
ACTA UNIVERSITATIS UPSALIENSIS

Uppsala Dissertations from the Faculty of Science and Technology

122

Model-Based Protocol Testing

in an ERLANG Environment

Johan Blom

Dissertation presented at Uppsala University to be publicly examined in ITC 2446, Uppsala,
Thursday, 21 April 2016 at 13:15 for the degree of Doctor of Philosophy. The examination
will be conducted in English. Faculty examiner: Professor David Whalley (Florida State
University).

Abstract
Blom, J. 2016. Model-Based Protocol Testing in an Erlang Environment. Uppsala
Dissertations from the Faculty of Science and Technology 122. 249 pp. Uppsala: Acta
Universitatis Upsaliensis. ISBN 978-91-554-9494-0.

Testing is the dominant technique for quality assurance of software systems. It typically
consumes considerable resources in development projects, and is often performed in an ad hoc
manner. This thesis is concerned with model-based testing, which is an approach to make testing
more systematic and more automated. The general idea in model-based testing is to start from
a formal model, which captures the intended behavior of the software system to be tested. On
the basis of this model, test cases can be generated in a systematic way. Since the model is
formal, the generation of test suites can be automated and with adequate tool support one can
automatically quantify to which degree they exercise the tested software.

Despite the significant improvements on model-based testing in the last 20 years, acceptance
by industry has so far been limited. A number of commercially available tools exist, but still
most testing in industry relies on manually constructed test cases.

This thesis address this problem by presenting a methodology and associated tool
support, which is intended to be used for model-based testing of communication protocol
implementations in industry. A major goal was to make the developed tool suitable for industrial
usage, implying that we had to consider several problems that typically are not addressed by
the literature on model-based testing. The thesis presents several technical contributions to the
area of model-based testing, including

- a new specification language based on the functional programming language Erlang,
- a novel technique for specifying coverage criteria for test suite generation, and
- a technique for automatically generating test suites.
Based on these developments, we have implemented a complete tool chain that generates

and executes complete test suites, given a model in our specification language. The thesis
also presents a substantial industrial case study, where our technical contributions and the
implemented tool chain are evaluated. Findings from the case study include that test suites
generated using (model) coverage criteria have at least as good fault-detection capability as
equally large random test suites, and that model-based testing could discover faults in previously
well-tested software where previous testing had employed a relaxed validation of requirements.

Keywords: Testing, Erlang, Model-Based Testing, Symbolic Execution, Communication
Protocols

Johan Blom, Department of Information Technology, Division of Computer Systems, Box 337,
Uppsala University, SE-75105 Uppsala, Sweden.

© Johan Blom 2016

ISSN 1104-2516
ISBN 978-91-554-9494-0
urn:nbn:se:uu:diva-279489 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-279489)

To Anna and Emilia

Contents

1 Introduction .. 21
1.1 Testing ... 22
1.2 Terminology .. 24
1.3 Introducing state machines .. 25
1.4 Erlang ... 28
1.5 Model-based testing ... 29

1.5.1 Creation of a formal model .. 30
1.5.2 Validation of the formal model 31
1.5.3 Test Suite Generation ... 32
1.5.4 Concretization .. 34
1.5.5 Execution of test cases ... 35
1.5.6 Verification .. 35

1.6 Contributions of this Thesis ... 35
1.6.1 Modeling Language ... 37
1.6.2 Specifying Test Case Selection 37
1.6.3 Efficient Generation of Test Suites 38
1.6.4 Concretization of Generated Test Cases 39
1.6.5 Efficient Test Execution and Verification 39
1.6.6 Evaluation of Different Test Generation Strategies 40

1.7 Organization of Thesis .. 41

2 A specification language based on Erlang ... 42
2.1 Introducing Erlang/Efsm ... 42
2.2 An Overview of Erlang/Efsm .. 44
2.3 Erlang/Efsm - an extension of Erlang 49

2.3.1 Syntax for a restricted set of Erlang 49
2.3.2 Erlang/Efsm extensions to Erlang 55

2.4 Operational semantics of Erlang/Efsm 62
2.4.1 Pattern matching ... 63
2.4.2 Transition Rules for Erlang/Efsm Expressions 63

2.5 Derived State Machines .. 68
2.6 Runs, Traces, and Test Cases .. 70
2.7 Symbolic operational semantics .. 70

2.7.1 Pattern matching ... 73
2.7.2 Transition Rules for Erlang/Efsm Expressions 73

2.8 Correspondence Between non-Symbolic and Symbolic
Semantics ... 79

2.9 Symbolic Runs and Test Cases .. 81
2.10 Defining and Normalizing Edge Clauses 83
2.11 Creating an executable specification .. 84

2.11.1 The gen_fsm behavior in Erlang/Otp 85
2.11.2 Creating an executable Erlang module 85

3 Specifying test case selection .. 91
3.1 Observers: An Informal Introduction 92
3.2 Erlang/Obs - observers with Erlang syntax 95

3.2.1 Syntax for Erlang/Obs ... 98
3.3 Defining observer predicates .. 101

3.3.1 Match variables .. 102
3.3.2 Match functions ... 102
3.3.3 Observer predicate definition in Erlang/Obs 102

3.4 Graphical observer notation ... 107
3.5 Operational semantics of Erlang/Obs 108

3.5.1 Observer expressions ... 109
3.5.2 Observer predicates ... 110
3.5.3 Observer edge clauses ... 119

3.6 The Observer Defined by an Erlang/Obs Specification 120
3.7 Symbolic semantics of Erlang/Obs .. 121

3.7.1 Observer expressions ... 123
3.7.2 Observer predicates ... 123
3.7.3 Observer edge clauses ... 127
3.7.4 Correspondence with Operational Semantics 128

3.8 Symbolic Observers and Symbolic Coverage 129

4 Coverage criteria .. 134
4.1 Model-independent coverage criteria 134

4.1.1 Coverage of guards .. 134
4.1.2 Coverage of locations .. 138
4.1.3 Coverage of paths .. 138
4.1.4 Coverage of data flow ... 139

4.2 Model-dependent coverage criteria ... 142

5 Generating test suites ... 146
5.1 Generating Symbolic Test Cases ... 147
5.2 Generating symbolic test suites .. 150

5.2.1 Refining the search exploration algorithm 152
5.3 Efficiently representing sets of states 152

5.3.1 Bitvector Representation of Sets of Observer
States ... 155

5.4 Concretisation ... 156
5.4.1 Generating abstract test suites from symbolic test

suites .. 157

5.4.2 Generating concrete test suites from abstract test
suites .. 158

5.5 Alternative usage of observer automata 159
5.5.1 Filtering the specification .. 159
5.5.2 Model Checking of a Specification 160

6 Introducing Erly Marsh .. 162
6.1 Prototyper and Simulator .. 162
6.2 Model compiler ... 164
6.3 Pretty printer .. 165
6.4 Test suite generator ... 166
6.5 Test suite execution tool ... 167
6.6 Erly Marsh Verificator ... 169
6.7 Test suite report tool .. 169

7 Evaluation: Testing a Telecom Software Application 172
7.1 Mobile Arts Advanced Mobile Location Center 173

7.1.1 The A-MLC Erlang/Efsm specification 175
7.1.2 Symbolic test suite generation 179
7.1.3 Test Execution Environment 180

7.2 Independent variables ... 183
7.2.1 Symbolic test case selection techniques 185
7.2.2 Abstract test case selection techniques 185
7.2.3 Test execution strategies .. 188
7.2.4 Base models .. 189

7.3 Dependent variables .. 189
7.3.1 Failures .. 190
7.3.2 Faults ... 191
7.3.3 Source code coverage .. 193
7.3.4 Abstract test suite size ... 194
7.3.5 Execution time ... 194

7.4 Threats to validity ... 195
7.4.1 Internal validity ... 195
7.4.2 External validity .. 195

8 Results using Erly Marsh on A-MLC ... 197
8.1 Summary of the results ... 197

8.1.1 Coverage based test case selection 198
8.1.2 Random test case selection .. 198
8.1.3 Manual test case selection ... 200
8.1.4 Testing with projected specification and reduced

validation .. 201
8.2 Failures found while testing ... 202
8.3 Faults found while testing .. 204

8.3.1 Characteristics of a selection of test suites 208

8.4 Code coverage ... 210
8.5 Test suite size and execution times .. 214
8.6 Summary of main findings ... 216

8.6.1 Experiences from the Case Study 217

9 Other tools for testing Erlang programs ... 219
9.1 QuickCheck and other random based testing tools 219
9.2 Dialyzer static analysis tool ... 220

10 Related work .. 223
10.1 Test suite generation techniques ... 223
10.2 Coverage criteria and Test purposes 225
10.3 Case studies .. 227

11 Conclusions ... 230
11.1 Summary ... 230
11.2 Modeling Language ... 231
11.3 Specifying Test Case Selection .. 232
11.4 Efficient Generation of Test Suites ... 233
11.5 Concretization of Generated Test Cases 234
11.6 Efficient Test Execution and Verification 234
11.7 Evaluation of Different Test Generation Strategies 235
11.8 Discussion .. 235
11.9 Future Work .. 236

11.9.1 Creating specifications .. 237
11.9.2 Generating test suites ... 237

References ... 239

List of Tables

Table 1.1:Test suite that aligns with a 2-wise combination strategy.
for a system with 3 parameters with domains p1, p2 ∈ {1, 2, 3} and
p3 ∈ {1, 2}. .. 34

Table 2.1:Erlang syntax base. .. 50

Table 2.2:A restricted set of the Erlang syntax. 51

Table 2.3:Erlang/Efsm syntax extensions to Erlang. 56

Table 3.1:Erlang/Obs syntax. .. 99

Table 3.2:Erlang/Obs observer predicate definition syntax. 103

Table 3.3:Observer predicates defined by pattern matching with a
match variable. ... 106

Table 8.1:Summary of test results for coverage based test case
selection, using the original and normalized base models for
A-MLC. ... 199

Table 8.2:Summary of test results for creating and executing a
selection of the random test suites on the A-MLC. 200

Table 8.3:Summary of test results on the A-MLC for manual test
suite. .. 201

Table 8.4:Summary of test results found with test suites based on a
reduced base model, and using limited validation. 202

Table 8.5:Failures found when running test suites generated from
the original base model. ... 203

Table 8.6:Classification of executable statements reported not
covered by the tool Cover. The percentages shown are the part of
the complete module not covered because of the given reason. 212

Acknowledgments
Once upon a time I started my PhD studies with the ambition to finish
really fast! That did not happen. In fact I have spent quite a number of
years with this PhD thesis. Still I have never regretted I did start, as most
of the time I have simply enjoyed myself with empowering discussions in
the friendly atmosphere at the IT department at Uppsala University.

My supervisor during all these years have been Bengt Jonsson. Natu-
rally, without his endless passion, ideas and patience I would never have
finished.

In such a number of years the number of people that, in some way
or another, has inspired me, helped me, or just been there for me are
numerous. Thus, even if not listed below, you are not forgotten, a big
thank you for everything!

But to to start from the beginning, my family: mother Evy, father
Henry and brother Anders with family that always has supported me
and to whom I’m utterly grateful. Dad, you had always valued people
that never gave up high. I’m sure you would be proud now, just wish you
would still be with us!

Music brought me to Uppsala. In fact, I would probably not even had
started studying at the University if not for that student music festival
in Linköping 1986 that completely blow my mind at the time.

From the times when I started my PhD studies I have great memories
of the co-author of my first articles Lars Kempe and my, at the time,
secondary supervisor Roland Bol. Later, when starting all over again,
Anders Hessel and Paul Petterson played important roles. Paul, begin-
ning his PhD studies approximately in the same time as I did, now acting
as secondary supervisor. I must also mention Lars-åke Fredlund that al-
ways have been very friendly and supportive whenever I have asked for
help. Among the many colleagues at Mobile Arts that during the years
have encouraged my continued work with the thesis Lars Kari deserves
special mentioning.

There were periods that family life and starting up a company sim-
ply became to overwhelming to sometimes even think about thesis work.
When slowly recovering from those periods it really meant a lot for me
that Bengt Ahlgren was so kind to let me use some space at SICS for
working with the thesis.

Sven-Olof Nyström, my current secondary supervisor, proved an invalu-
able help, especially during the last frantic part of this thesis creation.

With this thesis finished, this period of my life comes to an end and a
new era begins. So finally, my love, Pernilla, mother of my two childs and
always my greatest supporter. Love you deep and dearly! Let us now,
together, make all those dreams come to life.

This work was supported in part by the Swedish Innovation Agency
(VINNOVA) within the ASTEC competence center, and in part by the
Swedish Research Council (VR) within the UPMARC Linnaeus centre of
Excellence.

Publications by the Author

This thesis is based on the following papers:

I Johan Blom and Bengt Jonsson
Automated Test Generation for Industrial Erlang Applications.
In Proc. 2003 ACM SIGPLAN workshop on Erlang, pages 8–14,
Uppsala, Sweden, Aug. 2003.

II Johan Blom, Anders Hessel, Bengt Jonsson, and Paul Pettersson
Specifying and Generating Test Cases Using Observer Automata.
In Proc. FATES, 4th. International Workshop on Formal Approaches
to Testing of Software, volume 3395 of Lecture Notes in Computer
Science, pages 125–139. Springer-Verlag, 2004.

III Johan Blom, Bengt Jonsson, and Sven-Olof Nyström
Industrial Evaluation of Test Suite Generation Strategies for Model-
Based Testing.
In A-MOST ’16: Proceedings of the 12th international workshop on
Advances in Model-Based Testing. IEEE, 2016.

The author has also done some earlier work on modeling and formalization
of requirements:

I Johan Blom, Bengt Jonsson, and Lars Kempe
Using Temporal Logic for Modular Specification of Telephone Services.
In Feature Interactions in Telecommunications Systems. IOS Press,
Amsterdam, Netherlands, May 1994.

II Johan Blom, Roland Bol, and Lars Kempe
Automatic Detection of Feature Interactions in Temporal Logic.
In Feature Interactions in Telecommunications Systems III. IOS
Press, Amsterdam, Netherlands, October 1995.

III Johan Blom, Roland Bol, Bengt Jonsson, and Jan Nyström
Creation of Dependent Features.
In Proceedings of RVK ’96, RadioVetenskap och Kommunikation’96,
Luleå, Sweden, June 1996.

IV Johan Blom and Bengt Jonsson
Constraint Oriented Temporal Logic Specification.
In Formal Systems Specification, The RPC-Memory Specification
Case Study, volume 1169 of Lecture Notes in Computer Science,
pages 161–182. Springer-Verlag, 1996.

V Johan Blom
Formalisation of Requirements with Emphasis on Feature Interaction
Detection.
In Feature Interactions in Telecommunications Systems IV, pages
61–77. IOS Press, Amsterdam, Netherlands, 1997.

Summary in Swedish
Att “datorn” ibland gör fel och inte fungerar är något vi alla lärt oss och
tvingats anpassa oss efter. Inte utan problem dock. Många gånger är kon-
sekvenserna också väldigt kostsamma och utgör i värsta fall personfara.
Den mest använda tekniken för att kvalitetssäkra system är testning. Med
testning menas här verifiering för att hitta fel, buggar och andra problem
genom att på ett givet indata kontrollera mot en specifikation av systemet
att utdata är det förväntade. Ett system kan här vara en mjukvarubaser-
ade komponent i ett komplett system eller ett komplett system i sig. Givet
den stora mängd med komplicerade system som utvecklats, sedan många
år tillbaks, kan det tyckas förvånande att testning i praktiken ofta utförs
ineffektivt och till stora kostnader. Förklaringen kan antas vara att med
mer komplexa system så blir också testandet mer komplext.

Den här avhandlingen handlar om modellbaserad testning, en teknik
för att automatisera och förbättra effektiviteten i testningen. I modell-
baserad testning utgår man från en abstrakt formell specifikation av ett
system som man är intresserade av. Idén är att denna specifikation inte är
en komplett beskrivning av systemet utan fångar just de egenskaper man
är intresserad av att testa. En specifikation är en modell och eftersom
modellen är formell kan testfall genereras automatiskt. Från en stor och
komplicerad modell kan antalet möjliga testfall bli så stort att det inte
är möjligt att testa alla. Detta är speciellt vanligt för protokoll, då mod-
ellerna kan representeras med tillståndsmaskiner. Man måste då välja en
delmängd av alla möjliga testfall. Ett vanligt sätt är att ange ett täckn-
ingskriterium som måste uppfyllas av en testsvit. Exempel inkluderar tex
alla tillstånd eller alla kanter i modellen. Genom adekvat verktygsstöd
är det då möjligt att generera mycket stora testsviter där man också kan
kvantifiera över hur den genererade testsviten förhåller sig till systemet
man vill testa. Forskning inom detta område har med framgång använts i
industriella system och gett upphov till algoritmer för testsvitsgenerering
och verktyg som tex TorX [Tretmans 03], Gotcha [Friedman 02], Con-
formiq Designer [Huima 07], och Spec Explorer [Veanes 08]. Men fort-
farande så baserar sig den mesta testningen i industrin på manuellt ska-
pade testsviter.

Arbetet med denna avhandling motiverades från början på högt ställda
krav på korrekt beteende i mobila telekom nätverk och på bristande till-
gång till resurser för testning i det lilla företaget. Produkten som utveck-
lades används för att bestämma tex positionen hos en mobiltelefon i ett
mobilnät. En typisk användare är en SOS-central som med detta system
kan lokalisera nödställda. För testning av denna produkt utvecklades ett
verktyg för modellbaserad testning av kommunikationsprotokoll.

Den här avhandlingen innehåller flertal tekniska bidrag inom modell-
baserad testning av vilka de huvudsakliga är

• ett nytt specifikationsspråk baserat på de funktionella programmer-
ingsspråket Erlang,

• ny teknik för specifiering av täckningskriterium vid testfallsgenerer-
ing, och

• en teknik för att automatiskt generera testsviter.
Baserat på detta implementerades ett verktyg med vilket man kan både
generera och exekvera testsviter från specifikationsspråket. Avhandlingen
innehåller också en större fallstudie där de tekniska bidragen och verk-
tyget utvärderas. Nedan följer en närmare genomgång av dessa bidrag.

Ett välkänt problem med modellbaserad testning är att kostnaden för
att skapa modellen kan antas vara hög. I denna avhandling fokuseras
främst på specifikationer av protokoll i form av tillståndsmaskiner. En
viktig komponent i detta sammanhang är valet av specifikationsspråk
i vilket det ska vara möjligt att uttrycka önskade egenskaper i systemet
kort och koncist. För att möjliggöra effektiv analys är det också viktigt att
språket är formellt. Baserat på det funktionella programmeringsspråket
Erlang och med egenskaper såsom dynamisk typning och mönstermatch-
ning introduceras för detta ändamål Erlang/Efsm. För detta språk ges,
förutom syntax, också en operational semantik. Vår förhoppning är att
detta (lilla) språk ska vara lätt att ta till sig för både testare och utveck-
lare. Speciellt, naturligtvis, för redan förtrogna med Erlang.

Eftersom olika testsviter är lämpliga för olika situationer är det ön-
skvärt att ett testgenereringsverktyg har en god flexibilitet i att generera
olika täckningskriterium. För att som användare fritt kunna specificera
täckningskriterium introducerar vi observatörer och en notation för att
formellt kunna uttrycka dessa. Observatörer kan ses som en separat kom-
ponent som observerar exekveringen av en tillståndsmaskin samtidigt som
den kommer ihåg vilka syntaktiska element som täckts av exekveringen.
För specifikation av obseratörer introduceras Erlang/Obs, även detta med
Erlang syntax.

Med en stor och komplicerad modell kan också representationen av
testfallen bli ett problem. Vi hanterar detta genom symbolisk exekvering
av modellen vilket medför att vi effektivt kan representera mängder av
testfall med enstaka exekveringar. Observatörer måste i detta samman-
hang hantera symboliska parametrar och man kan använda sig av olika
strategier för att instansiera dessa parametrar.

För att utvärdera idéerna om modellbaserad testning skapades ett verk-
tyg, ErlyMarsh, som använts i en större fallstudie. Systemet som testats,
A-MLC, används för att bestämma tex positionen av en mobiltelefon i ett
mobilnät. För att generera testfall till detta system skapades en speci-
fikation skriven i Erlang/Efsm. Från specifikationen genererades sedan
symboliska testsviter med hjälp av en mängd täckningskriteria uttryckta
med observatörer (och skrivna i Erlang/Obs). Från dessa symboliska
testfall valdes abstrakta testfall, frn vilka det i sin tur valdes konkreta

testfall som gick att exekvera mot en instans av A-MLC. Vi lyckades då
hitta ett antal fel i implementationen av A-MLC som vi sedan använder
för att jämföra effektiviktiviteten hos de olika genererade testsviterna,
mätt i antalet hittade buggar och kodtäckning. Vidare jämför vi re-
sultaten från testsviterna genererade från olika täckningskriteria med en
mindre mängd manuellt skapade testfall och en större mängd slumpvis
utvalda testfall. Resultatet från denna fallstudie indikerar att

• ett ganska enkelt täckningskriterium som “alla kanter i tillstånds-
maskinen” ger förhållandevis bra resulat med hänsyn tagen till an-
talet testfall inkluderade i testsviten,

• det potentiellt inte finns några stora skillnader mellan resultaten
från testsviter generade från täckningskriterium och slumptestning
om man tar hänsyn till storleken, och

• med ökad storlek på testsviterna så minskar skillnaderna mellan
antalet hittade buggar och antalet rader kod som täcks.

1. Introduction

Testing is a dominant technique for quality assurance of software systems.
Testing also consumes significant amounts of resources in development
projects [Myers 79, Beizer 90, Sommerville 10]. Given this, one would
expect that software testing would have developed into an exact science
with carefully worked out routines for guaranteeing the absence of errors
in software. Unfortunately, this is not the case. Testing still remains more
of an art than a science. One of the reasons is that software systems are
becoming increasingly complex, and so is testing them. Hence, it is of
general interest to refine existing test methods and find possible ways of
improving the testing activities.

This thesis is concerned with Model-Based Testing, which is an ap-
proach to make testing more systematic. The general idea in model-based
testing is to start from a formal model, which captures the intended be-
havior of the software system to be tested. A software system should here
be interpreted in a broad sense and can be a component in a larger sys-
tem or the complete system. Ideally, this model should be created early
in the development process, possibly during or even before the system is
implemented. On the basis of this model, test cases can be generated
in a systematic way. Since the model is formal, the generation of test
suites can be automated, and it is possible to generate test suites (i.e.,
sets of test cases) that exercise all functionality of the tested software.
With adequate tool support one can automatically generate very large
test suites, and automatically quantify to which degree they exercise all
of the tested software.

An important application area in model-based testing is that of test-
ing communication protocols and other similar classes of reactive systems.
For such systems, detailed behavioral specifications can be used as models,
and serve both as a basis for test suite generation, and as an oracle for as-
signing verdicts to test cases. Research in this area has given rise to auto-
matic test suite generation algorithms and tools like TorX [Tretmans 03],
Gotcha [Friedman 02], Conformiq Designer [Huima 07], and Spec Ex-
plorer [Veanes 08] among others, which have also been used successfully
on industrial-size systems.

Despite the significant developments in model-based testing, [El-Far 02,
BJK 04, Utting 07, Marinescu 15] in the last 20 years, its impact on in-
dustrial practice has still been rather limited. A number of commercially
available tools exist, but still most testing in industry relies on manually

21

constructed test cases. The work on this thesis was originally motivated
by the high requirements on software quality in telecom networks and
the scarce resources for testing available in a small software development
company. An application was developed and there was an identified need
to systematically test this software application in a more rigorous man-
ner. The application developed is often refered to as a location center and
used by e.g., emergency centers, to provide details about the location of
mobile devices in case of emergency. We therefore started to develop
automated tool support for model-based testing of communication proto-
cols. A major goal was to make the developed tool suitable for industrial
usage, implying that we had to consider several problems that typically
are not addressed by the literature on model-based testing.

This thesis describes a methodology and associated tool support, which
is intended to be used for model-based testing of communication protocol
implementations in industry. It presents several technical contributions
to the area of model-based testing, of which the main ones are

• a new specification language based on the functional programming
language Erlang,

• a novel technique for specifying coverage criteria for test suite gen-
eration, and

• a technique for automatically generating test suites.
Based on these developments, we have implemented a complete tool chain
that generates and executes complete test suites, given a model in our
specification language. The thesis also presents a substantial industrial
case study, where our technical contributions and the implemented tool
chain are evaluated.

In the remainder of this introduction, we will in Section 1.1 outline a
few different purposes to test, in Section 1.2 introduce basic concepts in
testing, in Section 1.3 introduce state machines, in Section 1.4 introduce
Erlang, and in Section 1.5 introduce model-based testing, Finally, in
Section 1.6 we discuss the contributions, and in Section 1.7 outlines, of
the rest of this thesis.

1.1 Testing
Testing is an investigation conducted to provide stakeholders with infor-
mation about the quality of the product or service under test. Software
testing can also provide an objective, independent view of the software
to allow the stakeholders understand e.g., risks involved of a software im-
plementation. After testing we have gained increased confidence in the
quality and correctness of the system.

Testing can be performed during many different phases of the software
lifecycle, and must be adapted accordingly. Let us give a brief account of

22

Preparation Development Release 1 Release 2Maintenance

Figure 1.1. Simplified description of the life-cycle of a larger software system.

the different forms of testing, based on a simplified description of the soft-
ware lifecycle, graphically depicted in Figure 1.1, in which actual software
development is preceded by a preparation phase (where requirements are
collected and evaluated) and succeded by a series of software releases and
management phases.

During the preparation phase, there may be requirements on external
components, such as database, operating system, etc., which must be
tested before building the system has even started. We may then need
to compatibility test and performance test involved components. During
the actual development phase, the developers subject individual software
components to unit tests and component tests, and thereafter integration
test the combination of these components. After development is finished,
when it is time to release a system to a customer, the bulk of the testing
effort typically occurs. Different forms of testing include:

• System testing, i.e., testing of the behavior of the whole system in an
environment which corresponds to the target environment. System
testing checks both functional requirements, to ensure logical and
temporal correctness, and non-functional requirements, to ensure
e.g., high availability and correct behavior under heavily utilization.

• Install/uninstall testing, i.e., testing whether it is possible to build,
install, upgrade etc. the system on the target machines.

• Acceptance testing, i.e., testing to verify if the system meets the cus-
tomer’s specified requirements. The goal is to establish confidence
in the system. Finding faults is not the the main focus.

Whenever a system has been released, delivered and accepted by a cus-
tomer, it may still happen that faults are revealed that previous testing
has not discovered. Then, maintenance of the system is necessary includ-
ing further testing so that the faults can be removed. To make another,
new, release of the system we may then only need to regression test the
system after changes have been made. This means to re-test the system,
using a selected subset of test cases. Naturally, in general, maintenance
may also involve development of new features that has to be tested as
such.

23

1.2 Terminology
The System Under Test (SUT) is the complete system that one wants
to test. Note that testing need not exercise all functionality of the SUT:
for example, in the evaluation in Section 7 of this thesis, testing concerns
only the part of the SUT that is reachable via a set of protocol interfaces.

A fundamental distinction is that between white-box and black-box
testing. White-box testing is based of the structure of the source code
of the SUT. Black-box testing is based on the requirements on the func-
tionality of the SUT and assumes no knowledge of the implementation.
For example, a test suite for white-box testing may include test cases
that depend on the usage of variables in the source code of the SUT. A
test suite for black-box testing may include test cases that depends on
requests sent to the SUT and responses from the SUT. In this thesis, we
focus on black-box testing.

Since it is not feasible to test all possible executions of the SUT, some
selection of “what to test” is necessary. A test purpose is a specific goal
or property deemed necessary to test. In a communication protocol, a
test purpose might be to check that a communication can be established.
Ideally, all interesting functional requirements of the specification should
be captured in the form of test purposes.

Test purposes are used to derive test cases. Each test case describes
a designated starting state, a sequence of test inputs to be applied, and
an expected response from the SUT. A test suite is a set of test cases.
Test suite generation is the process of selecting a set of test cases to form
a test suite. Test suite execution is the process of executing test cases
part of a test suite. A test oracle [Richardson 92] predicts the expected
response form the SUT when executing test cases. The test oracle reports
a test verdict for each executed test case. Ideally, the test verdict should
be “pass” or “fail” but can also be “inconclusive” if the test oracle can
not determine conclusively whether the output of the SUT is correct. A
failure is an observed deviation in the behavior of the SUT, i.e., the test
oracle reports “fail”. A fault is the cause of such a failure.

The term coverage denotes some measure of thoroughness of a test suite.
If the source code is available (as in white-box testing) we can measure
the thoroughness of a test suite by e.g., calculating how many percent of
the lines of source code of the SUT that are executed by the test suite.
Other possible measures include the number of variable definitions that
are actually used, or the number of paths in the control flow of the source
code (e.g., of a certain length) that are exercised. A coverage criterion
denotes a property that should be satisfied to some degree by the test
suite. Since different coverage criteria are suitable in different situations,
and differ in fault detection capability, cost, information about where

24

potential faults may be located, etc., it is highly desirable to be able to
generate test suites for a wide variety of different coverage criteria.

In order to actually execute a test suite against a SUT, a test harness
(or automated test execution framework) is needed. This is a collection of
software and test data configured to test a SUT by running it under vary-
ing conditions and monitoring its behavior and outputs. A test harness
should handle all the following phases when executing a test suite.

• Setup of test suite, i.e., achieve any necessary precondition necessary
before a test suite can be executed. This may e.g., include starting
a run-time environment and the SUT, and ensuring that they are
ready to start executing test cases.

• Setup of test case, i.e., achieve any necessary precondition necessary
before a particular test case can be executed. This may include
preparing a run-time environment with expected respones and con-
figuriation of the SUT for a particular test case.

• Cleanup, i.e., perform any necessary postcondition necessary to reset
any performed preconditions, This may include resetting a run-time
environment and SUT to an initial state, e.g., by removing config-
uration associated to an executed test case.

• Collection and presentation of test verdicts, making it easy for hu-
mans or computer programs to understand and to process the test
results.

1.3 Introducing state machines
Protocols typically have a number of states that can be captured in a
state machine. As background, we will therefore give an informal intro-
duction to state machines. Later, in Section 2, we will introduce a new
specification language, based on the Erlang programming language for
the specification of state machines.

We assume that a System Under Test (SUT) interacts with its environ-
ment through events. Events are either input events, typically represent-
ing the receipt of messages, or output events, typically representing the
transmission of messages. At any point in time, the state machine is in
some state. Whenever the SUT receives an input event, it reacts by per-
forming some local computation, thus the state machine changes its state,
and emitting a (possibly empty) sequence of output events. Initially, the
state machine is in some designated initial state.

To specify a state machine, one must thus specify its input and output
events, its set of states, and how it reacts to input events in each given
state. Typically, input and output events can be represented as terms
of form a(d1, . . . , dk), where a is an (input or output) event type, and
d1, . . . , dk are data values from prespecified domains. The set of states

25

is typically specified by defining a finite set of locations and a finite set
of state variables (with specified domains). Each state is then given by
a location and a mapping from state variables to values. The reaction
to input events is described by a set of transitions. Each transition has
designated source and target locations, and consists of a triggering input
event type, an optional guard, and a description of the associated internal
computation. We illustrate this by an example.

workUU
Progress = Progress + X

morning
wakeup(ThisDay), daytype(ThisDay) == collect wakeup(ThisDay), daytype(ThisDay) == leave

Day = ThisDay, Progress = 0, Stamina = 2,
checkout(ThisDay)

end_of_day

Progress = Progress + X

workMA

Day = ThisDay, Progress = 0, Stamina = 0

incident(bug)
Stamina = Stamina − 1,

checkin(Day)

progress(X), Progress + X ≥ 8

Stamina = Stamina − 1, checkin(Day)

Progress = Progress + X

incident(kids_notok)
checkin(Day),Stamina = Stamina − 1

incident(pernilla_call) or Stamina − 1 ≤ 0

preschool

progress(X), Progress + X ≥ 8

Progress = Progress + X, checkin(Day),

incident(kids_notok), Stamina − 1 ≤ 0

Stamina = Stamina − 1

incident(kids_happy)
checkout(Day),Stamina = Stamina − 1

progress(X), Progress + X < 8

progress(X), Progress + X < 8

Figure 1.2. A graphical representation of the state machine described in Ex-
ample 1.1. The complete Erlang/Efsm specification is given in Figure 2.2.

26

Example 1.1 A state machine which models a typical day in life is rep-
resented in Figure 1.2. The state machine accepts three forms of input
events:
• wakeup(TDay) representing a wakeup call where TDay is a day in the

week,
• progress(X) representing progress made on work during some period

in a day where is X is an integer in the range 1, . . . , 3, and
• incident(I) representing some externally triggered interception of work,

where I is the type of an incident. Possible values on I are bug,
kids_notok, kids_happy and pernilla_call.

The output events are of form:
• checkout(Day) representing a checkout of the latest revision from a

server, and
• checkin(Day) representing a check in of latest work to a server
where, for both output events, Day is a day in the week. There are five
locations, corresponding to the circles in Figure 1.2. The initial location,
morning, represents the beginning of a new day, workUU represents the-
sis work at Uppsala University, workMA represents work at Mobile Arts,
preschool represents visting kids at school, and end_of_day represents
the end of the day, Three state variables are used: Day whose value is
the current day in the week, Stamina, the stamina left for thesis work,
and Progress, the total progress made so far during this day. We as-
sume a function daytype which, given a day, returns the type of that day,
being either collect or leave. The transitions are represented by edges
in Figure 1.2. Each edge is annotated by a label, which above the arrow
contains the triggering event type (with formal parameters), and an op-
tional guard (following after a comma). Below the arrow is a statement
(in pseudocode), which describes the triggered local computation. For
instance, the top left edge describes that whenever the current location
is morning, an event of form wakeup(TDay) occurs, and the daytype of
TDay is collect, then the state variable Day is bound to the value of the
parameter of the input event (i.e., the actual value of TDay), the state
variable Progress is bound to 0, the state variable Stamina is bound to
2, the output event checkout(TDay) will be emitted, and the machine
will move to location workUU.

Let us give an informal overview of the behavior of the state machine.
Initially, only a wakeup(TDay) event may occur. Depending on the type
of day the children must either be taken to the preschool (moving to the
preschool location), or work can start directly (moving to the workUU
location). Before entering the workUU location a checkout(Day) event
is emitted to access the latest work of coworkers. Correspondingly, af-
ter leaving the workUU location we must emit a checkin(Day) event to
share the latest work. If an unfortunate incident occurs at the preschool
(represented by an incident(kids_notok) input event) this must be im-

27

mediately taken care of, so we rush to the preschool (preschool loca-
tion) and stay there until the childrens are ok. If we are lucky, the
incident(kids_happy) event occurs and we may proceed back to thesis
work again (the workUU location) if we have stamina enough. However,
if the childrens situation does not improve or we are out of stamina, we
must call it end of day and go home. While in the workUU location, or
workMA location, we may do some progress in work, represented by a
progess(X) input event expression, for some X in the range 1, . . . , 3.

If an incident occurs at Mobile Arts (incident(bug) input event), while
at the workUU location, this must immediately be taken care of at Mo-
bile Arts (the workMA location) until we have made enough progress
(Progress ≥ 8) and the day ends (end_of_day location).

We will assume that state machines representing models are determin-
istic, meaning that for each state and input event exactly one reaction
is possible. If, for some state and some input event, the state machine
does not specify a reaction, this means that the corresponding behavior is
unspecified. The modeled SUT may in this case exhibit a run-time error
or some other behavior that is not described by the model. We will not
be interested in generating test cases for such unspecified behavior.

1.4 Erlang
Erlang is a general-purpose language that supports fault-tolerant, dis-
tributed, and concurrent programming. The sequential subset of Erlang
is a functional language, with strict evaluation order, single assignment,
and dynamic typing. Originally it was a proprietary language within
Ericsson, but released as open source 1998.

In this thesis we will use a subset of Erlang (essentially the sequen-
tial subset) for specification. Given such “Erlang” specifications we will
generate test suites. We will also present a case study in Section 7 on
an Erlang based implementation. The techniques presented is not in
any sense limited to implementations in Erlang and can be equally well
applied on systems implemented in any other language. However, it has
been reported by e.g., [Cronqvist 04], studying 150 trouble reports from
function testing and system testing, that most faults found in Erlang im-
plementations are misunderstandings of the requirements on a functional
level. This makes Erlang based implementations particularly interesting
for further studies with the techniques presented in this thesis.

As Erlang is a functional language it enables the user to write programs
in a more succinct and abstract way than in imperative languages. It was
designed to be suitable for programming communication software at a
high level of abstraction, with features such as pattern matching, dynamic

28

typing, and single assignment variables that allow to write compact pro-
grams. Particularly in development of complex control software systems,
for example telecom networks, it is important that the implementation
language captures system level descriptions in a concise manner.

1.5 Model-based testing
Model-based testing aims to make testing more systematic and more au-
tomated. Model-based testing starts from a model, which serves as the
basis for systematically generating test cases. Often, the model is a for-
mal description of the SUT’s desired behavior. This formal model plays
several roles; as a test oracle or as a source for generating test suites.
With a formal model we also have means to generate “good” test suites
as we can use the model to control the selection of test cases. In this
way, model-based testing has the potential to automate a large part of
test suite development.

One may argue that all forms of testing are necessarily model-based,
since construction of test cases presupposes some mental model of what
the SUT is supposed to do [Binder 99], but the idea of model-based testing
is to replace implicit mental models by explicit behavior models, and thus
support automation in testing.

In this section, we give a description of model-based testing structured
into 6 steps, as illustrated in Figure 1.3. This structuring is inspired by
[Utting 08], but with the extension to additionally include execution and
verification of test cases.

1. Creation of the formal model by interpreting requirements or other
informal descriptions of the intended functionality of the system. In
this thesis we will assume the formal model to be an abstract model
of a SUT.

2. Validation of the formal model, e.g., by animating the model.
3. Generation of a test suite from the model. This step is typically

automated. Note that the generated test suite is on the same level
of abstraction as the formal model, hence we use the term abstract
test suite.

4. Concretization of each generated abstract test suite into a test suite
that can be executed against the SUT.

5. Execution of test cases against a SUT in a controlled environment.
6. Verification of the execution of a test suite against the model. That

is, abstractions of any output from the SUT are compared with the
output for the corresponding generated test case, from the formal
model. Further, any fault detected must be possible to trace back
to the formal model. Note that a fault may be detected because of
some errors remaining in the model.

29

Creation

Execution

Test Harness

Creation

Formalized

Concrete Test Suite

Abstract Test Suite

Validation

Generation

SUT

SUT

Formal Model

Requirements on Requirements on

Test purpose

Test purpose

Concretization

Verification
Test Oracle

Figure 1.3. An overview of typical components in model-based testing.

In the following, we describe each of these steps in more detail.

1.5.1 Creation of a formal model
Model-based testing requires a formal model of the expected behavior
of the SUT. Typically, this model represents an abstraction of the SUT.
As illustrated in Figure 1.3, the model should be generated from the
requirements, independently from the implementation. This is typically
a manual process, but there exists tools e.g., Spec Explorer [Veanes 08,
Sarma 10] to aid this process.

In this thesis we are mainly interested in the testing of communication
protocols, see e.g., [Lai 02, Bishop 05] for overviews of model-based pro-
tocol testing. Models of protocol behavior often have the form of state
machines. In this introduction, we illustrate state machines by an exam-
ple.

Example 1.2 Figure 1.4 (from [Hong 02]) shows a state machine, which
specifies the behavior of the controller of a simple coffee machine. The
controller interacts with a user by the events reset(), insert(X), coffee()
and show(M), and a brewer by means of events make() and done(). In
order to brew a cup of coffee, a user first needs to pay for the coffee. A

30

BUSY

coffee(), M > 0

M = M − 1, make()

insert(X), X + M ≤ 5

M = M + X

IDLE

M = 0

reset()

done()
show(M)

INIT

Figure 1.4. An abstract model specifying the controller of a simple coffee
machine.

cup of coffee costs 1 unit, so whenever at least 1 unit is inserted and the
coffee button pressed, brewing will start. When finished, the amount of
money left is shown and the machine is ready to brew a new cup of coffee.
Note that this model only specifies the behavior when a maximum of 5
units is inserted. The state machine has three locations: INIT, IDLE and
BUSY, and one state variable M holding number of units inserted but
not yet used. Upon the reception of an event, the machine may perform
some actions and move to a new control state. For instance, in control
state IDLE, when the event insert(X) occurs, and X +M not exceed 5,
then the amount M of units left is increased by X, and the state machine
remains in control state IDLE. □

It is important to keep in mind that the formal model of the SUT is in
general an abstraction of the desired behaviors of the SUT. For example,
in Figure 1.4, the event insert(X) is an abstraction of what actually
happens in the SUT, namely that X coins, each being worth 1 unit, are
inserted into the machine. Also, the actual representation of the variable
M in the SUT may be more complex than just a simple number. Such
abstractions make it possible to subject the model of different forms of
analysis (by humans or computers), and allow the generation of large
test suites. Different forms of abstractions for model-based testing are
discussed in [Prenninger 05].

