b2 0 kg/m7

c 8.2× 10−5 m7/2/kg1/2

cl 1.0× 10−10 m7/2/kg1/2

Jo 8.0× 103 K/J/s
Ho,1 1.0 W/K
Ho,2 3.0 W/K
Ho,3 1.5 W/K
Jt 7.3 K/J/s

rt 1.4× 10−6 N m s

Ht,1 3.4× 10−3 W/K

Ht,2 2.6× 10−2 W/K
Jr 2.4 K/J/s

rr 1.8× 10−6 N m s

Hr,1 1.8× 10−3 W/K

Hr,2 2.0× 10−2 W/K

B. Damage Modeling

The performance constraints of the pump are specified by

efficiency and temperature limits. The first constraint, C1,

is that the efficiency η > 0.75η0, where η0 is the nominal

efficiency. Efficiency is defined as the input electrical power

divided by the output hydraulic power, i.e., η = (V I)/((pd −
ps)Q). The remaining constraints are limits on the tempera-

tures:

C2 : To(t) < T+
o

C3 : Tt(t) < T+
t

C4 : Tr(t) < T+
r ,

where the + superscript denotes the maximum allowable

temperature. When the maximum temperatures are reached,

irreversible damage occurs. Here, for the pump under consid-

eration, T+
o = 333 K and T+

t = T+
r = 370 K.

The most significant damage mechanism for pumps is

impeller wear. It is represented as a decrease in impeller area

A [18], [19]. Since the impeller area is proportional to b0, a

decrease causes a decrease in the pump pressure, and, hence,

the pump efficiency. We use the erosive wear equation [20]

to describe how the impeller area changes over time. The

erosive wear rate is proportional to fluid velocity times friction

force. Fluid velocity is proportional to volumetric flow rate,

and friction force is proportional to fluid velocity. We lump

the proportionality constants into the wear coefficient wA to

obtain

Ȧ(t) = −wAQi(t)
2.

Because A is proportional to b0, then ḃ0(t) = kȦ(t) =
−kwAQi(t)

2, so we estimate b0(t) and wb0 = kwA.

Another significant damage mechanism for pumps is bear-

ing wear, which is captured as an increase in the friction co-

efficient. Sliding and rolling friction generate wear of material

which increases the coefficient of friction [3], [20]:

ṙt(t) = wtrtω
2

ṙr(t) = wrrrω
2,

where wt and wr are the wear coefficients. The slip com-

pensation provided by the electromagnetic torque generation

masks small changes in friction, so it is only with very large

increases that a change in ω will be observed. Changes in

friction manifest more strongly in the bearing temperatures,

eventually driving them to the temperature limits.

So, the damage variables are given by

d(t) =
[

b0(t) rt(t) rr(t)
]T

,

and the full state vector becomes

x(t) =
[

ω(t) Tt(t) Tr(t) To(t) b0(t) rt(t) rr(t)
]T

.

The initial conditions for the damage variables are given in

Table I. The wear parameters form the unknown parameter

vector, i.e.,

w(t) = θ(t) =
[

wb0 wt wr

]T
.
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Algorithm 1 SIR Filter

Inputs: {(xi
k−1,θ

i
k−1), w

i
k−1}

N
i=1,uk−1:k,yk

Outputs: {(xi
k,θ

i
k), w

i
k}

N
i=1

for i = 1 to N do
θ
i
k ∼ p(θk|θ

i
k−1)

xi
k ∼ p(xk|x

i
k−1,θ

i
k−1,uk−1)

wi
k ← p(yk|x

i
k,θ

i
k,uk)

end for

W ←
N
∑

i=1

wi
k

for i = 1 to N do
wi

k ← wi
k/W

end for
{(xi

k,θ
i
k), w

i
k}

N
i=1 ← Resample({(xi

k,θ
i
k), w

i
k}

N
i=1)