1.5.2 Validation of the formal model
The model should be validated, to ensure that the behavior it represents
indeed satisfies intended requirements. Since state machine models are
formal and executable, we can use animation, simulation, or formal ver-
ification. An example of a formal verification technique is model check-
ing [Clarke 99], where a tool automatically examines whether all possible
behaviors of a state machine model satisfy a given property. For example,
for the model of the controller in Figure 1.4 it can be validated that the
number of output events of form make() always is less or equal to the
number of inserted units for any possible test case.

31

1.5.3 Test Suite Generation
The validated formal model is the basis for generating a test suite. For
example, from the model of the controller in Figure 1.4 it is possible to
derive test cases such as

reset()/ → insert(1)/ → coffee()/make() → done()/show()
→ insert(1)/ → coffee()/make() → done()/show()

This particular test case brews 2 cups of coffee where each cup of coffee
is ordered immediately after inserting a coin. The model also describes
many aspects of functionality that are not exercised by this test case, e.g.,
that several coins may be accumulated to allow ordering a sequence of
coffee cups, or that coins may not be accepted before the done() input,
that should ideally be verified by a test suite.

When a generated test suite grows larger, representation of test cases
becomes a problem. It may then be more efficient with a symbolic rep-
resentation. Thus, from a formal model of a SUT we generate symbolic
test cases, each with a condition expressed over input parameters. Each
symbolic test case can be seen as an equation where each instantiation of
the input parameters also satisfying the condition represents an abstract
test case. A corresponding symbolic test case to the above abstract test
case can be written as

⟨

reset()/ → insert(p1)/ → coffee()/make() → done()/show()
→ insert(p2)/ → coffee()/make() → done()/show()

,

p1 + 0 ≤ 5

∧ p1 > 0

∧ p2 + 0 ≤ 5

∧ p2 > 0

⟩

A challenge with test suite generation is to generate a test suite that
increase confidence in the correcteness of the SUT (e.g., by exercise as
much of the modeled behavior as possible) to a low cost (e.g., by gener-
ate a test suite with as few test cases as possible). In practice, this goal
is difficult to achieve. There are different kinds of strategies for the gen-
eration of test suites, see e.g., [Anand 13]. In the following subsections,
we describe some common strategies.

Partition Testing
In partition testing, the input domain is separated into several sub-
domains and each test case is selected to ensure coverage of some sub-
domain. For example, assume an input parameter to the SUT that as-
sumes values in the integer domain. Using a partition criterion we can

32

then, for example, separate this domain into sub domains with negative
and positive integers. Test cases can then be selected so that at least
one test case use a positive integer and at least one test case a negative
integer as a value of the input parameter.

Coverage Based Testing
In coverage based testing, test suites are generated by selecting test cases
which cover some structural elements of the model, such as locations,
edges, paths, and variables. The corresponding coverage criteria are then
called location coverage, edge coverage, etc. This notion of coverage is
reused from white-box testing. Most coverage criteria can be classified
into control flow oriented coverage criteria and data flow oriented cover-
age criteria. Control flow oriented coverage criteria are based on logical
expressions in the formal model which determine branches, and data flow
oriented coverage criteria focus on the way values are associated to their
variables and how these associations affect the execution of the test case
[Vilkomir 01].

Random Testing
In random testing, test suites are constructed by randomly selecting test
cases. The simplest form of random testing assumes a uniform probability
distribution over all possible test inputs of the SUT. But test cases may
also be biased in some direction, e.g., according to expected usage of the
system. More directions on how random testing can be used effectively
can be found in the case study by Ciupa et al. [Ciupa 07].

There is an ongoing, unresolved, debate on whether random testing
can find faults faster than, e.g., partition or coverage based testing.
The standard book by Beizer [Beizer 90] argues that faults often are
found much faster by non-random methods. This has been questioned
by e.g., [Ntafos 01], claiming that (1) partition testing to be more expen-
sive than random testing, and that (2) the performance of random testing
is rather close to partition testing. The main difference is that partition
testing distributes test cases over partitions in an even manner, such that
each partition is guaranteed at least one test case. Thus, if faults are
distributed evenly over the model, then the advantage of partition test-
ing is limited when the random test suite is larger than the number of
partitions, and it decreases as the size of the test suite increases.

Combinatorial Testing
Combinatorial testing, [Mandl 85, Grindal 07], is a black-box technique
which can be used when test cases can be characterized in terms of val-
ues of a set of parameters. Since for practical systems, it is intractable
to execute tests for all combinations of parameter values, a subset of
the possible combinations must be selected. In combinatorial testing, a

33

test suite is generated by combining parameter values according to some
combination strategy.

Test Case: TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9

p1 1 1 1 2 2 2 3 3 3

p2 1 2 3 1 2 3 1 2 3

p3 1 2 2 1 2 2 1 2 2

Table 1.1. Test suite that aligns with a 2-wise combination strategy. for a
system with 3 parameters with domains p1, p2 ∈ {1, 2, 3} and p3 ∈ {1, 2}.

An example of a combination strategy is the 2-wise combination strat-
egy [Cohen 97] which requires that every possible pair of values of any two
parameters is included in some test case. An example of a test suite gen-
erated from the 2-wise combination strategy can be found Table 1.1 where
we in total have 3 parameters, p1,p2, p3, with domains p1, p2 ∈ {1, 2, 3}
and p3 ∈ {1, 2}. It can be noted that the 3∗3+2∗3+2∗3 = 21 possible
pairs that need to be covered in this case can be handled by only 9 test
cases.

Fault-based testing
In fault-based testing focus is not on a particular coverage criteria of a
specification, but on faults that should be detected. Perhaps, the most
well-known fault-based strategy is mutation testing see e.g., [Aichernig 09].
Although introduced for mutation of programs it has latetely been adopted
to model-based testing [Aichernig 12] where test cases covering a mutated
formal specification specification are generated. Mutation based testing
is based on the hyptheses that: (1) test cases that detect simple faults
are likely to also detect complex faults and (2) SUT’s are close to beeing
correct. In mutation testing faults are introduced by syntactically change
the specification into mutants. A test suite is then generated with test
cases that would kill the mutants. Thus, when executing the generated
test suite against a SUT, a fault is detected if the SUT behaves identically
to the test case.

1.5.4 Concretization
As emphasized in Section 1.5.1, the formal model of the SUT is in general
an abstraction of the desired behaviors of the SUT. This reduces the
complexity involved when generating test suites automatically. However,
it implies that the generated test cases are also abstractions, and cannot
be executed directly on the actual SUT. For instance, test suites generated

34

from the model in Figure 1.4 will contain events of form insert(X), which
cannot directly be provided as input to the SUT. Therefore, the generated
abstract test cases must be concretized into concrete test cases, which can
actually be executed. Occurence of a insert(X) event in a test case could
then cause a test environmnent to trigger a (real) insertion of X unitis
into the implementation of the brewer.

1.5.5 Execution of test cases
Test cases in a test suite can be executed sequentially one by one or con-
currently. Test suites can be generated from the formal model before
execution of the test suite starts (off-line). Test suites may also be gen-
erated while executing the test suite (on-the-fly), see e.g., [Fernandez 96,
Vries 00]. Thus, test suite generation and concretization of test cases are
made during execution and verification of test cases. For large test suites
this may be an advantage as test cases do not need to be stored, This
comes with the cost of regenerating the test suite for each test execu-
tion. Note also that in order to execute test cases concurrently, also the
on-the-fly generation must be made concurrent.

1.5.6 Verification
To ensure that an executed test case behaves as expected, i.e., according
to the formal model, the test case must be verified. That is, we need
to verify that any output data from the SUT does not conflict with the
corresponding output data in the formal model,

As motivated in the preceding subsection, the concrete output data
from the SUT is not at the same level of abstraction as the output data
in the formal model. Thus, the output from the SUT must be abstracted
in order to be compared with the predicted output in the abstract test
case. Note that it is not a good idea to concretize the predicted output of
the abstract test case and compare it with the concrete output of the SUT.
The reason is that typically, each abstract output has many corresponding
concrete outputs, whereas each concrete output has a unique abstraction.

1.6 Contributions of this Thesis
Despite the significant developments in model-based testing in the last
decades [El-Far 02, BJK 04, Utting 07, Marinescu 15], its impact on in-
dustrial practice has still been rather limited. A number of commercially
available tools exist, but still most testing in industry relies on manually
constructed test cases.

35

The work in this thesis started from the need to systematically test a
newly developed communication protocol application in a small software
development company. We therefore started to develop automated tool
support for model-based testing of communication protocols. A major
goal was to make the tools suitable for industrial usage. This resulted in
the implementation of Erly Marsh, our own tool chain and work flow for
model-based testing, based on the structure described in Figure 1.3, and
resulting in a methodology described in Figure 1.5.

Creation

Generation

Erlang/Efsm Model

Symbolic Test Suite
Test Harness

Abstract Test Suite

Refinement

Generation

Execution

SUT

Requirements on

Creation

Test purposeSUT

Erlang/Obs
Observer

Requirements on

Concrete Test Suite

Test Oracle

Erly Marsh Verificator

Execute as Erlang module

Figure 1.5. Components in model-based testing as used in this thesis.

For each step, we have examined how it can be best realized from
an industrial perspective. On the way, we have produced a number of
contributions to different phases of model-based testing. In addition, our
tool chain represents a complete realization of this technology, and we
have also evaluated it on a significant industrial case study.

In this section, we survey in more details our specific contributions to
model-based testing.

36

1.6.1 Modeling Language
A difficulty for the adoption of model-based testing is the issue of how test
engineers can construct test models effectively. Modeling is a new activity
to many developers and testers, and the production and maintenance of
high-quality models can be cost- and labor-intensive. Modeling can be
made easier and more efficient by the availability of suitable modeling
languages. One important criterion for a good specification language is
that it should have just enough capabilities to express desired properties
in a natural way. Another criterion is that it should be suitable for
formal manipulation and analysis. Also, it must be easy to understand
by all parties involved in the software development process. It seems
reasonable that the choice of modeling language should depend on the
type of software that is being tested.

Our work is intended for the testing of communication protocol soft-
ware. The programming language Erlang is frequently used for program-
ming complex communication protocol software with a straightforward
notation and the concept of sending and receiving messages is part of
the language. Erlang is therefore an excellent basis also for a model-
ing language. We have therefore developed the specification language
Erlang/Efsm. It is based on a subset of the functional programming lan-
guage Erlang, but adds constructs that are central for modeling control-
intensive applications, such as communication protocols: control loca-
tions, state variables, configuration data, and structured messages.

State variables are distinct from normal Erlang variables that obey the
single assignment requirement. In order to develop automated test suite
generation techniques and tools, Erlang/Efsm is based on a subset of
Erlang obtained by restricting the expressiveness of data, and omitting
exceptions, concurrency, and several other features of Erlang.

Sharing syntax and semantics between specification and implementa-
tion language makes it easier to write specifications that can be under-
stood and maintained by software developers who are familiar with the
implementation language. Thus, for developers who are already famil-
iar with programming in Erlang, a modeling language based on Erlang
should be particularly easy to adopt.

1.6.2 Specifying Test Case Selection
In an industrial context, the desired size and thoroughness of a test suite
can vary significantly, depending on the available testing budget, the cost
of executing individual test cases, and the requirements on quality of the
SUT. Coverage criteria is one mechanism for controlling the size and thor-
oughness of a test suite (see also Section 1.1). Most tools for model-based
testing, e.g., [Tretmans 03, Friedman 02, Huima 07, Veanes 08] only allow

37

to generate test suites for a small set of coverage criteria. Since different
coverage criteria are suitable in different situations, it is highly desirable
that a test suite generation tool is able to generate test suites in a flexible
manner, for a wide variety of different coverage criteria.

We have therefore developed a technique for specifying a large num-
ber of different coverage criteria, and a method for generating test cases
according to such coverage criteria. The technique is based on the con-
cept of observers. Observers can be thought of as a separate component
in the model, which observes the execution of the state machine, and
records which syntactical elements are “covered” by the execution. The
advantage of the observer concept is its flexibility: it is easy to define a
new coverage criterion, even criteria that have not appeared before in the
literature. Observers are discussed in more detail in Section 3.

1.6.3 Efficient Generation of Test Suites
In all model-based testing it is essential that test suites are generated from
a correct model. Examples include finding model inconsistencies, or to
ensure coverage of certain requirements. If test suite generation is based
on a formal model we have two options: (1) to formally validate that
certain properties are satisfied by the model and (2) animate the model.
Animation of a formel model written in Erlang/Efsm can be accompished
by generating an executable Erlang module.

Given a model of the SUT in the form of a state machine, it is possible
to automatically generate test cases from executions of this model, as
outlined in Section 1.5.3. A naive approach to this problem would sim-
ply enumerate all the executions of this model. However, this approach
quickly becomes impractical, due to the astronomical number of possible
executions. This motivates use of symbolic execution to derive a more
effective and user friendly symbolic representation of test cases. Symbolic
representations describe not only single executions, but sets of them, and
can increase the power of test suite generation significantly. Figure 1.6 il-
lustrates the relationships between different representations of test cases,
and the mappings between them that are performed during model-based
testing.

Symbolic execution has been used in many ways for test suite gener-
ation, see Section 10.1. We have adapted this technique so that it can
efficiently generate large test suites from specifications written in Er-
lang/Efsm. We have also incorporated the observer mechanism for defin-
ing coverage criteria and investigated different strategies for instantiating
symbolic parameters.

38

�����
�����
�����
�����

�����
�����
�����
�����

Formal model

Implementation

Concrete OutputConcrete Input

Symbolic Test Case

Abstract Test Case

Concretization Abstraction

Constraint solving

Instantiation

SUT

Figure 1.6. An outline of the abstraction levels used in this thesis.

1.6.4 Concretization of Generated Test Cases
Since an Erlang/Efsm model represents an abstract view of the behavior
of SUT, we must concretize the generated abstract test suite to a format
that corresponds to what the SUT expects and returns. In general the
domains of the concrete values are much larger than the abstract domains
and we must therefore carefully select concrete counterparts.

Concretization is handled by a SUT specific call-back module that can
be configured with different concrete values on abstract parameter values.
This makes it straightforward to use an abstracted generated test suite
with different concrete values on a SUT. Further, versions of a SUT uti-
lizing different interfaces can easily be tested by modifying the call-back
module.

1.6.5 Efficient Test Execution and Verification
In order to execute a generated test suite, we must set up a test har-
ness which interacts in the way each test case dictates. This is rather
easy if the test execution is performed sequentially entirely within one
computer. However, if test execution is performed concurrently or the
test harness must be distributed over several different components in a
physical network, mechanisms must be developed for coordinating these

39

different components, so that they agree on which test case is currently
executed and on the timing of inputs. In the implementation of Erly
Marsh, we coordinate the different components by means of test case
identifiers that are embedded within the messages exchanged with the
SUT. This solution obviates the need for additional synchronization and
communication between the different components of the test harness, and
is rather simple to implement. We describe it in Section 6.5.

After executed test cases have been verified for correctness it is essential
that the results are presented to a user with all relevant related informa-
tion. Further, presentation of the results executing large test suites may
be organized in several ways. Thus, report generation calls for the need
of a database. For the results to be easier to understand, also other ef-
fects at the SUT that can be associated with the executed abstract test
case can be essential. Examples of such effects can be e.g., logs, counters,
performance measures etc. We describe it in Section 6.7.

1.6.6 Evaluation of Different Test Generation Strategies
Having developed a tool chain for model-based testing implementing the
research contributions in Section 1.6.1-1.6.5 we further investigated how
to generate test suites, such that we get the best trade off between costs
and benefits? That is, an evaluation on whether model-based testing in
general and the Erly Marsh tool in particular is feasible in a real indus-
trial size protocols and how it can be used most efficiently. We did this
by creating a formal specification for an existing industrial protocol, from
which test cases are automatically selected, executed and validated. We
then evaluated selected techniques based on coverage based testing and
random testing, and compared the results with an existing “manually”
created test suite. In particular we study different strategies for: Select-
ing test cases for a test suite, to test as efficiently as possible (low cost)
while gaining maximum coverage and fault detection (high benefits). We
consider both the selection of symbolic test cases, and the selection of
abstract test cases. Executing the set of selected test cases as efficiently
as possible with respect to time and fault detection effectiveness.

40

1.7 Organization of Thesis
In Section 2-6 our contributions on methods and tools for test suite gen-
eration are presented. These sections covers test suite creation from a
formal model and execution of generated test suites against an imple-
mentation. We focus on how to specify the SUT, with a suitable formal
model from which test suites are generated by introducing a new speci-
fication language Erlang/Efsm in Section 2, and test the SUT, with test
cases generated from the formal model, and automatically validating the
results. To control the selection of test cases we, in Section 3, define ob-
servers, including a specification language, Erlang/Obs, for specification
of observers. Section 4 give several examples on how coverage criteria
can be specified using the observers. In Section 5 we use the observers,
together with a symbolic approach, to select test cases to be included in
a generated test suite. In Section 6 we present an overview of a tool, Erly
Marsh, for handling the generation and execution of test suites, given a
model in Erlang/Efsm.

Section 7-9 presents a case study where we evaluate our methods and
tools. We use a commercially available industrial system that we generate
test suites for and validate executions on. The foundation for this case
study is found in Section 7. To study the effectiveness of the generated
test suites we did some comparisons between different coverage based test
case selections and random test case selection. The results are found in
Section 8. To study the effectiveness of the tool we did some limited
comparisons with other tools for testing Erlang programs in Section 9.

Section 10 gives an overview of some related work, and Section 11
summarizes the results and experiences from this thesis and presents some
ideas for future research.

41

2. A specification language based on Erlang

This chapter introduces a specification language, which is primarily in-
tended for automated test suite generation, and is based on the func-
tional programming language Erlang. We will refer to this specification
language as Erlang/Efsm.

This chapter is organized as follows. In Section 2.1, we motivate the
introduction of a new specification language, and why we base it on Er-
lang. Section 2.2 introduces Erlang/Efsm by an example. Section 2.3
describes the syntax and intended meaning of the language constructs of
Erlang/Efsm, and Section 2.4 describes its operational semantics. Sec-
tion 2.5 uses the semantics of Section 2.4 to show how each Erlang/Efsm
specification defines a state machines. Section 2.6 defines the concepts
of runs and test cases. Section 2.7 describes a symbolic version of the
operational semantics, intended for symbolic test case generation, and
Section 2.8 shows how it corresponds to the operational semantics of Sec-
tion 2.4. Section 2.9 defines symbolic analogues of the concepts of runs
and test cases. Section 2.10 introduces an operation that normalizes the
structure of a Erlang/Efsm specification. Section 2.11 defines a transfor-
mation of Erlang/Efsm specifications into executable form, which exploits
the Erlang/Otp gen_fsm behaviors.

2.1 Introducing Erlang/Efsm
A difficult aspect in model-based verification and testing is the issue of
how to produce specifications, and the cost of writing and maintaining
them. An important factor is the choice of specification language. A
good specification language should have just enough capabilities to ex-
press desired properties in a natural way and still be suitable for formal
manipulation and analysis. Also, it must be easy to learn and understand
by all parties involved in the software development process. Sharing syn-
tax and semantics between specification and implementation language
makes it easier to write specifications that are easy to understand and
maintain by software developers who are familiar with the corresponding
implementation language.
Erlang is a functional language, and as such enables the user to write

programs in a more succinct and abstract way than in many imperative

42

languages. It was designed in order to be suitable for programming com-
munication software at a high level of abstraction, with features such as
pattern matching, dynamic typing, and single assignment variables that
allow to write compact programs for communication software.
Erlang’s ability to express communication behavior at a high level of

abstraction also makes it suitable as the basis for a specification lan-
guage. The use of Erlang as a specification language was studied in
[Jantsch 98] where Erlang was found to be suitable for specification of
large and complex control software, e.g., for telecom networks. For the
automated generation of large test suites, protocol modules are very often
represented as state machines, which have a number of control locations
that are reached by sequences of message receptions and transmissions.
Typically, state machines also have a number of state variables that are
updated when moving from one control location to another. In order to
support this style of specification, we have therefore developed the spec-
ification language Erlang/Efsm. It retains Erlang’s ability to express
communication behavior at a high level of abstraction, but also contains
additional constructs for control locations, state variables, and structured
messages. State variables of Erlang/Efsm are distinct from normal Er-
lang variables, which must obey the single assignment requirement. In
order to support automated generation of test suites, only a restricted
part of the Erlang syntax is retained in Erlang/Efsm. Most notably, we
have restricted the expressiveness of data, as well as omitted exceptions,
concurrency, and several other features of Erlang.

We have also added two constructs in Erlang/Efsm to support modu-
larity. The first is that the assignment of attributes to objects need not
be specified in an Erlang/Efsm specification. For instance, the behavior
of a protocol module may depend on certain attributes of the users in-
volved in a communication session. We may then want to generate test
cases for a range of such attributes, and supply specific assignments only
when executing specific test cases, or when simulating the specification.
We therefore include configuration access functions for assignments that
need not be defined in an Erlang/Efsm specification, but can be supplied
externally when needed. The second is a facility for replacing complex
expressions in a specification by simpler ones, by means of abstraction
macros, inspired by a corresponding mechanism in ModEX [Holzmann 02]
intended for the SPIN model checker [Holzmann 97]. This allows to sup-
press less important details in a specification in order to make test suite
generation tractable. Typically, the replaced expression is used in an ex-
ecutable form of the specification, and the replacing expression is used
when, e.g., generating test suites. Examples include standards when sev-
eral values (e.g., status codes) are treated in the same way in the specifica-
tion. Thus, where we have a clear understanding of the implementation, it

43

can be clearer to explicitly use concrete values in the specification instead
of inventing new abstract parameters.

An alternative way to use Erlang for specifying state machines would
be to use the style provided by the gen_fsm behavior, which already exists
in Erlang/Otp [Erl 15]. We have chosen not to base our specification
language on the gen_fsm behavior, since we want a specification language
with a highlighted compact notation for control flow and state variables,
which is not present in gen_fsm.

In order to leverage the available infrastructure in the existing Erlang
parser, and also to retain the style of Erlang programs, the syntax for our
extensions to Erlang re-uses syntactical constructs that already exist in
Erlang. Thus, the syntax for transition clauses uses the same syntax as
user defined functions, and configuration access functions use the syntax
for function calls in Erlang.

As a basis for subsequent formal manipulation of Erlang/Efsm specifi-
cations, we develop a formal operational semantics for Erlang/Efsm spec-
ifications. It is inspired by the semantics for Erlang in [Fredlund 01], and
is given as a big-step operational semantics, which is suitable for modeling
transitions between control locations of a protocol module. To support
symbolic techniques for test suite generation, we also develop a symbolic
operational semantics where evaluated expressions may include symbolic
parameters not evaluated to a value by the symbolic execution.

Since Erlang/Efsm has extended Erlang with constructs expressing
state machines, an Erlang/Efsm specification cannot be directly executed
as an Erlang program. To allow execution of Erlang/Efsm specifications,
we define a set of refactoring rules that tranforms an Erlang/Efsm speci-
fication into the form of a gen_fsm behavior, which is directly executable.

2.2 An Overview of Erlang/Efsm
In this section, we introduce the overall structure of Erlang/Efsm specifi-
cations, by means of an example. The overall structure of an Erlang/Efsm
specification is given in Figure 2.1. It consists of

• a declaration of control locations,
• a declaration of state variables,
• a declaration of configuration access functions, i.e., built-in functions

to access configuration data during an execution,
• type declarations for state variables, configuration access functions,

input exressions, output expressions, and user defined functions,
which are optional, and

• for each control location, a list of transition clauses represent all
edges in the state machine.

44

-statevars([v1, . . . , vn]).

-locations({l0,stop,other}).

-configs([f1/i1, . . . , f/in]).

-type(t1(),tv11|· · · |tv1i).

-spec f1(p11, . . . , p1i)::type1.

-type(tn(),tvn1|· · · |tvnj).

-spec fn(pn1, . . . , pnj)::typen.

l(ak, u1, . . . ,uj) when gk1 → cek1;

l(ak, u1, . . . ,uj) when gkn → cekn.

l(a1, u1, . . . ,ui) when g11 → ce11;

Declarations of control locations

Declarations of state variables

functions

Declarations of user defined types

Declarations of types for
input/output events,
user defined functions and
configuration access functions

Declarations of configuration access

each declared location l.

l(a1, u1, . . . ,ui) when g1m → ce1m.
input event types a1, . . . , ak, for
Transition clauses for all relevant

Figure 2.1. An overview of a typical Erlang/Efsm specification where i and j

represent the arity of functions and events.

45

Before we explain the Erlang/Efsm language in more detail, we illustrate
by an example.

Example 2.1 The Erlang/Efsm specification for the state machine in
Figure 1.2 (from Example 1.1) is given in Figure 2.2. The locations in an
Erlang/Efsm specification are declared by

-locations({morning,
[end_of_day],
[workUU, workMA, preschool]}).

where morning is the initial location, [end_of_day] is a list with stop
locations, i.e., locations from which there are no outgoing edges, and
[workUU, workMA, preschool] is a list with all other locations that occur
in the state machine.

The state variables Progress, Stamina, and Day are declared by decla-
ration:

-statevars(['Progress','Stamina','Day']).

Note that the required use of quotes on declarations of variables is an
artifact caused by our desire to be compatible with the Erlang parser.
Each day can be either a day when the kids should be collected from, or
left at the preschool, by the author of the thesis. In the specification, we
represent this by assigning the attribute leave or collect to each day.
We want to leave it outside the specification what type of day any partic-
ular day is and consider it configurable (e.g., collectible from a calendar).
Thus, to find out the attribute for a particular day we use the configura-
tion access function daytype that takes a single argument. The daytype
function is used in the morning location, where we have different config-
uration data for different values of the input event parameter DayType.
The definition of this function can be considered as externally supplied,
but must be declared

-configs([daytype/1]).

as a configuration access function with a single argument.
The domains of the state variables are declared by

-type('Progress'() :: 0..8).
-type('Stamina'() :: 0..2).
-type('Day'() :: any()).

and say that the value of Progress is any integer in the range 0, . . . , 8,
the value of Stamina is any integer in the range 0, . . . , 2 and that Day can
assume any value (i.e., it is untyped). The argument to the configuration
access function daytype is declared by

46

-spec daytype(Day :: any()) -> collect | leave.

saying that it accepts an unspecified type on its single argument, and
always returns either collect or leave. The input events are declared in
a similar way by

-spec wakeup(TDay::any()) -> ok.
-spec progress(X::0..2) -> ok.
-spec incident(I::bug | pernilla_call |

kids_happy | kids_notok) -> ok.

and similarly, the output events are declared by

-spec checkout(Day::any()) -> ok.
-spec checkin(Day::any()) -> ok.

where the declared return types have no significance for describing the
state machine itself. However, auxiliary information can be provided for
use by a tool, e.g., to aid presentation of sequences of input and output
events. For example, our tool Erly Marsh, is provided information on
which external entity the test environment simulates, see Section 6.7.

For each declared location, except the stop location end_of_day, tran-
sition clauses specify the reaction to input events. The first argument of
such a transition clause must match the input event type, and the remain-
ing arguments must match the input event parameters. Thus, when in the
morning location, at the occurrence of an input event wakeup(monday),
the transition clause matches, since the first argument matches the event
type wakeup and the second argument TDay matches the event param-
eter monday. The transition clause specifies that first, the variable Day
is bound to the value monday. Thereafter, depending on the value of
daytype(monday), one of the if clauses will be selected, i.e., either the
output event checkout(monday) will be emitted and the location workUU
will be entered (as specified by the tuple {next_state,workUU}), or the
location preschool will be entered directly (as specified by the tuple
{next_state,preschool}). □

47

-locations({morning,end_of_day,[workUU,workMA,preschool]}).
-statevars(['Progress','Stamina','Day']).
-configs([daytype/1]).
-type('Progress'() :: 0..8).
-type('Stamina'() :: 0..2).
-type('Day'() :: any()).
-spec daytype(Day::any()) -> collect | leave.
-spec wakeup(TDay::any()) -> ok.
-spec progress(X::1..3) -> ok.
-spec incident(I::bug | pernilla_call | kids_happy | kids_notok) -> ok.
-spec checkout(Day::any()) -> ok.
-spec checkin(Day::any()) -> ok.

morning(wakeup,TDay) ->
Progress=0, Stamina=2, Day=TDay,
if

daytype(Day)==collect -> checkout(Day), {next_state,workUU};
daytype(Day)==leave -> {next_state,preschool}

end.

workUU(progress,X) ->
Progress=Progress+X,
if

Progress>=8 -> checkin(Day), {next_state,end_of_day};
true -> {next_state,workUU}

end.
workUU(incident,I) ->

Stamina=Stamina-1,
checkin(Day),
if

Stamina=<0;I==pernilla_call -> {next_state,end_of_day};
I==bug -> {next_state,workMA};
I==kids_notok -> {next_state,preschool}

end.

workMA(progress,X) ->
Progress=Progress+X,
if

Progress>=8 -> {next_state,end_of_day};
true -> {next_state,workMA}

end.

preschool(incident,I) ->
Stamina=Stamina-1,
if

Stamina=<0;I==kids_notok -> {next_state,end_of_day};
I==kids_happy -> checkout(Day), {next_state,workUU}

end.

Figure 2.2. Erlang/Efsm representation of specification described in Exam-
ple 1.1.

48

2.3 Erlang/Efsm - an extension of Erlang
In this section, we give a more detailed description of Erlang/Efsm. We
begin in Section 2.3.1 with the part of Erlang/Efsm, that is also a subset
of Erlang, and in Section 2.3.2 we define the extensions in Erlang/Efsm
that are not found in Erlang.

2.3.1 Syntax for a restricted set of Erlang
In this subsection we desribe the syntax of the part of Erlang/Efsm, that
is also a subset of Erlang. For readers already familiar with Erlang
this section can therefore safely be ignored. Table 2.1 summarizes the
Erlang syntax base definitions, and Table 2.2, describes the included
subset of Erlang expressions. The Erlang/Efsm syntax is given in stan-
dard Backus-Naur Form (BNF). In the definition of the syntax, termi-
nals (e.g., 1, true, and) are written in teletype font. Meta variables,
ranging over some syntactic domain, are written in italics with optional
indices (e.g., expr and value1). Repeated patterns are expressed with
a dot notation, for example {expr1, . . . , exprn} expresses a sequence of
(Erlang/Efsm) expressions separated by comma symbols and enclosed
in braces. We sometimes also use expr for expr1, . . . , exprn, value for
value1, . . . , valuen etc. for sequences of length n where if n = 0 an empty
sequence is implied. For common meta variables we also sometimes use a
shorthand notation, i for integer, d for value and e for expr etc. A con-
trol character (escape) is, e.g., \n for the line feed character. A character
(char) is any character defined by the ISO 8859-1 character set.

Basic values
The basic values consist of atoms, booleans, integers, the empty list, and
the empty tuple. Atoms are values represented by a sequence of charac-
ters, e.g., thesis or 'Thesis'. Atoms must be quoted if the first letter
is not lowercase, otherwise atoms may or may not be quoted. Boolean
is a subtype of atoms consisting of the atoms true and false. Integers
consist of a sequence of digits.

Compound values
The compound values are the non-empty tuples ({d1, . . . ,dn}) and conses
([d1|d2]) where d1, . . . , dn are basic or compound values. A list is either
the empty list [], or a cons [d1|d2] in which d2 is itself a list. The syntax
[d1,. . .,dn] is a shorthand for the list [d1|. . .|[dn|[]]. . .].

Local variables
A local variable name starts with an upper case letter or underscore _,
followed by digits, letters or underscores. A local variable can only be

49

digit ::= 0 | . . . | 9

uppercase ::= A | . . . | Z

lowercase ::= a | . . . | z

digitletter ::= digit | uppercase | lowercase | _

integer(i) ::= digit+ | -digit+

unquotedatom ::= lowercase digitletter∗

quotedatom ::= '(char | escape)+'
atom(a) ::= unquotedatom | quotedatom

bool ::= false | true

string ::= [char1, . . . ,charn] n ≥ 0

u ::= uppercase digitletter∗ | _

arithmetic ::= + | - | * | div

relop ::= =/= | == | < | > | =< | >=

logop ::= and | not | or | xor

typetest ::= is_integer | is_boolean | is_record

| is_tuple | is_list

guardop ::= relop | logop | typetest | size
fun (f) ::= atom
type (t) ::= atom

bv ::= atom | bool | integer | [] | {}

value(d) ::= bv | [d1|d2] | {d1, . . . ,dn} n > 0

Table 2.1. Erlang syntax base.

50

ge ::= bv | u | v | ge#a.ak

| f(ge1, . . . ,gen) n ≥ 0

| guardop(ge1, . . . ,gen) n > 0

guard(g) ::= ge1, . . . ,gen n > 0

cp ::= bv | u | [cp1|cp2] | {cp1, . . . ,cpn} n > 0

expr(e) ::= bv | u | v | [e1|e2] | {e1, . . . ,en} | (e) n > 0

| #a{a1 = e1, . . . ,an = en} n ≥ 0

| e#a{a1 = e1, . . . ,an = en} n ≥ 0

| e#a.ak

| v = e | cp = e
| guardop(e1, . . . ,en) n > 0

| arithmetic(e1, . . . ,en) n > 0

| f(e1, . . . ,en) n ≥ 0

|

case e of

cp1 when g1 -> ce1;
...

cpn when gn -> cen
end

n > 0

| if g1 -> ce1; · · · ; gn -> cen end n > 0

clexpr(ce) ::= e1, . . . ,en n > 0

fundef ::=

f(cp11, . . . ,cp1m) when g1 -> ce1;
...

f(cpn1, . . . ,cpnm) when gn -> cen.

n > 0

m ≥ 0

inttype ::= integer | integer1..integer2
rectype ::= #a{a1::tv1, . . . ,an::tvn} n ≥ 0

bit ::= atom() | integer() | boolean()

tv ::= bit | t() | any()

| atom | bool | inttype | rectype
recdec ::= -record(a,{a1, . . . ,an}). n > 0

vtypedec ::= -type(t()::tv1|· · · |tvn). n > 0

ftypedec ::= -spec f(u1::tv1, . . . ,un::tvn) -> tv. n > 0

Table 2.2. A restricted set of the Erlang syntax.

51

bound to a value once and has a scope within the enclosing function
clause. Local variables named solely with an underscore are anonymous
and is never bound to a value. Erlang/Efsm introduces an additional class
of variables, state variables, which are further explained in Section 2.3.2.

Built-in functions
A built-in function is a function that is included in the basic Erlang
language and should not be further defined (by a user defined function in
Erlang/Efsm). In Erlang (and Erlang/Efsm) terminology a number of
built-in functions are considered to be operators. That is, the application
of an operator to its arguments (operands) should be written in infix
notation, e.g., , A==2.

Informally, the binary relational operators (relop) and the arithmetic
operators (arithmetic) compare their arguments under varying relations.
The logical operators (logop) operate on booleans and are strict (both
arguments are always evaluated). The unary type tests (typetest) operate
on all values and return a boolean.

We next continue with the subset of Erlang expressions in Table 2.2.

Guard expressions
Guard expressions are boolean conditions and must not have any side ef-
fects. The outermost expression in a guard expression must be either the
application of a guard operator (guardop), or a configuration access func-
tion (f), to guard expression arguments. A guard expression argument is
either a basic value (bv), a bound local (u) or state (v) variable, an access
to a record field (e#a.ak), or the application of an outermost expression
as above. Note that any occuring configuration access function must also
be declared, see below, and that comma “,” is a shorthand notation for
the logical operator and. See Section 2.3.2 for further information on
configuration access functions.

Patterns
Patterns in Erlang/Efsm (cp) have the same form as values but may
also contain local variables. If the pattern contain local variables not
previously bound to a value, these are also implicitly bound to values
when matching the pattern against a value. For example, a value {a,b}
matches a pattern {A,B} and binds A to a and B to b. But the value {a,b}
will not match the pattern {A,A}, since a and b are distinct. The pattern
match operator = is used in an expression cp = e where cp is a pattern
that may contain local variables and e is an expression. If cp matches
e any previously unbound variable in cp will be bound to a value. An

52

anonymous local variable _ is considered a shorthand for a fresh variable
(a local variable not occurring elsewhere in the pattern, or in the enclosing
expression). For example, the expression

case test(2) of {_,_} -> true; _ -> false end

is a shorthand for the expression

case test(2) of {X1,X2} -> true; X3 -> false end

where the local variables X1, X2, and X3 do not occur elsewhere in the
specification.

Expressions
Expressions are tuples, records, lists, pattern matches, function calls,
and if and case expressions. A tuple expression {e1,…,em} and cons
expression [e1|e2] is evaluated by evaluating the sub-expressions e1 to
em. A function call expression f(e1, . . . ,em) is evaluated by evaluating
the body of the function f with the results of the evaluation of the sub-
expressions e1 to em. The function f is the name of a built-in function, a
user defined function, a configuration access function, or an output event
type. All expressions are evaluated by evaluating any sub-expressions
e1 to em in left-to-right order. Below we elaborate on different forms of
expressions.

Records
A record is a data structure for storing a fixed number of elements. It has
named fields and is similar to a struct in C. In Erlang (and Erlang/Efsm)
records are represented as tuples, see e.g., [Barklund 99], where the first
element in the tuple is the name of the record. Record definitions are
global and must be declared by

-record (a,{a1, . . . ,am}).

In the record definition, a is the name of the record and a1, . . . ,am
the names of the fields in the record. Given a record definition for a, a
record can be created with #a{a1 = e1, . . . ,am1

= em1
}. A created record

can (later) be updated with e#a{a1 = e1, . . . ,am2
= em2

} where e is an
expression evaluating to a (previously) created record. Note that we may
choose to only create selected fields, leaving the remaining fields with a
value undefined. Similar we may choose to only update selected fields,
leaving the remaining fields unchanged. The current value of a field ak
can be accessed by e#a.ak from a record expression e with name a.

53

User defined functions
A user defined function is defined with the syntax

f(cp11, . . . ,cp1m) when g1 -> ce1;
...

f(cpn1, . . . ,cpnm) when gn -> cen.

i.e., as a sequence of function clauses separated by semicolons and ter-
minated by a period. When the function is called, the first clause for
which the formal parameter patterns (cpk1, . . . , cpkm) match the actual
arguments, and the guard expression (gk) evaluates to true, is evaluated.

Case and if expressions
The case expression

case e of

cp1 when g1 -> ce1;
...

cpn when gn -> cen
end

is evaluated by first evaluating e to a value d, then matching d against
patterns cp1, . . . , cpn, and checking whether the corresponding guard ex-
pression gi evaluates to true. For a clause with index i that has both a
matching pattern and a guard that evaluates to true, the clause expres-
sion cei is evaluated. If several clauses match, the first one (in left-to-right
order) is chosen.

The if expression

if g1 -> ce1; · · · ; gn -> cen end

is a sequential choice construct from Erlang such that the evaluation
proceeds with the first clause expression cei for which the corresponding
guard expression gi evaluates to true. An if expression, such as the
above, is equivalent to a case expression

case true of

_ when g1 -> ce1;
...

_ when gn -> cen
end

54

Type declarations
Erlang is a dynamically typed language, therefore explicit type declara-
tions for functions and local variables are optional. The same is also true
for Erlang/Efsm. User defined types are declared by

-type (t() :: tv1 |. . .| tvn).

where t is a user defined type, previously not defined, with possible sub-
types tv1, . . . , tvn. A sub-type tv is a built-in type (bit), a user defined
type (t()), the set of all possible terms (any()), a compound value (d),
a range of integers (integer..integer), or a record field type declaration
#a{a1::tv1, . . . ,an::tvn}.

Types for arguments and return values in functions (a specification or
contract in Erlang terminology) can be further declared by

-spec f(u1::tv1, . . . ,un::tvn) -> tvout.

where f is the name of a function with arity n, and each ui is the name
of argument i, declared to be of type tvi. The function f returns a value
with type tvout.

Example 2.2 A user defined type, daystatus(), that contains only the
atoms collect and leave can be declared by

-type(daystatus() :: collect | leave).

The types for arguments and return values, for a configuration access
function daytype is declared by

-spec daytype(Day :: any()) -> daystatus().

where we do not restrict the value of the only argument (Day) but declares
its type to be any(). The function returns either of the values in the
previously defined type daystatus(). □

Note that in test suite generation, when representing conditions (see Sec-
tion 6.4), the domains size may be required to be known. Thus, when
not explicitly given, a domain size of 2 will be assumed.

2.3.2 Erlang/Efsm extensions to Erlang
Erlang/Efsm is specifically targeted towards creating specifications for
efficient test suite generation. Therefore, Erlang/Efsm extends the subset
of Erlang described in the subsection 2.3.1 by constructs that are found
in Table 2.3.

55

v ::= uppercase digitletter∗

atlist ::= [atom1, . . . ,atomn] n ≥ 0

locdec ::= -locations({atom,atlist1,atlist2}).
statevardec ::= -statevars([v1, . . . , vn]).

configdec ::= -configs([f1/integer1, . . . ,fn/integern]). n ≥ 0

abstrscope ::= all | {integer1,integer2} | {f,integer}
abstrdec ::= -abstr({abstrscope,string1,string2}).

specdec ::= recdec | vtypedec | ftypedec
| statevardec | configdec | abstrdec

declarations ::= locdec specdec∗

spec ::= declarations fundef+

Table 2.3. Erlang/Efsm syntax extensions to Erlang.

Locations
The locations that occur in a specification must be declared by

-locations({startloc,stoplocs,otherlocs}).

where startloc is the initial location, stoplocs is a non-empty list with the
stop locations, i.e., locations from which there are no outgoing edges, and
otherlocs is a list with all locations that are neither initial nor a stop loca-
tion. We use L to denote all locations in the Erlang/Efsm specification.

State variables
In Erlang/Efsm we are specifically interested in specification of EFSMs
that have state variables. For this purpose, an additional class of vari-
ables, state variables have been introduced to Erlang/Efsm. State vari-
ables share the syntax with local variables in Table 2.1. We will use
u when refering to a local variable and use v when refering to a state
variable. State variables differ from local variables in that they must be
explicitly declared, have a global scope, cannot occur in patterns, and are
not restricted to single assignment. There is also no concept of anonymous
state variables. State variables are declared by

-statevars(quotedvarlist).

where quotedvarlist is a list of quoted state variables. State variables are
quoted only to keep compliance with the standard Erlang parser; they

56

are declared with quotes, but used without quotes. For example, a state
variable Progress is declared by quotes as

-statevars(['Progress']).

but occurs in a guard expresion without the quotes as Progress >= 8 .
The (optional) type for a state variable is declared using the same syntax
as for a user defined type, see Section 2.3.1, where the user defined type
(t) shares the name with the (quoted) name of the declared state variable.
For example, the type for Progress is declared by

-type('Progress'() :: 0..9).

i.e., Progress can take any integer value in the range 0, . . . , 9.
Before usage, a state variable must be bound to a value. A state variable

is bound to a value with an assignment v = e where v is a state variable
and e is an expression.

Configuration access functions
Configuration access functions access configuration data, e.g., assignment
of attributes to certain objects, during an execution. For example, in
Example 2.1 we used daytype/1 to access the type of a particular day,
thereby setting up a particular configuration. During an execution it is
possible we may want to find out the configuration, e.g., the type of day
for several days. For such occasions, an argument can be passed to the
configuration access function. This allow us to parameterize configuration
data depending on e.g., some input event parameter. Configuration access
functions are declared by

-configs([f1/integer1, . . . ,fn/integern]).

where n > 0 and each fi is the name of a configuration access function
and integeri its arity. An (optional) type declaration for a configuration
access function has the same syntax as for user defined functions, see
Section 2.3.1.

Configuration access functions are handled by the Erlang/Efsm parser
as built-in functions that can be supplied externally and are not explicitly
defined in an Erlang/Efsm specification. Exactly how a definition is given
depends on the tool used. Using our tool, Erly Marsh, definitions to
evaluate a configuration access function are given by a call-back module.
During symbolic execution, described in Section 2.7, configuration access
functions are treated as symbolic parameters, and need not be evaluated.

Input expressions
Input expressions are evaluated to input events, which may trigger tran-
sitions of the state machine. An input expression is of form f(e1, . . . ,em)

57

where f is the input event type and e1, . . . ,em are input expression pa-
rameters. In an Erlang/Efsm specification, input expressions are pattern
matched against the formal parameters in the transition clause, see below.
Types for input expression parameters are declared by the same syntax
as for user defined functions, see Section 2.3.1.

Output expressions
Output expressions evaluate to events emitted from the SUT, and have
the syntax f(e1, . . . ,em) where f is the output event type and e1, . . . ,em
are output expression parameters. The output event type, f , must not
conflict with the name of any built-in function, user defined function, or
configuration access function. Output expressions are not explicitly de-
clared and thus any expressions not explicitly declared (or part of the
Erlang/Efsm syntax in this section) is considered as an output expres-
sion. The (optional) types for output expression parameters are declared
by the same syntax as user defined functions, see Section 2.3.1. Ouput
expressions always evaluate to true.

Transition clauses
Each location in a state machine may be connected with another location
via an edge. In Erlang/Efsm we use transition clauses as a compact
representation of edges. Each transition clause represent a set of edges
that may be triggered on the occurence of an input event with some arity
m. A set of transition clauses is of form

l(a0,u1, . . . ,um) when g1 -> ce1;
...

l(a0,u1, . . . ,um) when gn -> cen.

where l is the location from which the edges originate, and for each tran-
sition clause with index j, for j = 1, . . . , n,

• a0 is the input event type,
• u1, . . . ,um are local variables and represent formal parameters to

an input expression with arity m,
• gj is a guard expression, and
• cej is a clause expression that must return a tuple of form

{next_state,l′}

which represents a transition to the next location l′ (which may be
l).

The transition clauses originating from a location are defined with the
same syntax as user defined functions, but with restrictions on patterns
allowed in the function head. The location l must be declared as a lo-
cation, and a0 is an atom and u1, . . . ,um are local variables. Any local

58

or state variable that occurs in the guard expression (gj) or in the clause
expression (cej) of a transition clause must be bound to a value before
its use.

In an Erlang/Efsm specification there exists a set of transition clauses
for each relevant (i.e., that can occur) combination of location, input event
type and arity of input event type. In particular, note that in contrast
to Erlang, there can exist several transition clauses each with different
input event type a, but with the same arity m and location l.

The translation of a transition clause in Erlang/Efsm into edges (rep-
resented by edge clauses in a symbolic state machine, see Section 2.9),
can be thought of as unfolding a branch in a tree cej until a return tuple,
i.e., {next_state,l′}, is reached and we get a possible execution between
the locations l and l′. The translation of transition clauses in a state
machine is further elaborated on in Section 2.10.

Abstraction macros
A specification may have multiple purposes and it is therefore desirable to
easily be able to rewrite the original specification. For this reason, we in-
troduce an abstraction macro preprocessor extension defined as rewriting
rules between valid Erlang expressions and valid Erlang/Efsm expres-
sions. Abstraction macros can be used in several ways, including the
following.

1. Variables with large domains can be abstracted into corresponding
variables with smaller domains. For example, an input event pa-
rameter A with a large integer domain and an expression A >= 10
in a guard expression would generate different abstract test cases
for all values of A greater than 10. With no other constraints on
the guard expression and a large domain of A, this number can be
significant. If the actual value of A is not relevant, the expression
A >= 10 can be replaced by a boolean variable. Thus, the number
of possible abstract test cases resulting from A >= 10 has been
reduced to two.

2. Parts of the specification that are not considered relevant for test
suite generation can be hidden. For example, a specification may
reflect how a SUT reacts when input event parameters have unex-
pected values. If it can be expected the behavior of the SUT is
similar regardless of where in a test case such an input event pa-
rameter occurs, we may want to omit this from test suite generation
and test separately. Thus, the size of the generated test suite can
be limited.

3. A specification not written in Erlang/Efsm, can be translated to a
Erlang/Efsm specification, from which we can generate test suites.
For example, an Erlang expression

LogServerPid!{max,A,is,Result}

59

for passing a message to LogServerPid is not a valid Erlang/Efsm
expression and needs to be replaced before test suite generation.

Abstraction macros are declared by

-abstr(abstrscope,string1,string2).

where string1 is a text string that may contain any characters, and string2
is a string with a valid Erlang/Efsm expression. The scope of the abstrac-
tion macro is controlled by abstrscope and can be:

• all, i.e., the entire specification.
• A tuple {integer1,integer2}, denoting a range of lines from line

integer1 to line integer2.
• A tuple {f,integer}, where f is a user defined function definition

with arity integer, or a location in a transition clause matching
input events with arity integer − 1

Abstraction macros are applied on type declarations and transition clauses
in the order they appear, within the associated scopes.

If string1 is an Erlang expression, white space and order of commuta-
tive subexpressions is not significant. For example,
-abstr(all,"is_integer(A),A<10","Abool==true").

is equivalent with
-abstr(all,"A<10, is_integer(A)","Abool==true").

Example 2.3 The following function clause from an Erlang implemen-
tation of a max operation returns the maximum value of A and B if they
are both integers, otherwise it returns undefined_value. In addition it
also logs the result on a log server by sending a message to the log server
process.
max10(A,LogServerPid) ->

Result=if
is_integer(A) ->

if
A<10 ->

true;
A>=10 ->

false;
end;

not is_integer(A) ->
undefined_value

end,
LogServerPid!{max,A,is,Result},
Result.

60

We want to create abstractions in a way so that an abstraction of the
above user defined function clause can be used in an Erlang/Efsm spec-
ification. Note that message passing using the Erlang operator ! is not
supported in Erlang/Efsm. We therefore create an abstraction macro to
remove it.

-abstr(all,"LogServerPid!{max,A,is,Result}","").

Second, we are only interested in generating test cases when A is known
to be an integer. Thus we create an abstraction macro for the integer
testing guard expression

-abstr(all,"is_integer(A)","true").

to project the model to cases where the guard expression is_integer(A) is
evaluated to true. Third, we choose to create abstraction macros for the
remaining guard expressions A>=10 and A<10, and replace the expressions
with tests of a new boolean local variable Abool.

-abstr(all,"A<10","Abool==true").
-abstr(all,"A>=10","Abool==false").

Finally, as we have abstracted away all usage of the A,LogServerPid ar-
guments these can be removed and replaced with Abool in the function
head

-abstr(all,"max10(A,LogServerPid)","max10(Abool)").

After the above abstraction macros have been applied the resulting
Erlang/Efsm expression is:

max10(Abool) ->
Result=if

true ->
if

Abool==true ->
true

Abool==false ->
false;

end,
not true ->

undefined_value
end,

Result.

As we created an abstraction for the head of the user defined function,
additional abstraction macros are required to also abstract any usage of
this function. In particular, this may require introduction of new variables
in transition clauses where this function is used. □

61

2.4 Operational semantics of Erlang/Efsm
The semantics for Erlang/Efsm is given as a big-step structural opera-
tional semantics [Plotkin 81] in the form of transitions between structural
states. In this thesis we use the term structural state instead of, the more
standard, configuration, to avoid confusion with handling of configuration
data. Each transition describes how an Erlang/Efsm expression in one
structural state is evaluated to a value in another structural state.

Let Aa be the domain of input event types, Ab the domain of output
event types, C the domain of names of configuration access functions,
used to access constant configuration data, and D the domain of all Erlang
values.

Definition 2.4 A structural state is a tuple

⟨e, b, σ, ρ⟩

where
• e is an Erlang/Efsm expression,
• b is a sequence of output events, each of which is of form b(d1, . . . , dn),

such that b ∈ Ab is an output event type and each dj ∈ D; for
brevity, we sometimes use b to denote an output event, not just the
output event type,

• σ ∈ V → D is a global environment with bindings to the global
state variables V , and

• ρ ∈ U → D is a local environment with bindings to the local vari-
ables U .

An empty (local or global) environment is denoted • and whenever b is
the empty sequence we write ϵ. □

The evaluation of an Erlang/Efsm expression depends not only on the
expression and the current global and local environments, but also on
the actual meanings of the configuration access function names in C.
Therefore, define a configuration environment to be a mapping ∆ from C

to functions of the appropriate types. A transition between two structural
states in a particular configuration environment is a triple, written as

∆ |= ⟨e, σ, ρ⟩ ⇒
⟨

d, b, σ′, ρ′
⟩

,

denoting that e can be evaluated in a global environment σ, local envi-
ronment ρ, and configuration environment ∆, to a value d. We always
asssume the transition to start in a structural state with an empty se-
quence of output events, and thus omit it from the starting structural
state. After the evaluation, b is the sequence of generated output events,
σ′ is the new global environment with bindings of state variables, and ρ′

is the new local environment with bindings of local variables.

62

The configuration environment ∆ is unchanged throughout the transi-
tion, and also throughout sequences of transitions. In the following, we
will therefore mostly omit it, e.g., in descriptions of transition rules.

As a shorthand notation we let ⟨σ, ρ⟩ ⊢ g denote that

⟨g, σ, ρ⟩ ⇒ ⟨true, ϵ, σ, ρ⟩ ,

i.e., that the guard expression g evaluates to true in a global environment
σ and local environment ρ. Note that σ and ρ are not affected since guard
expressions must not have side effects. Similarly, ⟨σ, ρ⟩ ̸⊢ g is a short hand
notation for when g evaluates to false.

The set of possible transitions is defined by the set of transition rules. A
transition rule denotes the condition under which ⟨e, σ, ρ⟩ ⇒

⟨

d, b, σ′, ρ′
⟩

exists and is of form:

cond1, . . . , condm trans1, . . . , transn

⟨e, σ, ρ⟩ ⇒
⟨

d, b, σ′, ρ′
⟩

where cond1, . . . , condm are conditions under which the transition rule
can be applied. This rule says that a transition rule is enabled for an
Erlang/Efsm expression e when the conditions cond1, . . . , condm are sat-
isfied and the transitions trans1, . . . , transn exist. We will omit the con-
figuration environment in the presentation of rules, since it is always the
same for all involved transitions.

2.4.1 Pattern matching
In Erlang/Efsm (and Erlang), pattern matching is used to enable ex-
pressions to be evaluated and to bind values to local variables. We define
a relation match (cp, d, ρ, ρ′) in Figure 2.3 to denote a successful pattern
match between a pattern cp and a value d within a local environment ρ.
The resulting local environment ρ′ is ρ updated with all bindings created
when successfully pattern matching cp and d. The match relation is un-
defined for all cp not matching d. Note that state variables can not occur
in patterns. Thus, a pattern match can not bind values to state variables.

2.4.2 Transition Rules for Erlang/Efsm Expressions
Basic and Compond values
All expressions in Erlang/Efsm can be evaluated to basic or compound
values. In this section we give the transition rules for how this is ac-
complished. Basic and compound values are expressions and naturally

63

d is a basic or compound value
match (d, d, ρ, ρ)

u is an anonymous local variable
match (u, d, ρ, ρ)

u is a local variable, defined in ρ

match (u, ρ(u), ρ, ρ)

u is a local variable, not defined in ρ

match (u, d, ρ, ρ[u 7→ d])

match (cp1, d1, ρ0, ρ1) . . . match (cpn, dn, ρn−1, ρn)

match ({cp1, . . . , cpn}, {d1, . . . , dn}, ρ0, ρn)

match (cp1, d1, ρ0, ρ1) match (cp2, d2, ρ1, ρ2)

match ([cp1|cp2], [d1|d2], ρ0, ρ2)

match (cp1, d1, ρ0, ρ1) . . . match (cpn, dn, ρn−1, ρn)

match
(

cp, d, ρ0, ρn
)

Figure 2.3. Definition of the match (cp, d, ρ, ρ′) relation for a pattern match
between a pattern cp and a value d. Initially we have a local environment
ρ. After a successful pattern match the local environment ρ′ holds ρ and all
additional bindings of local variables, required for matching.

64

evaluate to themselves.

d is a basic or compund value
⟨d, σ, ρ⟩ ⇒ ⟨d, ϵ, σ, ρ⟩

Non-empty tuples and conses are evaluated by first evaluating all sub-
expressions in a left-to-right order.

⟨e1, σ0, ρ0⟩ ⇒ ⟨d1, b1, σ1, ρ1⟩ . . . ⟨en, σn−1, ρn−1⟩ ⇒ ⟨dn, bn, σn, ρn⟩

⟨{e1, . . . , en}, σ0, ρ0⟩ ⇒ ⟨[{d1, . . . , dn}, b1 . . . bn, σn, ρn⟩

⟨e1, σ0, ρ0⟩ ⇒ ⟨d1, b1, σ1, ρ1⟩ ⟨e2, σ1, ρ1⟩ ⇒ ⟨d2, b2, σ2, ρ2⟩

⟨[e1|e2], σ0, ρ0⟩ ⇒ ⟨[d1|d2], b1b2, σ2, ρ2⟩

In Erlang (and Erlang/Efsm) records are represented by tuples. We will
therefore in this section omit to give explicit rules for record expressions.

Local and State variables
Local variables are bound to values by pattern matching. Local vari-
ables must not previously be defined in the local environment ρ since
Erlang/Efsm is single assignment.

⟨e, σ, ρ⟩ ⇒ ⟨d, b, σ′, ρ′′⟩

match (cp, d, ρ′′, ρ′)

⟨cp = e, σ, ρ⟩ ⇒ ⟨d, b, σ′, ρ′⟩

State variables are distinguished from local variables and are bound to a
value by first evaluating an expression and then the global environment
σ is updated with the result.

v ∈ V ⟨e, σ, ρ⟩ ⇒ ⟨d, b, σ′, ρ′⟩

⟨v = e, σ, ρ⟩ ⇒ ⟨d, b, σ′[v 7→ d], ρ′⟩

All variables must be bound to a value before they are used such that
the value of a state variable is found in the global environment, σ, and
the value of a local variable is found in the local environment, ρ. A local
variable has precedence over a global variable with the same name.

v is defined in σ

⟨v, σ, ρ⟩ ⇒ ⟨σ(v), ϵ, σ, ρ⟩

u is defined in ρ

⟨v, σ, ρ⟩ ⇒ ⟨ρ(u), ϵ, σ, ρ⟩

Built-in functions
All arithmetic expressions, type declarations and relational and logical
operators are handled in the same way. For example, the transition rule

65

for the logical operator disjunction is

⟨e1, σ0, ρ0⟩ ⇒ ⟨bool1, b1, σ1, ρ1⟩
...

⟨en, σn−1, ρn−1⟩ ⇒ ⟨booln, bn, σn, ρn⟩

⟨ or (e1, . . . ,en), σ0, ρ0⟩ ⇒ ⟨ or (bool1, . . . ,booln), b1 . . . bn, σn, ρn⟩

Guard expressions
Guard expressions compute boolean conditions and occur in case expres-
sions, if expressions, and function definitions.

The transition rules for guard expressions are similar as for disjunction
above, but do not update the local or global environment nor can output
expressions occur.

Sequence Expressions
A sequence expression simply evaluates to the value of the last clause ex-
pression in the sequence. The value of the first clause expression is simply
ignored. To avoid ambiguity and improve readability, the Erlang/Efsm
expression is sometimes written with parenthesis in the following transi-
tion rules.

⟨ce0, σ, ρ⟩ ⇒ ⟨d, b0, σ
′′, ρ′′⟩ ⟨ce1, σ

′′, ρ′′⟩ ⇒ ⟨d′, b1, σ
′, ρ′⟩

⟨(ce0,ce1) , σ, ρ⟩ ⇒ ⟨d′, b0b1, σ
′, ρ′⟩

If Expressions
An if expression is a sequential choice construct such that the evaluation
proceeds with the first clause expression cei for which the corresponding
guard expression gi evaluates to true.

∀j, 1 ≤ j < i : ⟨σ, ρ⟩ ̸⊢ gj

⟨σ, ρ⟩ ⊢ gi

⟨cei, σ, ρ⟩ ⇒ ⟨d, b, σ′, ρ′⟩

⟨

if

g1 -> ce1;
...

gn -> cen
end

, σ, ρ

⟩

⇒ ⟨d, b, σ′, ρ′⟩

Case Expressions
The case expression is somewhat complicated to handle, since the choice of
clause depends on both that a pattern matches and that a guard evalutes

66

to true. First, an expression e is evaluated to a value d. Sequentially, d
is then matched against pattern cpj , and if the match succeeds the guard
expression gj is evaluated in the local environment ρt. For the first clause
i with a pattern, cpi, matching d and guard expression gi evaluating to
true in the local environment ρ′′′, the clause expression cei is evaluated.

⟨e, σ, ρ⟩ ⇒ ⟨d, b1, σ
′′, ρ′′⟩

∀j, 1 ≤ j < i : match (cpj , d, ρ
′′, ρt) implies ⟨σ′′, ρt⟩ ̸⊢ gj

match (cpi, d, ρ
′′, ρ′′′)

⟨σ′′, ρ′′′⟩ ⊢ gi

⟨cei, σ
′′, ρ′′′⟩ ⇒ ⟨d, b2, σ

′, ρ′⟩

⟨

case e of

cp1 when g1 -> ce1;
...

cpn when gn -> cen
end

, σ, ρ

⟩

⇒ ⟨d, b1b2, σ
′, ρ′⟩

User Defined Functions
A call to a user defined function f(e1, . . . ,em), defined by the Erlang/Efsm
clauses

f(cp11, . . . ,cp1m) when g1 -> ce1;
...

f(cpn1, . . . ,cpnm) when gn -> cen.

is evaluated by first evaluating all arguments e1, . . . , em to d1, . . . , dm.
Similarly as with a case expression, each dk is then matched against pat-
tern cpjk, and if all values d1, . . . , dm match patterns cpj1, . . . , cpjm the
guard expression gj is evaluated in the local environment ρt. For the first
clause i with all patterns, cpi1, . . . , cpim matching and guard expression
gi evaluating to true in the local environment ρ′, the clause expression
cei is evaluated.

∀k : 1 ≤ k ≤ m : ⟨ek, σk−1, ρk−1⟩ ⇒ ⟨dk, bk, σk, ρk⟩

∀j, 1 ≤ j < i : match
(

cpj , d, •, ρt
)

implies ⟨σm, ρt⟩ ̸⊢ gj

match
(

cpi, d, •, ρ
′
)

⟨σm, ρ′⟩ ⊢ gi

⟨cei, σm, ρ′⟩ ⇒ ⟨d, b, σ′, ρ′′⟩

⟨f(e1, . . . ,em), σ0, ρ0⟩ ⇒ ⟨d, b1 · · · bm b, σ′, ρ′′⟩

67

Configuration access functions
A call to a configuration access function f(e1, . . . ,em) where the name, f,
is the name of a configuration access function, is evaluated by evaluating
all arguments e1, . . . , em to d1, . . . , dm, and thereafter applying the defi-
nition ∆(f) of f to the results. We include the configuration environment
in the rule, since it is now relevant.

⟨e1, σ0, ρ0⟩ ⇒ ⟨d1, b1, σ1, ρ1⟩
...

⟨em, σm−1, ρm−1⟩ ⇒ ⟨dm, bm, σm, ρm⟩

f ∈ C ∆(f)(d1, . . . dm) = d

∆ |= ⟨f(e1, . . . em), σ0, ρ0⟩ ⇒ ⟨d, b1 · · · bm b, σm, ρm⟩

where f is a configuration access function name, whose meaning is defined
in the configuration environment ∆.

Output expressions
An output expression f(e1, . . . ,em) where f is an output event type, is
evaluated by first evaluating all arguments e1, . . . , em to d1, . . . , dm and
then adding the resulting output event f(d1, . . . ,dm) to the sequence of
generated output events.

⟨e1, σ0, ρ0⟩ ⇒ ⟨d1, b1, σ1, ρ1⟩
...

f ∈ Ab ⟨em, σm−1, ρm−1⟩ ⇒ ⟨dm, bm, σm, ρm⟩

⟨f(e1, . . . ,em), σ0, ρ0⟩ ⇒ ⟨true, b1 · · · bm f(d1, . . . ,dm), σm, ρm⟩

2.5 Derived State Machines
Using the semantics of Erlang/Efsm, defined in Section 2.4, we can now
describe how an Erlang/Efsm specification defines a state machine. Re-
call (from Section 1.3) that a state machine is defined by a set of locations
and state variables, which together with a set of transitions define the re-
action to input events.

An Erlang/Efsm specification defines, for each configuration environ-
ment, a state machine, whose components are defined as follows.

Locations
The locations are those declared by the -locations declaration; this also
declares the initial location.

68

State variables
The state variables are those declared by the -statevars declaration.

State
A state is a tuple ⟨l, σ⟩ where l is a location, and σ is an environment with
bindings of values to the state variables; the binding σ may be restricted
by optional type declarations for the state variables. The initial state
is the tuple ⟨l0, •⟩ where l0 is the initial location and • is the empty
environment.

Transitions
The transitions are derived from the transition clauses by considering
them as clauses that define a user defined function. Each unit of transition
clauses of form

l(a0,u1, . . . ,um) when g1 -> ce1;
...

l(a0,u1, . . . ,um) when gn -> cen.

defines a set of transitions as follows. Assume that for location l and
input event a(d1, . . . , dm), the transition rules for user defined functions,
considering l as a user defined function, allow to derive the transition

∆ |= ⟨l(a,d1, . . . ,dm), σ, •⟩ ⇒ ⟨{next_state,l′}, b, σ′, ρ⟩,

i.e., acccording to the rule for user defined functions,
l(a0,u1, . . . ,um) when gi -> cei is the first transition clause, such that
a0 is a, and such that the guard expression gi evaluates to true in the
local environment where u1, . . . ,um are bound to to d1, . . . , dm, and the
corresponding clause expression cei evaluates to {next_state,l′}. Then
there is a transition from the state ⟨l, σ⟩ to the state ⟨l′, σ′⟩, triggered
by the input event a(d1, . . . , dm), and emitting the sequence b of output
events. We use the term computation step for a transition of the state
machine under a certain configuration environment, and denote it as

⟨l, σ⟩
a(d)/b
−→ ⟨l′, σ′⟩.

Each computation step ⟨l, σ⟩
a(d)/b
−→ ⟨l′, σ′⟩ denotes that the state machine

receives an input event, performs some local computation and emits a
(possibly empty) sequence of output events.

69

2.6 Runs, Traces, and Test Cases
Based on the definition of state machines and their computation steps, we
can now define the input-output behavior of an Erlang/Efsm specification
(or, equivalently, its defined state machine) as follows.
A run of the state machine in a configuration environment ∆ consists of
a sequence of computation steps under ∆, of form

⟨l0, •⟩
a1(d1)/b1
−→ ⟨l1, σ1⟩

a2(d2)/b2
−→ · · ·

an(dn)/bn
−→ ⟨ln, σn⟩

which starts in the initial state.
A trace is the finite sequence

a1(d1)/b1 a2(d2)/b2 · · · an(dn)/bn

of pairs, each consisting of an input event and sequence of output events,
that label such a run. A run over a trace a1(d1)/b1 · · · an(dn)/bn is a
run whose labeling sequence is exactly this trace.
A test case is a pair

⟨a1(d1)/b1 · · · an(dn)/bn , ∆⟩

consisting of a trace a1(d1)/b1 · · · an(dn)/bn and a configuration en-
vironment ∆. Intuitively, such a test case can be produced by choos-
ing ∆ as the configuration environment, and supplying the sequence
a1(d1) · · · an(dn) of input events. If the tested system conforms to
the Erlang/Efsm specification, then it should respond with the sequence
b1 · · · bn of output events. This follows from the observation that the in-
duced run of the Erlang/Efsm specification is uniquely determined by the
configuration environment ∆ and the supplied sequence of input events,
since the Erlang/Efsm specification is deterministic.

2.7 Symbolic operational semantics
A central problem in test case generation is that a program has a very
large number of possible inputs, which gives rise to a very large number
of possible executions, and makes it difficult to select a manageable set of
inputs for test cases. Symbolic execution [King 76] addresses this problem
by representing inputs symbolically, which allows to represent the vast
space of executions by a more modest set of symbolic executions; further-
more the set of symbolic executions can be used to guide the selection of
inputs for test cases.

The key idea in symbolic execution is to use symbolic values instead
of actual data values as input, and to let expressions and values con-
tain symbolic values. In our work, symbolic values will mostly be used

70

to represent parameters of input events, and we will therefore refer to
them as symbolic parameters. We must generalize the operational seman-
tics to allow expressions containing symbolic parameters, thus defining a
symbolic semantics. The symbolic semantics differs from the operational
semantics of Section 2.4 in that expressions may contain symbolic pa-
rameters that are not evaluated to values. Since symbolic parameters are
not evaluated, symbolic execution can be regarded as a partial evalua-
tion [Consel 93] of Erlang/Efsm expressions. For example, an expression
1 + 2 + p1, which contains the symbolic parameter p1, is evaluated as
much as possible to 3 + p1. The resulting expression, after symbolic exe-
cution, is an Erlang/Efsm normal form expression. Further, if the initial
expression contains a user defined function, then this user defined func-
tion is evaluated, using its definition, as much as possible. Intuitively,
Erlang/Efsm normal form expressions are Erlang/Efsm expressions that
may contain symbolic parameters, but not if and case expressions, calls
to user defined functions, and pattern matches.

The symbolic parameters of our symbolic semantics are either input ex-
pression parameters or configuration access functions. The values of these
parameters are not known during test case generation, and are therefore
treated symbolically. Different execution paths, resulting from different
outcomes of (explicit or implicit) tests generate different symbolic execu-
tions. For each symbolic execution, a path condition is generated, which is
the conditions, under which this particular execution can be performed;
path conditions may depend on symbolic parameters. For example, a
pattern match {0, u1, 2} = p2, where p2 is a symbolic parameter, succeeds
only if p2 has a value such that

is_tuple(p2) and size(p2) == 3,

and such that 0, u1 and 2 match corresponding elements in p2. In order
to represent such additional conditions, we extend the structural states
of Section 2.4 by an extra component, which is the condition on symbolic
parameters under which the structural state can be reached.

We define an Erlang/Efsm normal form expression, to be an expres-
sion which does not contain if and case expressions, calls to user defined
functions, pattern matches, and bindings of state variables. We use e to
range over normal form expressions. Let E be the domain of Erlang/Efsm
normal form expressions. A symbolic parameter is either

• an input expression parameter, i.e., a parameter pi in an input ex-
pression a(p1, . . . , pn) where a is an input event type, or

• a configuration parameter, i.e., an application f(e1, . . . en) of a con-
figuration access function f to Erlang/Efsm normal form expres-
sions e1, . . . en.

71

Note that a configuration parameter may depend on input expression
parameters. Thus, the value of a configuration parameter can be different
for different combinations of arguments.

Definition 2.5 A symbolic structural state is a tuple

⟨e, g, b, σ, ρ⟩

where
• e is an Erlang/Efsm expression,
• g is an Erlang/Efsm guard expression, which will not contain oc-

currences of local or global variables.
• b is a sequence of output expressions, each of which is of form

b(e1, . . . , en),

such that b ∈ Ab is an output event type and e1, . . . , en are Er-
lang/Efsm normal form expressions where each ej ∈ E,

• σ ∈ V → E is a global symbolic environment with bindings to the
global state variables V , and

• ρ ∈ U → E is a local symbolic environment with bindings to the
local variables U . □

An empty (local or global) environment is denoted • and the empty se-
quence is denoted ϵ. An initial symbolic structural state is the tuple

⟨a(p), true, ϵ, •, •⟩

where a(p) is an input expression, a ∈ Aa is an input event type, and
p ∈ U ∪D is a range of input expression parameters.

We always asssume a transition to start in a symbolic structural state
where we initially have an empty sequence of output expressions, and a
guard expression true. For brevity, we will write such a symbolic struc-
tural state, of form ⟨e, true, ϵ, σ, ρ⟩, as ⟨e, σ, ρ⟩.

A symbolic transition between two structural states

⟨e, σ, ρ⟩ ⇒
⟨

e, g, b, σ′, ρ′
⟩

denotes that the expression e is evaluated to an Erlang/Efsm normal form
expression e, in a global symbolic environment σ and local symbolic envi-
ronment ρ, under the condition g. The evaluation generates the sequence
b of output expressions, σ′ is the new global symbolic environment with
the collected bindings of state variables, and ρ′ is the new local symbolic
environment with the collected bindings of local variables.

Note that, in contrast to the non-symbolic operational semantics de-
fined in Section 2.4, a symbolic transition does not depend on any con-
figuration environment. Instead, the resulting guard expression g may

72

include constraints on configuration access functions that occur in the
symbolic transition. The symbolic transition then represents the set of
(non-symbolic transitions) that are performed in an environment which
satisfies the constraints in g.

The set of symbolic transitions is generated from symbolic transition
rules of form:

cond1, . . . , condm trans1, . . . , transn

⟨e, σ, ρ⟩ ⇒
⟨

e, g, b, σ′, ρ′
⟩

where cond1, . . . , condm are conditions on when the symbolic transition
rule can be applied, and trans1, . . . , transn are symbolic transitions on
which the symbolic transition rule depends. A symbolic transition rule is
enabled for an Erlang/Efsm expression e when all conditions are satisfied
and all the symbolic transitions exist.

In the following subsections, we provide the symbolic semantics. There-
after, in Section 2.8, we state and prove that the symbolic semantics is
faithful to the operational semantics of Section 2.4.

2.7.1 Pattern matching
We define the relation match (cp, e, ρ, g′, ρ′) in Figure 2.4 to denote a suc-
cessful pattern match between a pattern cp and an Erlang/Efsm normal
form expression e within a local symbolic environment ρ. In the case
of a successful pattern match, g′ holds additional conditions required
for matching, and ρ′ is the local symbolic environment updated with all
new bindings created when matching. The match relation is undefined
for all cp not matching e. The definition is a straightforward modifica-
tion of match (cp, d, ρ, ρ′) in Figure 2.3 where we additional use some
Erlang functions. The Erlang function element(k, Tuple) returns the
k:th element from tuple Tuple, hd(List) returns the first element in List,
tail(List) returns a list with all elements except the first element in List,
is_list(List) returns true if List is a list, is_tuple(Tuple) returns true
if Tuple is a tuple, and size(Tuple) returns the number of elements in
Tuple.

2.7.2 Transition Rules for Erlang/Efsm Expressions
Basic and Compond values
All expressions in Erlang/Efsm can be evaluated to basic or compound
values. In this section we give the symbolic transition rules for how
Erlang/Efsm expressions are evaluated to Erlang/Efsm normal form ex-
pressions. The evaluation to values can then later be accomplished by

73

d is a basic or compound value
match (d, d, ρ, true, ρ)

u is an anonymous local variable
match (u, e, ρ, true, ρ)

u is a local variable, defined in ρ

match (u, e, ρ, ρ(u) == e, ρ)

u is a local variable, not defined in ρ

match (u, e, ρ, true, ρ[u 7→ e])

match (cp1, element(1, e), ρ0, g1, ρ1)
...

match (cpn, element(n, e), ρn−1, gn, ρn)

match

{cp1, . . . , cpn}, e, ρ0,

is_tuple(e)

∧ size(e) == n

∧ g1 ∧ . . . ∧ gn

, ρn

match (cp1, hd(e1), ρ0, g1, ρ1) match (cp2, tail(e2), ρ1, gn, ρ2)

match ([cp1|cp2], e, ρ0, is_list(e) ∧ g1 ∧ g2, ρ2)

match (cp1, e1, ρ0, g1, ρ1) . . . match (cpn, en, ρn−1, gn, ρn)

match (cp, e, ρ0, g1 ∧ . . . ∧ gn, ρn)

Figure 2.4. Definition of the symbolic match (cp, e, ρ, g′, ρ′) relation for a pat-
tern match between a pattern cp and an Erlang/Efsm normal form expression
e. Initially we have a guard expression true and a local environment ρ. After
the pattern match we have a guard expression g′ and a local environment ρ′.
The guard expression g′ holds the conditions required for matching, and the
local environment ρ′ holds ρ and all additional bindings of local variables that
are generated by the matching.

74

assigning values to all symbolic parameters. As in the non-symbolic se-
mantics given in Section 2.4.2, basic and compound values are expressions
that evaluate to themselves. We also omit rules for records as these are
represented by tuples. Non-empty tuples and conses are evaluated by
first evaluating all sub-expressions in a left-to-right order.

⟨e1, σ0, ρ0⟩ ⇒ ⟨e1, g1, b1, σ1, ρ1⟩
...

⟨en, σn−1, ρn−1⟩ ⇒ ⟨en, gn, bn, σn, ρn⟩

⟨{e1, . . . , en}, σ0, ρ0⟩ ⇒ ⟨{e1, . . . , en}, g1 ∧ . . . ∧ gn, b0 . . . bn, σn, ρn⟩

⟨e1, σ0, ρ0⟩ ⇒ ⟨e1, g1, b1, σ1, ρ1⟩ ⟨e2, σ1, ρ1⟩ ⇒ ⟨e2, g2, b2, σ2, ρ2⟩

⟨[e1|e2], σ0, ρ0⟩ ⇒ ⟨[e1|e2], g1 ∧ g2, b1b2, σ2, ρ2⟩

Local and State variables
Local variables are distinguished from state variables and must not previ-
ously be defined in ρ. Local variables are bound to Erlang/Efsm normal
form expressions by pattern matching.

⟨e, σ, ρ⟩ ⇒ ⟨e, g, b, σ′, ρ′′⟩

match (cp, e, ρ′′, g′, ρ′)

⟨cp = e, σ, ρ⟩ ⇒ ⟨e, g ∧ g′, b, σ′, ρ′⟩

A state variable is bound to a value by first evaluating an expression and
then the global environment is updated with the result.

v ∈ V ⟨e, σ, ρ⟩ ⇒ ⟨e, g, b, σ′, ρ′⟩

⟨v = e, σ, ρ⟩ ⇒ ⟨true, g, b, σ′[v 7→ e], ρ′⟩

All variables must be bound to an Erlang/Efsm normal form expression
before they are used; the value of a state variable is found in the global
symbolic environment, σ, and the value of a local variable is found in the
local symbolic environment, ρ. A local variable has precedence over a
global variable with the same name.

v is defined in σ

⟨v, σ, ρ⟩ ⇒ ⟨σ(v), true, ϵ, σ, ρ⟩

u is defined in ρ

⟨v, σ, ρ⟩ ⇒ ⟨ρ(u), true, ϵ, σ, ρ⟩

Built-in functions
All arithmetic expressions, type declarations and relative, logical opera-
tors and guard expressions are handled in the same way. For example,

75

the transition rule for the logical operator disjunction is

⟨e1, σ0, ρ0⟩ ⇒ ⟨e1, g1, b1, σ1, ρ1⟩
...

⟨en, σn−1, ρn−1⟩ ⇒ ⟨en, gn, bn, σn, ρn⟩

⟨ or (e1, . . . ,en), σ0, ρ0⟩ ⇒ ⟨ or (e1, . . . ,en), g, b1 . . . bn, σn, ρn⟩

where g = g1 ∧ . . . ∧ gn.
A sequence expression simply evaluates to the value of the last clause

expression in the sequence.

⟨ce0, σ, ρ⟩ ⇒ ⟨e0, g0, b0, σ
′′, ρ′′⟩ ⟨ce1, σ

′′, ρ′′⟩ ⇒ ⟨e1, g1, b1, σ
′, ρ′⟩

⟨(ce0,ce1) , σ, ρ⟩ ⇒ ⟨(e0,e1) , g0 ∧ g1, b0b1, σ
′, ρ′⟩

If Expressions
An if expression is a sequential choice construct such that the evaluation
proceeds with the first clause expression cei for which the corresponding
guard expression gi is evaluated to true. If several gi are evaluated to true,
the first one is chosen. Since each g′i may contain symbolic parameters,
the index i of the taken clause may not be calculated during symbolic
execution. Thus, the conditions for evaluation order implies that nega-
tions of all clauses to 1, . . . , i − 1 must be added to the resulting guard
expression. Further note that since guard expressions have a restricted
syntax, their symbolic evaluation will not generate any guard expressions
as the second component of the symbolic structural state: this simplifies
the following rule.

⟨g1, σ, ρ⟩ ⇒ ⟨g′1, true, ϵ, σ, ρ⟩
...

⟨gi, σ, ρ⟩ ⇒ ⟨g′i, true, ϵ, σ, ρ⟩

⟨cei, σ, ρ⟩ ⇒ ⟨e, g′′, b, σ′, ρ′⟩

⟨

if

g1 -> ce1;
...

gn -> cen
end

, σ, ρ

⟩

⇒ ⟨e,¬g′1 ∧ . . . ∧ ¬g′i−1 ∧ gi ∧ g′′, b, σ′, ρ′⟩

Case Expressions
The case expression is somewhat complicated to handle, since the choice
of executed clause depends on both that a pattern matches and that a
guard evalutes to true. This choice may furthermore depend on symbolic

76

parameters, implying that we cannot uniquely determine the index i of the
chosen clause. When evaluating a case expression, first an expression e is
evaluated to an Erlang/Efsm normal form expression ee. In a left-to-right
order, ee is then matched against patterns cpj , and if the match succeeds
the guard expression gj is evaluated. This combination of matches and
guards may be unsuccessful for a number of clauses, until an i is found
for which cpi and ee match and the guard expression gi evaluates to true,
allowing to evaluate the corresponding clause cei. Similary as with if
expressions, since ge, g′i and g′′i may contain symbolic parameters, i may
not be uniquely determined and additional conditions must be added to
the resulting guard expression.