IV. DAMAGE ESTIMATION

In model-based prognostics, damage estimation is fun-

damentally a joint state-parameter estimation problem, i.e.,

computation of p(xk,θk|y0:k). A general solution to this

problem is the particle filter, which may be directly applied

to nonlinear systems with non-Gaussian noise terms [21]. In

particle filters, the state distribution is approximated by a set

of discrete weighted samples, called particles, i.e.,

{(xi
k,θ

i
k), w

i
k}

N
i=1,

where N denotes the number of particles, and for particle i,
xi
k denotes the state vector estimate, θi

k denotes the parameter

vector estimate, and wi
k denotes the weight. The posterior

density is approximated by

p(xk,θk|y0:k) ≈

N
∑

i=1

wi
kδ(xi

k
,θi

k
)(dxkdθk),

where δ(xi
k
,θi

k
)(dxkdθk) denotes the Dirac delta function

located at (xi
k,θ

i
k).

To apply a filtering approach, some estimate of the process

and sensor noise vectors, v(t) and n(t), must be determined.

The distribution describing sensor noise can be estimated from

the system measurements, and in practice is often assumed to

be Gaussian. The process noise can be estimated by comparing

measured system behavior with that predicted in the absence of

process noise. Within a filtering framework, it is typically not

critical to obtain very accurate estimates of the noise, because

the amount of noise assumed by the filter is almost always

tuned to improve performance.

We use the sampling importance resampling (SIR) particle

filter, using systematic resampling [22]. The pseudocode for a

single step of the SIR filter is shown as Algorithm 1. Each

particle is propagated forward to time k by first sampling

new parameter values, and then sampling new states using the

model. The particle weight is assigned using yk. The weights

are then normalized, followed by the resampling step [21].

Here, the parameters θk evolve by some unknown process

that is independent of the state xk. However, we need to assign

some type of evolution to the parameters in order for the

particle filter to estimate them. The typical solution is to use a

random walk, i.e., θk = θk−1+ξk−1, where ξk−1 is sampled

from some distribution (e.g., zero-mean Gaussian). With this

Fig. 6. vξ adaptation scheme.

Algorithm 2 vξ Adaptation

Inputs: {(xi
k,θ

i
k), w

i
k}

N
i=1

State: vξ,k−1, l← 1

Outputs: vξ,k

for all j ∈ {1, 2, . . . , nθ} do

vj ← RMAD({θik(j)}
N
i=1)

if vj < tj(s(j)) then
s(j)← s(j) + 1

end if

vξ,k(j)← vξ,k−1(j)

(

1−Pj(s(j))
vj − v∗

j (s(j))

v∗

j (s(j))

)

end for
vξ,k−1 ← vξ,k

type of evolution, the particles generated with parameter values

closest to the true values should be assigned higher weight,

thus allowing the particle filter to converge to the true values.

The selected variance of the random walk noise determines

both the rate of this convergence and the estimation perfor-

mance once convergence is achieved. Therefore, it is very

desirable to tune this parameter to obtain the best possible

performance. A large random walk variance will yield quick

convergence but tracking with too wide a variance, whereas

too small a random walk variance will yield a very slow

convergence, if at all, but, once achieved, tracking will pro-

ceed with a very small variance. We develop an adaptation

method for the variances of ξ, denoted as vξ, with the

following features. First, we consider a multi-dimensional

damage space, therefore, we must simultaneously adapt the

random walk noise for multiple parameter values. Second, we

cannot use prediction error to drive the adaptation, because

we cannot, in general, map errors in prediction to specific

wear parameters, since each output is dependent on multiple

damage mechanisms. Instead, we try to control the variance

of the hidden wear parameter estimate to a user-specified

range by modifying the random walk noise variance. Since

the random walk noise is artificial, we should reduce it as

much as possible, because this uncertainty propagates into

the EOL predictions. So, controlling this uncertainty helps to

control the uncertainty of the EOL prediction. Reducing the

variance of the wear parameter can reduce the variance of the

EOL prediction by several factors, and the improvement is

substantial over long time horizons.