⟨e, σ, ρ⟩ ⇒ ⟨ee, ge, b1, σ
′, ρ′⟩

1 ≤ i ≤ n

∀j such that 1 ≤ j < i :

if there are no g′j , ρ′′j s.t. match
(

cpj , e
e, ρ′, g′j , ρ

′′
j

)

then let g′j , g′′j , be false

else let g′j , ρ′′j , g′′j be s.t.
match

(

cpj , e
e, ρ′, g′j , ρ

′′
j

)

and ⟨gj , σ
′, ρ′′j ⟩ ⇒ ⟨g′′j , true, ϵ, σ

′, ρ′′j ⟩

match (cpi, e
e, ρ′, g′i, ρ

′′
i)

⟨gi, σ
′, ρ′′i ⟩ ⇒ ⟨g′′i , true, ϵ, σ

′, ρ′′i ⟩

⟨cei, σ
′, ρ′′i ⟩ ⇒ ⟨e, g′′′, b2, σ

′′, ρ′′′⟩

g = ge ∧ ¬(g′1 ∧ g′′1) ∧ . . . ∧ ¬(g′i−1 ∧ g′′i−1) ∧ (g′i ∧ g′′i) ∧ g′′′

⟨

case e of

cp1 when g1 -> ce1;
...

cpn when gn -> cen
end

, σ, ρ

⟩

⇒ ⟨e, g, b1b2, σ
′′, ρ′′′⟩

To understand that this rule accurately reflects the non-symbolic rule,
note that in the symbolic semantics there is, for each j, at most one combi-
nation of guard g′j and environmnet ρ′′j for which match

(

cpj , e
e, ρ′, g′j , ρ

′′
j

)

,
and furthermore that the guard g′′j in the else branch of the rule is uniquely
determined by gj .

77

User Defined Functions
A call to a user defined function f(e1, . . . ,em), defined by the Erlang/Efsm
clauses

f(cp11, . . . ,cp1m) when g1 -> ce1;
...

f(cpn1, . . . ,cpnm) when gn -> cen.
is evaluated in a similar way as a case expression. The main difference
is that the matching in each clause is performed between two tuples of
expressions. Otherwise, the selection of clause to evaluate is analogous to
that for a case expression, and the rule is analogous.

∀k such that 1 ≤ k ≤ m : ⟨ek, σk−1, ρk−1⟩ ⇒ ⟨ek, g
e
k, bk, σk, ρk⟩

1 ≤ i ≤ n

∀j such that 1 ≤ j < i :

if there are no g′j , ρ′′j s.t. match
(

cpj , ⟨e1, . . . , em⟩, ρ′, g′j , ρ
′′
j

)

then let g′j , g′′j , be false

else let g′j , ρ′′j , g′′j be s.t.
match

(

cpj , e, ρ
′, g′j , ρ

′′
j

)

and ⟨gj , σ
′, ρ′′j ⟩ ⇒ ⟨g′′j , true, ϵ, σ

′, ρ′′j ⟩

match (cpi, e, ρ
′, g′i, ρ

′′
i)

⟨gi, σ
′, ρ′′i ⟩ ⇒ ⟨g′′i , true, ϵ, σ

′, ρ′′i ⟩

⟨cei, σ
′, ρ′′i ⟩ ⇒ ⟨e, g′′′, b, σ′′, ρ′′′⟩

g = ge1 ∧ . . . ∧ gem ∧ ¬(g′1 ∧ g′′1) ∧ . . . ∧ ¬(g′i−1 ∧ g′′i−1) ∧ (g′i ∧ g′′i) ∧ g′′′

⟨f(e1, . . . ,em), σ0, ρ0⟩ ⇒ ⟨e, g, b1 · · · bm b, σ′, ρ′′′⟩

Configuration Access Functions
A call to a configuration access function f(e1, . . . ,em) to access con-
stant configuration data, is evaluated simply by evaluating all arguments
e1, . . . , em to e1, . . . , em. This results in the application of a configuration
access function to Erlang normal form expressions, which is a symbolic
parameter that is not evaluated further.

f ∈ C

⟨e1, σ0, ρ0⟩ ⇒ ⟨e1, g1, b1, σ1, ρ1⟩
...

⟨em, σm−1, ρm−1⟩ ⇒ ⟨em, gm, bm, σm, ρm⟩

⟨f(e1, . . . em), σ0, ρ0⟩ ⇒ ⟨f(e1, . . . em), g1 ∧ . . . ∧ gm, b1 · · · bm, σm, ρm⟩

Output Expressions
A call to an output expression f(e1, . . . ,em) where the name, f , is an out-
put event type, is evaluated by first evaluating all arguments e1, . . . , em

78

to e1, . . . , em.

f ∈ Ab

⟨e1, σ0, ρ0⟩ ⇒ ⟨e1, g1, b1, σ1, ρ1⟩
...

⟨em, σm−1, ρm−1⟩ ⇒ ⟨em, gm, bm, σm, ρm⟩

g = g1 ∧ . . . ∧ gm

⟨f(e1, . . . ,em), σ0, ρ0⟩ ⇒ ⟨true, g, b1 · · · bm f(e1, . . . em), σm, ρm⟩

2.8 Correspondence Between non-Symbolic and
Symbolic Semantics

In this section, we make the relationship between the symbolic semantics
and the original operational semantics more precise. For notational clar-
ity, we will in this section use σs and ρs for symbolic (global and local)
environments.

Recall that the (non-symbolic) operational semantics defines transi-
tions of the form ⟨e, σ, ρ⟩ ⇒

⟨

d, b, σ′, ρ′
⟩

, while the symbolic operational
semantics defines transitions of the form ⟨es, σs, ρs⟩ ⇒

⟨

e, g, b, σ′
s, ρ

′
s

⟩

,
where the environments σs and ρs (and σ′

s and ρ′s) bind variables to nor-
mal form expressions rather than values, and where e and b are normal
form expressions. Normal form expressions may contain uninstantiated
symbolic parameters (input expression parameters or applications of con-
figuration access functions).

In order to relate normal form expressions to values, we must introduce
mappings from symbolic parameters to values. We have already intro-
duced configuration environments that map the set C of configuration
access function names to functions. We must also introduce environ-
ments for input expression parameters. We therefore extend the concept
of configuration environment to that of parameter environment. A pa-
rameter environment Γ is a mapping from input expression parameters
to Erlang values and from C to functions. For a parameter environment
Γ, let ∆Γ denote its restriction fo C. For a guard expression g which con-
tains no local or global variables (but may contain symbolic parameters),
we write Γ ⊢ g to denote that g evaluates to true in the environment Γ.
This relationship can also be expressed using the operational semantics
of Section 2.4, as ∆Γ |= ⟨•, •⟩ ⊢ Γ(g).

We can now define a correspondence between (non-symbolic) and sym-
bolic structural states. This will be embodied by a correspondence rela-
tion ◁Γ, which is parameterized on a parameter environment Γ.

Definition 2.6 For two Erlang/Efsm expressions e and es, where es may
contain input expression parameters, but e does not, let e ◁Γ es denote

79

that e can be obtained from es by a sequence of replacements of the
following three types:

1. replacing an input expression parameter p by Γ(p),
2. replacing an application f(d1, . . . dm) of a configuration access func-

tion f to Erlang values d1, . . . dm by its result Γ(f)(d1, . . . dm) un-
der Γ, and

3. replacing an application of a built-in function to Erlang values by
its resulting value. □

For a (non-symbolic) environment ρ and a symbolic environment ρs, let
ρ ◁Γ ρs denote that ρ and ρs have the same domain, and that ρ(u) ◁Γ

ρs(u) for all u in this domain. For a structural state
⟨

e, b, σ, ρ
⟩

, a symbolic
structural state

⟨

es, g, b, σs, ρs
⟩

, and a parameter environment Γ, let
⟨

e, b, σ, ρ
⟩

◁Γ

⟨

es, g, b, σs, ρs
⟩

denote that Γ ⊢ g, that e ◁Γ es, and b ◁Γ b, and σ ◁Γ σs, and that
ρ ◁Γ ρs. Recall that the condition g does not contain any global or local
variables.

We should now establish that the symbolic operational semantics is
faithful to the (non-symbolic) operational semantics. This correspon-
dence is formulated in the following proposition.

Proposition 2.7 Assume that ⟨e, ϵ, σ, ρ⟩ ◁Γ ⟨es, true, ϵ, σs, ρs⟩. Then
(i) for each transition ∆Γ |= ⟨e, σ, ρ⟩ ⇒

⟨

d, b, σ′, ρ′
⟩

there is a symbolic
transition ⟨es, σs, ρs⟩ ⇒

⟨

e, g, b, σ′
s, ρ

′
s

⟩

such that
⟨

d, b, σ′, ρ′
⟩

◁Γ
⟨

e, g, b, σ′
s, ρ

′
s

⟩

,
(ii) for each symbolic transition ⟨es, σs, ρs⟩ ⇒

⟨

e, g, b, σ′
s, ρ

′
s

⟩

such that
Γ ⊢ g, there is a transition ∆Γ |= ⟨e, σ, ρ⟩ ⇒

⟨

d, b, σ′, ρ′
⟩

such that
⟨

d, b, σ′, ρ′
⟩

◁Γ

⟨

e, g, b, σ′
s, ρ

′
s

⟩

. □

Intuitively, Proposition 2.7 says that the non-symbolic and the symbolic
operational semantics have a rather tight correspondence. Property (i)
states that each transition in the non-symbolic semantics has a corre-
sponding transition in the symbolic semantics, and Property (ii) states
that each transition in the symbolic semantics, which is consistent with
the parameter environment in the sense that g is satisfied, has a corre-
sponding transition in the non-symbolic semantics.
Proof of Proposition 2.7: Proposition 2.7 is established by structural in-
duction, thereby establishing a corresponding relationship between con-
crete and symbolic operational semantics for each construct considered
by the semantics. For most constructs, this is rather straight-forward.

For Pattern matching, the relationship must be slightly reformulated
as follows. Assume that cp ◁Γ cps and ρ ◁Γ ρs. Then

80

(i) whenever match (cp, d, ρ, ρ′) then match (cps, e, ρs, g
′, ρ′s) where Γ ⊢

g′, and d ◁Γ e, and ρ′ ◁Γ ρ′s,
(ii) whenever match (cps, e, ρs, g

′, ρ′s) with Γ ⊢ g′, then match (cp, d, ρ, ρ′)
where d ◁Γ e, and ρ′ ◁Γ ρ′s.

Other constructs are treated in a similar way. Let us consider a complex
case: that of case expressions. Consider a case expression of form

case e of

cp1 when g1 -> ce1;
...

cpn when gn -> cen
end

and the transition rules in the non-symbolic operational semantics of Sec-
tion 2.4 and in the symbolic semantics of Section 2.7.

We first consider Property (i) of the proposition. By induction, we
can assume that the non-symbolic and symbolic evaluation of the expres-
sion e results in structural states ⟨d, b1, σ′′, ρ′′⟩ and ⟨ee, ge, b1, σ

′
s, ρ

′
s⟩ such

that ⟨d, b1, σ
′′, ρ′′⟩ ◁Γ ⟨ee, ge, b1, σ

′
s, ρ

′
s⟩. By the inductive hypothesis, it

follows that if match (cpj , d, ρ
′′, ρt), then there is g′j and ρ′′s j such that

match
(

cpj , e
e, ρ′s, g

′
j , ρ

′′
s j

)

and ρt ◁Γ ρ′′s j . But now, from ⟨σ′′, ρt⟩ ̸⊢ gj ,
and σ′′ ◁Γ σ′

s, and ρt ◁Γ ρ′′s j , we infer by the inductive hypothesis,
that ⟨gj , σ

′
s, ρ

′′
s j⟩ ⇒ ⟨g′′j , true, ϵ, σ

′
s, ρ

′′
s j⟩ such that Γ ̸⊢ g′′j , using the

property that gj has the simple form of a guard expression and can
be evaluated in only one way. This establishes that there is a sym-
bolic transition, which evaluates the same branch as the non-symbolic
one. We can then again use the structural induction to infer that from
match (cpi, d, ρ

′′, ρ′′′), ⟨σ′′, ρ′′′⟩ ⊢ gi, and ⟨cei, σ
′′, ρ′′′⟩ ⇒ ⟨d, b2, σ

′, ρ′⟩, we
can obtain match (cpi, e

e, ρ′s, g
′
i, ρ

′′
s i), ⟨gi, σ′

s, ρ
′′
s i⟩ ⇒ ⟨g′′i , true, ϵ, σ

′
s, ρ

′′
s i⟩,

and ⟨cei, σ
′
s, ρ

′′
s i⟩ ⇒ ⟨e, g′′′, b2, σ

′′
s , ρ

′′′
s ⟩ such that

⟨d, b2, σ
′, ρ′⟩ ◁Γ ⟨e, g′′′, b2, σ

′′
s , ρ

′′′
s ⟩.

Property (ii) is established using a similar structural induction. □

2.9 Symbolic Runs and Test Cases
We can now define a symbolic version of the computation step-based
semantics defined by an Erlang/Efsm specification, in analogy with the
definitions in Section 2.5. Define a symbolic state to be a tuple ⟨l, σ,G⟩,
where l ∈ L is a location, σ is a symbolic environment with bindings to the
state variables, and G is a boolean expression over symbolic parameters.

81

We will sometimes refer to G as a path condition. The initial symbolic
state is the tuple ⟨l0, •, true⟩ where l0 is the initial location in the EFSM
and • is the empty environment.

Definition 2.8 A symbolic computation step of the state machine is of
form

⟨l, σ,G⟩
a(p)/b
→ ⟨l′, σ′, G′⟩,

where
• ⟨l, σ,G⟩ is a symbolic state over a set of symbolic parameters disjoint

from p,
• a(p) is an input expression,
• b is a sequence of output expressions,

such that, considering l as a user defined function,

⟨l(a,p1, . . . ,pn), σ, •⟩ ⇒ ⟨{next_state,l′}, g, b, σ′, ρ⟩

holds, where p = p1, . . . ,pn, and where G′ is G ∧ g. □

Define a symbolic run of an EFSM to be a sequence of symbolic com-
putation steps

⟨l0, •, true⟩
a1(p1)/b1
−→ ⟨l1, σ1, G1⟩

a2(p2)/b2
−→ · · ·

an(pn)/bn

−→ ⟨ln, σn, Gn⟩

starting in the initial symbolic state. A symbolic trace of an EFSM is the
finite sequence

a1(p1)/b1 a2(p2)/b2 · · · an(pn)/bn

of pairs, each consisting of an input expression and a sequence of output
expressions, that label such a symbolic run of the EFSM. Note that each
output expression may depend on symbolic parameters, which are either
preceding input expression parameters or applications of configuration
access functions. We sometimes say that the symbolic run is a symbolic
run over the symbolic trace induced by the run.

Definition 2.9 A symbolic test case is a tuple ⟨w,G⟩, where w is a sym-
bolic trace and G is a path condition over the symbolic parameters of w.

□

We can now extend the correspondence between non-symbolic and sym-
bolic semantics from Section 2.8 to states and symbolic states.

For a parameter environment Γ, let ⟨l, σ⟩ ◁Γ ⟨l, σs, G⟩ denote that
Γ ⊢ G and σ ◁Γ σs. Then, using Proposition 2.7, we can derive a
correspondence between nonsymbolic and symbolic computation steps of
an EFSM, formulated in the following proposition.

82

Proposition 2.10 Let ⟨l, σ⟩ ◁Γ ⟨l, σs, G⟩ for some parameter environ-
ment Γ. Then

(i) whenever ⟨l, σ⟩ a(d)/b
−→ ⟨l′, σ′⟩ and d = Γ(p), then there is a symbolic

computation step ⟨l, σ,G⟩
a(p)/b
→ ⟨l′, σ′, G′⟩ such that b ◁Γ b and

⟨l′, σ′⟩ ◁Γ ⟨l′, σ′
s, G

′⟩,
(ii) whenever ⟨l, σ,G⟩

a(p)/b
→ ⟨l′, σ′, G′⟩ and Γ ⊢ G′, then there is a

computation step ⟨l, σ⟩
a(d)/b
−→ ⟨l′, σ′⟩ such that d = Γ(p) and b ◁Γ b,

and ⟨l′, σ′⟩ ◁Γ ⟨l′, σ′
s, G

′⟩. □

Proposition 2.10 follows rather straight-forwardly from Proposition 2.7
and the definitions of non-symbolic and symbolic computation steps.

2.10 Defining and Normalizing Edge Clauses
An Erlang/Efsm specification of a SUT may be structured in many ways.
In particular, there are many ways to structure transition clauses. For
instance, transition clauses for the same location and input event type
can either be separate, using different guards, or joined by means of if
or case expressions. Such differences make it difficult to define what it
means for a test suite to cover the “edges” of a specification. To allow for
a more robust definitin of “edge”, we therefore define how to transform
the transition clauses of a specification into a set of transition clauses
on a restricted form, called edge clauses. This transformation uses the
symbolic semantics. It amounts to deriving the edges in the state machine
of Figure 1.2 (from the example in Section 1.3) from the Erlang/Efsm
specification of Figure 2.2 (from the example in Section 2.2).

Whenever the symbolic semantics generates a transition of form

⟨l(a,p1, . . . ,pm), σ, •⟩ ⇒ ⟨{next_state,l′}, g, b, σ′, ρ⟩,

we can represent this as an edge clause of form

l(ak0,uk1, . . . ,ukm) when g′k -> vk = ek, bk, {next_state,l′}

where l is the location from which the edge originate, and for each clause
with index k, for k = 1, . . . , n,

• ak0 is an input event type,
• uk1, . . . ,ukm are local variables that represent formal parameters

to an input expression with arity m,
• g′k is a guard expression,
• vk = ek are bindings to state variables,
• bk is a sequence of output expressions, and

83

• {next_state,l′} is a tuple which represents a transition to the next
location l′ (which may be l).

It can be noted that this alternative representation of the state machine
share similarities with e.g., Dijkstras guarded commands [Dijkstra 75] in
the sense that each edge simply consists of a boolean guard and a sequence
of simple commands, such as state variable bindings and output events.

In order to further uniformize the representation of transition clauses
in an Erlang/Efsm specification, we also define a transformation on edge
clauses, which normalizes them by combining edge clauses with the same
effect, but with potentially different guards.

Assume a set of Erlang/Efsm edge clauses

l(a10,u11, . . . ,u1m) when g1 -> v1 = e1, b1, {next_state,l′}
...

l(an0,un1, . . . ,unm) when gn -> vn = en, bn, {next_state,l′}

representing edges from location l to location l′ when triggered by an
input event a(d1, . . . , dm). Now, if all (or any subset) of these edge clauses
have the same bindings to state variables (i.e., v1 = e1, . . . , vn = en are
all equal to v = e), and the same output expressions (i.e., b1, . . . , bn are
all equal to b), they can be merged into a single edge clause, i.e.,

l(a,u1, . . . ,um) when g1∨, . . . ,∨gn -> v = e, b, {next_state,l′}

If such a merge is possible, it limits the number of edge clauses and
therefore also possibly the number of test cases selected for inclusion
in a test suite. We will refer to a specification where all Erlang/Efsm
edge clauses are normalized as a normalized specification and the original
specification, as it was written, as the original specification. See also the
evaluation in Section 8.1 for some results and a discussion on normalizing
a specification.

2.11 Creating an executable specification
The main purpose for creating an Erlang/Efsm specification is for gen-
erating test suites. In addition, an Erlang/Efsm specification rewritten
into an executable Erlang module, can be used for simulation of the
specification or as a basis for an implementation of the specification. In
the Erly Marsh tool, we have implemented automated translation of an
Erlang/Efsm specification into an Erlang module, see also Section 6.1.
The resulting Erlang module utilizes the popular gen_fsm behavior in
Erlang/Otp [Erl 15], The translation of an Erlang/Efsm specification
into an Erlang gen_fsm module is rather straightforward and summarized

84

in the rest of this section where we use the Erlang/Efsm specification in
Example 2.1 as a running example, the resulting Erlang module can be
found in Figure 2.5.

2.11.1 The gen_fsm behavior in Erlang/Otp
To simplify implementing state machines in Erlang, Erlang/Otp has
support for the gen_fsm behavior. This behavior allow to create Erlang
processes that realize a given state machine in a call-back module follow-
ing certain rules. In particular the call-back module needs to export a
function

• init/1 called whenever the process is started,
• terminate/1 called whenever the process is terminated, and
• one function for each location in the state machine, called whenever

the state machine is in that location and a gen_fsm tagged Erlang
message is sent to the Erlang process.

In Erlang, processes are started and stopped dynamically. To use
the gen_fsm behavior, an Erlang process can be started with a call to
gen_fsm:start_link/3, which in turn will call init/1 to initialize the
process. After initialization, gen_fsm tagged messages can be sent to the
Erlang process with calls to gen_fsm:send_event/2 (for asynchronous
coomunication), which in turn will call a function sharing the name of
the current location. A state transition to a location otherloc is then
possible whenever the incoming Erlang message matches the arguments
of the call-back function in the current location and this function returns
a tuple of form {next_state,otherloc,State} where State contains the
values of all state variables passed to the next state, typically represented
as a record.

A running Erlang process is terminated by letting the call-back func-
tion used for state transitions return a tuple {stop,Reason,State}, where
Reason is the reason for termination. The gen_fsm behavior further im-
plements support for two different communication models; synchronous
in which the calling party is waiting for a response before continuing ex-
ecution, and asynchronous in which the calling party is not waiting for a
response before continuing execution.

2.11.2 Creating an executable Erlang module
To create an executable Erlang module, utilizing the gen_fsm behavior
we start with a number of mandatory declarations.
%% -- Test module begin --
-module(test_erlsrc).
-behaviour(gen_fsm).

85

-export([start_link/0,init/1,terminate/1]).

Here we give the Erlang module the name test_erlsrc and export func-
tions to start and terminate an Erlang process. We also need to export a
function for each location in the specification. In Section 2.3.2, three types
of locations were distinguished in the locations declaration; startloc as
the start location, stoplocs as the stop locations and otherlocs as all other
locations. From Example 2.1 we have

-locations({morning,[end_of_day],
[workUU, workMA, preschool]}).

and, as we are interested in asynchronous communication here, we create
declarations of the locations as functions with 2 arguments.

-export([morning/2, workUU/2, workMA/2, preschool/2]).

Note that the stop location end_of_day is not exported. This is due to
that at the stop location the execution of a run of the EFSM is sup-
posed to stop and a way to achieve this is to simply restart the pro-
cess. We do this by replace any transition to the stop location with
a request to stop the process (by letting the call-back function return
e.g., {stop,normal,State}. Then, we assume the process to be supervised
by a supervisor (feature of Erlang/Otp) that immediately restarts the
process.

State variables
With the special treatment of state variables as global variables in Er-
lang/Efsm all (guard) expressions with a state variable need to be rewrit-
ten. We let state variables be stored in a record in the resulting Erlang
module. The record declarations in Erlang/Efsm use Erlang syntax and
can be declared as is. But we also define an additional record to hold all
state variables. The name of this record must not conflict with any other
record definition in the Erlang/Efsm specification. Here we will use a
record state to hold the state variables.

-record(state, {'Progress','Stamina','Day'}).

where we define each field in the record with the same name as a cor-
responding state variable. Thus, usage of a state variable is rewritten
to access of a field in the state record. For example, usage of a state
variable Progress can be rewritten to Tmp0#state.'Progress'.

In Erlang/Efsm the old value of a state variable is destructively de-
stroyed when assigned a new value. This is not possible in Erlang and
we must therefore use temporary variables, with unique names, to keep
intermediate values. For example,

Progress=Progress+1

86

is rewritten to

Tmp1=Tmp0#state{'Progress'=Tmp0#state.'Progress'+1}

where Tmp1 is a new temporary variable holding the updated state record.
When translating an Erlang/Efsm transition clause, the last update of
a state variable is translated to a temporary variable holding the state
record returned by the call-back function.

In Erlang/Efsm state variables can be used and bound in user defined
functions. This is handled by adding an additional argument to all user
defined functions, holding the state record, and let the return value al-
ways include an updated state record.

Input events
The gen_fsm call-back functions are created from Erlang/Efsm transition
clauses. The first argument, representing an incoming event, is created by
creating a tuple of the input event type and all parameters associated with
the input event. The second argument represents the current values of the
state variables. In this way all transition clauses, for all input events that
can occur at a location, are represented by a single call-back function. If
multiple sets of transition clauses are defined at a location with the same
arity, they are simply concatenated with a semicolon. All expressions of
each transition clause must then be examined for any occurrence of a
configuration access function, output event, or binding or usage of a state
variable. If such an expression is found a rewrite is necessary as further
explained in Section 2.11.2 and Section 2.11.2. For example,

morning(wakeup,TDay) ->
Progress=0,
Stamina=2,
Day=TDay,
if

daytype(Day)==collect ->
checkout(Day),
{next_state,workUU};

daytype(Day)==leave ->
{next_state,preschool}

end.

is rewritten to

morning({wakeup,TDay},Tmp0) ->
Tmp1=Tmp0#state{'Day'=TDay,'Stamina'=2,'Progress'=0},
Tmp2=Tmp1#state.'Day',
case exampleIF_proto:daytype(Tmp2) of

Tempdaytype0 when Tempdaytype0 == collect ->

87

exampleIF_proto:checkout(Tmp2),
{next_state, workUU, Tmp1};

Tempdaytype0 when Tempdaytype0 == leave ->
{next_state, preschool, Tmp1}

end.

where Tmp0 is an Erlang variable holding the state record, checkout(Day)
is an output event, Progress, Stamina and Day are state variables, and
daytype(Day) is a configuration access function.

Output events and configuration access functions
Configuration access functions and output events are not further defined
by the Erlang/Efsm specification. Instead we assume some other Er-
lang module (e.g., testIF) to implement these functions. To access
the implementation, each output event outevent(Arg1) is rewritten to
testIF:outevent(Arg1).

Predicates that can be used in guards in Erlang are restricted to a
well-defined set that cannot be extended. Thus, whenever we want to use
a configuration access function in a guard it must be rewritten as a case
expression such that the value can be assigned to a unique temporary
variable and the guard rewritten as a legal Erlang guard expression. For
example, if config(Arg1) is a configuration access function then

loc(inevent,Arg1) when config(Arg1)==some_thing ->
{next_loc,done};

loc(inevent,Arg1) when config(Arg1)==other_thing ->
{next_loc,otherloc}.

is rewritten to

loc({inevent, Arg1}, State) ->
case testIF:config(Arg1) of

Tempconf0 when Tempconf0 == some_thing ->
{stop, normal, State};

Tempconf0 when Tempconf0 == other_thing ->
{next_state, otherloc, State}

end.

where loc is a stop location and Tempconf0 a new temporary variable.

Erlang process management
After all transition clauses have been processed we add functions for han-
dling starting and stopping an Erlang process. To start a new process
we define start_link/0 as

start_link() -> gen_fsm:start_link(test_erlsrc, [], []).

88

where the first argument specifies the name of the call-back module, the
second argument is the argument forwarded to the call-back used for
initialization of the created process, and the third argument is a list of
options (i.e., no options here). The init function is called when the Erlang
process is initialized and is here declared as

init([]) -> {ok, morning, #state{}}.

where the initial location is set to morning and the state record is The
initial state data of the gen_fsm. Finally, we need to add the call-back
function terminate/3.

terminate(_Reason, _StateName, _StateData) -> ok.

The call-back function is mandatory and used when an Erlang process
is terminated, but here it do nothing

For sending an input event, e.g., wakeup(TDay), to a running Erlang
process implemented as in Example 2.1 we do

gen_fsm:send_event(Pid, {wakeup, TDay}).

where Pid is the process identifier as returned by start_link/0.
In the example, the declarations of the user defined types found in the

original Erlang/Efsm specification have been excluded. This is typically
what is desired if the purpose of the rewriting is to form the basis for an
implementation as, in general, the type declarations used on the abstract
level in the specification does not apply. If the purpose of the translation
is to execute the specification, these type declarations can be kept, as is,
from the Erlang/Efsm specification.

89

-module(test_erlsrc).
-behaviour(gen_fsm).
-export([start_link/0,init/1,terminate/3]).
-export([morning/2, workUU/2, workMA/2, preschool/2]).
-record(state, {'Progress','Stamina','Day'}).

morning({wakeup, TDay}, Tmp0) ->
Tmp1=Tmp0#state{'Day'=TDay,'Stamina'=2,'Progress'=0},
Tmp2=Tmp1#state.'Day',
case exampleIF_proto:daytype(Tmp2) of

Tempdaytype0 when Tempdaytype0 == collect ->
exampleIF_proto:checkout(Tmp2),
{next_state, workUU, Tmp1};

Tempdaytype0 when Tempdaytype0 == leave ->
{next_state, preschool, Tmp1}

end.

workUU({progress, X}, Tmp0) when is_integer(X) ->
Tmp1 = Tmp0#state{'Progress'=Tmp0#state.'Progress' + X},
if Tmp1#state.'Progress' >= 8 ->

exampleIF_proto:checkin(Tmp1#state.'Day'),
{stop,normal,Tmp1};

true -> {next_state, workUU, Tmp1}
end;

workUU({incident, I}, Tmp0) ->
Tmp1=Tmp0#state{'Stamina'=Tmp0#state.'Stamina' - 1},
exampleIF_proto:checkin(Tmp1#state.'Day'),
if (Tmp1#state.'Stamina'=<0) or (I==pernilla_call) -> {stop,normal,Tmp1};

I==bug -> {next_state, workMA, Tmp1};
I==kids_notok -> testIF:checkin(Tmp1#state.'Day'),

{next_state, preschool, Tmp1}
end.

workMA({progress, X}, Tmp0) when is_integer(X) ->
Tmp1 = Tmp0#state{'Progress'=Tmp0#state.'Progress' + X},
if Tmp1#state.'Progress' >= 8 -> {stop,normal,Tmp1};

true -> {next_state, workMA, Tmp1}
end.

preschool({incident, I}, Tmp0) ->
Tmp1 = Tmp0#state{'Stamina'=Tmp0#state.'Stamina' - 1},
if (Tmp1#state.'Stamina'=<0) or (I==kids_notok) -> {stop,normal,Tmp1};

I==kids_happy -> exampleIF_proto:checkout(Tmp1#state.'Day'),
{next_state, workUU, Tmp0}

end.

init([]) -> {ok, morning, #state{}}.
start_link() -> gen_fsm:start_link(test_erlsrc, [], []).
terminate(_Reason, _StateName, _StateData) -> ok.

Figure 2.5. An Erlang/Otp gen_fsm implementation of the Erlang/Efsm spec-
ification from Example 2.1.

90

3. Specifying test case selection

In this chapter, we present a technique for specifying test case selection
in a simple and flexible manner.

In the previous chapter, we introduced Erlang/Efsm, a specification
language for modeling systems under test as extended finite state ma-
chines (EFSMs). Test cases can be extracted from runs of such EFSMs.
Since models of realistic systems typically give rise to a very large num-
ber of possible test cases, this poses the problem of how to select test
cases to form test suites. A common way to address this problem is to
define coverage criteria. These can be seen as desirable properties of test
suites that are generated from the formal specification, which force the
test suite to exercise different aspects of the specification. For specifica-
tions of SUTs as state machines, classical examples of coverage criteria
include coverage of all locations, coverage of all transitions, and coverage
of all definition-use pairs. Various other criteria for test suites, such as
test purposes [Fernandez 97, Rusu 00], or criteria that focus on individual
state variables or components of control flow [Friedman 02], can also be
seen as coverage criteria.

Different coverage criteria are suitable in different situations, and satisfy
different constraints on fault detection capability, cost, information about
where potential faults may be located, etc. Thus, it is highly desirable
that a test generation tool is able to generate test suites in a flexible
manner, for a wide variety of different coverage criteria. In other words,
a test generation tool should accept a simple specification of a coverage
criterion, given in a language that can easily specify a large set of coverage
criteria, and be able to generate test suites accordingly.

In our technique, a coverage criterion is given as a set of coverage items.
Each coverage item represents a certain property of a test case. Recall
that a test case can be seen as a sequence of input and output events
generated by traversing the EFSM in a certain way. A coverage item is
thus a property of such a traversal. For instance, a coverage item can
state that a particular state, edge, or combination thereof, should be
visited during the traversal, it can also be an explicit test purpose, etc.
Using techniques from model checking and run-time monitoring [Vardi 86,
Havelund 02], we can specify a coverage item by an automaton, which
we call an observer, which observes the execution of a test case, and
reports acceptance when the test case has covered the coverage item that
it specifies. For instance, a coverage item stating that a control state

91

l of an EFSM model should be visited simply observes how the EFSM
executes and reports acceptance when it enters l.

A typical coverage criterion is given as a (often rather large) set of
coverage items. An important mechanism to facilitate specification of
many coverage criteria is to allow parameterization of observers. In this
way, one can specify a set of coverage items parameterized over, e.g.,
control states, data variables, edges, etc. of the EFSM model. Using
this simple and general mechanism, we can specify most of the coverage
criteria that have been used in the literature, and also tailor coverage to
specific features of a particular SUT. For instance, if a particular interface
is very error prone, we can specify a coverage criterion which requires all
possible interleavings of interactions on that interface to be exhibited in
a test suite.

In Chapter 4, we give examples on how several commonly used cover-
age criteria can be defined using observers, and in Chapter 5 we present
techniques for generating test suites from Erlang/Efsm models extended
with observers.

This chapter is organized as follows. Section 3.1 gives an informal in-
troduction to observers. Section 3.2 introduces Erlang/Obs as a language
for specifing observers, and describes the main syntactic constructs. Sec-
tion 3.3 describes an important mechanism of Erlang/Obs, which allow
to introduce user defined observer predicates. Section 3.4 introduces an
alternative graphical notation for specifying observers. Section 3.5 de-
scribes the operational semantics for observers in Erlang/Obs, which is
used in Section 3.6 to explain how an observer is derived from an Er-
lang/Obs description. Section 3.7 describes a symbolic semantics, in-
tended for symbolic test case generation, and its correspondence to the
semantics of Section 3.5. Section 3.8 provides a symbolic version of the
definition of observer from Section 3.6, and defines a symbolic notion of
coverage; the chapter concludes with Theorem 3.17, which establishes a
correspondence between test cases, coverage, and symbolic runs, that will
be exploited by the test case generation algrithms in Chapter 5

3.1 Observers: An Informal Introduction
In this section, we informally introduce observer automata (observers) as
a tool to specify coverage criteria defined in terms of coverage items, to
be used in test suite generation. Letting a test case correspond to an
execution of the EFSM, we can use techniques from model checking and
run-time verification [Vardi 86, Havelund 02] to represent a coverage item
by an observer. An observer monitors how an EFSM executes a run over
a trace, and keeps track of some chosen aspects of the EFSM execution.
The observer can observe the events and values of global state variables

92

of the run, as well as syntactical components of edges that the EFSM
traverses in response to observed events, but must not interfere with the
execution of the system. It “accepts” whenever a represented coverage
item has been covered. In contrast to the EFSMs defined by Erlang/Efsm,
observers may be non-deterministic, since a particular coverage item may
be covered in several ways.

As a very simple example, the coverage item “visit location l of the
EFSM” can be represented by an observer with one initial state, which
monitors the EFSM until the location l is entered, and one accepting state,
which is entered when the EFSM enters location l. This can be specified

true true

anyloc() visitedloc(l)

is_targetloc(l)

Figure 3.1. An observer representing the coverage item “visit location l of the
EFSM” in the visitedloc(l) state.

using a graphical notation as in Figure 3.1 where anyloc() represents
the initial observer state and visitedloc(l) the accepting observer state.
The observer makes a transition from anyloc() to visitedloc(l) whenever
the observer guard is_targetloc(l) is true, which occurs exactly when
the target location of a computation step in the EFSM is l. We let
each accepting observer state represent a coverage item. Thus, when
the accepting observer state is entered, the execution has covered the
corresponding coverage item. In the following, we will often describe
simple coverage items, such as this one, without explicitly mentioning
the verb “visit”, e.g., we say coverage item “location l”, meaning “visit
location l”.

Typical coverage criteria consist not only of a single coverage item, but
of a large set of coverage items which are often similar, but distinguished
by some parameters. A parameter can, e.g., be a target location, an edge,
or a state variable. We therefore use observers with many accepting states
so that we can specify a set of coverage items. The coverage items “all

truetrue

anyloc()

is_targetloc(L)

visitedloc(L)

Figure 3.2. An observer representing the coverage item “all target locations of
the EFSM” in the visitedloc(L) state.

target locations of the EFSM” can be represented by a nondeterministic
observer with one initial state, and many accepting states, one for each
possible target location in the EFSM. The initial state monitors the EFSM
until some target location occurs in the EFSM, and an accepting state

93

can be entered after any target location of the EFSM. Now, each edge in
the EFSM has a single target location so in this case a single accepting
state will be entered after each edge in the EFSM.

This can be specified using a graphical notation as in Figure 3.2 where
anyloc() represents the initial observer state and visitedloc(L) the many
accepting observer states. The observer guard is_targetloc(L) evaluates
to true whenever the EFSM enter the target location of a computation
step in the EFSM binds a state variable and additionally binds L to the
target location.

Thus, for each target location the observer can make a transition from
anyloc() to visitedloc(L). To allow an observer to start monitoring at
any point of an EFSM run, a self-loop is assumed in the initial observer
state. Similarly, to remember already covered items, we let any accepting
observer state have a self-loop with an observer guard true associated. In
Section 3.8, we discuss the effect of these self-loops in more detail.

Let us now formalize the concept of observer as a nondeterministic
automaton which accepts runs of an EFSM. Recall from Section 2.5 that
a run of an EFSM is a sequence of computation steps

⟨l0, •⟩
a1(d1)/b1
−→ ⟨l1, σ1⟩

a2(d2)/b2
−→ · · ·

an(dn)/bn
−→ ⟨ln, σn⟩,

each of which is derived from a unique transition clause of the specifi-
cation. Since the observer often depends on syntactic elements of such
a transition clause (e.g., state variables that are bound to values), we
will annotate the computation step by this transition clause. In fact, our
annotation will consist only of that branch of the transition clause which
is traversed to generate the computation step. Recall, from Section 2.10,
that such a branch can be represented as an Erlang/Efsm edge clause.
Thus, we define an annotated computation step as a pair

⟨

⟨l, σ⟩
a(d)/b
−→ ⟨l′, σ′⟩,

l(a,u1, . . . ,um) when g -> v = e, b, {next_state,l′}

⟩

consisting of
• a computation step ⟨l, σ⟩

a(d)/b
−→ ⟨l′, σ′⟩, and

• the unique Erlang/Efsm edge clause, of form

l(a,u1, . . . ,um) when g -> v = e, b, {next_state,l′} ,

from which the computation step is derived.
Observers can now be formalized as automata over annotated computa-
tion steps. We define an observer as a tuple ⟨Σ, Q, q0, Qf ,→⟩ where

• Σ, the input alphabet for an observer, is the set of annotated com-
putation steps of the Erlang/Efsm specification.

94

• Q, ranged over by q, is a finite set of observer states. An observer
state is of form ι(d1, . . . ,dn), where ι ∈ Lo is an observer location,
and d1, . . . , dn ∈ D are values.

• q0 is the initial observer state.
• Qf ⊆ Q is the set of accepting observer states, representing coverage

items.
• →⊆ Q × Σ × Q is the observer step relation. We use q

ς
→ q′ to

denote ⟨q, ς, q′⟩ ∈→ where ς is an annotated computation step, and
q and q′ are observer states.

Intuitively, one can think of an observer as an automaton which accepts
runs in the usual way; whenever it is in one of its observer states, q say,
and the EFSM performs a computation step at at the occurrence of an
input event, the corresponding annotated computation step ς is generated
as input to the observer, which makes an observer step of form q

ς
→ q′

thereby moving to the state q′.
We can then define what it means for a run or test case to cover a

certain coverage item. Let ⟨l0, •⟩
a1(d1)/b1
−→ · · ·

an(dn)/bn
−→ ⟨ln, σn⟩ be a

run of an EFSM, and let for i = 1, . . . , n, ςi represent the ith annotated
computation step

⟨

⟨li−1, σi−1⟩
ai(di)/bi
−→ ⟨li, σi⟩,

li−1(a,u1, . . . ,um) when g -> v = e, b, {next_state,li}

⟩

Then we say that the run covers a coverage item qf ∈ Qf if there is a run

q0
ς1→ q1

ς2→ q2 · · · qn−1
ςn→ qn

of the observer over ς1 · · · ςn which ends in qf = qn. We say that a test
case ⟨a1(d1)/b1 · · · an(dn)/bn , ∆⟩ covers the coverage item qf if the
run induced by the test case covers qf .

3.2 Erlang/Obs - observers with Erlang syntax
In this and the following section we introduce Erlang/Obs as a language
to describe observers. Similarly to Erlang/Efsm, presented in Section 2.3,
Erlang/Obs uses a restricted part of the Erlang syntax, with some ad-
ditional support for declaration of observers.

Our Erlang/Obs language supports two classes of variables: observer
variables and match variables. Observer variables function similarly as
local variables in Erlang/Efsm. Match variables are a particular class of
variables, whose purpose is to make the current annotated computation
step of an EFSM accessible to an observer defined in Erlang/Obs. Match

95

variables assume values that are different components of the current an-
notated computation step. For instance, the match variable TargetLoc is
always assigned to the target location of the current annotated compu-
tation step. This allows to assign the target location also to an observer
variable, e.g., by pattern matching with the match variable TargetLoc.
For convenience, Erlang/Obs includes a number of built-in observer pred-
icates that perform common such tasks. For instance, the observer pred-
icate is_targetloc(L) matches L with the current value of the match
variable TargetLoc. In Erlang/Obs, such observer predicates are used in
guards of observer clause expressions, which define observer step, in the
same way as transition clauses define computation steps in Erlang/Efsm.
Observer edge clauses in Erlang/Obs have many similarities with edge
clauses in Erlang/Efsm, but have a simpler form: they cannot contain if
and case expressions or calls to user defined functions.

observer predicates
Declarations of user defined

Declarations of observer usage

Observer edge clauses for all

Declarations of observer locations

declared observer locations

-obs_predicates([fop
1 /i1, . . . , f

op
n /in]).

-obs_usage(ι0, ous).

ι(u1, . . . ,um) when h1 -> oce1;

ι(u1, . . . ,um) when hn -> ocen.

-obs_locations({ι0,stop,other}).

Figure 3.3. An overview of a typical Erlang/Obs specification.

The overall structure of an Erlang/Obs specification is given in Fig-
ure 3.3, It consists of

• a declaration of observer locations,
• a declaration of usage,
• a declaration of user defined observer predicates, and
• for each observer location, a list of observer edge clauses representing

all observer edges in the observer.
To illustrate, we begin with two examples of Erlang/Obs observers.

Example 3.1 An observer representing the coverage items “all target
locations of the EFSM” can be specified in Erlang/Obs as

-obs_locations({anyloc,[visitedloc],[]}).

96

anyloc() when is_targetloc(L) ->
{next_state,visitedloc(L)}.

This specification says that we have an initial observer location, anyloc,
and an accepting observer location, visitedloc. The observer guard
is_targetloc(L) is an observer predicate that matches the observer vari-
able L with the current value of the match variable TargetLoc. Thus,
transition from anyloc to visitedloc occurs when the EFSM executes
an annotated computation step, and L matches the value of TargetLoc.
As L here is a previously unbound observer variable, the match will al-
ways succeed, L will be bound to the target location in the EFSM, and
is_targetloc(L) will return true. Further, for all target locations l of
the EFSM a coverage item will be represented by visitedloc(l). From
anyloc and visitedloc there exist implicit transitions to the location it-
self. Due to these self-loops, each observed target location can generate a
new coverage item and previously generated coverage items are recorded.

□

Example 3.2 A common coverage criterion is coverage of all definition-
use pairs. A run of an Erlang/Efsm specification covers a definition-use
pair if an assignment (definition) of a state variable is followed by a usage
of the same state variable. We represent a definition-use pair as a triple
that consists of a state variable, an edge in the EFSM where the state
variable is defined, and another edge in the EFSM where the state variable
is used. For example, in Example 1.1, there is a definition-use pair for
the state variable Progress defined on the edge between the morning and
workUU locations, and used on one of the the edges between the workUU
and end_of_day locations. An observer for any definition-use triplet with
a state variable and two edges, can be specified in Erlang/Obs as
-obs_locations({q,[du],[q1]}).

q() when is_definedvar(V),is_edge(E) ->
{next_state,q1(V,E)}.

q1(V,E) when not is_definedvar(V) ->
{next_state,q1(V,E)};

q1(V,E) when is_usedvar(V),is_edge(F) ->
{next_state,du(V,E,F)}.

Here q is the initial observer location, q1 an observer location entered
whenever a binding of some state variable v on some edge in the EFSM
has occurred, and du an accepting observer location entered whenever
the same state variable is also used on some other edge. The clauses
contain a number of observer predicates that evaluate tests over match
variables and provided observer variables. In q we test for definition of

97

some state variable, and the existence of an edge in the EFSM. Since we
always observe an edge and E is a previously unbound observer variable,
is_edge(E) will always succeed and bind E to a value. In q1 we test
for usage of the same state variable that was previously defined in q,
and the existence of an observer edge. Similarly as in q, is_edge(F) will
always succeed and bind F to a value. On each transition in the observer,
essential information is stored in the observer state, i.e., the name of the
state variable, V, the edge where the state variable is defined, E, and the
edge where the state variable is used, F. □

3.2.1 Syntax for Erlang/Obs
The Erlang/Obs constructs are summarized in the grammar found in
Table 2.1, describing the Erlang syntax base definitions, and in Table 3.1,
describing the included subset of, and extensions to, Erlang expressions.
Further, the syntax for observer predicate definitions is given in Table 3.2.
In the following sections these constructs are further explained.

We assume specifications of observers to be well-formed such that types
of input values and return values from functions are as expected when
evaluated. Erlang/Obs uses the same basic and compound values as
Erlang/Efsm, as defined in Table 2.1.

Observer variables
Observer variables, denoted u, share the syntax with, and are interpreted
as, local variables in Erlang/Efsm, see Section 2.3.1. I.e., an observer
variable can only be bound to a value once and has a scope within the
enclosing clause.

Observer expressions
Observer expressions oe are tuples, lists, and pattern matches. A tuple
expression {oe1,…,oen} and a cons expression [oe1|oe2] is evaluated by
first evaluating the sub-expressions oe1 to oen.

The pattern match cp=oe where cp is a pattern and oe an observer
expression, binds unbound observer variables in cp to values, if pattern
matching is possible. See Section 2.3.1 for a description of pattern match-
ing.

Observer locations and observer state expressions
An observer state is of form ι(d1, . . . ,dn) where ι is an observer location,
and d1, . . . , dn are values, ranging over some domain. Examples of such
domains include the set of locations, the set of edges, or the set of state
variables of an Erlang/Efsm specification. An observer state expression
is of form

ι(oe1, . . . ,oen)

98

emop ::= is_targetloc | is_sourceloc | is_definedvar | is_usedvar

| is_edge | is_startloc | is_stoploc | is_da

| is_sourceval | is_targetval | is_cc | is_mcc | is_mcdc

| is_eventtype | is_eventpars

fop ::= emop | atom
ι ::= atom

ous ::= observer | filter | property

obsge ::= bv | u

| fop(obsge1, . . . ,obsgen) n ≥ 0

| guardop(obsge1, . . . ,obsgen) n > 0

h ::= obsge1, . . . ,obsgen n > 0

oe ::= bv | u | [oe1|oe2] | {oe1, . . . ,oen} | (oe) n > 0

| cp=oe
| guardop(oe1, . . . ,oen) n > 0

| arithmetic(oe1, . . . ,oen) n > 0

| {next_state,ι(oe1, . . . ,oen)} n ≥ 0

oce ::= oe1, . . . ,oen n > 0

obsedge ::=

ι(u1, . . . ,um) when h1 -> oce1;
...

ι(u1, . . . ,um) when hn -> ocen.

m ≥ 0

n > 0

olocdec ::= -obs_locations(ι0,atlist1,atlist2).
ousedec ::= -obs_usage(ι0, ous).

opredec ::= -obs_predicates([fop
1 /i1, . . . ,fop

n /in]). n ≥ 0

obsdec ::= ousedec | opredec
obsdecs ::= olocdec obsdec∗

obsspec ::= obsdecs opdef∗ obsedge+

Table 3.1. Erlang/Obs syntax.

99

where each oei is an observer expression, and is evaluated to an observer
state by evaluating the observer expressions oe1, . . . , oen to values. The
observer locations that occur in an observer must be declared by

-obs_locations({startloc,stoplocs,otherlocs}).

where startloc is the name of an initial observer location, stoplocs is a
non-empty list with the names of the accepting observer locations, i.e., ob-
server locations from which there are no outgoing observer edges and
otherlocs is a list with all observer locations that are neither an initial
nor an accepting observer location. We use Lo to denote all observer
locations in the Erlang/Obs specification. For convenience, the initial
observer location, startloc, is sometimes also used as the “name” of the
observer and the accepting locations are “names” of coverage items.

Observer predicates
Observer predicates, represented by fop(obsge1, . . . ,obsgen), are inspired
by Prolog and optionally have one or more arguments. As a side effect,
an observer predicate binds unbound observer variables, that occur in its
arguments, to values. We assume a set of built-in observer predicates
(emop in Table 3.1) that need no further declaration or definition. Ob-
server predicates can also be user defined, and should then be declared
by

-obs_predicates([fop
1 /integer1, . . . ,fop

n /integern]).

How to define such declared user defined observer predicates is described
in Section 3.3.

Observer guard expressions
Observer guard expressions obsge are boolean conditions, used as guards
on observer edges. An observer guard expression must consist of a ba-
sic value, an observer variable, or the application of either an observer
predicate (fop) or a guard operator (guardop), to another observer guard
expression. Note that comma “,” is a shorthand notation for the logical
operator and.

Observer edges
The observer edges originating from an observer location are defined using
a list of observer edge clauses of form

ι(u1, . . . ,um) when h1 -> oce1;
...

ι(u1, . . . ,um) when hn -> ocen.

100

where ι is the location from which the observer edges originate, and for
each observer edge with index j, ranging over 1 . . . n,

• u1, . . . ,um are observer variables and represent formal parameters
to an observer state expression,

• hj is an observer guard expression, and
• ocej is an observer expression that must evaluate to a tuple of form

{next_state,ι′(d1, . . . ,dk)}

which represents a transition to the observer state ι′(d1, . . . ,dk)
(where ι′ may be ι).

The location ι must be declared as an observer location. In an observer
expression ocei each observer variable must be bound to a value before
its use.

Observer usage
In this thesis, we mostly use observers to define coverage items and cov-
erage criteria. However, by viewing observers as acceptors of runs of Er-
lang/Efsm specifications, they can also be used for other purposes. The
intended usage of an observer is declared by an observer usage declaration
of form

-obs_usage(ι0,ous)

where ι0 is an initial observer location, and ous is an observer usage
declaration. This is an atom, which can be one of the following:

• observer means that the observer defines a set of coverage items;
in this case the test generation algorithm will include a new test
case in a test suite whenever a new accepting observer location is
reached,

• filter means that the observer defines a criterion for including runs
in a test suite; in this case all test cases that cause an accepting
observer location to be reached should be included,

• property means that the observer defines a correctness property; it
can be used by a tool to check that no run satisfies the property
represented by the observer; note that this usage is not intended for
test suite generation.

If no usage declaration is provided, observer usage is assumed. The other
usages of observers are further discussed in Section 5.5.

3.3 Defining observer predicates
Observer predicates represent tests that depend on components of the
current annotated computation step. For the definition of observer pred-

101

icates we define a set of match variables, representing annotated compu-
tation steps. An observer predicate may then perform tests on the current
values of match variables and provided observer variables. Observer pred-
icates are inspired by predicates in Prolog, in that their evaluation will
bind previously unbound variables to values in the local environment. We
assume a set of built-in observer predicates (emop in Table 3.1) that need
no further declaration or definition. Additionally, observer predicates
may be user defined after they have been declared, see Section 3.2.1. In
the following we describe how declared user defined observer predicates
are defined.

3.3.1 Match variables
Recall that observers monitor EFSM runs, i.e., sequences of computa-
tion steps. Each computation step in such a sequence is represented as
a valuation of match variables. Match variables are bound to different
components of an annotated computation step. In this thesis, we use
the match variables shown in Figure 3.4, together with their intended
meaning.

3.3.2 Match functions
Match functions are introduced to be able to express more observer predi-
cate definitions. Thus, as observer predicates, match functions operate on
match variables and the formal parameters u1, . . . ,un to observer pred-
icates. The match functions, used to define observer predicates in this
thesis, are found in Figure 3.5. However, we will assume that in general
match functions can be defined freely and allow for definitions with any
valid Erlang expression. Match functions are discussed in more detail in
Section 3.5.2.

3.3.3 Observer predicate definition in Erlang/Obs
The syntax for definition of observer predicates is found in Table 2.1,
Table 2.2 and Table 3.2. An observer predicate is defined using a clause

fop(u1, . . . ,un) -> ope.

where fop is the name of the observer predicate, u1, . . . ,un are ob-
server variables and represent formal parameters to the observer pred-
icate, and ope is a boolean expression over values and match variables,
pattern matches (cp=ope), guard operators (guardop(ope1, . . . , open)) ,
and match functions (mf(ope1, . . . , open)).

102

Match variables for computation steps: ⟨l, σ⟩
a(d)/b
−→ ⟨l′, σ′⟩

Eventtype is the event type a of the occurring input event,
Eventpars is the sequence d of parameters of the occurring input

event,
Outevents is the sequence of occuring output events b,
SourceLoc is the location l just before the computation step,
SourceEnv is the environment σ just before the computation step,
TargetLoc is the location l′ just after the computation step,
TargetEnv is the environment σ′ just after the computation step.

Match variables for Erlang/Efsm edge clauses:
l(a,u1, . . . ,um) when g -> v = e, b, {next_state,l′}

Edgevars is the local variables u1, . . . , un of
the Erlang/Efsm edge clause,

Guard is the guard expression g of the Erlang/Efsm edge
clause,

Assigns is the sequence of bindings v = e of
the Erlang/Efsm edge clause,

Outexprs is the sequence of output expressions b of
the Erlang/Efsm edge clause.

Figure 3.4. Match variables accessible for an observer.

mf ::= member | lookup | map | eval | subst |

| affect | lhs | rhs | vars | conds | to_bool

mv ::= Eventtype | Edgevars | Eventpars

| SourceLoc | TargetLoc | Guard | Assigns

| Outevents | Outexprs | SourceEnv | TargetEnv

u ::= bv | u

ope ::= bv | u | mv | [ope1|ope2] | {ope1, . . . ,open} n > 0

| cp=ope

| guardop(ope1, . . . , open) n > 0

| mf(ope1, . . . , open) n ≥ 0

opdef ::= fop(u1, . . . ,un) -> ope. n ≥ 0

Table 3.2. Erlang/Obs observer predicate definition syntax.

103

member
is a predicate such that member(Element, List) returns true if
Element is a member of the list List and false otherwise.

lookup
searches a list of tuples (key/value list), such that
lookup(Key,KeyV alList) returns the 2:nd element in the
first tuple in KeyV alList whose 1:st element matches Key. If no
such tuple is found, false is returned.

map
is a function such that map(Fun,List) applies the function Fun

on each element in List and returns the resulting list. Additional
arguments can be passed to Fun by supplying a list with these ar-
guments in a tuple with Fun, i.e., map({Fun,Args}, List). In this
case all additional arguments Args will be passed after the single
element from List, i.e., Fun(x, a1, a2, a3) where x is a member of
List and Args is [a1, a2, a3].

eval
is a function such that eval(GE,Env) evaluates GE in an envi-
ronment Env.

subst
is a function such that subst(GE,R,Bool) substitutes all occur-
rences of a sub-expression R in a guard expression GE with Bool.

affect
is a function such that affect(Assign, V ar1, V ar2) returns
Assign if it is a binding of V ar2 to some expression that includes
V ar1, otherwise the empty list is returned.

lhs
is a function such that lhs(Assign) returns the left hand side
expression of a binding Assign. A left hand side expressions is
always assumed to be a state variable.

rhs
is a function such that rhs(Assign) returns the right hand side
expression of a binding.

vars
is a function such that vars(Exp) returns a list with all state
variables found in Exp where Exp is a list or function expressions.

conds
is a function such that conds(Guard) returns a list of all conditions
(relational operators, relop and type tests, typetest), in lexical
order, in a boolean expression Guard.

to_bool
is a function that maps anything that is not the atom false to
true.

Figure 3.5. Match functions, for defining observer predicates in Erlang/Obs,
used in this thesis.

104

Example 3.3 We can define an observer predicate is_sourceval/2, which
returns true if its first argument is an Erlang/Efsm state variable, and
its second argument is the value of this state variable just before the
occurence of a computation step. is_sourceval/2 can be defined as

is_sourceval(V,Val) ->
to_bool(Val=lookup(V,SourceEnv)).

If is_sourceval/2 is invoked in a call of form is_sourceval(X,Y), where
X is an observer variable that is bound to the state variable v, and Y

is an unbound observer variable, then according to the above definition,
the match function lookup will return the value of v in SourceEnv. If v
is defined in SourceEnv then by a pattern match, the return value from
lookup is bound to Y. The match function to_bool then maps any return
value from the pattern match that is not the atom false to true. If v
is not defined in SourceEnv then the return value from lookup is false.
Thus, Y is bound to false in this case.

Note that if Y instead is a bound observer variable and the pattern
match fails, false will be returned. This behavior is different from Er-
lang/Efsm (and standard Erlang, where a failed pattern match raises
an exception). Also note that if both X and Y are unbound observer
variables then X will be bound to some state variable and Y to its value
before the computation step. Note that is_targetval/2 is defined simi-
larly, but instead utilizing the TargetEnv match variable. □

Example 3.4 An observer predicate is_definedvar/1 returns true if its
argument is an Erlang/Efsm state variable bound to a value in an as-
signment in the computation step. This can be expressed using match
functions member, map and lhs, and the match variable Assigns as

is_definedvar(V) ->
member(V,map(lhs,Assigns)).

If is_definedvar/1 is invoked in a call of form is_definedvar(X) where
X is an observer variable that is bound to the state variable v, then
according to the above definition, the match function member returns true
if X is a member of the list created by taking the left-hand-side (lhs) of
each binding in the match variable Assigns. If X instead is an unbound
observer variable, member will bind X to the name of some Erlang/Efsm
state variable v for which there exists an assignment v = e in the match
variable Assigns. If there exists no binding of X in Assigns the observer
predicate returns false and X is bound to the atom undefined. □

For each match variable in Figure 3.4

105

Observer Predicate Match variable
is_sourceloc/1 SourceLoc

is_targetloc/1 TargetLoc

is_eventtype/2 Eventtype

is_eventpars/1 Eventpars

Table 3.3. Observer predicates defined by pattern matching with a match
variable.

we can define an observer predicate that is true whenever the match
variable matches a given value. For example, for the match variable
TargetLoc we define an observer predicate is_targetloc/1 with a single
observer argument to be true only when the target location of the occur-
ring edge matches the argument. The is_targetloc/1 observer predicate
definition can be expressed in Erlang/Obs as

is_targetloc(L) ->
to_bool(L=TargetLoc).

Several of the observer predicates in Table 3.1 can be defined similarly by
pattern matching the argument against a corresponding match variable.
See Table 3.3 for a complete list.

Slightly more complicated observer predicates can be defined by as-
suming certain values on match variables or combining several match
variables. Below, we give a few more examples of observer predicate
definitions. In Section 4 we will continue with more observer predicate
definitions, and give more examples on how observer predicates can be
used to specify coverage criteria.

is_startloc()
Returns true if the current value of the match variable SourceLoc is the
initial location of the EFSM, and false otherwise. The observer predicate
is defined as

is_startloc() ->
to_bool(l0 = SourceLoc).

where l0 is the initial location in the EFSM we are monitoring.

106

is_stoploc()
Returns true if the current value of the match variable TargetLoc is a
stop location, i.e., an annotated location in which there are no outgoing
edges, and false otherwise. The observer predicate is defined as

is_stoploc() ->
member(TargetLoc,Stoplocs).

where Stoplocs is a list with the names of the stop locations Lstop in the
EFSM we are monitoring.

is_edge(E)
Returns true if E is a tuple {li−1, ai, ui, gi, li}, uniquely identifying a single
edge clause

li−1(ai,ui1, . . . ,uim) when gi -> vi = ei, bi, {next_state,li}

in the EFSM from the current annotated computation step, and the
current values of the match variables are as follows: SourceLoc is li−1,
Eventtype is ai, Edgevars is ui1, . . . ,uim, Guard is gi, and TargetLoc is
li. The observer predicate is defined in Erlang/Obs as

is_edge({SL,ET,EV,G,TL}) ->
to_bool({SL,ET,EV,G,TL}=

{SourceLoc,Eventtype,Edgevars,Guard,TargetLoc}).

3.4 Graphical observer notation
To visualize observers, we introduce a graphical notation for observers.
We use the symbol • to represent the initial observer location and the
symbol ⊚ to represent accepting observer locations. An observer guard
expression is written in association to the observer edge to which it be-
longs. The graphical observer notation uses the same syntax for observer
guard expressions and observer states as Erlang/Obs, defined in Sec-
tion 3.2.1. It can be noted the graphical representation cannot represent
an observer edge when the source and target observer state share the same
observer location but the observer states are not identical. e.g., because
an observer variable is a list that is bound to a new value by the observer
edge. See examples of such observers in Section 4.1.3.

Example 3.5 In Figure 3.6 two similar observers for definition-use pairs
are shown, both with an accepting observer location du. Observer (i)
represent a single coverage item in du(′Y ′, e1, e2) for an Erlang/Efsm
state variable with a name Y , defined on edge e1 and used on edge e2.
The state variable must not be redefined in the run between these two

107

(i)

q0

(ii)

q0

is_definedvar(X) ∧ is_edge(E)

q1(X,E) ¬is_definedvar(X)

du(X,E, F)

is_usedvar(X) ∧ is_edge(F)

is_definedvar('Y') ∧ is_edge(e1)

¬is_definedvar('Y')q1(
′Y ′, e1)

du(′Y ′, e1, e2)

is_usedvar('Y') ∧ is_edge(e2)

Figure 3.6. Examples of (i) observer monitoring definition (on edge e1) and
use (on edge e2) of state variable Y , (ii) observer monitoring definition-use for
any triples of edges and state variables.

edges. Here ei is a short hand notation for a tuple {li−1, ai, ui, gi, li},
uniquely identifying a single edge clause in the EFSM.

Figure 3.6(ii) shows an observer that specifies definition-use pair cov-
erage for any state variable, and pair of edges in the EFSM. Thus,
du(V,E, F) represent a coverage item when

• the observer variable V is bound to a name of a state variable in
the EFSM,

• the observer variable E is bound to the edge in the EFSM on which
the V state variable was bound, and

• the observer variable F is bound to the edge in the EFSM on which
the V state variable was used.

An Erlang/Obs specification of this observer is found in Example 3.2. A
definition of the observer predicate is_edge/1 was given in Section 3.3.
The observer predicates is_definedvar/1 and is_usedvar/1 are further
defined in Section 4.1.4. □

3.5 Operational semantics of Erlang/Obs
In this section we give the operational semantics for Erlang/Obs in the
form of transition rules between structural states. In Section 2.4 the
operational semantics for Erlang/Efsm was given. To simplify the pre-
sentation we will, as much as possible, reuse Erlang/Efsm operational
semantics, including structure of presentation, and definitions of struc-
tural states and transition rules.

Recall that in Erlang/Efsm, a structural state is defined to be a tuple
of form ⟨e, b, σ, ρ⟩, where σ is global environment with bindings of state
variables. Since an observer has (local) observer variables, but no state
variables, we will replace the third component of the structural state by a

108

global environment which holds the current values of the match variables.
Thus, the global environment can be thought of as representing each
annotated computation step of the EFSM, using match variables.

Definition 3.6 Let D be the domain of values, and MV be the set of
match variables. A structural observer state is a tuple

⟨oe, ϵ, ς, ρ⟩

where
• oe is an Erlang/Obs expression,
• ϵ is an empty sequence of output events; this component is never

used, we leave it here for compatibility with structural states in the
semantics for Erlang/Efsm,

• ς ∈ MV → D is a global environment with bindings to the match
variables MV , and

• ρ ∈ U → D is a local environment with bindings to the observer
variables U , □

We will sometimes use “structural state” for “structural observer state”.
Recall, from Section 2.4, that an empty environment is denoted • and

an empty sequence of output events is denoted ϵ. An initial structural
state is the tuple

⟨ι0(), ϵ, ς, •⟩

where ι0() is an observer state and ς holds the bindings of match variables
to expressions from the current annotated computation step. A transition
between two structural states

⟨oe, ς, ρ⟩ ⇒
⟨

d, ϵ, ς, ρ′
⟩

denotes that oe can be evaluated in a global environment ς and local envi-
ronment ρ to a value d. Since this evaluation is performed in the context
of one annotated computation step of the EFSM, the global environment
ς does not change. In Erlang/Obs (as in Erlang/Efsm) pattern matching
is used to bind variables to values. For Erlang/Obs we reuse the match
relation from Section 2.4.1.

3.5.1 Observer expressions
All expressions in Erlang/Obs can be evaluated to Erlang/Efsm values.
In this section we outline the transition rules for how this is accomplished.
For Erlang/Efsm values, tuples, conses, logical operators, arithmetic ex-
pressions, observer variable definition and usage, and sequences of ob-
server expressions oce, we use the transition rules from Section 2.4. Ob-
server guard expressions compute boolean expressions of observer predi-
cates, and occur in observer edge clauses.

109

Similarly as in Erlang/Efsm in Section 2.4.2, observer variables are
also bound to values by pattern matching in observer expressions. Note
that, in addition, observer variables are also bound to values by observer
predicates, if not previously bound. Observer variables must be bound in
the local environment, ρ, to a value before they are used.

3.5.2 Observer predicates
Observer predicates require certain attention and a number of new tran-
sition rules since they do not occur in Erlang/Efsm. The grammar is
found in Table 3.2. An observer predicate is defined by a clause

fop(u1, . . . ,un) -> ope.

where fop is the name of the observer predicate, u1, . . . ,un are observer
variables and represent formal parameters to the observer predicate, and
ope (observer predicate expression) is a boolean expression built from
expressions of form

• values, observer variables, match variables, tuples and conses,
• cp=ope, i.e., matching of a pattern cp with an expression ope,
• guardop(ope1, . . . , open), i.e., application of a guard operator over

expressions ope1, . . . , open, see Erlang/Efsm syntax, Table 2.1, and
• mf(ope1, . . . , open), i.e., application of a match function over expres-

sions ope1, . . . , open, see Section 3.5.2.
A call to an observer predicate fop(obsge1, . . . ,obsgen) is evaluated such
that previously unbound variables are bound to Erlang/Efsm values in
the local environment. The transition rule is

⟨ope[u1, . . . , un 7→ obsge1, . . . , obsgen], ς, ρ⟩ ⇒ ⟨bool, ϵ, ς, ρ′⟩

⟨fop(obsge1, . . . ,obsgen), ς, ρ⟩ ⇒ ⟨bool, ϵ, ς, ρ′⟩

where the resulting local environment ρ′ includes bindings to all unbound
observer variables in obsge1, . . . ,obsgen. How observer predicates bind
unbound observer variables to Erlang/Efsm values, is reflected in the
operational semantics for Erlang/Obs by the transition rules for pat-
tern matching and match functions. For example, the observer predicate
is_targetloc/1 is defined by the clause

is_targetloc(Loc) ->
to_bool(Loc=TargetLoc).

Thus, the transition rule that can be applied, for a call is_targetloc(L)
in an observer guard after substitution, is

⟨to_bool(L=TargetLoc), ς, ρ⟩ ⇒ ⟨bool, ϵ, ς, ρ′⟩

⟨is_targetloc(L), ς, ρ⟩ ⇒ ⟨bool, ϵ, ς, ρ′⟩

110

where the pattern match L=TargetLoc matches only if (1) L is an observer
variable, bound to a value in ρ, that match the value of TargetLoc bound
to a value in ς, or (2) if L is a previously unbound observer variable.
The match operator = (slightly modified from Erlang/Efsm, see below)
returns the matching pattern (i.e., value of TargetLoc) and we therefore
use the match function to_bool to translate the result to a boolean. Thus,
is_targetloc/1 will return true if a pattern match is possible and false
if not.

Pattern matching
The pattern match cp=ope where cp is a pattern and ope an observer
predicate expression, binds any unbound observer variable in cp to a value,
if pattern matching is possible. The match operator in Erlang/Efsm, see
Section 2.4.1, is only defined when a match succeeds between the two
operands (and is not allowed in guards). However, in Erlang/Obs we
use the match operator in observer predicates (that occur in guards)
and need to additionally consider the case when a match fails. A failing
match implies a conflict between two expressions with bound variables.
We therefore define an additional transition rule for pattern matching
when all observer variables are bound to values and the pattern match
fails, as follows

⟨cp==ope, ς, ρ⟩ ⇒ ⟨false, ϵ, ς, ρ⟩

⟨cp=ope, ς, ρ⟩ ⇒ ⟨false, ϵ, ς, ρ⟩

where the transition rule for the relational operator == (from Erlang/Efsm,
see Section 2.7.2) is only defined when all its operands are bound to val-
ues. Thus, a failing pattern match only has a transition when there is no
unbound variable in cp.

Match variables
Match variables are given values at the occurrence of an annotated com-
putation step. To proceed with more precise definitions of observers, used
in this thesis, we make a few assumptions on underlying representations
of values of match variables. The actual representation is tool imple-
mentation dependent. Given that we observe a finite state machine, we
assume all match variables have finite domains. Let values be represented
by themselves and all expressions be represented by records. For example,
a record

#variable{name=V}

represent a variable V, and a record

#func{op=F,args=Args}.

111

Match variables for computation steps: ⟨l, σ⟩
a(d)/b
−→ ⟨l′, σ′⟩

Eventtype atom

Eventpars [d1, . . . , dn]

Outevents [#func{op=b1,args=[d11, . . . , d1m]}
...

#func{op=bn,args=[dn1, . . . , dnm]}]

SourceLoc atom,
SourceEnv [{v1,d1} · · · {vn,dn}]
TargetLoc atom,
TargetEnv [{v1,d1} · · · {vn,dn}]

Match variables for Erlang/Efsm edge clauses:
l(a,u1, . . . ,um) when g -> v = e, b, {next_state,l′}

Edgevars [u1, . . . ,um]

Guard #func{op=guardop,args=[ge1, . . . , gen]}

Assigns [{v1,e1} · · · {vn,en}]
Outexprs [#func{op=b1,args=[em1, . . . , em1]}

...
#func{op=bn,args=[em1, . . . , emn]}]

Figure 3.7. Representation of the match variables in Figure 3.4 as Erlang/Efsm
expressions.

112

represent a function call to F with arguments Args, i.e., F(Args). Binding
of a state variable is represented by a tuple {V,E}, where V is a state vari-
able and E an Erlang/Efsm expression represented by records as above.

Assigns, SourceEnv and TargetEnv
The match variables for assignments, source and target environment are
all represented by a list of tuples, {V,E} i.e., the same form as state variable
bindings above. Further, in a computation step σ and σ′ always bind state
variables to values, i.e., in the representation of SourceEnv and TargetEnv,
E is always an Erlang/Efsm value.

Eventpars and Edgevars
The match variable for input event parameters is represented by a list of
Erlang/Efsm values. The match variable for input expression parameters
is represented by a list of variable names.

Outevents and Outexprs
The match variables for output events and output expressions are both
represented by a list of function records, i.e., #func{op=F,args=Args}
records where F is an output event type, and Args a list of arguments.
For Outevents the arguments are Erlang/Efsm values and for Outexprs
the arguments are Erlang/Efsm expressions.

Guard
The match variable for a guard is a record #func{op=F,args=Args} where
F is an atom representing one of the Erlang/Efsm guard operators (guardop
in Table 2.1) and Args is a list [ge1, . . . , gen] where each guard expression
gek is a value d, a variable, represented by a record #variable{name=V}
for some variable V, a configuration access function or a guard operator,
both represented by a record of form #func{op=F,args=Args}.

Figure 3.7 summarizes the representation of the match variables assumed
in this thesis for non-symbolic execution. Match variables for symbolic
execution is represented similarly where each symbolic parameter V is
represented with a record #variable{name=V}.

Match functions
Match functions are used to help define observer predicates. In this sec-
tion we define a set of match functions necessary to define the observer
predicates in this thesis. For the definition of match functions we need ad-
ditional transition rules. However, we will assume that in general match
functions can be defined freely and allow for definitions with any valid
Erlang expression.

113

In Figure 3.7 we give an assumed representation of match variables in
terms of Erlang/Efsm expressions. This is the representation assumed in
the definitions of the match functions. We distinguish between binding
and non-binding match functions. For match functions that bind any
unbound observer variable to a value and appear in the thesis, all the
necessary transition rules are given below. For match functions that as-
sume all observer variables used are already bound to values, transitions
rules are straightforward and we omit them here.

Binding match functions
We begin by describing match functions that bind unbound observer vari-
ables to Erlang/Efsm values.

member(Element, List)
A predicate such that member(Element, List) returns true if Element is
a member of the list List (with length n ≥ 0) and false otherwise. The
transition rules for member are as folllows.

⟨e1, ς, ρ⟩ ⇒ ⟨d, ϵ, ς, ρ⟩

⟨e2, ς, ρ⟩ ⇒ ⟨[d1, . . . , dn], ϵ, ς, ρ⟩

∃i : 1 ≤ i ≤ n :: match (d, di, ρ, ρ)

⟨member(e1, e2), ς, ρ⟩ ⇒ ⟨true, ϵ, ς, ρ⟩

if e1 is a value or an expression that evaluates to a bound observer vari-
able, which is a member of a list e2,

⟨e1, ς, ρ⟩ ⇒ ⟨d, ϵ, ς, ρ⟩

⟨e2, ς, ρ⟩ ⇒ ⟨[d1, . . . , dn], ϵ, ς, ρ⟩

∀i, 1 ≤ i ≤ n : ¬match (d, di, ρ, ρ)

⟨member(e1, e2), ς, ρ⟩ ⇒ ⟨false, ϵ, ς, ρ⟩

if e1 is a value or an expression that evaluates to a bound observer vari-
able, which is not a member of a list e2, If n = 0 an empty list is implied.

⟨e1, ς, ρ⟩ ⇒ ⟨u, ϵ, ς, ρ⟩

u is an observer variable, not defined in ρ

⟨e2, ς, ρ⟩ ⇒ ⟨[], ϵ, ς, ρ⟩

⟨member(e1, e2), ς, ρ⟩ ⇒ ⟨false, ϵ, ς, ρ[u 7→ undefined]⟩

114

if e1 is an expression that evaluates to an unbound observer variable, e2
is the empty list, and

⟨e1, ς, ρ⟩ ⇒ ⟨u, ϵ, ς, ρ⟩

u is an observer variable, not defined in ρ

⟨e2, ς, ρ⟩ ⇒ ⟨[d1, . . . , dn], ϵ, ς, ρ⟩

⟨member(e1, e2), ς, ρ⟩ ⇒ ⟨true, ϵ, ς, ρ[u 7→ di]⟩

if e1 is an expression that evaluates to an unbound observer variable and
e2 is a non-empty list. In this case any member of e2 is a possible solution.
Note that we do not define any transition rule for the case when e2 is an
unbound observer variable as that would generate an infinite number of
possible solutions.

Example 3.7 The observer predicate is_usedvar/1 (see also Section 4.1.4)
is true if a (state) variable v is used in an Erlang/Efsm edge clause,
i.e., found in match variable Guard, Assigns or Outexprs. We define the
observer predicate using the match functions as

is_usedvar(U) ->
member(U, vars(map(rhs,Assigns)) ++

vars(Guard) ++
vars(Outexprs)).

This means that if U is evaluated to a value it must match the name
of a state variable in the current Erlang/Efsm edge clause, and if U is
evaluated to a previously unbound variable it is bound to the variable
name of one of (the possibly many) variables used in Assigns, Guard and
Outexprs. The operator ++ is Erlang notation for appending two lists.
The match functions vars, map, and rhs are defined below. □

lookup(Key,KeyValList)
Searches a list of tuples, KeyValList (with length n ≥ 0), for a tuple whose
1:st element matches Key. If found, the 2:nd element of such a tuple is
returned, otherwise the boolean false is returned. The transition rules
for lookup are as follows.

⟨e1, ς, ρ⟩ ⇒ ⟨d1, ϵ, ς, ρ⟩

⟨e2, ς, ρ⟩ ⇒ ⟨[{d11, d12}, . . . , {dn1, dn2}], ϵ, ς, ρ⟩

∀j, 1 ≤ j < i : ¬match (d1, dj1, ρ, ρ)

match (d1, di1, ρ, ρ)

⟨lookup(e1, e2), ς, ρ⟩ ⇒ ⟨di2, ϵ, ς, ρ⟩

115

if e1 is a value or a bound observer variable, which is a key in the key/value
list e2,

⟨e1, ς, ρ⟩ ⇒ ⟨d1, ϵ, ς, ρ⟩

⟨e2, ς, ρ⟩ ⇒ ⟨[{d11, d12}, . . . , {dn1, dn2}], ϵ, ς, ρ⟩

∀j, 1 ≤ j ≤ n : ¬match (d1, dj1, ρ, ρ)

⟨lookup(e1, e2), ς, ρ⟩ ⇒ ⟨false, ϵ, ς, ρ⟩

if e1 is a value or a bound observer variable, which is not a key in the
key/value list e2 (n ≥ 0), and

⟨e1, ς, ρ⟩ ⇒ ⟨u, ϵ, ς, ρ⟩

u is an observer variable, not defined in ρ

⟨e2, ς, ρ⟩ ⇒ ⟨[{d11, d12}, . . . , {dn1, dn2}], ϵ, ς, ρ⟩

⟨lookup(e1, e2), ς, ρ⟩ ⇒ ⟨di2, ϵ, ς, ρ[u 7→ di1]⟩

if e1 is an expression that evaluates to an unbound observer variable and
e2 is a non-empty key/value list. In this case any tuple in e2 is a possible
solution. If e2 evaluates to an empty list (n = 0), u is bound to undefined
and false returned. Note that we do not define any transition rule for
the case when e2 is an unbound observer variable as that would generate
an infinite number of possible solutions.

Non-binding match functions
A number of match function do not bind observer variables to values.
Essentially, these are user defined Erlang/Efsm functions where we allow
some additional Erlang expressions. The definition of the missing tran-
sition rules for these expressions are straightforward. Given that lists is
an Erlang module that implements the functions sort/1 and reverse/1,
(e.g., the standard Erlang/Otp module). The additional Erlang expres-
sions that we use in the definition of non-binding match functions below
are:
L1++L2 where L1 and L2 are lists and ++ the Erlang short hand notation

for appending list L2 after L1.
element(N,T) where N is an integer and T is a tuple, element is an

Erlang function that returns the value of element N in the tuple
T .

tuple_to_list(T) where T is a tuple and tuple_to_list is an Erlang
function that transforms T to a list.

apply(Fun,Args) where Fun is an atom holding the name of a function
and Args is a list with arguments that is passed as arguments to
Fun.

lists:sort(List) where List is a list, returns a sorted list.
lists:reverse(List) where List is a list, returns a reversed list.

116

Below we give Erlang definitions, for all non-binding match functions,
used in this thesis,
map is a function such that map(Fun,List) applies the function, Fun on

each element in List and returns the resulting list. Additional argu-
ments can be passed to Fun by supplying a list with these arguments
in a tuple with Fun, i.e., map({Fun, Args}, List). These additional
arguments will be passed after the element from List. This can also
be expressed as:
map(Fun,List) ->

map2(Fun,List,[]).

map2(Fun,[],Out) ->
Out;

map2({Fun,Args},[H|Rest],Out) ->
map2(Rest,Out++[apply(Fun,[H|Args])]).

map2(Fun,[H|Rest],Out) ->
map2(Rest,Out++[apply(Fun,[H])]).

eval is a function such that eval(GE,Env) evaluates GE in an envi-
ronment Env. Note that a state variable must be bound in the
environment, before usage. This can also be expressed as:
eval(#variable{name=V},Env) ->

lookup(V,Env);
eval(G=#func{args=Args},Env) ->

NewArgs=eval2(Args,Env,[]),
G#func{args=NewArgs};

eval(G,Env) ->
G.

eval2([],Env,NewArgs) ->
lists:reverse(NewArgs);

eval2([G|Rest],Env,NewArgs) ->
NewA=eval(G,Env),
eval2(Rest,Env,[NewA|NewArgs]).

subst is a function such that subst(GE, R,Bool) substitutes all occur-
rences of a subexpression R in a guard expression GE with Bool.
This can also be expressed as:
subst(R,R,Bool) ->

Bool;
subst(G=#func{op=Op},R,Bool)

when Op=='=/=';Op=='==';Op=='<';
Op=='>';Op=='=<';Op=='>=';Op=='is_integer';
Op=='is_boolean';Op=='is_record';

117

Op=='is_tuple';Op=='is_list' ->
G;

subst(Guard=#func{args=Args},R,Bool) ->
NewArgs=subst2(Args,R,Bool,[]),
Guard#func{args=NewArgs},R,Bool).

subst2([],R,Bool,NewArgs) ->
lists:reverse(NewArgs);

subst2([G|Rest],R,Bool,NewArgs) ->
NewG=subst(G,R,Bool),
subst2(Rest,R,Bool,[NewG|NewArgs]).

affect is a function such that affect(Assign,Var1,Var2) returns Assign

if it is a binding of Var2 to some expression that includes Var1, oth-
erwise the empty list is returned. A binding, as Assign, is a tuple
{K,V} where K is a state variable and V an Erlang/Efsm expres-
sion. This can also be expressed as:
if

member(Var1,vars([rhs(Assign)])) and
(Var2==lhs(Assign)) -> Assign;
true -> []

end
lhs is a function such that lhs(Assign) returns the left hand side ex-

pression of a binding Assign. A left hand side expressions is always
assumed to be a state variable.
element(1,Assign)

rhs is a function such that rhs(Assign) returns the right hand side
expression of a binding Assign and can be expressed as
element(2,Assign)

vars is a function such that vars(Exp) returns a list with all state vari-
ables found in Exp where Exp is a list of Erlang/Efsm normal form
expressions.
vars([]) -> [];
vars([Expr|Rest]) -> vars_in_expr(Expr)++vars(Rest);
vars(#func{args=Args}) -> vars(Args).

vars_in_expr(#func{args=Args}) ->
vars(Args);

vars_in_expr(E) when is_tuple(E) ->
vars(tuple_to_list(E));

vars_in_expr(E) when is_list(E) ->
vars(E);

vars_in_expr(#variable{name=V}) -> [V];
vars_in_expr(_) -> [].