The algorithm for the adaptation of the vξ vector is given as

Algorithm 2, and Fig. 6 shows how it interacts with the particle

filter. We assume that the distributions that the elements of

ξ are drawn from can be specified using a variance value,



7

and that the variance values are tuned initially based on the

maximum expected wear rates, e.g., if the pump is expected

to fail no earlier than 100 hours, then this corresponds to

particular maximum wear rate values. The initial wear rate

estimate values may start at 0. We use the relative median

absolute deviation (RMAD) as the measure of variance:

RMAD(X) = 100
Mediani (|Xi − Medianj(Xj)|)

Medianj(Xj)
,

where X is a data set and Xi is an element of that set. We

use RMAD because it is statistically robust, and, since it is a

relative measure of spread, it can be treated equally for any

wear parameter value.

The adaptation proceeds in multiple stages, maintained with

an sj variable for each parameter (with j referring to the

parameter index), with the number of stages specified by Sj .

The sj values are initialized to 1. Each stage is specified using

three variables, (i) a lower threshold that, once crossed, signals

that the next stage should be entered, (ii) the desired RMAD

value for the stage, and (iii) a proportional gain term used to

control the degree of adaptation during that stage. For each

parameter, the threshold vector tj , the desired RMAD vector

v∗

j , and the proportional gain vector Pj are of size Sj .

The algorithm works as follows. For each parameter, in-

dexed by j, the current RMAD is computed as vj . If this value

is below the threshold value for the current stage, tj(s(j)),
then the stage number is increased. Then the new random

walk variance vξ,k(j) is computed. The error between the

actual and the desired RMAD value for the current stage,

vj − v∗

j (s(j)), is normalized by v∗

j (s(j)). This normalized

error is then multiplied by the proportional gain term for

the current stage, Pj(s(j)), and the corresponding variance

vξ,k−1(j) is increased or decreased by that percentage to

compute the new variance value vξ,k(j).
Because there is some inertia to the process of vj changing

in response to a new value of vξ,k(j), the gains Pj cannot

be too large, otherwise vj will not converge to the desired

value, instead, it will continually shrink and expand. This

is illustrated in Fig. 7, where the value of Pj is varied for

estimation of wb0 for the pump. For Pj(s) = 1× 10−2 for all

s, this oscillatory behavior occurs because Pj is too large. In

contrast, if Pj is too small, such as when Pj(s) = 1× 10−5,

vj will converge to the final value of v∗

j much more slowly.

In our experiments, for all parameters, setting Sj = 2 with

v∗

j = [50, 10], Tj = [60, 0], and Pj = [1 × 10−4, 1 × 10−4],
worked well over the entire range of values considered for each

wear parameter. Ideally, the wear parameter variance would

be zero, but the particle filter needs some amount of noise to

accurately track the parameter. So, v∗

j (Sj) cannot be too small,

and we have found that controlling to an RMAD of 10% at

the final stage introduces an acceptable amount of uncertainty

while allowing for accurate tracking.

V. PREDICTION

Prediction is initiated at a given time kP . Using the cur-

rent joint state-parameter estimate, p(xkP
,θkP

|y0:kP
), which

represents the most up-to-date knowledge of the system

at time kP , the goal is to compute p(EOLkP
|y0:kP

) and
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Fig. 7. Estimation of wb0 with different values of P .

p(RULkP
|y0:kP

). As discussed in Section IV, the particle

filter computes

p(xkP
,θkP

|y0:kP
) ≈

N
∑

i=1

wi
kP

δ(xi
kP

,θi
kP

)(dxkP
dθkP

).

We can approximate a prediction distribution n steps forward

as [23]

p(xkP+n,θkP+n|y0:kP
) ≈

N
∑

i=1

wi
kP

δ(xi
kP +n

,θi
kP +n

)(dxkP+ndθkP+n).

So, for a particle i propagated n steps forward without new

data, we may take its weight as wi
kP

. Similarly, we can

approximate the EOL as

p(EOLkP
|y0:kP

) ≈

N
∑

i=1

wi
kP

δEOLi
kP

(dEOLkP
).