118

conds is a function such that conds(Guard) returns a list of all predicates
(relational operators, relop and type tests, typetest), in lexical or-
der, in a boolean expression Guard.
conds(A=#func{op=Op})

when Op=='=/=';Op=='==';Op=='<';
Op=='>';Op=='=<';Op=='>=';Op=='is_integer';
Op=='is_boolean';Op=='is_record';
Op=='is_tuple';Op=='is_list' ->

[A];
conds(#func{args=Args}) ->

lists:sort(conds2(Args,[]));
conds(_) ->

[].

conds2([].Conds) ->
Conds;

conds2([A|Rest],Conds) ->
conds2(Rest,Conds++conds(A)).

to_bool is a function that maps anything that is not the atom false to
true.
to_bool(false) -> false;
to_bool(_) -> true.

3.5.3 Observer edge clauses
The transitions from an observer state ι(d1, . . . ,dm) are defined by ob-
server edge clauses

ι(u1, . . . ,um) when h1 -> oce1;
...

ι(u1, . . . ,um) when hn -> ocen.

Each of these clauses are evaluated by first matching the values d1, . . . ,dm
with the observer variables u1, . . . ,um, and if the match succeeds the
observer guard expression hk is evaluated. For some clause k with all
observer variables, u1, . . . ,um matching and observer guard expression
hk evaluating to true, the ocek expression is evaluated. The transition

119

rule is

match (u1, . . . ,um, d1, . . . , dm, •, ρ′)

⟨hk, ς, ρ
′⟩ ⇒ ⟨true, ϵ, ς, ρ′′⟩

⟨ocek, ς, ρ
′′⟩ ⇒ ⟨oe′, ϵ, ς, ρ′′′⟩

⟨ι(d1, . . . ,dm), ς, ρ0⟩ ⇒ ⟨oe′, ϵ, ς, ρm⟩

where oe′ must always be a tuple of form {next_state,ι′(d′1, . . . ,d′n)}.
Similarly as for configuration access functions in Erlang/Efsm, only the
arguments are evaluated in an observer state, ι′(d′1, . . . ,d′n).

3.6 The Observer Defined by an Erlang/Obs
Specification

Using the semantic definitions of the previous subsections, we can now
define how an Erlang/Obs specification defines an observer.

Definition 3.8 An Erlang/Obs specification for an Erlang/Efsm speci-
fication defines an observer, which is a tuple ⟨Σ, Q, q0, Qf ,→⟩, where

• Σ is the set of annotated computation steps of the Erlang/Efsm
specification,

• Q is the set of all terms of form ι(d1, . . . ,dm), where ι is an observer
location declared in the Erlang/Obs specification, and d1, . . . ,dm
are Erlang values,

• q0 is the term ι0(), where ι0 is the declared initial observer location,
• Qf is the set of all terms of form ιf(d1, . . . ,dm), where ιf is a

declared observer stop location, and
• → ⊆ (Q×Σ×Q) is the observer step relation. It consists of triples

of form ⟨ι(d1, . . . ,dm), ς, ι′(d′1, . . . ,d′m′)⟩, which we will write as

ι(d1, . . . ,dm)
ς
→ ι′(d′1, . . . ,d

′
m′),

such that the operational semantics allows to derive a transition of
form

⟨ι(d1, . . . ,dm), ς, •⟩ ⇒ ⟨{next_state,ι′(d′1, . . . ,d
′
m′)}, ϵ, ς, ρ′⟩.

□

We can now define what it means for a run or test case to cover a certain
coverage item.

Definition 3.9 Let ⟨l0, •⟩
a1(d1)/b1
−→ · · ·

an(dn)/bn
−→ ⟨ln, σn⟩ be a run of an

EFSM, and for i = 1, . . . , n, let ςi represent the annotated computation

120

step derived from the ith computation step, of form
⟨

⟨li−1, σi−1⟩
ai(di)/bi
−→ ⟨li, σi⟩,

li−1(a,u1, . . . ,um) when g -> v = e, b, {next_state,li}

⟩

We say that the run covers a coverage item qf ∈ Qf if there is a run
q0

ς1→ · · ·
ςn→ qn of the observer over ς1 · · · ςn which ends in qf = qn. □

Definition 3.10 A test case ⟨a1(d1)/b1 · · · an(dn)/bn , ∆⟩ covers the
coverage item qf if the run induced by the test case covers qf . □

3.7 Symbolic semantics of Erlang/Obs
In this section we give the operational semantics for Erlang/Obs in the
form of transition rules between symbolic structural states. Execution
is symbolic in the sense that not all expressions in the EFSM can be
evaluated to a value at the time of execution, since they contain sym-
bolic parameters, whose values are not known at the time of evaluation.
Thus, the observer may impose additional conditions, expressed in terms
of symbolic parameters, on when a state can be reached. Recall, from
Section 2.7, the definitions of symbolic structural state and symbolic tran-
sition rules for symbolic execution of an EFSM. The resulting expression
of such symbolic evaluation is an Erlang/Efsm normal form expression.
Let E be the domain of Erlang/Efsm normal form expressions. Let a
superposition condition H be a Erlang/Efsm guard expression, possibly
containing symbolic parameters, but not containing local or global Er-
lang/Efsm variables. A superposition condition is analogous to the path
condition of Definition 2.5.

Definition 3.11 A symbolic structural observer state is a tuple

⟨oe,H, ϵ, ςs, ρ⟩

where
• oe is an Erlang/Obs expression,
• H is a superposition condition, which is a condition on the sym-

bolic parameters under which this symbolic structural state can be
reached.

• ϵ is the empty sequence,
• ςs ∈ V → E is a global symbolic environment with bindings to the

match variables V , and
• ρ ∈ U → E is a local symbolic environment with bindings to the

observer variables U . □

121

An initial symbolic structural observer state is a tuple ⟨ι0(), true, ϵ, ςs, •⟩
where ι0() is an observer state and ςs holds the bindings of match vari-
ables to expressions from the current symbolic annotated computation
step.

Definition 3.12 A symbolic annotated computation step is a pair
⟨

⟨l, σ,G⟩
a(p)/b
−→ ⟨l′, σ′, G′⟩,

l(a,u1, . . . ,um) when g -> v = e, b, {next_state,l′}

⟩

that consists of
• a symbolic computation step ⟨l, σ,G⟩

a(p)/b
−→ ⟨l′, σ′, G′⟩, and

• the (syntactic) Erlang/Efsm edge clause

l(a,u1, . . . ,um) when g -> v = e, b, {next_state,l′}

from which the symbolic computation step is derived. □

A symbolic transition between two symbolic structural states

⟨oe, ςs, ρ⟩ ⇒
⟨

e, H, ϵ, ςs, ρ′
⟩

denotes that oe can be evaluated in a global environment ςs and local
environment ρ to an Erlang/Efsm normal form expression e, if the su-
perposition condition H can be evaluated to true. For Erlang/Obs with
symbolic execution we reuse the match relation from Section 2.7.1.

Example 3.13 Define an observer predicate equal_vars/2 to be true iff
two different state variables V1 and V2 are bound to the same value before
and after execution of the current symbolic annotated computation step.
We use the match functions in Section 3.2.1 and define

equal_vars(V1,V2) ->
lookup(V1,SourceEnv)==lookup(V2,SourcEnv) and
lookup(V1,TargetEnv)==lookup(V2,TargetEnv) and
(V1=/=V2).

This means that the observer predicate evaluates to true if V1 and V2
are not the same state variable, and are bound to the same values in
both match variables SourceEnv and TargetEnv. Assume an observer
edge clause

ι0() when equal_vars(V1,V2) -> oce.

Now, assume looking up values for V1 and V2 in SourceEnv

ςs(SourceEnv)(V1)==ςs(SourceEnv)(V2)

122

results in an expression e1==e2, and similar, looking up values for V1 and
V2 in TargetEnv

ςs(TargetEnv)(V1)==ςs(TargetEnv)(V2)

results in an expression e′1==e
′
2 where both e′1 and e′2 are expressions with

symbolic parameters. Then, given that V1=/=V2 is satisfied, we can con-
clude that the necessary condition for the observer predicate to evaluate
to true is that (the superposistion condition) e1==e2 ∧ e′1==e

′
2 is satisfied.

□

3.7.1 Observer expressions
All expressions in Erlang/Obs can be evaluated to Erlang/Efsm normal
form expressions with symbolic execution. In this section we outline the
symbolic transition rules for how this is accomplished. For Erlang/Efsm
values, tuples, conses, logical operators, arithmetic expressions, observer
variable definition and usage, and sequences of observer expressions oce,
we use the symbolic transition rules from Section 2.7.2. Observer guard
expressions compute boolean expressions of observer predicates and occur
in observer edge clauses.

Similarly as in Erlang/Efsm in Section 2.7.2, observer variables are
also bound to values by pattern matching in observer expressions. Note
that, in addition, observer variables are also bound to values by observer
predicates, if not previously bound, see Section 3.5.2. Observer variables
must be bound in the local environment, ρ, to an Erlang/Efsm normal
form expression before they are used.

3.7.2 Observer predicates
Assume an observer predicate is defined by a clause

fop(u1, . . . ,un) -> ope.

fop is the name of the observer predicate, u1, . . . ,un are observer vari-
ables and represent formal parameters to the observer predicate, and ope

is a a boolean expression, see Section 3.5.2. The symbolic transition rule
is

⟨ope[u1, . . . , un 7→ obsge1, . . . , obsgen], ςs, ρ⟩ ⇒ ⟨bool,H, ϵ, ςs, ρ′⟩

⟨fop(obsge1, . . . ,obsgen), ςs, ρ⟩ ⇒ ⟨bool,H, ϵ, ςs, ρ′⟩

where the resulting local environment ρ′ includes bindings to all unbound
observer variables in obsge1, . . . ,obsgen.

123

Pattern matching
The pattern match cp=ope where cp is a pattern and ope an Erlang/Efsm
expression, binds any unbound observer variable in cp to a value, if pat-
tern matching is possible. The match operator in Erlang/Efsm, see
Section 2.4.1, is only defined when a match succeeds between the two
operands (and is not allowed in guards). However, in Erlang/Obs we
use the match operator in observer predicates (that occur in guards) and
need to additionally consider the case when a match fails. A failing
match implies a conflict between two expressions with bound variables.
We therefore define an additional transition rule for pattern matching
when all observer variables are bound to values and the pattern match
fails, as follows

⟨cp==ope, ςs, ρ′′⟩ ⇒ ⟨false, H, ϵ, ςs, ρ′⟩

⟨cp=ope, ςs, ρ⟩ ⇒ ⟨false, H, ϵ, ςs, ρ′⟩

where the symbolic transition rule for the relational operator == (from
Erlang/Efsm) is only defined when all its operands are bound to values.
Thus, a failing pattern match only has a symbolic transition when there
is no unbound variables in cp.

Match functions
Match functions are used to help define observer predicates. With sym-
bolic execution match functions may require additional superposition con-
ditions to be satisfied, in order to fully evaluate all expressions. We will
assume that in general match functions can be defined freely and al-
low for definitions with any valid Erlang expression. We do this with
the assumption that the match functions, during symbolic execution, are
executed analogously as user defined functions of Erlang/Efsm (see Sec-
tion 2.7), i.e., such that

• each argument in a call to the match function generate a superpo-
sition condition,

• for each evaluated Erlang clause, a superposition condition is gen-
erated for each pattern match in the function head, for the execution
of the guard, and for the execution of the body of the Erlang clause.

The resulting conjunction of these superposition conditions is the con-
tributed superposition condition of the match function.

In Figure 3.8 we give an assumed representation of match variables,
with symbolic execution of the EFSM, in terms of Erlang/Efsm expres-
sions. Similarly as in Section 3.5.2, this is the representation assumed
in the definitions of the match functions We distinguish between binding
and non-binding match functions. For match functions that bind any
unbound observer variable and appear in the thesis, all the necessary
transition rules are given below. For match functions that assume all

124

observer variables used are already bound, transitions rules are straight-
forward and we omit them here.

Match variables for computation steps: ⟨l, σ,G⟩
a(p)/b
−→ ⟨l′, σ′, G′⟩

Eventtype atom

Eventpars [p1, . . . , pn]

Outevents [#func{op=b1,args=[e11, . . . , e1m]}
...

#func{op=bn,args=[en1, . . . , enm]}]

SourceLoc atom,
SourceEnv [{v1,e1} · · · {vn,en}]
TargetLoc atom,
TargetEnv [{v1,e1} · · · {vn,en}]

Match variables for Erlang/Efsm edge clauses:
l(a,u1, . . . ,um) when g -> v = e, b, {next_state,l′}

Edgevars [u1, . . . ,um]

Guard #func{op=guardop,args=[ge1, . . . , gen]}

Assigns [{v1,e1} · · · {vn,en}]
Outexprs [#func{op=b1,args=[e11, . . . , e1m]}

...
#func{op=bn,args=[en1, . . . , enm]}]

Figure 3.8. Representation of the match variables in Figure 3.4 as Erlang/Efsm
expressions with symbolic execution.

Binding match functions
In this section we describe match functions that bind unbound observer
variables to normal form expressions. It can here be noted that with
symbolic execution, match functions can only bind observer variables to
values and Erlang/Efsm expressions.

member(Element, List)
A predicate such that member(Element, List) returns true if Element is
a member of the list List (with length n ≥ 0) and false otherwise. The

125

symbolic transition rules for member are as follows.

⟨e1, ς
s, ρ⟩ ⇒ ⟨e, H ′, ϵ, ςs, ρ⟩

⟨e2, ς
s, ρ⟩ ⇒ ⟨[e1, . . . , en], H ′′, ϵ, ςs, ρ⟩

∃i : 1 ≤ i ≤ n :: match (e, ei, ρ,Hi, ρ)

⟨member(e1, e2), ςs, ρ⟩ ⇒ ⟨true, H ′ ∧H ′′ ∧Hi, ϵ, ς
s, ρ⟩

if e1 is an expression that evaluates to a value or a bound observer vari-
able, which is a member of a list e2,

⟨e1, ς
s, ρ⟩ ⇒ ⟨e, H ′, ϵ, ςs, ρ⟩

⟨e2, ς
s, ρ⟩ ⇒ ⟨[e1, . . . , en], H ′′, ϵ, ςs, ρ⟩

∀i, 1 ≤ i ≤ n : ¬match (e, ei, ρ,Hi, ρ)

⟨member(e1, e2), ςs, ρ⟩ ⇒ ⟨false, H ′ ∧H ′′ ∧H1 ∧ . . . ∧Hn, ϵ, ς
s, ρ⟩

if e1 is an expression that evaluates to a value or a bound observer vari-
able, which is not a member of a list e2,

⟨e1, ς
s, ρ⟩ ⇒ ⟨u,H, ϵ, ςs, ρ⟩

u is an observer variable, not defined in ρ

⟨e2, ς
s, ρ⟩ ⇒ ⟨[], true, ϵ, ςs, ρ⟩

⟨member(e1, e2), ςs, ρ⟩ ⇒ ⟨false, H, ϵ, ςs, ρ[u 7→ undefined]⟩

if e1 is an expression that evaluates to an unbound observer variable, e2
is the empty list, and

⟨e1, ς
s, ρ⟩ ⇒ ⟨u,H, ϵ, ςs, ρ⟩

u is an observer variable, not defined in ρ

⟨e2, ς
s, ρ⟩ ⇒ ⟨[e1, . . . , en], true, ϵ, ςs, ρ⟩

⟨member(e1, e2), ςs, ρ⟩ ⇒ ⟨true, H, ϵ, ςs, ρ[u 7→ ei]⟩

if e1 is an expression that evaluates to an unbound observer variable and
e2 is a non-empty list. In this case any member of e2 is a possible solution.
Note that we do not define any symbolic transition rule for the case when
e2 is an unbound observer variable as that would generate an infinite
number of possible solutions.

lookup(Key,KeyValList)
Searches a list of tuples, KeyValList (with length n ≥ 0), for a tuple
whose 1:st element matches Key. If found, the 2:nd element of such a
tuple is returned, otherwise the boolean false is returned. The symbolic

126

transition rules for lookup are as follows.

⟨e1, ς
s, ρ⟩ ⇒ ⟨e1, H

′, ϵ, ςs, ρ⟩

⟨e2, ς
s, ρ⟩ ⇒ ⟨[{e11, e12}, . . . , {en1, en2}], H ′′, ϵ, ςs, ρ⟩

∀j, 1 ≤ j < i : ¬match (e1, ej1, ρ,Hj1, ρ)

match (e1, ei1, ρ,Hi1, ρ)

⟨lookup(e1, e2), ςs, ρ⟩ ⇒ ⟨ei2, H
′ ∧H ′′ ∧H11 ∧ . . . ∧Hi1, ϵ, ς

s, ρ⟩

if e1 is a value or a bound observer variable, which is a key in the key/value
list e2,

⟨e1, ς
s, ρ⟩ ⇒ ⟨e1, H

′, ϵ, ςs, ρ⟩

⟨e2, ς
s, ρ⟩ ⇒ ⟨[{e11, e12}, . . . , {en1, en2}], H ′′, ϵ, ςs, ρ⟩

∀j, 1 ≤ j ≤ n : ¬match (e1, ej1, ρ,Hji, ρ)

⟨lookup(e1, e2), ςs, ρ⟩ ⇒ ⟨false, H ′ ∧H ′′ ∧H11 ∧ . . . ∧Hn1, ϵ, ς
s, ρ⟩

if e1 is a value or a bound observer variable, which is not a key in the
key/value list e2 (n ≥ 0), and

⟨e1, ς
s, ρ⟩ ⇒ ⟨u,H ′, ϵ, ςs, ρ⟩

u is an observer variable, not defined in ρ

⟨e2, ς
s, ρ⟩ ⇒ ⟨[{e11, e12}, . . . , {en1, en2}], true, ϵ, ςs, ρ⟩

⟨lookup(e1, e2), ςs, ρ⟩ ⇒ ⟨ei2, true, ϵ, ςs, ρ[u 7→ ei2]⟩

if e1 is an expression that evaluates to an unbound observer variable and
e2 is a non-empty key/value list. In this case any member of e2 is a
possible solution. If e2 evaluates to an empty list (n = 0), u is bound to
undefined and false returned. Note that we do not define any symbolic
transition rule for the case when e2 is an unbound observer variable as
that would generate an infinite number of possible solutions.

3.7.3 Observer edge clauses
The symbolic transitions from an observer state ι(e1, . . . ,em) are defined
by observer edge clauses

ι(u1, . . . ,um) when h1 -> oce1;
...

ι(u1, . . . ,um) when hn -> ocen.

Each of these clauses are evaluated by first matching the expressions
e1, . . . , em with the observer variables u1, . . . ,um, and if the match suc-
ceeds the observer guard expression hk is evaluated. For some clause

127

k with all observer variables, u1, . . . ,um matching and observer guard
expression hk evaluating to true, the ocek expression is evaluated. The
symbolic transition rule is

match (uk1, . . . ,ukm, e1, . . . , em, •, ρ′)

⟨hk, ς
s, ρ⟩ ⇒ ⟨true, H, ϵ, ςs, ρ′⟩

⟨ocek, ς
s, ρ′′⟩ ⇒ ⟨e′, true, ϵ, ςs, ρ′′′⟩

⟨ι(e1, . . . ,em), ςs, ρ0⟩ ⇒ ⟨e′, H, ϵ, ςs, ρm⟩

where e′ always must be a tuple of form {next_state,ι′(e′1, . . . ,e′n)}.

3.7.4 Correspondence with Operational Semantics
In analogy with the treatment for EFSMs in Section 2.8, we can derive
a similar relationship between (non-symbolic) operational semantics and
symbolic semantics for observers. First, we note that structural observer
states and transitions in the (non-symbolic) operational semantics is de-
fined for global environments ς that map match variables to components
of computation steps. In contrast, a global environment ςs in the sym-
bolic semantics maps match variables to corresponding components of
symbolic computation steps. We observe that the domains of ς and ςs are
the same. Moreover, if ςs represents a symbolic version of a computation
step represented by ς, then ς and ςs are related by the correspondence
relation ◁Γ. More precisely, if ς represents a computation step

⟨l, σ⟩
a(d)/b
−→ ⟨l′, σ′⟩

and ςs represents a symbolic computation step

⟨l, σ,G⟩
a(p)/b
→ ⟨l′, σ′, G′⟩,

such that ⟨l, σ⟩ ◁Γ ⟨l, σs, G⟩, d = Γ(p), b ◁Γ b, and ⟨l′, σ′⟩ ◁Γ ⟨l′, σ′
s, G

′⟩,
then ς ◁Γ ςs. This correspondence can be checked by noting the close
correspondence between the definitions of match variables in the non-
symbolic case (Fig. 3.4) and symbolic case (Fig. 3.8).

The definition of the correspondence relation ◁Γ between structural
states and symbolic structural states directly applies also to observer
structural states. That is, ⟨oe, ϵ, ς, ρ⟩ ◁Γ ⟨oes, H, ϵ, ςs, ρs⟩ is defined pre-
cisely as in Section 2.8.

We can now derive an analogue of Proposition 2.7.

Proposition 3.14 Assume that ⟨oe, ϵ, ς, ρ⟩ ◁Γ ⟨oes, true, ϵ, ςs, ρs⟩. Then

128

(i) for each observer transition ⟨oe, ς, ρ⟩ ⇒ ⟨d, ϵ, ς, ρ′⟩ there is a sym-
bolic observer transition ⟨oes, ς

s, ρs⟩ ⇒ ⟨e, H, ϵ, ςs, ρ′s⟩ such that
⟨d, ϵ, ς, ρ′⟩ ◁Γ ⟨e, H, ϵ, ςs, ρ′s⟩,

(ii) for each symbolic observer transition ⟨oes, ς
s, ρs⟩ ⇒ ⟨e, H, ϵ, ςs, ρ′s⟩

such that Γ ⊢ H, there is an observer transition ⟨oe, ς, ρ⟩ ⇒ ⟨d, ϵ, ς, ρ′⟩
such that ⟨d, ϵ, ς, ρ′⟩ ◁Γ ⟨e, H, ϵ, ςs, ρ′s⟩. □

As in Proposition 2.7, Property (i) states that each transition in the
non-symbolic semantics has a corresponding transition in the symbolic
semantics, and Property (ii) states that each transition in the symbolic se-
mantics, which is consistent with the parameter environment in the sense
that H is satisfied, has a corresponding transition in the non-symbolic
semantics.

3.8 Symbolic Observers and Symbolic Coverage
In this section, we will provide a symbolic version of the observer def-
inition in Section 3.6. The section is thus analogous with Section 2.9.
We assume that the observer is defined for an EFSM, defined by an Er-
lang/Efsm definition, with symbolic semantics as in Section 2.9.

Let a symbolic observer state q be a term of the form ι(e1, . . . ,en),
where ι is an observer location declared in the Erlang/Obs specification
and e1, . . . ,en are Erlang/Efsm normal form expressions. We say that
the symbolic observer state is initial (accepting) if ι is initial (accepting).
Let a conditioned observer state be a term of form ⟨q, H⟩, where q is a
symbolic observer state and H is a superposition condition. We say that
the conditioned observer state ⟨q, H⟩ is accepting if q is accepting. The
initial conditioned observer state is ⟨ι0(), true⟩.

The symbolic version of the observer step relation is represented by
triples of form

⟨ι(e1, . . . ,em), H⟩
ςs

→֒ ⟨ι′(e′1, . . . ,e
′
n), H ∧H ′⟩,

such that the rules in the symbolic semantics for observers allow to derive
a symbolic transition

⟨ι(e1, . . . ,em), ςs, •⟩ ⇒ ⟨{next_state,ι′(e′1, . . . ,e
′
n)}, H

′, ϵ, ςs, ρ⟩

for some ρ. Intuitively, whenever the observer is in a conditioned observer
state ⟨ι(e1, . . . ,em), H⟩ it can process a symbolic annotated computation
step, represented by the environment ςs, and move to a next conditioned
observer state ⟨ι′(e′1, . . . ,e′n), H ∧H ′⟩.

We can then define a correspondence with the (non-symbolic) observer
step relation, and derive an analogue of Proposition 2.10. Define q ◁Γ

⟨q, H⟩ to denote that Γ ⊢ H and q ◁Γ q.

129

Proposition 3.15 Assume q ◁Γ ⟨q, H ⟩ for a parameter environment Γ.
Then

(i) whenever q
ς
→ q′ and ς ◁Γ ςs, there is a symbolic observer step

⟨q, H ⟩
ςs

→ ⟨q′ , H ′⟩ with q′ ◁Γ ⟨q′ , H ′⟩,
(ii) whenever ⟨q, H ⟩

ςs

→ ⟨q′ , H ′⟩ such that Γ ⊢ H ′, then there is an
observer step q

ς
→ q′ with ς ◁Γ ςs, and q′ ◁Γ ⟨q′ , H ′⟩. □

Proposition 3.15 follows rather straight-forwardly from Proposition 3.14
and the definitions of non-symbolic and symbolic observer steps.

We can also provide a definition of coverage for the symbolic case.

Definition 3.16 Let ⟨l0, •, true⟩
a1(p1)/b1
−→ · · ·

an(pn)/bn

−→ ⟨ln, σn, Gn⟩ be
a symbolic run of an EFSM, and for i = 1, . . . , n, let ςsi represent the
symbolic annotated computation step

⟨

⟨li−1, σi−1, Gi−1⟩
ai(pi)/bi

−→ ⟨li, σi, Gi⟩,

li−1(a,u1, . . . ,um) when g -> v = e, b, {next_state,li}

⟩

derived from the i step in this symbolic run. Let qf be an accepting
symbolic observer state. Then we say that this symbolic run symbol-
ically covers ⟨qf , Hn⟩ if there is a sequence of symbolic observer steps
⟨q0, true⟩

ςs1
→֒ · · ·

ςsn
→֒ ⟨qn, Hn⟩ (i.e., a symbolic run over ςs1 . . . ς

s
n) such

that qn = qf . □

Each covered conditioned observer state, of the form ⟨ι(e), Hn⟩, rep-
resents the set of coverage items ι(d) that can be obtained by finding a
parameter environment so that e becomes d, and so that Gn and Hn are
satisfied. Thus, for each feasible tuple of values d, a test case that covers
ι(d) can be obtained from the symbolic trace w by finding a parameter
environment Γ so that Γ ⊢ (Gn ∧ Hn ∧ e = d). We summarize this by
saying that the symbolic test case ⟨w, (Gn ∧Hn ∧ e = d)⟩ covers ι(d).

Intuitively, these definitions says that all coverage items represented by
an instantiation of qf that satisfies Gn ∧Hn, are covered by runs of the

EFSM that instantiate the symbolic run ⟨l0, •, true⟩
a1(p1)/b1
−→ · · ·

an(pn)/bn

−→
⟨ln, σn, Gn⟩ in a way that satisfies Gn ∧Hn.

Th correspondence between coverage of (non-symbolic) runs and sym-
bolic runs is made precise by the following theorem.

Theorem 3.17 Assume an EFSM and an observer monitoring the EFSM.
Then there is a run of the EFSM which covers a coverage item ιf (d)
if and only if there is a symbolic run of the EFSM with final path
condition Gn, which symbolically covers an accepting conditioned ob-
server state ⟨ιf (e), Hn⟩ for some parameter environment Γ such that
Γ ⊢ (Gn ∧Hn ∧ e = d). □

130

Proof of Theorem 3.17: First assume that there is a run

∆ |= ⟨l0, •⟩
a1(d1)/b1
−→ · · ·

an(dn)/bn
−→ ⟨ln, σn⟩

of the EFSM which covers qf . By repeated applications of case (i) of
Proposition 2.10, we infer that there is a corresponding symbolic run

⟨l0, •, true⟩
a1(p1)/b1
−→ · · ·

an(pn)/bn

−→ ⟨ln, σ
s
n, Gn⟩

and a parameter environment Γ with ∆ = ∆Γ, such that ⟨li, σi⟩ ◁Γ

⟨li, σ
s
i , Gi⟩ for i = 0, . . . , n, and pi ◁Γ di and bi ◁Γ bi for i = 1, . . . , n.

Note that ⟨li, σi⟩ ◁Γ ⟨li, σ
s
i , Gi⟩ implies that that Γ satisfies Gi. for

i = 0, . . . , n.
For i = 1, . . . , n, let ςi represent the annotated computation step corre-

sponding to the ith step in the above run, and let ςsi represent the sym-
bolic annotated computation step corresponding to the ith step in the
above symbolic run. The correspondences between the two runs means
that ςi ◁Γ ςsi .

By the definition of coverage, there is a run q0
ς1→ · · ·

ςn→ qf of
the observer over ς1 . . . ςn, which ends in qf . By repeated application of
case (i) of Proposition 3.15, there is then a symbolic run ⟨q0, true⟩

ςs1
→֒

· · ·
ςsn
→֒ ⟨qn, Hn⟩ of the observer over ςs1 . . . ς

s
n, such that qi ◁Γ ⟨qi, H i⟩

for i = 0, . . . , n. Let qf be ιf (d) and let qf be ιf (e). This implies that
the above symbolic run of the EFSM symbolically covers ⟨qf , Hn⟩, and
moreover by used definitions we have Γ ⊢ (Gn ∧Hn ∧ e = d).

In the other direction, assume that there is a symbolic run of the EFSM

⟨l0, •, true⟩
a1(p1)/b1
−→ · · ·

an(pn)/bn

−→ ⟨ln, σn, Gn⟩

which symbolically covers ⟨qf , Hn⟩, such that Γ ⊢ (Gn ∧ Hn ∧ e = d),
where qf is ιf (e). Let qf be ιf (d). This means that there is a symbolic
run ⟨q0, true⟩

ςs1
→֒ · · ·

ςsn
→֒ ⟨qn, Hn⟩ of the observer over ςs1 . . . ς

s
n, where

ςsi is the symbolic annotated computation that represents the ith step
in the symbolic run of the EFSM. For i = 1, . . . , n, let di = Γ(pi) and
bi ◁Γ bi. By repeated application of case (ii) of Proposition 2.10, we infer
that there is a run of the EFSM

∆ |= ⟨l0, •⟩
a1(d1)/b1
−→ · · ·

an(dn)/bn
−→ ⟨ln, σn⟩

such that ⟨li, σi⟩ ◁Γ ⟨li, σ
s
i , Gi⟩ for i = 0, . . . , n. Note that ⟨li, σi⟩ ◁Γ

⟨li, σ
s
i , Gi⟩ implies that that Γ satisfies Gi. for i = 0, . . . , n. The corre-

spondence between the two runs also means that ςi ◁Γ ςsi for i = 1, . . . , n.
Thus, by repeated application of case (ii) of Proposition 3.15, we infer that

131

there is a run q0
ς1→ · · ·

ςn→ qf of the observer over ς1 . . . ςn, which ends
in ιf (d). By the definition of coverage, this means that the above run of
the EFSM indeed covers ιf (d), and the theorem is proven. □

The following example illustrates Theorem 3.17.

Example 3.18 Consider the EFSM defined in Example 2.1 and the “all
target locations of the EFSM” observer from Example 3.1. A possible
symbolic run of the EFSM is

⟨morning, [] , true⟩
wakeup(TDay)/checkout(TDay)
−−−−−−−−−−−−−−−−−−−−−−→

⟨workUU,

Progress=0

Stamina=2

Day=TDay

, daytype(TDay)==collect⟩

incident(I1)/checkin(TDay)
−−−−−−−−−−−−−−−−−−−−→

⟨preschool,

Progress=0

Stamina=1

Day=TDay

,

daytype(TDay)==collect

∧ I1 = kids_happy
⟩

incident(I2)/

−−−−−−−−−−−→

⟨end_of_day,

Progress=0

Stamina=0

Day=TDay

,

daytype(TDay)==collect

∧ I1==kids_happy

∧ I2==kids_notok

⟩

There is a symbolic run of the observer in Example 3.1 over this EFSM-
run which symbolically covers the three conditioned observer states

⟨visitedloc(workUU), true⟩,

⟨visitedloc(preschool), true⟩ and
⟨visitedloc(end_of_day), true⟩

Thus, these conditioned observer states are covered by the symbolic test
case ⟨w,G⟩, where

• w is the symbolic trace with input and output expressions:

wakeup(TDay)/checkout(TDay)

incident(I1)/checkin(TDay)

incident(I2)/,

• G is the path condition:

daytype(TDay)==collect ∧ I1 = kids_happy ∧ I2 = kids_notok.

An abstract test case, which satisfies the path condition can be trivially
extracted. □

132

Example 3.19 Assume an edge clause

l(a) when (X==0) or (Y==2) -> {next_state,l′}

where X and Y are state variables that both assume values in {0, 1, 2, 3}.
From Section 4.1.1 we have that Condition coverage requires each condi-
tion in a guard to be evaluated to true or false. An observer implement-
ing this requirement has four possible symbolic transitions with observer
guards:

h1 = is_cc('X==0', false)

h2 = is_cc('X==0', true)

h3 = is_cc('Y==2', false)

h4 = is_cc('Y==2', true)

In a symbolic execution, let ςs be the current bindings of the match
variables and assume the state variable X is evaluated to the symbolic pa-
rameter p1 and the state variable Y is evaluated to the symbolic parameter
p2. Then we have the corresponding superposition condition results

H1 = p1 ̸= 0

H2 = p1 = 0

H3 = p2 ̸= 2

H4 = p2 = 2

It follows that only pairs of observer guards with consistent Hi can be per-
formed simultaneously. Assuming a bit vector organized as ⟨h1, h2, h3, h4⟩,
the set of possible binary vectors is then {1010, 1001, 0110, 0101}. Thus
for e.g., 0101, we have 'X==0', 'Y==2', and

∧

i=1,3

¬(ςs ⊢ Hi) ∧
∧

i=2,4

ςs ⊢ Hi and 1 ≤ i ≤ 4

evaluating to true. I.e., ςs satisfy superposition conditions H2 and H4,
but does not satisfy superposition conditions H1 and H3. □

133

4. Coverage criteria

Observer automata, introduced in the previous chapter, control the se-
lection of test cases. In this chapter we give examples of how observer
automata can be used to define a variety of coverage criteria.

We structure coverage criteria into two classes.
• Model-independent coverage criteria, which require only limited knowl-

edge about the actual model and thus can easily be reused between
different, unrelated models, are discussed in Section 4.1.

• Model-dependent coverage criteria, which depend on a specific model
and thus, in general, cannot be reused on other models, are discussed
in Section 4.2.

4.1 Model-independent coverage criteria
This section describes how a number of well-known coverage criteria
can be specified with observers. In the literature [BJK 04, Utting 07,
Ammann 08] coverage criteria are often divided into control flow and data
flow criteria. Control flow criteria can be further divided into coverage
of guards (Section 4.1.1), locations (Section 4.1.2) and sequences of edges
(Section 4.1.3). Examples of data flow criteria are given in Section 4.1.4.

4.1.1 Coverage of guards
Several coverage criteria are based on logical expressions that determine
whether a certain path of execution should be taken. In the litterature, a
decision is often refered to as a boolean expression that control program
flow, and each predicate in such expressions as a condition. For example
consider the following C/Java/JavaScript/... code fragment:

if (decision)
statement1;

else
statement2;

statement3;

In this thesis we evaluate transition clauses into edge clauses and thereby
possibly evaluate several decisions and conditions already before a run of

134

the EFSM. We therefore use the term decision as a synonym for the guard
of an edge, i.e., the resulting expressions after evaluating all decisions in
the transition clause.

To illustrate these criteria we assume an edge clause (see Section 2.10)

l(a) when (X==0) or (Y==2) -> {next_state,l′}

where the guard, (X==0) or (Y==2), is a decision, and X==0 and Y==2 are
two conditions. Further, we assume that both X and Y are state variables
that assume values in {0, 1, 2, 3}.

Below we outline some classic coverage criteria, originally used for
white-box testing.

X Y

0 2

− −

− −

1 3

X Y

− −

0 3

1 2

− −

X Y

0 2

0 3

1 2

1 3

X Y

− −

0 3

1 2

1 3

X Y

− −

0 3

1 2

1 3
(i) (ii) (iii) (iv) (v)

Figure 4.1. Sufficient tests for a decision (X==0) or (Y==2) with (i) Decision
Coverage, (ii) Condition Coverage, (iii) Multiple Condition Coverage, (iv)
Condition/Decision Coverage and (v) Modified Condition/Decision Coverage.

Decision Coverage (DC) [Myers 79] is also known as Branch coverage and
requires two test cases for a decision d. One test case when d evalu-
ates to false and one when d evaluates to true. For example, consid-
ering the decision (X==0) or (Y==2) in the edge clause above, the
two tests in Figure 4.1(i) are sufficient.

Condition Coverage (CC) [Myers 79] requires two test cases for each con-
dition c in a decision: one test case in which c evaluates to false,
and one in which c evaluates to true. For example, considering the
decision (X==0) or (Y==2) in the edge clause above, the two tests
in Figure 4.1(ii) are sufficient. For a decision with n conditions, at
most 2n test cases are required.

Multiple Condition Coverage (MCC) [Myers 79] is also known as Combi-
natorial Coverage and requires one test case for each possible com-
bination of evaluations of the conditions in the decision. Thus, for
a decision with n boolean conditions, at most 2n test cases are re-
quired. For example, considering the decision (X==0) or (Y==2) in
the edge clause above, the four tests in Figure 4.1(iii) are sufficient.

Condition Coverage/Decision Coverage (CC/DC) [Myers 79] requires both
Condition Coverage and Decision Coverage to be satisfied. For ex-

135

ample, considering the decision (X==0) or (Y==2) in the edge clause
above, the three tests in Figure 4.1(iv) are sufficient.

Modified Condition/Decision Coverage (MC/DC) [Chilenski 94] requires
the outcome of a decision to depend on a single condition while all
other conditions in the decision are fixed. Modified Condition/De-
cision Coverage requires two test cases for each condition c in a
decision d that independently affect the decision’s outcome. One
test case when c evaluates to false and one when c evaluates to
true. Among the constructed test cases, at least one test case must
evaluate d to false and one must evaluate d to true. For example,
considering the decision (X==0) or (Y==2) in the edge clause above,
the three tests in Figure 4.1(v) are sufficient. In general, for a de-
cision with n conditions, the number of required test cases ranges
between n+ 1 and 2n.

Due to dependencies between conditions it may not be possible to change
the outcome of one condition while keeping all other conditions. Sev-
eral variants have therefore been developed relaxing this requirement, see
e.g., [Ntafos 88, Ammann 03] for further examples of coverage criteria on
logical expressions.

We will apply the above coverage criteria on Erlang/Efsm. In Sec-
tion 2.10 we defined edge clauses in terms of symbolically executed tran-
sition clauses, and in Section 5 we will see that a test case corresponds
to a sequence of edge clauses. Further, for any two edge clauses with the
same source location reacting on the same input event the correspond-
ing guards must be inconsistent, for the EFSM to be deterministic. This
influences how above coverage criteria, originally defined for imperative
languages, can be defined for Erlang/Efsm.

Here decision may evaluate to true or false, both evaluations are pos-
sible. For example, Decision Coverage would require two test cases: one
test case where statement1 is followed by statement3 and another test
case where statement2 is followed by statement3.

An edge clause with a guard evaluating to false will, by definition, not
be included in a test case. Thus, if we let the decision above correspond
to a guard in an edge clause, only the case where decision evaluate to
true is possible. Now, it may be the case that evaluating this particular
decision (i.e., guard) to false may enable the inclusion of some other edge
clause. However, such an interpretation would introduce a dependency
with the test suite algorithm. Something we do not want, we therefore re-
lax the requirement of inclusion of a false decision and consider coverage
of a true decision “enough” for a test case to be included according to
these coverage criteria. In Figure 4.1 this is reflected by removing all tests
in the fourth row, in all tables. Thus, Decision Coverage becomes iden-
tical to the coverage criteria “all edges of the EFSM” (All-Edges) since
covering an edge is equivalent to a true decision, and Condition Coverage

136

becomes identical to Condition/Decision Coverage, as they only differ in
that Condition/Decision Coverage additionally requires test cases such
that the decision has one evaluation to false.

Under symbolic execution it may not be known at the time of execution
whether a particular condition or decision is true. In Section 3.7 the op-
erational semantics for observers onto an EFSM with symbolic execution
of Erlang/Efsm was given. We there defined the superposition condition
that we here might use as an additional imposed condition required for a
condition or decision to evaluate to true or false.

To define observers suitable for the coverage criteria above, we define
the observer predicates:

Condition Coverage predicate, is_cc/2
Is true iff on an edge the guard has a condition R that is evaluated to the
boolean value B. This can be expressed as:

is_cc(R,B) ->
to_bool(LocEnv=lists:zip(EdgeVars,EventPars)) and
member(R,conds(Guard)) and
B=eval(R,LocEnv++SourceEnv).

Multiple Condition Coverage predicate, is_mcc/1
Is true iff BV is a list of length n with boolean elements, and from the
guard on an edge, a list with with conditions [r1, . . . , rn] sorted in lexical
order can be constructed, such that at position i, ri is evaluated to the
boolean value bvi. This can be expressed as:

is_mcc(BV) ->
to_bool(LocEnv=lists:zip(EdgeVars,EventPars)) and
to_bool(BV=map({eval,[LocEnv++SourceEnv]},conds(Guard))).

Modified Condition/Decision Coverage predicate, is_mcdc/2
Is true iff on an edge the guard has a condition R that is evaluated to
the boolean value B, and the evaluation of R affects the evaluation of the
guard. This can be expressed as:

is_mcdc(R,B) ->
to_bool(Env=lists:zip(EdgeVars,EventPars) ++ SourceEnv) and
member(R,conds(Guard)) and
to_bool(B=eval(R,Env)) and
(eval(subst(Guard,R,false),Env) =/=
eval(subst(Guard,R,true), Env)).

An observer for Condition (and Condition/Decision) Coverage is given
in 4.2(i), Multiple Condition Coverage in 4.2(ii), Decision Coverage (and
All-Edges) in 4.2(iii) and Modified Condition/Decision Coverage in 4.2(iv).

137

q0q0

(ii)

q0

(iii)

q0

(i)

q1(E,R,B) q1(E,BV)

is_edge(E) ∧

is_cc(R,B)
is_edge(E) ∧

is_mcdc(R,B)

q1(E,R,B)

(iv)

is_edge(E) ∧

is_mcc(BV)
is_edge(E)

q1(E)

Figure 4.2. Observers for the control flow criteria on guards: (i) Condition (or
Condition/Decision) Coverage, (ii) Multiple Condition Coverage, (iii) Decision
Coverage (and All-Edges) and (iv) Modified Condition/Decision Coverage.

4.1.2 Coverage of locations
Coverage of locations is a basic, well-known coverage criterion. In an
EFSM there are typically only a limited number of locations which also
implies that we may expect location coverage only to generate a limited
number of different coverage items. A coverage criterion for “all target
locations of the EFSM” is specified with an observer using Erlang/Obs
notation in Example 3.1.

4.1.3 Coverage of paths
A path is a unique sequence of edges from a start location to a stop
location.
Examples of coverage criteria on paths includes:
All-paths coverage requires coverage of all paths in the model and is iden-

tical to exhaustively searching the complete model and generate a
test case for each run between a start location and a stop location.
An observer, which collects edges and delivers the covered path as
a coverage item, can be defined in Erlang/Obs as
-obs_locations({q,[q2],[q1]}).

q() when is_edge(E), is_startloc() ->
{next_state,q1([E])}.

q1(P) when is_edge(E), not is_stoploc() ->
{next_state,q1([E|P])};

q1(P) when is_edge(E), is_stoploc() ->
{next_state,q2([E|P])}.

Test case length criteria requires coverage of test cases with certain min-
imum path length. An observer, which collects edges and delivers a
coverage item when a stop location is reached after a minimum of
n, for n > 1, edges have been covered.
-obs_locations({q,[q2],[q1]}).

138

q() when is_edge(E), is_startloc() ->
{next_state,q1([E],1)}.

q1(P,K) when is_edge(E), not is_stoploc(), K<5 ->
{next_state,q1([E|P],K+1)};

q1(P,K) when is_edge(E), K==5 ->
{next_state,q2([E|P])}.

4.1.4 Coverage of data flow
Data flow oriented coverage criteria focus on the data flow part of the
specification. In an EFSM this typically involves following runs where
state variables are bound to values at some edge and used on some other
edge. Usage of state variables can be further divided into computation-use
if used in the right hand side of an assignment or, guard-use if used within
a guard [Rapps 85]. For example, in the assignment A = B+1, the state
variable A is defined and the state variable B is used. Furthermore, B
reaches a computation-use in the assignment A = B + 1, but guard-use
in the guard A == B. A definition clear path with respect to B is a
sequence of edges where there exists no definition of B. To exemplify a
number of common data flow criteria we assume an EFSM in Figure 4.3
with 10 edges e1, . . . , e10 where a state variable is defined in e1 and e2,
and used in e7 and e10. Covered edges are represented with thick arrows.

e10
Use(x)

e10
Use(x)

(ii)(i) (iii)

e3
e5

e6

e7 e9

e4

e8

e3
e5

e6

e7 e9e8

e3
e5

e6

e7 e9

e4

e8

Use(x) Use(x)

e1
Def(x)

e1
e0 e2

Def(x) Def(x)
Def(x)

e1
e0 e2

Def(x) Def(x)
Def(x)

e0

e4

Use(x)

e10Use(x)

Def(x)
e2

Def(x)

Figure 4.3. EFSM graphs, with annotations for definition and usage of a state
variable x, illustrating (i) Reachable definitions coverage, (ii) Reachable uses
coverage, and (iii) Definition-Use pair coverage

139

Reachable definitions coverage [Frankl 88] requires, for a state variable X,
coverage of all runs with a definition of X and some definition clear
sequence of edges to some usage of X. Thus, the Reachable def-
initions coverage criterion ensures that all defined state variables
will be tested at least once by one of their uses in the model. For
example, the two sequences of edges

e0, e3, e7 e1, e4, e7

in Figure 4.3(i) are sufficient.
Reachable uses coverage [Frankl 88, Clarke 89, Herman 76, Laski 83] re-

quires, for a state variable X, coverage of all usages of X such that
there exists a definition clear sequence of edges from where X is de-
fined. Thus, the Reachable uses coverage criterion ensures that all
uses of state variables previously defined will be tested at least once
by one of their uses in the model. For example, the two sequences
of edges

e0, e3, e7 e1, e5, e8, e10

in Figure 4.3(ii) are sufficient.
Definition-Use pair coverage [Frankl 88, Rapps 85] requires, for a state

variable X, coverage of all runs where X is defined and there exists a
usage of X. Thus, the Definition-Use pair coverage criterion ensures
that all possible runs between where a state variable is defined to
where the state variable is used will be tested. For example, the
three sequences of edges

e0, e3, e7 e1, e4, e7 e1, e5, e8, e10

in Figure 4.3(iii) are sufficient.
Definition context coverage [Laski 83] requires coverage of all runs such

that for every definition of a state variable, every different definition
context is represented. A definition context is given by all previous
assignments of state variables on the current run.
For example, in the EFSM in Figure 4.4 there are definitions of state
variables on all edges. Thus, Definition context coverage requires
coverage of the four sequences of edges:

e0, e3, e4 e0, e2, e3, e4 e0, e1, e2, e3, e4 e0, e1, e3, e4

With the additional requirement of an ordered definition context,
the sequence of edges e0, e2, e1, e3, e4 also needs to be covered. An
observer for Ordered definition context coverage is given in Fig-
ure 4.6.

Effect pairs coverage [Clarke 89] requires coverage of all runs where a def-
inition of a state variable X is affected by the definition of another

140

state variable Y . This can be generalized to coverage of state vari-
ables affecting the definition of X in k steps. For example, in the
EFSM in Figure 4.4 state variable y is affected by the definition of
x in two steps since y is bound to the value of z, which is bound to
the value of x, which is bound to a value. This is the only run, in
this EFSM, where a state variable is given a value that depends on
definitions in 2 steps. Thus, Effect pairs coverage requires coverage
of the sequence of edges: e0, e3, e4 for k = 2. An observer for Effect
pairs coverage is given in Figure 4.7.

l2l1l0 l3
e4 : a4() → y = z

e1 : a2(),¬v1 → v1 = true

e2 : a2(),¬v2 → v2 = true

e0 : a1() →
v1= false
v2= false
x = 0 e3 : a3() → z = x

Figure 4.4. EFSM graph example for illustrating Definition context coverage
and Effect pairs coverage.

To define observers suitable for the coverage criteria above, we define
the observer predicates:

State variable definition predicate, is_definedvar/1
Is true if a state variable is bound with an assignment in the current edge
clause. This can be expressed as:

is_definedvar(V) ->
member(V,map(lhs,Assigns)).

State variable usage predicate, is_usedvar/1
Is true if a state variable is used (in a guard or assignment) by the current
edge clause in the EFSM. This can be expressed as:

is_usedvar(U) ->
member(U, vars(map(rhs,Assigns)) ++

vars(Guard) ++
vars(Outexprs)).

State variable directly affected predicate, is_da/2
Is true if, in an assignment, a state variable is defined in terms of some
(other) state variable. For example, in an assignment v2 = v1, v1 directly
affects v2. This can be expressed as:

141

is_da(V1,V2) ->
map({affect,[V1,V2]},Assigns)=/=[].

where for each assignment A in Assigns, affect(A,V1,V2) is executed
and the result appended. Thus, if there exists an assignment in Assigns
where V1 directly affects V2 the resulting list becomes non-empty. Note
that both V1 and V2 must be bound before usage of is_da/2.

An observer for Reachable definitions coverage is given in Figure 4.5(i),
Reachable uses coverage in 4.5(ii), and Definition-Use pair coverage in
4.5(iii).

q0

q1(X,E)

(i)

¬is_definedvar(X)

all_def(X,E)

is_definedvar(X) ∧ is_edge(E)

is_usedvar(X)

q0

is_definedvar(X) ∧ is_edge(E)

¬is_definedvar(X)

all_use(X,F)

(ii)

is_usedvar(X) ∧ is_edge(F)

¬is_definedvar(X)

du(X,E, F)

q0

q1(X,E)

is_definedvar(X) ∧ is_edge(E)

(iii)

is_usedvar(X) ∧ is_edge(F)

q1(X)

Figure 4.5. Observers for data flow criteria: (i) Reachable definitions coverage,
(ii) Reachable uses coverage, and (iii) Definition-Use pair coverage.

4.2 Model-dependent coverage criteria
It is sometimes desirable to create dedicated test suites for a specific
model. Typically because some requirement on the system need more
thorough testing. Sequence diagrams, showing the message flow, are then
often useful to express such test purposes [Grabowski 95]. We will here
use Basic Message Sequence Charts (MSC) [ITU-T 99a, Mauw 97] to rep-
resent sequence diagrams and show, with an example, how an observer
can be constructed (and test suite generated).

A possible sequence of events, represented by an MSC, on the EFSM
from Example 1.1 is shown in Figure 4.8. The vertical lines in the MSC
are instances, i.e., different entities that interact with input and output
events. The instances in this MSC are Me, preschool, workUU and
workMA. The horizontal arrows in the MSC are messages, i.e., events
where arrows to Me represents input events and arrows from Me repre-
sents output events. We can then map each message in the MSC to a
corresponding observer edge in an observer. For example, assume we are
interested to generate a test suite from the MSC in Figure 4.9. Let these

142

-obs_locations({q,[def_path],[q1]}).

q() when not is_stoploc() and
is_definedvar(X) and
is_edge(E) ->

{next_state,q1([E])};
q() when is_stoploc() and

is_definedvar(X) ->
{next_state,def_path([])}.

q1(P) when not is_definedvar(X) ->
{next_state,q1(P)};

q1(P) when is_definedvar(X) and
is_edge(E) ->

{next_state,def_path([E|P]};
q1(P) when is_definedvar(X) ->

{next_state,def_path(P}.

Figure 4.6. An observer for Ordered definition context coverage defined in
Erlang/Obs.

-obs_locations({q,[affect_pair],[q1,q2]}).

q() when is_definedvar(X) and is_edge(E1) ->
{next_state,q1(X,E1)}.

q1(X,E1) when not is_definedvar(X) ->
{next_state,q1(X,E1)};

q1(X,E1) when is_used(Y) and
is_da(Y,X) and
is_edge(E1) ->

{next_state,q2(X,Y,E1,E2)}.

q2(X,Y,E1,E2) when not is_definedvar(Y) ->
{next_state,q2(X,Y,E1,E2)};

q2(X,Y,E1,E2) when is_used(Z) and
is_da(Z,Y) and
is_edge(E3) ->

{next_state,affect_pair(X,Z,E1,E2,E3)}.

Figure 4.7. An observer for Effect pairs coverage (in 2 steps) defined in Er-
lang/Obs.

143

Me preschool workUU workMA

checkout(monday)

progress(2)

incident(kids_notok)

checkin(monday)

incident(kids_happy)

checkout(monday)

progress(2)

incident(bug)

checkin(monday)

progress(3)

progress(1)

msc Some Monday

Figure 4.8. A possible sequence of events on the EFSM from Example 1.1.

Me Env

incident/1

incident/1

msc Two incidents

Figure 4.9. A possible MSC that can be used to generate a test suite from.

144

messages represent a test purpose where all test cases containing at least
two consecutive incident/1 input events should be included in a generated
test suite. An observer automaton can then be created as follows.

q0() q2()q1()

is_eventtype(incident, 1) is_eventtype(incident, 1)

Figure 4.10. An example of an observer for selecting test cases that contains
two consecutive incident events.

• We need one new observer state for each input event. Starting with
an initial observer state we therefore need two additional observer
states.

• Order must be preserved from the MSC, so the observer states will
be ordered in a line with the observer predicate is_eventtype/2 on
each observer edge.

• If we want to relax the requirement the input events must be con-
secutive, a “wait loop” can be added to the observer state between
the matching of the incident/1 events.

• Depending on test cases accepted for inclusion in the test suite suite,
additional observer predicates can be used, and results stored in the
observer state. If we just want all possible test cases we can apply
the observer automata as a filter, Section 5.5.1.

The resulting observer is shown in Figure 4.10. The MSC in Figure 4.8
represents one example of such a test case.

145

5. Generating test suites

This chapter presents our technique for generating test suites (i.e., sets
of test cases) from Erlang/Efsm models extended with observers.

Recall that the formal model of the SUT represents an abstraction of the
interaction between the SUT and its environment. It follows that the test
suites generated from the model will be at the same level of abstraction.
We therefore use the term abstract test case for test cases that are at
the same level of abstraction as the model. Note that the definition of
abstract test case is identical to the definition of a trace of an EFSM. To
emphasize that (ordinary) test cases, which are the level of abstraction of
the SUT, are different from abstract test cases, we sometimes call them
concrete test cases. Concrete test cases can be generated from abstract
test cases by translating events in the abstract test case to events that
can actually be received and transmitted by the SUT.

Since abstract test cases correspond to executions of the Erlang/Efsm
model, we can in principle generate abstract test suites (i.e., sets of ab-
stract test cases) by enumerating these executions. However, this ap-
proach is not practically feasible. We therefore use a symbolic approach,
which generates symbolic test cases, as defined in Definition 2.9, from an
Erlang/Efsm model. A symbolic test case is a compact representation of
a set of abstract test cases of the EFSM. In a symbolic test case, data
in input events is represented symbolically by parameters; the range of
actual values of the parameters is constrained by constraints. A symbolic
test case represents the set of abstract test cases that can be obtained by
instantiating parameters by values that satisfy these constraints.

This chapter explains how symbolic test suites are generated, using the
observer automata introduced in Chapter 3, and how they can be trans-
formed into a format suitable for testing of a concrete implementation of
a SUT.

This chapter is organized as follows. Section 5.1 introduces a symbolic
combination of EFSM and observer runs, and shows how to use it to
extract test cases. In Section 5.2, this representation is used to derive a
symbolic test suite generation algorithm. Section 5.3 introduces an effi-
cient representation of observer states in the implementation of the test
suite generation algorithm. Section 5.4 presents our techniques for map-
ping abstract test cases, derived from the model, to concrete test cases,
which can be applied on the system under test. Section 5.5 describes
alternative usages of Erlang/Obs.

146

5.1 Generating Symbolic Test Cases
Let us consider how we can generate an abstract test suite, i.e., a set of
abstract test cases, to cover a given set of coverage items. From Theo-
rem 3.17 we know that test cases that cover a coverage item qf can be
obtained from a symbolic test case of the EFSM, which symbolically cov-
ers an accepting conditioned observer state ⟨qf , Hn⟩ for some Hn. A test
case that covers qf can be obtained by instantiating symbolic parame-
ters in the symbolic test case such that the path condition Gn and the
superposition condition Hn are satisfied.

In order to search for a symbolic test case which symbolically covers
⟨qf , Hn⟩, we need to generate symbolic runs of both the EFSM and the
observer, which match. The symbolic run of the EFSM

⟨l0, •, true⟩
a1(p1)/b1
−→ · · ·

an(pn)/bn

−→ ⟨ln, σn, Gn⟩

should be such that there is symbolic run of the observer

⟨q0, true⟩
ςs1
→֒ · · ·

ςsn
→֒ ⟨qn, Hn⟩

over the corresponding sequence of symbolic annotated computation steps.
Furthermore, since observers are nondeterministic, each run of an EFSM
can in general corespond to a set of observer runs, The close correspon-
dence between (symbolic) EFSM runs and sets of (symbolic) observer runs
suggest that the test suite generation should generate them together. We
therefore introduce a new kind of state, which combines of a set of (sym-
bolic) observer states with a (symbolic) EFSM state. We will say that
the observer states are superposed onto the EFSM states. Furthermore,
the symbolic trace should be remembered, so that the generated symbolic
test case can be extracted from successful explorations. This motivates
the following definition.

Definition 5.1 A symbolic superpositioned state is a triple of form

⟨⟨l, σ,G⟩ ∥ Q ∥ ω⟩

where ⟨l, σ,G⟩ is a symbolic state, Q a set of conditioned observer states
(see Section 3.8), and ω a symbolic trace which leads to the symbolic
state ⟨l, σ,G⟩. □

Definition 5.2 A symbolic superpositioned computation step is a triple

⟨⟨l, σ,G⟩ ∥ Q ∥ ω⟩
a(p)/b

///o/o/o ⟨⟨l′, σ′, G′⟩ ∥ Q′ ∥ ω · a(p)/b⟩

where

147

• ⟨l, σ,G⟩
a(p)/b
−→ ⟨l′, σ′, G′⟩ is a symbolic computation step; we let ςs

represent the corresponding symbolic annotated computation step,

• Q′ =

{

⟨q′ , H ′⟩
⟨q, H ⟩

ςs

−→ ⟨q′ , H ′⟩

⟨q, H ⟩ ∈ Q

}

is the set of conditioned

observer states to which the observer can make conditioned observer
steps from some conditioned observer state ⟨q, H ⟩ in Q, triggered
by ςs, and

• ω is a symbolic trace ω. □

Definition 5.3 A symbolic superposition run over a symbolic trace is a
sequence of symbolic superpositioned computation steps

⟨⟨l0, •, true⟩ ∥ {⟨q0, true⟩} ∥ ϵ⟩
a1(p1)/b1

///o/o/o · · ·
an(pn)/bn

///o/o/o ⟨⟨ln, σn, Gn⟩ ∥ Qn ∥ ωn⟩

labeled by the input-output event expressions of the symbolic trace. □

We note that by the assumption that observers have self-loops from
initial and accepting locations, stated in Section 3.1, the set Q of con-
ditioned observed states will always contain the initial observer state q0,
and that once an accepting observer state has entered Q, it will remain
in Q.

l1 l2

X = false, Y = false
e0 : c(), X ∧ Y

l3

e3 :

b(), ¬Y
Y = true

X = true

e2 :

e1 :

l0

a()

a()

Figure 5.1. A graphical representation of a simple EFSM with a unique name
(ex) associated to each edge.

148

Example 5.4 If the observer for Definition-Use pair coverage (see Fig-
ure 4.5(iii) in Section 4.1.4) is superposed onto the EFSM in Figure 5.1,
the following symbolic superposition run can be taken

⟨⟨l0, •, true⟩ ∥ {⟨q0, true⟩} ∥ ϵ⟩
a()/
⇝

⟨⟨l1,

{

X:=false

Y :=false

}

, true⟩ ∥

⟨q0, true⟩

⟨q1(
′X ′, e0), true⟩

⟨q1(
′Y ′, e0), true⟩

∥ a()/⟩ a()/
⇝

⟨⟨l2,

{

X:=true

Y :=false

}

, true⟩ ∥

⟨q0, true⟩

⟨q1(
′X ′, e1), true⟩

⟨q1(
′Y ′, e0), true⟩

∥ a()/·a()/⟩ b()/
⇝

⟨⟨l1,

{

X:=true

Y :=true

}

, true⟩ ∥

⟨q0, true⟩

⟨q1(
′X ′, e1), true⟩

⟨q1(
′Y ′, e2), true⟩

⟨du(′Y ′, e0, e2), true⟩

∥ a()/·a()/·b()/⟩ a()/
⇝

⟨⟨l2,

{

X:=true

Y :=true

}

, true⟩ ∥

⟨q0, true⟩

⟨q1(
′X ′, e1), true⟩

⟨q1(
′Y ′, e2), true⟩

⟨du(′Y ′, e0, e2), true⟩

∥ a()/·a()/·b()/·a()/⟩ c()/
⇝

⟨⟨l3,

{

X:=true

Y :=true

}

, true⟩ ∥

⟨q0, true⟩

⟨du(′Y ′, e0, e2), true⟩

⟨du(′X ′, e1, e3), true⟩

⟨du(′Y ′, e2, e3), true⟩

∥ a()/·a()/·b()/·a()/·c()/⟩

Note that this single symbolic run of the EFSM can cover several ac-
cepting symbolic observer states. For example, the three possible def-
inition-use pairs represented by the accepting symbolic observer states
du(′Y ′, e0, e2), du(′X ′, e1, e3), and du(′Y ′, e2, e3) are covered by a single
symbolic superposition run. □

In Theorem 3.17 we established a correspondence between symbolic
coverage and (non-symbolic) coverage. It follows from the definition of
symbolic superposition run that if

⟨⟨l0, •, true⟩ ∥ {⟨q0, true⟩} ∥ ϵ⟩
a1(p1)/b1

///o/o/o · · ·
an(pn)/bn

///o/o/o ⟨⟨ln, σn, Gn⟩ ∥ Qn ∥ ωn⟩

is a symbolic superposition run, then the symbolic run

⟨l0, •, true⟩
a1(p1)/b1
−→ · · ·

an(pn)/bn

−→ ⟨ln, σn, Gn⟩

of the EFSM symbolically covers each accepting conditioned observer
state in Qn. Each covered conditioned observer state, which is of the

149

form ⟨ι(e), H⟩, represents the set of coverage items ι(d) that can be ob-
tained by finding a parameter environment so that e become values in
the appropriate domains, and so that Gn and Hn are satisfied. Thus, a
test case that covers ι(d) can be obtained from the symbolic trace w by
instantiating the parameter environment so that (Gn ∧ Hn ∧ e = d) is
satisfied.

We will generate test suites by systematically exploring symbolic su-
perposition runs, and extracting a set of symbolic test cases, so that each
coverage item is covered by at least one symbolic test case in the sym-
bolic test suite. The previous paragraph suggests that from each symbolic
superposition run

⟨⟨l0, •, true⟩ ∥ {⟨q0, true⟩} ∥ ϵ⟩
a1(p1)/b1

///o/o/o · · ·
an(pn)/bn

///o/o/o ⟨⟨ln, σn, Gn⟩ ∥ Qn ∥ ωn⟩,

we should extract the set of symbolic test cases

⟨w , Gn ∧Hn ∧ e = d⟩

such that there is some ⟨ι(e), H⟩ ∈ Qn for which the coverage item ι(d)
has not yet been covered, and such that there is some parameter environ-
ment that can satisfy Gn ∧Hn ∧ e = d.

5.2 Generating symbolic test suites
The problem of generating a symbolic test suite can be addressed by
symbolic state space exploration, which searches for accepting states in
a symbolic state space. A symbolic state space exploration algorithm
to compute a symbolic test suite is shown in Figure 5.2. The algorithm
assumes an EFSM specified in Erlang/Efsm and an observer specified in
Erlang/Obs. It computes a set of symbolic test cases that cover some set
of coverage items of the observer. The set of covered coverage items can
be controlled by appropriate instantiation of the function extract_tcs

and predicate stopcond.
In the algorithm of Figure 5.2
• Wait contains the symbolic superpositioned states waiting to be

explored,
• Cov is the set of already covered coverage items,
• TS is the current set of generated symbolic test cases,
• Lstop is the set of stop locations in the EFSM, and
• extract_tcs is a function, which depends on the set Cov of already

covered coverage items, which extracts new symbolic test cases from
a symbolic superposition state when the exploration reaches the end
of a symbolic run of the EFSM. We elaborate on extract_tcs in
more detail below.

150

• stopcond is a stop condition that determines when no more sym-
bolic test cases should be created and the test suite is considered
complete. A condition for not stopping until the complete state
space has been searched is Wait= ∅.

Cov := ∅, TS := ∅,
Wait := {⟨⟨l0, •, true⟩ ∥ {⟨q0, true⟩} ∥ ϵ⟩}

while ¬stopcond do
select_and_remove ⟨⟨l, σ,G⟩ ∥ Q ∥ ω⟩ from Wait
if l ̸∈ Lstop then

for all ⟨⟨l, σ,G⟩ ∥ Q ∥ ω⟩
a(p)/b

///o/o/o ⟨⟨l′, σ′, G′⟩ ∥ Q′ ∥ ω · a(p)/b⟩

add ⟨⟨l′, σ′, G′⟩ ∥ Q′ ∥ ω · a(p)/b⟩ to Wait
else
TS := extract_tcs(Cov) ∪ TS
Cov := {coverage items covered by extract_tcs(Cov)} ∪ Cov

return TS

Figure 5.2. A symbolic state space exploration algorithm for test suite gener-
ation.

Initially, the set of already explored states is empty and the only state
waiting to be explored is ⟨⟨l0, •, true⟩ ∥ {⟨q0, true⟩} ∥ ϵ⟩, The algo-
rithm then repeatedly selects and removes a symbolic superpositioned
state ⟨⟨l, σ,G⟩ ∥ Q ∥ ω⟩ from Wait and examines it. If the selected
state is not a stop location (i.e., it has outgoing edges), then all successor
symbolic superpositioned states reachable from ⟨⟨l, σ,G⟩ ∥ Q ∥ ω⟩ via
a symbolic superposition step are inserted into Wait. When reaching a
stop location, new test cases are extracted using extract_tcs(Cov). The
algorithm terminates when the condition stopcond becomes true.

Let us now elaborate on the function extract_tcs(Cov) in more detail.
In order to generate test cases that cover as many coverage items of the
observer as possible, the function extract_tcs(Cov) should extract test
cases whenever they cover coverage items that are not already in Cov.
By the discussion in the previous subsection, extract_tcs(Cov) should
extract the set of symbolic test cases

{

⟨w , G ∧H ∧ e = d⟩ |
∃⟨ι(e), H⟩ ∈ Q . ι(d) ̸∈ Cov

∧ ∃Γ . Γ ⊢ (G ∧H ∧ e = d)

}

Intuitively, this is the set of symbolic test cases of form

⟨w , G ∧H ∧ e = d⟩

151

such that there is some ⟨ι(e), H⟩ ∈ Q for which the coverage item ι(d)
has not yet been covered, and can be obtained by using a parameter
environment that satisfies G ∧H ∧ e = d.

A very common case is that the test generation algorithm generates
only conditioned observer states ⟨ι(e), H⟩ that do not have any symbolic
parameters, and where H is true. That is, they are of form ⟨ι(d), true⟩,
In which case we can simply represent them as nonsymbolic coverage
items ι(d). In this case, extract_tcs(Cov) can be simplified to

{

⟨w , G⟩ | ⟨ι(d), true⟩ ∈ Q ∧ ι(d) ̸∈ Cov
}

,

i.e., it need only check whether Q contains any coverage items that are
not already in Cov. In the rest of this thesis we will only consider this
simpler case, i.e., when symbolic observer states do not contain symbolic
parameters.

5.2.1 Refining the search exploration algorithm
The search algorithm affects the order in which coverage items are cov-
ered and therefore influences size of test suite (and test cases) and speed
with which symbolic test suites are generated. For example, a breadth-
first algorithm is guaranteed to generate a test suite with the shortest
test cases but can be expected to consume much memory. A depth-
first algorithm consumes less memory, but a biased left-to right search
will cause a correspondingly biased exploration of the state space. In
[Pretschner 01] a comparison between different search algorithms on ex-
perimental data in a Constraint Logic Programming (CLP) framework is
performed. Pretschner concludes that in general a depth-first algorithm
can be expected to peform best when generating a test suite.

Many coverage criteria (e.g., Def-Use) benefit to a large degree from
a search algorithm which distributes symbolic test cases over the entire
EFSM, resulting in less needed test cases. This implies that biased left-
to right search often is not optimal and that a random selection may
be expected to perform better. Still better, if possible, is to use some
algorithm to efficiently approximate a best-first selection.

5.3 Efficiently representing sets of states
A problem in test suite generation algorithms is to efficiently represent
and manipulate the sets Q and Cov, of conditioned observer states of
an observer superposed onto an EFSM. In this section, we show how
these sets can be efficiently represented and manipulated, using tech-
niques inspired by bitvector analysis [Knoop 96], which is often applied
in e.g., data-flow analysis.

152

Recall that we henceforth only considers the case when conditioned ob-
server states do not depend on symbolic parameters and that Lo is the
set of observer locations. For an observer location ι ∈ Lo, let D1, . . . , Dm

be the domains of the parameters d1, . . . , dm in observer states of form
ι(d1, . . . ,dm). A set Q of conditioned observer states can then be repre-
sented as a mapping

Q : Lo → (D1 × · · · ×Dm → [0, 1])

such that for each observer location ι, we have Q(ι)(d1, . . . , dm) = 1 if
⟨ι(d1, . . . ,dm), true⟩ ∈ Q, otherwise Q(ι)(d1, . . . , dm) = 0. In a sym-
bolic superpositioned computation step of form

⟨⟨l, σ,G⟩ ∥ Q ∥ ω⟩
a(p)/b

///o/o/o ⟨⟨l′, σ′, G′⟩ ∥ Q
′

∥ ω · a(p)/b⟩

this mapping is then, letting ςs denote the current symbolic annotated
computation step, updated according to

Q′(ι′)(d′1, . . . , d
′
m′) :=

∨

⟨ι(d1,...,dm),true⟩
ςs

→֒⟨ι′(d′

1,...,d′

m′
),true⟩

Q(ι)(d1, . . . , dm) ,

where Q′ is the updated set of conditioned observer states, and the dis-
junction is taken over all conditioned observer states from which there is
a conditioned observer step labeled by ςs.

The above definition of how the mappings Q are updated are abstract,
formulated using the semantic definition of the symbolic observer step
relation. We can make them more concrete by replacing the definition
by the corresponding premises in the symbolic operational semantics for
observer edge clauses in Section 3.7.3. First recall that the definition of
the conditioned observer step relation, from Section 3.8, of form

⟨ι(d1, . . . ,dm), true⟩
ςs

→֒ ⟨ι′(d′1, . . . ,d
′
m′), true⟩

implies that for some ςs there is a transition in the operational semantics
of form

⟨ι(d1, . . . ,dm), ςs, •⟩ ⇒ ⟨{next_state,ι′(d′1, . . . ,d
′
m′)}, true, ϵ, ςs, ρ⟩ ,

which happens only if there exists an observer edge clause of form

ι(u1, . . . ,um) when h -> oce

such that d1, . . . , dm match the patterns u1, . . . , um, the observer guard h

is satisfied by the symbolic annotated computation step, represented by
ςs, and {next_state,ι′(d′1, . . . ,d

′
m′)} is the resulting value of evaluating

153

oce. We can summarize this discussion by rewriting the rule for updating
the set Q as

Q′(ι′)(d′1, . . . , d
′
m′) :=

∨

ι(u1, . . . ,um) when h -> oce
match (u1, . . . , um, d1, . . . , dm, •, ρ′)

⟨h, ςs, ρ′⟩ ⇒ ⟨true, ϵ, ςs, ρ′′⟩

⟨oce, ςs, ρ′′⟩ ⇒ ⟨next_state,ι′(d′1, . . . ,d′m′), ϵ, ςs, ρ′′′⟩

Q(ι)(d1, . . . , dm) ,

Example 5.5 Lets take a closer look at how the observer states in the
Definition-Use pair observer (Section 4.1.4) are affected by a conditioned
observer step. Let V be the set of state variables and E the set of edges
in an EFSM. We then have that,

{

⟨q0(), true⟩
}

∪
{

⟨q1(x, e), true⟩ | x ∈ V ∧ e ∈E
}

∪
{

⟨du(x, e, f), true⟩ | x∈ V ∧ e, f ∈ E
}

is the set of conditioned observer states for the observer. As the observer
has three locations, we maintain Q(q0), Q(qq), and Q(du), which are
updated according to the following definitions.

Q(q0) := 1 (5.1)

Q′(q1)(x, e) :=

Q(q0) = 1

∧ is_definedvar(x)

∧ is_edge(e)

∨

(

Q(q1)(x, e) = 1

∧ ¬is_definedvar(x)

)

(5.2)

Q′(du)(x, e, f) :=

Q(q1)(x, e) = 1

∧ is_usedvar(x)

∧ is_edge(e)

∨

(

Q(du)(x, e, f) = 1

∧ true

)

(5.3)

where Q′ represents the set of observer states Q after all updates required
by the observer have been performed. Note that the mapping Q(q0) of
the initial observer location is always 1 (as described by Definition 5.1)
and that a bit in the bitvector Q(du), representing an accepting symbolic
observer state, will remain 1 once it becomes 1, as stated by the last
disjunct of Definition 5.3. □

154

1 1

1

0

1

0

E

E

BVq1

BV ′
q1

e0

e0

e1

V

V

X

Y

X

Y

X

Y

Figure 5.3. The bitvector BVq1 represents the set of observer states
{q1(X, e0), q1(Y, e0)} before a conditioned observer step. As the EFSM holds
a definition of a variable X on a (new) edge e1, the size of the bitvector is
adjusted, before Definition 5.2 (from Example 5.5) is applied. The bitvector
BV ′

q1
, after the conditioned observer step, then represents the set of observer

states {q1(Y, e0), q1(X, e1)}.

5.3.1 Bitvector Representation of Sets of Observer States
In our implementation, each mapping Q(ι) is represented by a one-dimen-
sional bitvector BVι : [1, . . . ,Mι] → [0, 1], where Mι =

∏

1≤i≤n |Di|.
By defining a bijection fι : (D1 × · · · × Dm) → Mι, we can represent
Q(ι)(d1, . . . , dm) as BVι(fι(d1, . . . , dm)). Since the size of the domains
for d1, . . . , dm may not be known in advance we allow Mι to increase
dynamically when required.

As we assume the observer to have a finite set of observer states, each
parameter must have a finite domain. Parameter values in observer states
origin from observer predicates. In Section 3.3 we described how defini-
tions of observer predicates includes any valid Erlangexpression. which
implies that, in general, the size of the domain may be unknown when
symbolic test case generation starts. Thus, a bitvector BVι representing
an observer location, and the associated bijection fι(d1, . . . , dm), may
need to be dynamically adjusted after a conditioned observer step.

To keep the function fι simple the complete bitvector can be reorga-
nized whenever the (known) size of a domain of an observer parameter is
adjusted.

155

Example 5.6 Recall Example 5.4, with a Definition-Use pair observer,
and consider the edge

✲

l1 l2

e1 : ✲
a()

X = true

in the EFSM. Assume the set of edges in the EFSM is unknown before
evaluation starts. Let the bitvector BVq1 represent the set of observer
states {q1(X, e0), q1(Y, e0)}. Now consider a conditioned observer step
over the above edge in the EFSM, see Figure 5.3. The edge e1 from the
EFSM, is bound to the match variables, representing the current symbolic
annotated computation step. As this edge is previously not represented
in the bitvector, the size of the bitvector BVq1 is adjusted. On the ad-
justed bitvector we may then apply Definition (5.2) from Example 5.5.
The resulting bitvector BV ′

q1
, after the conditioned observer step, then

represents the set of observer states {q1(Y, e0), q1(X, e1)}. In Example 5.4
both BVq1 and BVdu may grow dynamically in size. After the symbolic
superposition run the bitvectors are of size: Mq0 = 1, Mq1 = 2 × 3 = 6,
and Mdu = 2× 3× 2 = 12. □

5.4 Concretisation
In Section 5.2 we presented a method for generating symbolic test suites
from an EFSM and an observer. We must perform the following two
operations in order to obtain a test suite that can be applied directly on
the SUT.

• Each symbolic test case in the symbolic test suite represents a set
of abstract test cases. These abstract test cases can be obtained
by instantiating the parameters by actual values so that the path
condition is satisfied.

• As outlined in Section 1.5.4, the events in an abstract test case
are abstractions of events that can actually be exchanged between
the SUT and its environment. In order to obtain (concrete) test
cases, we must therefore map the events in the abstract test case
to corresponding concrete events. In general the domains of the
concrete events are much larger than the corresponding domains
of the abstract events. We must therefore carefully select concrete
counterparts.

In Section 5.4.1 we describe how an abstract test suite can be generated
from a symbolic test suite. In Section 5.4.2 we describe how a concrete
test suite, suitable for execution against a SUT, can be generated from
an abstract test suite.

156

5.4.1 Generating abstract test suites from symbolic test
suites

Recall that a symbolic test suite is a set of symbolic test cases ⟨w,G∧H⟩
where the path condition G and superposition condition H are boolean
expressions over symbolic parameters. Let ϕ denote all symbolic parame-
ters. Also recall that an abstract test case is simply a trace. An abstract
test case can thus be obtained from ⟨w,G∧H⟩ by choosing an assignment
of values to the symbolic parameters ϕ such that G∧H evaluates to true,
In general, there are many possible such assignments for each symbolic
test case. Finding them can be formulated as a constraint satisfaction
problem [Gotlieb 98]. Let us illustrate by an hypothetical example

Example 5.7 Consider a symbolic test case
⟨

slir(MS,MlpAge)/ati(MS)

ati_resp(Age, Pos)/slia(ok, Pos)
, G

⟩

where G is Age + Clock ≤ MlpAge ∧ Clock ≤ 3 ∧ Age ≤ 3. This
test case starts by a user sending a slir event to a SUT requesting the
position of subscriber MS with a maximum age of MlpAge. On this
request the SUT starts a clock Clock and performs an ati request to-
wards the network. In response, the SUT receives an ati_resp with a
position Pos and Age of that position. Now, this is an ok position if the
path condition Age + Clock ≤ MlpAge ∧ Clock ≤ 3 ∧ Age ≤ 3 is true.
If we assume Clock has a domain {0, 1, 2} and both Age and MlpAge

have domains {1, 2, 3, 4, 5}, a constraint solver will be able to find the 10
possible solutions:

MlpAge Clock Age

d1 = 1 0 1

d2 = 2 0 2

d3 = 2 ≤ 1 1

d2 = 3 0 3

d4 = 3 ≤ 1 2

d5 = 3 ≤ 2 1

□

In the evaluation in Section 7 the generated constraints are on a simple
form, e.g., MlpAge = 3, with no dependencies between different symbolic
parameters. Thus, after rewriting G ∧H into a disjunctive normal form
each disjunct represents the necessary conditions for a distinctive set of
possible instantiations.

157

As a selected symbolic test case may be instantiated in multiple ways
we may want to only select a few to be executed against the SUT. We
therefore define abstract test case selection techniques to only select a
few of many possible abstract test cases that can be generated from a
symbolic test case. Examples of such selections include:

• Biased Create a lexicographic ordering of all possible abstract test
cases from a symbolic test case and pick the first one. This strategy
will naturally include abstract test cases with symbolic parameters
biased to some specific values, due to the ordering. Included here
for reference only.