To compute EOL, then, we propagate each particle forward

to its own EOL and use that particle’s weight at kP for the

weight of its EOL prediction.
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Algorithm 3 EOL Prediction

Inputs: {(xi
kP

,θi
kP

), wi
kP
}Ni=1

Outputs: {EOLi
kP

, wi
kP
}Ni=1

for i = 1 to N do
k ← kP
xi
k ← xi

kP

θ
i
k ← θ

i
kP

while TEOL(x
i
k,θ

i
k) = 0 do

Predict ûk

θ
i
k+1 ∼ p(θk+1|θ

i
k)

xi
k+1 ∼ p(xk+1|x

i
k,θ

i
k, ûk)

k ← k + 1
xi
k ← xi

k+1

θ
i
k ← θ

i
k+1

end while
EOLi

kP
← k

end for

If an analytic solution exists for the prediction, this may be

directly used to obtain the prediction from the state-parameter

distribution. An analytical solution is rarely available, so the

general approach to solving the prediction problem is through

simulation. Each particle is simulated forward to EOL to

obtain the complete EOL distribution. The pseudocode for the

prediction procedure is given as Algorithm 3 [3]. Each particle

i is propagated forward until TEOL(x
i
k,θ

i
k) evaluates to 1; at

this point EOL has been reached for this particle.

Note that prediction requires hypothesizing future inputs

of the system, ûk, because damage progression is dependent

on the operational conditions. For example, in the pump, an

increased rotation speed will cause bearing friction to increase

at a faster rate, and will cause an increased pump flow, which,

in turn, will cause impeller wear to increase at a faster rate. The

choice of expected future inputs depends on the knowledge

about operational settings and the type of information the user

is interested in, e.g., for a worst-case scenario, one would

consider the pump running at its maximum rotation.

Fig. 8 shows results from the simultaneous prediction of

thrust bearing and radial bearing wear for N = 100 (not

all trajectories are shown in the lower plot). Initially, the

particles have a very tight distribution of friction coefficient

values, but the distribution of the wear parameters, wt and

wr, is relatively large. As a result, the individual trajectories

are easily distinguishable as EOL is approached. The EOL

threshold is multi-dimensional, and in this example we restrict

to the performance constraints related to Tt and Tr, with the

maximum permissible values denoted in the figure (370 K for

each). We show also the projections of the trajectories onto

the temperature-time planes (gray lines). The projection onto

the Tt-t plane (right) shows the progression of Tt towards

the T+
t threshold as a function of time. The projections stop

when EOL is reached, and the dotted lines connecting the

projections to the time axis indicate individual EOL predic-

tions. Similarly, the projection onto the Tr-t plane (bottom)

shows the progression of Tr towards the T+
r threshold as a

function of time. The dotted lines connecting to the trajectory

endpoints are used as a visual aid to place the endpoints in

the three-dimensional space. For some particles, T+
t is reached

first, while for others, T+
r is reached first. The different EOL
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Fig. 8. Simultaneous prediction of thrust bearing and radial bearing wear in
the pump. The damage trajectories are coming out of the page, increasing in
Tt, increasing in Tr , and increasing in t.

values along with particle weights form an EOL distribution

approximated by the probability mass function shown in the

upper plot.

VI. RESULTS

In this section, we present simulation-based experiments to

analyze the performance of the prognostics algorithm under

concurrent damage progression processes. We first provide

detailed results for a single experiment to demonstrate the

approach, followed by results summarizing a large number

of experiments.

A. Demonstration of Approach

We first provide an example scenario to illustrate the ap-

proach. We use N = 500 and set Sj = 2 with v∗

j = [50, 10],
Tj = [60, 0], and Pj = [1 × 10−3, 1 × 10−3] for all

wear parameter indices j within the adaptation algorithm.

Fig. 9 shows the estimation results for the hidden wear

parameters, with the true values given by w∗

b0
= 2.0 × 10−3,

w∗

t = 2.0 × 10−11, and w∗

r = 4.5 × 10−11. The estimated

wear parameter distributions begin very wide, but quickly

converge first to 50% RMAD and then to 10% RMAD due

to the variance control algorithm. After convergence, the wear

parameters are tracked with percent root mean square errors

(PRMSEs) of PRMSEwb0
= 4.32, PRMSEwt

= 5.03, and

PRMSEwr
= 2.82, and with average RMAD of RMADwb0

=

8.57, RMADwt
= 8.54, and RMADwr

= 8.22.

Prediction performance is shown by the α-λ plot of Fig. 10.

The α-λ metric requires that for a given prediction time λ,

at least β of the RUL probability mass lies within α of
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TABLE II
ESTIMATION AND PREDICTION PERFORMANCE

n PRMSEwA
PRMSEwt PRMSEwr RMADwA

RMADwt RMADwr RA RMADRUL

1 3.70 3.58 2.54 11.58 11.27 10.03 97.28 11.61

10 4.15 2.81 2.74 12.25 11.48 10.63 96.58 12.34

100 6.30 3.46 3.23 13.46 12.38 11.59 94.69 14.09

1000 12.93 6.25 5.29 13.92 12.99 12.64 79.37 15.32
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Fig. 9. Simultaneous estimation of pump wear parameters for N = 500 and
Sj = 2 with v

∗

j = [50, 10], Tj = [60, 0], and Pj = [1× 10−3, 1× 10−3]
for all j.

the true value [14]. Here, we use α = 0.1 and β = 0.5.

In this example, thrust bearing wear dominates the EOL

prediction. The accurate and precise wear parameter estimates

yield correspondingly accurate and precise RUL predictions,

and the α-λ metric is satisfied at all points. Prediction accuracy

is evaluated using the relative accuracy (RA) metric [14],

where for a prediction time kP ,

RAkP
= 100

(

1−
|RUL∗

kP
− R̃ULkP

)|

RUL∗

kP

)

,

where RUL∗

kP
denotes the true RUL at time kP , and R̃ULkP

denotes the median RUL prediction at kP . Here, we use the

median as the point of central tendency because the prediction

distributions are skewed, due to the nonlinear damage progres-

sions, and so it is a better description of central tendency than

the mean. In this example, RA averaged over all prediction

points is RA = 96.70%. RMAD of the RUL distribution

averaged over all prediction points is RMADRUL = 8.56%.

Maintaining the variance of the wear parameter estimates helps
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Fig. 10. α-λ performance with α = 0.1 and β = 0.5 for N = 500 and
Sj = 2 with v

∗

j = [50, 10], Tj = [60, 0], and Pj = [1× 10−3, 1× 10−3]
for all j.

to maintain also the RMAD of the RUL (though not to the

same setpoint).

B. Simulation Results

We performed a number of simulation experiments in

which combinations of wear parameter values were selected

randomly within a range. We selected values in [0.5 ×
10−3, 4 × 10−3] at increments of 0.5 × 10−3 for wb0 , in

[0.5× 10−11, 7× 10−11] at increments of 0.5× 10−11 for wt,

and in [0.5× 10−11, 7× 10−11] at increments of 0.5× 10−11

for wr, such that the maximum wear rates corresponded to

a minimum EOL of 20 hours. Note that these wear rates are

higher than one would observe in practice, and are selected

only to reduce the experiment time to a practical level. In

order to confirm that the wear parameter variance could still

be maintained with additional sensor noise, we varied the

sensor noise variance by factors of 1, 10, 100, and 1000, and

performed 30 experiments for each case. In all experiments,

we set N = 500 and Sj = 2 with v∗

j = [50, 10], Tj = [60, 0],
and Pj = [1 × 10−4, 1 × 10−4] for all j, and the particle

filter assumed the sensor noise variance was 100 times its true

value. We considered the case where the future input of the

pump is known, and it is always operated at a constant RPM.

Hence, the only uncertainty present is that involved in the

noise terms and that introduced by the particle filtering and

variance control algorithms.
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The averaged estimation and prediction performance results

are shown in Table II. The sensor noise variance multiplier is

given in the column labeled with n. Overall, the estimation

results are very good, with PRMSE kept under 5% in most

cases. As sensor noise increases, tracking becomes more

difficult, and with the highest level of sensor noise, estimation

performance was poor in some cases. However, the estimation

spread is maintained close to the desired level of 10%. As

sensor noise increases, this becomes more difficult and the

average spread increases.

When estimation performance is good, this translates to

accurate and precise predictions, since future inputs were

assumed to be known. As sensor noise is increased, the

accuracy and precision of the RUL predictions decrease. Even

though sensor noise increases significantly, prediction spread

does not, since the estimation spread is being controlled. With

the highest level of sensor noise, around 17% of the cases had

poor estimation performance, and this resulted in a significant

drop in average RA to a little less than 80%. Omitting these

cases, the RA averages around 90%.

Additional analysis of the performance at the highest noise

level showed that increasing the value of P makes the variance

control algorithm too aggressive, and does not give the filter

enough time to converge, resulting sometimes in a loss of

convergence. As sensor noise decreases, a higher value of P
may be used without tracking problems.

Fig. 11 shows the RMAD of the wear parameters as a

function of wear parameter value. Here, it is shown that the

RMAD of a wear parameter is successfully controlled largely

independently of its specific value. Therefore, one may tune

only the initial random walk variances, based on anticipated

minimum EOL values, and the algorithm self-tunes to optimize

performance for the actual wear parameter value. Here, it is

clear that as sensor noise is increased, RMAD is generally

higher, but still close to the desired final setpoint, denoted

with v∗j in the figure. In some cases, an increase in RMAD is

observed as the wear parameter value decreases. This is due

somewhat to the slower convergence in those cases.

The computational complexity of damage estimation using

the particle filter is a function of the number of particles. Here,

damage estimation using 500 particles, implemented in Matlab

running on a Windows system with a dual-core 2.49 GHz

processor with 3 GB RAM, took on average 1.25 hours to

run through 40 hours of data, so the approach is capable of

running 32 times faster than real time. It is expected that the

run time would reduce by an order of magnitude implemented

in a compiled language, such as C. For the prediction step,

the computational complexity depends on both the number

of particles but also on the wear rates of the particles, since

particles with smaller wear rates will take longer to simulate

to EOL. In our experiments, in the worst case it took about

6 minutes to obtain a prediction 40 hours ahead. As EOL is

approached, this time reduces since the amount of time to

simulate to reach EOL is reduced. Prediction times can be

improved by only simulating forward a reduced set of the

particles chosen to preserve the statistical properties of the

distribution and its prediction, as described in [24].
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VII. RELATED WORK

Model-based diagnosis has been investigated previously

with application to centrifugal pumps [16]–[18]. In contrast,

pump prognostics approaches have mostly been data-driven,

usually based on pump vibration signals. A principal com-

ponent analysis method is applied for condition monitoring

of a pump using vibration and acceleration signals in [25].

However, only a subset of possible damage modes manifest

in the vibration sensors. Further, when using such methods it

is difficult to map changes in vibration back to changes in the

thrust bearings, radial bearings, or both, while also quantifying

the amount of damage. A model-based approach, on the other

hand, does this easily, with an appropriate model. A model-

based prognostics approach for pumps is presented in [19],
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however, it considers only a single degradation mode.

Model-based prognostics approaches have been developed

previously and applied to other components and fault modes,

such as batteries [4], [26], fatigue cracks [6], [27], and

automotive suspension systems [5]. Although particle fil-

tering approaches have been most common, other filtering

methodologies may be used depending on the complexity of

the underlying model. In [28], damage is tracked using a

Kalman filter. In a related approach, a model-based prognosis

methodology is developed in [5] using an interacting multiple

model filter for state-parameter estimation and prediction. We

use particle filters because they may be generally applied, and

the pump model is nonlinear. Particle filters have also been

used in [4], [6], [27], [29], among others.

All of these approaches either assume only a single damage

variable, or a very restricted form of the EOL threshold. For

example, in [27], EOL is directly linked to a state variable

exceeding some static threshold. However, this approach is not

general. The concept of a hazard zone has also been used [6],

which generalizes for a given damage mode from a single

threshold value to a bounded distribution, estimated from his-

torical failures. This assumes a fundamentally different view, a

damage-centric view, in which failure is directly tied to some

amount of damage. In our approach, we link failure directly to

violations of functional or performance specifications, taking a

performance-centric view. These performance constraints are

precise, and representing them through distributions does not

apply. Violations of the performance constraints will invariably

be caused by some amount of damage accumulation, but the

same amount of damage may be tolerated in different operat-

ing regimes, so the performance-centric view is more general.

For the pumps, EOL is defined as a combination of limits on

efficiency and three different temperatures, and the different

damage variables each contribute to the complete system state

moving towards those thresholds. Even if information defining

a hazard zone is available, it is more practical to use only the

lower bound; a system operator would never drive the system

past that point since there is a chance of failure at that point,

effectively making the lower bound a precise performance

constraint.

Methods to adjust the random walk variance in the particle

filter have also been previously investigated. One approach is

to use kernel shrinkage, in which the random walk noise is

diminished over time [10]. This approach assumes that the

parameter is constant, but in reality, this may not be the case,

so some amount of noise should still be included to account

for unmodeled deviations in the parameter value over time.

In [6], [11], [12], this noise (viewed as a hyper-parameter) is

tuned using outer correction loops based on prediction error.

In this case, the underlying prognostic model is assumed to

contain only a single fault dimension, therefore it cannot be

applied in our case. It is also fundamentally different from

our approach because it is prediction error that drives the

adaptation. Our method is based on the observation that the

particle filter, if tuned appropriately, will naturally converge

to the true values with some uncertainty, so we drive the

adaptation based on the error between that uncertainty and

the desired level of uncertainty. Since it does not rely on

performing a prediction in order to derive the error, it is also

computationally more efficient. A similar method is presented

in [13], again assuming a single fault dimension, where the

adaptation is driven by estimation error of the fault based on

a sensitivity analysis. This assumes that the fault variable can

be directly measured. In our case study, this is not the case.

VIII. CONCLUSIONS

We developed a model-based prognostics framework that

handles concurrent damage progression processes. Damage

progression processes are characterized by functions, param-

eterized by a set of wear parameters, describing how a fault

or damage variable evolves in time. Particle filters perform

joint state-parameter estimation in order to estimate the health

state of the component. The state-parameter distribution is then

extrapolated to the EOL threshold to compute EOL and RUL

predictions in the presence of multiple damage progressions.

A novel variance control mechanism maintains the random

walk variances of the particle filter, in order to maintain the

uncertainty of the unknown wear parameters at a desired

level, and, consequently, reduce prediction uncertainty. The

framework was applied to a centrifugal pump, and the results

demonstrated good performance over a range of wear param-

eter values and sensor noise levels. Current work involves

validating the approach as applied to a real pump system.

Although quite robust and generally applicable, the particle

filter suffers from a high computational complexity. Using

500 particles was sufficient for this particular case study,

but, in general, as the dimension of the joint state-parameter

space increases, the number of particles needed for successful

estimation increases with it. Therefore, for large systems, the

approach presented in this paper may not achieve the desired

efficiency. When appropriate, other filtering methods may be

applied to improve computational efficiency [30]. In recent

work, methods for improving the efficiency based on model

decomposition have been explored, allowing the amount of

computation to be decreased without a loss of estimation

performance [31]. With such an approach, the extension of

the prognostics framework presented here to system-level

prognostics becomes feasible, and will be investigated in future

work.
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