• Rndsym Select one random abstract test case, out of all possible
from a symbolic test case.

In the evaluation, Section 7, we have some experimental results and dis-
cussion on usage of abstract test case selection techniques.

5.4.2 Generating concrete test suites from abstract test suites
A SUT requires each event sent to the SUT, by some environment, to be
in a representation the SUT can understand. In this section we outline
how a generated abstract test suite, see Section 5.4.1, can be used when
generating a test suite for execution against a SUT.

We say that events on a format accepted as input by the SUT and
emitted as output from the SUT are concrete events. We will not further
define concrete events, but simply note that concrete events, part of a
concrete test case, are created from an abstract test case via some con-
cretization. There may be many possible concretizations of an abstract
test case to a concrete test case. Further, a concrete test case may not
only depend on the abstract test case as there can be implicit constraints
on the concretization (e.g., hardware in the SUT, or location of the SUT).
Thus, in general, to find a concrete test case can be formulated as a con-
straint satisfaction problem, similar as for an an abstract test case in
Section 5.4.1.

To validate if output sent from the SUT conforms to an output event
b(d) in an abstract test case we must consider all concretizations of b(d).
We do this by an an abstraction of the output sent from the SUT to
b(d). When validating execution of a test case against SUT via some test
environment we end up with concretisations/abstractions as outlined in
Figure 5.4.

It can be noted that both concretisation and abstraction may depend on
the abstract test case. Thus, for example, in Figure 5.4, a1(d1) and a2(d2)
may be exactly identical abstract events (i.e., a1 = a2 and d1 = d2), but
have different concretizations. See a typical simplified use case in Fig-
ure 7.3 from the case study in Section 7.1.1 where, different concretiza-

158

abstract
test case

concrete
test case

Concretisation

Concretisation

Abstraction

Abstraction

Test Environment

System

Under

Test

a1(d1)

b1(d1)

a2(d2)

b2(d2)

Figure 5.4. Outline of how input events in an abstract test cases are made
concrete before sent to the SUT, and responses from the SUT made abstract
before validating.

tions of the input event atir/4, from the HLR, is needed to distinguish
the origin of presence information sent to the Application.

5.5 Alternative usage of observer automata
Observer automata express properties of traces in the EFSM. In the pre-
vious section we used observer automata, superposed onto an EFSM, to
generate test suites. For inclusion, it was necessary for each test case
to reach at least one accepting observer state, not previously reached by
any other test case. However, this is just one of several possible usages
of observer automata superposed onto an EFSM.

Below we will further discuss usage of observer automata considered of
particular interest, filter usage in Section 5.5.1 and property validation in
Section 5.5.2. Declaration of how defined observer automata should be
used was explained in Section 3.2.1.

5.5.1 Filtering the specification
A filter is a usage of the observer automata where a test case is accepted
for inclusion in a test suite whenever at least one accepting (symbolic)
observer state is reached when the EFSM reaches a stop location. Filters
are useful for generating a test suites that covers a certain part or fulfills
a certain property of a specification. One can think of using observer
automata as filter, as projecting the executions of the EFSM to cover
executions that satisfy some requirements. For example, all test cases
where some state variable or some input event is used, or all test cases

159

where some model-dependent behavior can be expressed with an MSC,
see Section 4.2.

For the case where conditioned observer states do not depend on sym-
bolic parameters, the algorithm in Figure 5.2 can be modified to support
filter usage using extract_tcs defined bycan be simplified to be

{

⟨w , G⟩ | ⟨ιf (d), true⟩ ∈ Q
}

.

Further, as we not keep track of coverage items, Cov can be removed.
Usage of observer automata as a filter is declared with an observer

usage declaration set to filter.

Example 5.8 In a filter specification

-obs_locations(used_var,[anything],[]).
-obs_usage(used_var,filter).

used_var() when is_usedvar('Progress') ->
{next_state,anything()}.

we declare observer usage filter and an initial observer location used_var.
As before, the observer predicate is_usedvar/1 returns true if a state
variable Progress is used. Superposing this oberver onto an EFSM would
generate a test suite with all symbolic test cases in the EFSM where
Progress is used. Note that the same observer automata and EFSM with
observer usage observer would only generate a test suite with the first
symbolic test case found in the EFSM where Progress was used. □

Typically it is desirable to separate projection and test suite generation.
An observer automata used as a filter, and a second observer automata
used for specification of a coverage criterion, may used concurrently. In
this case we have a separate symbolic superposition run for each observer
automata. Both need to have reached an accepting observer state for the
corresponding test case to be included in the test suite.

5.5.2 Model Checking of a Specification
In model-based testing correctness of the specification is crucial. For
example, we might want to validate that a stop location can always be
reached, or that there always should be a certain ordering of events, size of
paths etc. To verify properties in a formal specification there exists a large
number of existing model checkers and theorem provers. However, use of
any external tool requires translation of an Erlang/Efsm specification to
an input format supported by that tool. Alternatively, our test suite
generation technique requires exploration of the state space (as a model

160

checker) and the observer automata can be seen to express some property
which is false when an accepting observer state is reached, as in the
automata-theoretic approach to model checking [Vardi 86]. To validate
properties, expressible as abserver automata, the algorithm in Figure 5.2
needs modification, resulting in the algorithm is shown in Figure 5.5.
Usage of observer automata as a validation property is declared with an
observer usage declaration set to property.

Wait := {⟨⟨l0, ς
s
0 , true⟩ ∥ {⟨q0, true⟩} ∥ ϵ⟩}

while Wait ̸= ∅ do
select_and_remove ⟨⟨l, σ,G⟩ ∥ Q ∥ ω⟩ from Wait
if l ̸∈ Lstop then

for all ⟨⟨l, σ,G⟩ ∥ Q ∥ ω⟩
a(p)/b

///o/o/o ⟨⟨l′, σ′, G′⟩ ∥ Q
′

∥ ω · a(p)/b⟩

add ⟨⟨l′, σ′, G′⟩ ∥ Q
′

∥ ω · a(p)/b ⟩ to Wait
else if ∃ accepting ⟨ι(d), true⟩ in Q then

return false

return true

Figure 5.5. A symbolic state space exploration algorithm for property valida-
tion.

161

6. Introducing Erly Marsh

In this chapter, we give an overview of Erly Marsh - a tool for model-
based test suite generation and test suite execution. Development of
Erly Marsh started in 2002 with the aim to implement the techniques
introduced in this thesis.

Figure 6.1 shows an overview of the main features of ErlyMarsh. In the
Figure, ovals represent input specifications that can be processed by Erly
Marsh. rectangles represent components of Erly Marsh, and rectangles
annotated with “Note” represent outputs from components of ErlyMarsh
(some of which can also be further processed by other components of Erly
Marsh). Thus, the figure shows the components of Erly Marsh that can
be involved when processing an Erlang/Efsm specification, together with
a specification of coverage criteria represented by an observer expressed in
Erlang/Obs to generate test suites and other documents, such as reports
on test execution results.

The chapter is structured as follows. Section 6.1 outlines the Proto-
typer and Simulator, Section 6.2 outlines the Model compiler, Section 6.3
outlines the Pretty printer, Section 6.4 outlines the Test suite generator,
Section 6.5 outlines the Test suite execution tool, Section 6.6 outlines the
Erly Marsh Verificator, and Section 6.7 outlines the Test suite report
tool.

6.1 Prototyper and Simulator
The Prototyper implements the translation of an Erlang/Efsm specifi-
cation into an Erlang module that can be compiled to executable code.
This translation is described in Section 2.11. Utilizing the the executable
Erlang module, the Erly Marsh Simulator create a simple simulator
environment, in which a user can interact. This environment has an
HTML-based graphical user interface, in which a user can set configu-
ration data, and send input events to an Erlang process which executes
the generated executable Erlang module. Upon receiving an input event,
the Erlang process executes the corresponding transition until it reaches
the next state, and sends generated output events back to the GUI via
Erlang messages. Additionally, the trace of input and output events is
collected and shown in the GUI in the form of a Message Sequence Chart
(MSC) [ITU-T 99a].

162

Note

Note

Note Note

Note

Note

(Observer)
Symbolic selector

Abstract selector

Model compiler

tool
Test suite report

Simulator Pretty printer

Pretty-print
(Latex)

Test suite
Abstract

Executable
Erlang source (Edge clauses)

Generic spec.

Erlang/Efsm
specification

tool
Test suite execution

Prototyper

Test suite
generator

Concrete selector

Test suite report

Test case report Verificator

Figure 6.1. Overview of features in the Erly Marsh tool.

163

6.2 Model compiler
The ErlyMarsh Model compiler is responsible for parsing an Erlang/Efsm
specification, given as input, and transforming it into a generic EFSM
representation, by unfolding transition clauses into edge clauses. The
unfolding procedure is described Section 2.10 as part of executing sym-
bolic transitions. After unfolding, a user can choose whether the gen-
erated Erlang/Efsm edge clauses should be normalized, as described in
Section 2.10. The Erly Marsh Model compiler use an internal repre-
sentation of Erlang/Efsm edge clauses. This is also the representation
of Erlang/Efsm edge clauses assumed by the Test suite generator, see
Section 6.4, when generating a test suite.

The Model compiler allows the user to control the transformation in
the following ways. The user can:

• choose the maximum recursion depth to be used when handling user
defined recursive function in the Erlang/Efsm specification, and

• specify (optional) projection properties on symbolic parameters.
Below, we comment further on these aspects.

Bounding the Recursion Depth
The syntax and operational semantics for Erlang/Efsm user defined func-
tions (as given in Sections 2.3 and 2.4), allows the use of recursion in user
defined functions. To illustrate this, consider the following user defined
function, which can return a list of arbitrary length (which is at least the
value of FPar).

integer_list(0,Out) ->
Out;

integer_list(FPar,Out) ->
integer_list(FPar-1,[Fpar|Out]).

When this function is used in a transition clause, such as

loc(et,Par) ->
StateVar=integer_list(Par,[]),
{next_state,other_loc}.

for a location loc, with an input event expression et(Par), the state vari-
able StateVar is bound to the result of executing integer_list(Par,[]).
If we assume Par is an integer in the domain {0, 1, 2} this would cause the
Model compiler to create three Erlang/Efsm edge clauses, one for each
possible value of Par.

loc(et,Par) when Par==0 ->
StateVar=[],
{next_state,other_loc};

loc(et,Par) when Par==1 ->

164

StateVar=[1],
{next_state,other_loc};

loc(et,Par) when Par==2 ->
StateVar=[2,1],
{next_state,other_loc}.

During the symbolic execution performed during test suite generation,
we may potentially generate large symbolic expressions with unbound
symbolic parameters. The Model compiler limits the size of occurring
expressions by imposing a maximum depth at which recursive function
calls can be applied. This maximum depth can be given by the user
when invoking ErlyMarsh. If, during test suite generation, a termination
condition is not encountered before this depth is reached, a warning is
generated, and test suite generation terminated.

Projection Properties
Sometimes, we may not be interested in considering a complete Er-
lang/Efsm specification for test suite generation. It may then be conve-
nient to bind symbolic parameters and/or state variables to fixed values
when generating a test suite. Although this can be done with observers, it
is more efficient to specify such bindings to symbolic parameters already
by the Model compiler, as it may limit the state space that needs to be
explored. We refer to such static bindings of symbolic parameters and
state variables as projection properties. By defining a projection property
on a global variable v, we ensure that for each step in a symbolic run, v
is always either

• not bound to a value, or
• bound to eactly the same value as stated by the projection property.

The use of projection properties is optional.

6.3 Pretty printer
Sometimes (e.g., when debugging the specification), it is desirable to be
able to inspect the edge clauses generated by the Model compiler in
more detail. Erly Marsh provides a Pretty printer that can generate
a LATEX representation of the generated edge clauses, in which each edge
clause is annotated with the corresponding source lines in the original
Erlang/Efsm specification. Furthermore, if a test suite has been previ-
ously generated, coverage items can be visualized in the generated LATEX
document. As each coverage item corresponds to an accepting observer
location with observer parameters that (typical) originate from the Er-
lang/Efsm specification, each observer parameter is assigned a unique
color. This color is then used to color the corresponding syntactical ex-
pression in the generated LATEX document. For example, edge coverage

165

can be used to identify “dead code” in the Erlang/Efsm specification
by assigning a unique color to all covered edges in the generated LATEX
document.

6.4 Test suite generator
The Erly Marsh Test suite generator is responsible for generating ab-
stract test suites from the generic EFSM representation of the Erlang/Efsm
specification, symbolic selector (observer expressed in Erlang/Obs), and
an abstract selector using the techniques described in Section 5. Both
symbolic and abstract test suites are generated off-line.

The intention of the Test suite generator is to provide a large degree of
flexibility when generating a test suite, by giving the developer control of
various aspects of test suite generation. The techniques presented in this
thesis provide several different ways to exercise such a control.

• The generation of test suites can be controlled using observers,
e.g., by specifying coverage criteria.

• The size of the generated symbolic test suite can be limited to only
include a maximum number of coverage items, or a maximum num-
ber of selected symbolic test cases.

• The generation of abstract test cases from symbolic test cases (Ab-
stract selector in Figure 6.1) can be performed by using either the
Biased or Rndsym abstract test case selection technique, as de-
scribed Section 5.4.1. For symbolic test suites of modest size, it is
also possible to select all possible abstract test cases.

• The selection of concrete test cases from abstract test cases is han-
dled by a SUT-dependent call-back module implemented in Erlang,
and used by the Test suite execution tool, described in Section 6.5.

• The developer can choose between several different internal repre-
sentations of path and superposition conditions in symbolic traces.
These representations are described in more detail below.

In addition, the Erly Marsh Test suite generator implements a number
of optimizations. For example, all edge clauses are mapped to a unique
integer so that they can be easily distinguished by, e.g., the observer
predicate is_edge/1.

Representing generated symbolic test suites
Recall from Section 5.1 that a symbolic test case consists of a symbolic
trace with input and output expressions, and a conjunction formed from
a path condition and a superposition condition. In Erly Marsh, the sym-
bolic trace is represented as a list with Erlang records, encoded into a
more compact representation when stored off-line. For the conjunction
of path and superposition condition the most efficient representation is

166

specification dependent. For example, if symbolic parameters and state
variables are known to range over small finite domains there exists sev-
eral efficient representations. A lesson learned from the Evaluation in
Section 7 is that the choice of representation of path and superposition
conditions is important for efficient test suite generation.

Let us here provide more details on the supported internal representa-
tions of path and superposition conditions. Erly Marsh currently sup-
ports three different representations.

• Binary Decision Diagrams (BDDs) [Bryant 86], which can be used
when parameters and variables range over boolean domains.

• Numerical Decision Diagrams (NDDs) [Asarin 97], which can be
used when parameters and variables range over small finite integer
domains. In an NDD representation, a parameter or variable which
ranges over a domain of size K can be encoded using ⌈logK⌉ bits.
Thus, a condition involving d variables, each ranging over a domain
of size K, can be represented by a boolean function of d ∗ ⌈logK⌉
boolean variables. When using NDDs the domain of each parameter
and variable must be known a priori. Therefore, it is essential that
the domains for all symbolic parameters and variables to be repre-
sented by an NDD are known, e.g., from provided type declarations.
In Erly Marsh the default domain for variables and functions, that
are not given any explicit type declaration, is boolean.

• Erlang guards, as occurring in Erlang clauses. These are symbolic
Erlang expressions, where parameters and variables can range over
any domain that is supported in Erlang. This allow us to express
path conditions where we are not limited to symbolic parameters
with boolean (BDD) or small integer (NDD) domains.

After generating a test suite, the Test suite generator may feed the Pretty
printer (described in Section 6.3) with additional information on coverage
items covered in the generated symbolic test suite.

6.5 Test suite execution tool
The Erly Marsh Test suite execution tool is responsible for

• initializing a test execution environment (e.g., start protocol adap-
tors) so that a concretization of each abstract test case can be exe-
cuted,

• translating between abstract and concrete test cases; this translation
uses an on-the-fly translation implemented by an Erlang call-back
module, as further outlined in Section 5.4.2, and

• on each event received from the SUT by the test execution environ-
ment, passing the (abstracted) event to the Erly Marsh Verificator
for verification of correctness.

167

Let us comment on some aspects of the test execution environment. Ex-
ecution of a generated test suite requires that we are able to set up a test
execution environment that interacts with the SUT as described by each
abstract test case. Each test case typically represents some particular
combination of data settings that determine, e.g., values of parameters
in input events. If the test execution environment should be able to han-
dle concurrent requests, we need a mechanism to distinguish these data
settings. For this purpose, Erly Marsh uses a test case identifier to iden-
tify the data settings in an actual test case. The data settings prescribe
abstract values of input expression parameters and configuration param-
eters, but may also be used to control responses from the environment,
which in general can be non-deterministic. The test case identifier is
then encoded into a suitable parameter in each concrete event sent to the
environment where it is decoded by the abstraction translation so that
the abstract test case curently executed can be uniquely identified. Like-
wise, in any concrete event sent from the environment the concretisation
translation encodes the test case identifier. Note that

• parameters holding the test case identifier in the concrete events
may not have mappings to parameters visible in the specification
used to generate test suites, and

• the SUT must use these concrete parameters (e.g., a sequence num-
bers) internally to distinguish between different test cases.

See also Section 7.1.3 for an explanation on how test case identifiers were
used in the Evaluation.

Example 6.1 Assume we want to execute a test suite generated from
the Erlang/Efsm specification in Example 2.1. We must then identify
concrete parameters in the implementation to identify test cases. For
example, for checkin(Day) and checkout(Day) events one can assume the
existence of some revision information (e.g., date) on files checked in and
checked out, available in a concrete protocol, that could be used. Similar,
for the wakeup(Day), progress(X) and incident(I) events one can assume
some timestamp including e.g., the date. An actual implementation needs
to handle the actual encoding of test case identification in the call-back
module, when translating between abstract and concrete events. Note
that to be able to execute test cases concurrently, the implementation of
the configuration access function daytype(Day) needs to be parameterized
by a parameter used as test case identifier. □

The Test suite execution tool supports the execution of test cases both
sequentially, or concurrently. Execution is handled by distributing execu-
tion to a given number of Erlang processes, possibly located on different
hosts. Whenever ready, each such (handler) process requests a new test
case to execute from a single manager process, holding the test suite,

168

Note that there may exist limitations on the concrete events (e.g., win-
dow size in an underlying protocol, or domain of parameter) or in the
SUT (e.g., limited possbility to handle simultaneous configurations) lim-
iting the number of possible concurrently executing test cases.

6.6 Erly Marsh Verificator
The Erly Marsh Verificator verifies executed test cases for correctness
against corresponding test cases in the generated test suite. On test exe-
cution, each event received by the test execution environment is verified
against the abstract test suite. Additionally, the Erly Marsh Verificator
may also use a SUT specific call-back module to verify SUT specific data.
For example,

• text logs may be searched for strings that may be suspected to
indicate an error, e.g., the string “error”,

• counter values may be compared before and after test case execution
for suspected updates, and

• resource utilization data may be watched for abnormal usage in the
SUT

If not found correct, the Erly Marsh Verificator aborts test case execu-
tion.

Sometimes it is also desirable to control what is verified as succesful
execution. E.g., see Section 8.1.4 for an example where verification of
the output parameters are limited. Verification control is handled by
configuration. The Erly Marsh Verificator returns a Test case report on
each test case verified. This report may be fed into the Erly Marsh Test
suite report tool.

6.7 Test suite report tool
After executing a test suite, the Erly Marsh Test suite report tool sum-
marizes the types of failures found and (possibly) generates a report on
each single test case executed.

Executing large test suites may cause a large number of failing test
cases, many of which may detect the same fault. In particular for large
test suites, with many failing test cases, it is therefore essential that the
results are organized in such a way that a user can easily understand the
outcome of executing the test suite. The Erly Marsh Test suite report
tool uses concept analysis [Wille 82, Ammons 03] to automatically find
similarities between failing test cases and cluster them together. Concept
analysis clusters failing test cases into a hierarchy of small clusters within
big clusters, where failing test cases in a small cluster are more similar

169

than failing test cases in a big cluster. Thus, a user may inspect a small
set of clusters of failing test cases, instead of looking at a much larger
set of individual test cases. For each cluster, a summary is provided
which typically includes a symbolic trace and information on the detected
failure, see Figure 6.2. The idea is that it should be possible to fast get a
rough understanding of detected failures and possible faults causing the
failures.

For each executed test case a report can be generated that includes val-
ues used for instantiated symbolic parameters, part of the trace executed,
details on why Erly Marsh Verificator finds the the execution to fail (if
any), a Message Sequence Chart representation of the executed test case,
and possibly additional data (such as logs, counters and resource utiliza-
tion) from the SUT. It can be noted that a slightly enhanced Message
Sequence Chart, including names for entities with which the SUT com-
municates, can be generated if input and output events are declared to
return a record #em_i{}. For example, a psi/2 event may be declared by

-spec psi(VLRid::any(),IMSI::any()) ->
#em_i{dir::out, env_node::'MSC', env_par::'VLRid'}).

in the specification, if used as an output event for communication from
the SUT to an MSC (Mobile Switching Center). In Figure 6.2 it can
additionally be noted that there exists multiple MSC entities. Which
MSC a particular psi/2 event is sent to is controlled by a parameter in
the event (VLRid in this case).

170

GMLC MSC1 HLR MSC2
psi/3

psir/4

fsm/3

psi/3

fsmr/0

psir/4

sri/1

srir/3

fsm/3

psi/3

10 bad event failures with common trace
Expected: fsm/3
Unexpected: psi/3
Common Output Trace:

psi/3
fsm/3
psi/3
sri/1
...

Figure 6.2. A screen dump from Erly Marsh after executing a test suite with
failing test cases where GMLC is the SUT and MSC1, MSC2 and HLR are parts of
the test execution environment. The figure shows how 10 test cases form a
cluster by sharing a trace (green solid lines), ending with a received srir/3
input event. After this event, all test cases in the cluster expected the SUT
to send an output event with event type fsm/3 to MSC2 (green dotted line),
but unexpectedly the SUT instead sent an output event with event type psi/3
to MSC2 (red dotted line). This particular cluster was generated from the
A-MLC (Advanced Mobile Location Center) specification elaborated further in
Section 7.1.1.

171

7. Evaluation: Testing a Telecom Software
Application

In this chapter, we present the setup for our evaluation of how the tech-
niques for model-based test suite generation, presented in this thesis,
perform when applied to existing industrial protocols. Thus, we seek to
evaluate if model-based testing in general, and the Erly Marsh tool in
particular, is feasible in a real industrial environment and how it can be
used most efficiently. We do this by creating a formal specification for
an existing industrial protocol, from which test cases are automatically
selected, executed and validated. We then evaluate selected techniques
based on coverage based testing and random testing, and compare the
results with an existing “manually” created test suite. In particular we
will study different strategies for:
Selecting test cases for a test suite, to test as efficiently as possible (low

cost) while gaining maximum coverage and fault detection (bene-
fits). We consider both the selection of symbolic test cases, and the
selection of abstract test cases.

Executing the set of selected test cases as efficiently as possible with
respect to time and fault detection effectiveness.

Further we discuss the cost of creating the required Erlang/Efsm specifi-
cation. The evaluation has the form of a case study, in which we generate
and execute several test suites for testing a commercially available tele-
com software system, A-MLC. The version of A-MLC used in the case
study was not seeded with any faults. All faults found are “real” faults,
not (yet) detected by any other kind of testing. This means that our
evaluation measures the capability of detecting faults that typically oc-
cur in industrial settings, in contrast to studies that are based on faults
generated by seeding or mutation.

A purpose of our study is to evaluate different techniques for generating
test suites. Our hypothesis is that test suites may be of a measurable qual-
ity, and that the quality can be controlled by techniques for generating
test suites. We therefore organized the evaluation by defining variables
we can control, called independent variables, i.e., parameters that control
the generation and execution of test suites, and the variables that mea-
sure the quality of a test suite, called dependent variables, i.e., observable
effects of the different values of the independent variables. When choos-
ing selection techniques we had two main goals: (1) to compare different

172

techniques for generating test suites, including manual, random and cov-
erage based techniques, and (2) to compare some well-known coverage
criteria discussed in more detail in Section 4.

The chapter is organized as follows. Section 7.1 presents the setup
of the case study outlining the SUT, the Erlang/Efsm specification of
the SUT, and the test execution environment, Section 7.2 explains the
independent variables, Section 7.3 explains the dependent variables, and
Section 7.4 discusses threats to validity of the case study.

7.1 Mobile Arts Advanced Mobile Location Center
Mobile Arts A-MLC (Advanced Mobile Location Center) allows Mobile
Network Operators to provide presence data about subscribers with a
mobile device to presence dependent applications. Essentially it acts as a
standard Gateway Mobile Location Center (GMLC) node [3gp 00], with
the ability to provide additional presence data not required by a standard
GMLC. The supported presence data includes details about the location
of mobile devices, as well as about their current status and capabilities.
For example, a taxi switchboard application may want to know where a
calling user is located, in order to send the closest available taxi car to
the customer. A-MLC is commercially available and has been deployed
with several mobile network operators within Europe and Asia.

Figure 7.1 illustrates how A-MLC interacts with other entities in a tele-
com network system. A presence dependent application communicates
with A-MLC using Mobile Location Protocol (MLP) [oma 04], a stan-
dard XML based protocol utilizing HTTP over IP. To provide presence
data for a mobile device, A-MLC uses the GSM/UMTS core network,
from which the information is retrieved. In this network, a few nodes are
of particular importance, including:

• HLR (Home Location Register), a central database that contains
details of each mobile device with a subscription at an operator,

• MSCs (Mobile Switching Centers), each of which is responsible for
routing voice calls and SMS in a certain area,

• VLR (Visitor Location Register), a database of the subscribers who
have roamed into the area of the MSC which it serves, and

• BSC (Base Station Controller) handling allocation of radio channels.
For communication with these GSM/UMTS core network nodes, A-MLC
uses MAP (Mobile Application Part) [3gp 99], a protocol in the SS7 pro-
tocol stack. The presence data we are interested in are stored in the
HLR and VLR, but may not always be updated. Thus, typically an MLP
request from a presence dependent application is followed by a sequence
of MAP requests to (optionally) force an update of cached presence in-

173

formation in VLR and HLR, followed by a MAP request to access the
presence data.

HLR

MSC

VLR

BSC

BSC

A−MLC

MSC

VLR

MAP

MAP

MAP

MAP

MAP

MLP

Presence
Dependent
Application

Mobile Network Operator

(Partial) GSM/UMTS core network

Figure 7.1. An outline of how Mobile Arts A-MLC can communicate with
a presence dependent application and mobile devices using a number of
GSM/UMTS core network nodes.

The implementation of A-MLC was made mainly in Erlang, utiliz-
ing Erlang OTP, with approximately 130,000 lines of Erlang code and
5,500 lines of C code. Development was made in a typical fashion by
first creating a requirement specification. From the set of requirements,
a detailed functional specification consisting of a textual description and
a set of Message Sequence Diagrams was created. Finally, the imple-
mentation was based on the detailed functional specification. During this
process the A-MLC was frequently updated, creating problems to keep
the functional specification and implementation of the system consistent.
As the environment demands high requirements on functional correctness,
availability and fault tolerance, it was decided to formalize the functional
specification and complement a manually created (hand-crafted) test suite
with a test suite based on the formalization.

The process of creating the specification took a significant amount of
effort over the complete period of time the evaluation lasted. During this
process the specification was updated frequently, typically because an
executed test suite revealed a failure that could be attributed to an error

174

in the specification. Errors in the specification were sometimes caused by
the detailed functional specification containing unclear, wrong, or missing
information, e.g., on how to decide whether a user is roaming when we
have multiple conflicting MAP input events, or how to map a trace of
MAP events into an MLP response code. More frequently, however, errors
were caused by mistakes (bugs) made by the author when formalizing the
functional specification in the Erlang/Efsm language.

The version of A-MLC used for our evaluation was a snapshot made
during development of some new functionality, compared to an earlier
deployed versions.

7.1.1 The A-MLC Erlang/Efsm specification
The A-MLC Erlang/Efsm specification was created with the goal to cap-
ture all of the functionality provided by the detailed functional specifica-
tion, in a consistent manner. Several methods exists to achieve the goal
to retrieve presence data for a subscriber with a mobile device. In Fig-
ure 7.2, a graphical outline of the ATI (Any Time Interrogation) presence
method is given. Using this method, A-MLC sends an ATI to the HLR
that may hold cached presence data on the mobile device. It may happen
the cached data the HLR holds is invalid, e.g., because the subscriber is
roaming or presence data is too old. In such cases a solution is to force
an update of the HLR with an FSM (Forward Short Message), but that
requires an MSC address that can be obtained by sending an SRI (Send
Routing Info) and wait for the response. The A-MLC Erlang/Efsm spec-
ification additionally supports the PSI (Provide Subscriber Info) presence
method that shares many similarities with the ATI presence method.

The specification accepts five forms of input event types:
slir/6 – representing a SLIR (Standard Location Immediate Request),

on MLP, event from a presence application,
atir/4 – representing an ATI response from an HLR (Home Location

Register) holding presence data,
srir/3 – representing a SRI response from an HLR,
fsmr/0 – representing a FSM response from an MSC with status of the

mobile device, containing an address to the MSC serving the mobile
device, and

fsmTimerr/0 – representing an internal timeout when a response was
not received within a given time.

The output event types are of form:
slia/5 – representing a SLIA (Standard Location Immediate Answer, on

MLP, event to a presence application,
ati/1 – representing an ATI request to an HLR,
sri/1 – representing a SRI request to an HLR,

175

force_update

idle

updated

last_pos

IN:fsmr/0 OUT:ati/1

IN:atir/4 OUT:slia/5IN:slir/6 OUT:ati/1

access_netparam

IN:slir/6 OUT:sri/1 IN:atir/4 OUT:sri/1

IN:srir/3 OUT:fsm/3,fsmTimerr/0

updating

IN:atir/4 OUT:ati/1

IN:fsmTimerr/0 OUT:ati/1

IN:atir/4 OUT:slia/5

donemaybe_updatedtimer_trig
IN:fsmr/0 OUT:slia/5

IN:fsmr/0 OUT:ati/1

IN:atir/4 OUT:

IN:fsmr/0 OUT:
IN:fsmr/1 OUT:

IN:atir/4 OUT:slia/5

OUT:fsm/3,fsmTimerr/0
IN:slir/6

Figure 7.2. A graphical representation of a the part of the state machine cre-
ated for A-MLC, covering the ATI presence method. Note that due to space
restrictions, all lists of event parameters are simplified to a single parameter,
which merely indicates whether the real parameters are MAP or MLP param-
eters. Further, some edges are omitted, and all state variable updates and
guards on edges are not shown.

176

fsm/3 – representing a FSM request to an MSC, and
fsmTimer/0 – representing start of a timer.

There are 9 locations in the specification, corresponding to the circles in
Figure 7.2.
idle is the initial location, representing that A-MLC is ready for a new

slir/6 event,
access_netparam represents that we have received the address to the

MSC,
force_update represents that we have sent an FSM to force an update

of presence data for the mobile device
updated represents that presence data for the mobile device was suc-

cessfully updated in the GSM/UMTS core network,
timer_trig represents that an internal timer triggered because the FSM

response took too long and we therefore try to send the ati/1 request
anyway,

updating represents that the fsmr/0 response was received but not the
atir/4 response,

maybe_updated represents that the ati/1 response was received but
not the fsm/3 response, and finally

last_pos represents the case where we are only interested in the presence
data currently held in the HLR.

Example 7.1 A typical scenario is found in Figure 7.3. The scenario
starts by a slir/6 request from Application to retrieve presence data for a
subscriber with a mobile device. Triggered by the slir/6 request, the A-
MLC sends a ati/1 event to the HLR, containing a query for presence data
for a subscriber. Presence data includes e.g., cell identity to which the
cell the subscriber is currently associated, and status of the mobile device
(e.g., if busy in a phone call or idling). Since the presence data known
by the HLR is too old, A-MLC must force an update. It does this by
querying the HLR with an sri/1 event for the last MSC the subscriber was
associated to. After this information is received from the HLR in an srir/3
event, A-MLC sends an fsm/3 event to the MSC (i.e., eventually this will
cause an SMS, Short Message Service, to be sent to the subscriber) forcing
an update of the current presence data in the HLR. Now it happens
that the response to the FSM, from the MSC, takes too long, causing a
timeout event fsmTimerr/0 occurs. A-MLC then sends a new ati/1 event
to the HLR, hoping that the presence data has already been updated.
Eventually, both fsmr/0 and atir/4 events appears, but the presence data
received from the HLR is still not updated. The reason for this might be
that the ati/1 event was sent too early and we send a final ati/1 event to
the HLR. After the last atir/4 is received, A-MLC returns presence data
back to Application in the slia/5 event. □

177

Application A-MLC HLR MSC

slir/6

ati/1

atir/4

sri/1

srir/3

fsm/3

fsmTimerr/0

ati/1

fsmr/0

atir/4

ati/1

atir/4

slia/5

msc Typical use case

Figure 7.3. Typical execution of a test case in which execution starts by sending
a slir/6 request to the A-MLC, the A-MLC then executes a number of SS7 MAP
operations (i.e., ati/1, sri/1 and fsm/3) and returns a slia/5 response. Note
that due to space restrictions, all event parameter lists are simplified to a single
parameter only indicating if real parameters are MAP or MLP parameters.

178

Due to the generic nature of the involved protocols that communi-
cate with the environment (MLP and MAP), these interfaces were only
partially modeled in the A-MLC Erlang/Efsm. That is, we only model
well-formed events that can occur on these protocols. Events found to
be malformed, and thus rejected on these interfaces, were not modeled.
Further, for each protocol, we only model the subset of well-formed events
considered important to generate test suites from. The resulting A-MLC
Erlang/Efsm specification captures all possible traffic sequences through
A-MLC via the MLP protocol towards a presence dependent applica-
tion, and all relevant MAP operations towards the GSM/UMTS core
network. Lower level protocols in the IP stack (e.g., TCP) and SS7 stack
(e.g., TCAP) are not part of the formal specification. Likewise, no Oper-
ation and Maintenance interface (counters, alarms, GUI etc.) are part of
the formal specification. Furthermore, with the additional knowledge that
the A-MLC implementation makes use of Erlang’s light-weight threads
to separate requests, the handling of concurrent requests was not con-
sidered to need further verification and was therefore omitted from the
A-MLC Erlang/Efsm. In Figure 7.2 only the ATI presence method is
included. The complete specification also includes support for the PSI
presence method, introducing additional events and locations. Selection
of which presence method to use is handled by configuration data. In
total, the specification used in the evaluation consists of 12 locations,
11 input event types, 8 output event types, 70 input event parameters,
and 15 configuration parameters. Typically the configuration parameters
were reflecting network capabilities. For example, what presence method
to use, and if there exists required agreements when retrieving presence
data in networks not controlled by the subscribers operator.

The A-MLC Erlang/Efsm specification does not handle concurrency.
As we do not validate correct concurrent behavior, we rely on some knowl-
edge about the implementation of the SUT. First, the SUT is imple-
mented in Erlang with native support for concurrency by the use of
Erlang processes. Second, the SUT handles concurrent requests by a
separate Erlang process for each request. Thus, assuming Erlang imple-
ments concurrency correctly the benefit of validating correct handling of
concurrency is limited. In general, for implementations in Erlang, there
is a limited need to specify concurrent behavior of requests, if we can rely
on Erlang to handle concurrency correctly.

7.1.2 Symbolic test suite generation
The created specification allowed us to generate large numbers of differ-
ent symbolic test cases. For the evaluation, the largest test suites even
became too large for making the experiment manageable with available

179

hardware. We therefore additionally used a projection property, as de-
scribe in Section 6.2, to project the specification to a model with less
functionality. Thereby, we did not cover use cases including the use of an
internal cache in A-MLC, and handling of the sub-result received when
forcing an update of cached presence information in VLR and HLR.

Depending on the selection technique, test suite generation also may
be expected to depend on the structure of the specification. It was there-
fore decided that the evaluation should include also a comparison with a
normalized generic specification (see Section 2.10), in which the number
of edge clauses had been reduced by merging similar edge clauses. Since
some parts of the implemented SUT was known to be poorly tested (be-
cause of ongoing development), we also decided to perform an evaluation
on the more “well-tested” part of the SUT.

Each symbolic test case in the symbolic test suite must be represented
in a way that allows efficient creation and manipulation of path and super-
position conditions. Since many parameters of the A-MLC Erlang/Efsm
specification range over small finite domains, we have chosen to use NDDs
(Numerical Decision Diagrams), as described in Section 6.4. As the small
finite domains in the A-MLC Erlang/Efsm specification are not necessar-
ily integer domains, mappings between each used value and an integer
were created.

7.1.3 Test Execution Environment
To be able to execute test cases we need, apart from a SUT (A-MLC), a
Test Execution Environment. See Figure 7.4 for an overview. We used a
setup with 3 Erlang nodes;

• Erly Marsh Node holds the part of the Test suite execution tool,
selecting and initiating test cases to be executed, and all handling
of configuration data. The Test suite report tool generates a report
when execution has finished.

• Environment Node holds the part of the Test suite execution tool,
creating abstractions of incoming events and concretizations of out-
going events. Abstractions of incoming events are verified by the
Erly Marsh Verificator. To create and execute the concrete events
against the SUT, dedicated protocol layers (i.e., for MLP and MAP)
were used. For the MAP layer we had two options when executing.
The “Simulated” MAP option utilized an Erlang remote procedure
call and made it possible to run both the Environment Node and
A-MLC Node on the same host, but also shortcut execution of all
SS7 operations (including MAP). The “Real” MAP option utilized
dedicated software and hardware for SS7 stacks.

180

Note

Erlang API

Erlang API

SS7

hard/soft−ware

SS7

hard/soft−ware

"Real" MAP

tool

Test suite execution

tool

Test suite report

ErlyMarsh Node

Test suite

Abstract

Environment Node

"Real" MLP

tool

Test suite execution

A−MLC Node

Configuration
data

MLP

layer

MAP

layer

Verificator

"Simulated" MAP

Core functionality

Figure 7.4. Overview of the test execution environment for the A-MLC prod-
uct. The “grey” parts were dedicated SS7 hard/soft-ware not used in this
evaluation.

181

• A-MLC Node holds the SUT. The dedicated software and hard-
ware for SS7 is a mandatory part when deployed for execution in
a real network. For test execution, it was possible to execute the
Core functionality, i.e., the part of the SUT on which A-MLC Er-
lang/Efsm specification focused, without the need for software and
hardware for SS7.

Hardware used for all test suite generation and test suite execution was
an Asus V1S laptop (Intel Core 2 Duo T7300 2 GHz and 2 GB RAM).

Since the test execution environment is distributed, we must assign a
unique test case identifier to each test case, which is encoded into some
parameter of messages, as described in Section 6.5, For A-MLC, the pa-
rameters that are used for this purpose include

• in events on the MLP interface, the parameter MSISDN (Mobile
Subscriber ISDN), representing the subscriber that should be posi-
tioned, and

• in events on the MAP interface, either MSISDN, when available,
otherwise IMSI (International Mobile Subscriber Identity).

Note that the parameter holding the test case identifier may have different
domains on different interfaces. Thus, when utilizing different interfaces,
if different values are used they must be kept synchronized.

Before execution of a test case, abstract values are assigned to config-
uration data. After concretization A-MLC is then configured with the
concrete configuration data. Next, the abstract test case is stored in
the Test suite execution tool and Erly Marsh Verificator. During execu-
tion of a test case, each concrete event sent from the SUT to the Test
suite execution tool is translated into an abstract event, and sent to the
Erly Marsh Verificator. If the Erly Marsh Verificator successfully veri-
fies the abstract event, the Test suite execution tool continues with the
next event in the test case. For example, if the next event is an input
event to the SUT, it is made concrete and sent to the SUT utilizing a
protocol layer. If the Erly Marsh Verificator is not successful verifying,
all pending requests are aborted and execution ended. In this case study,
concretizations and abstractions are translations between input/output
events sent to/from the SUT. In Erly Marsh translations are handled by
two configurable tables, one for abstractions and one for concretizations.
After the test case has finished executing, the results are collected and all
relevant data stored in a database. Later, after executing the test suite,
this data is used to present the results to the user via the HTML based
user interface.

Figure 7.5 shows how the test case from Example 7.1 is executed in the
test execution environment. The test case begins by configuring A-MLC
with the configuration data, and providing both the Test suite execution
tool and Erly Marsh Verificator with the abstract test case to be exe-
cuted. Execution of the test case is initiated by sending a slir/6 request

182

to the SUT. The SUT then responds by executing a number of SS7 MAP
operations before it returns a slia/5 response. After the test case has
finished, the configuration needs to be reset and results from the Erly
Marsh Verificator are reported back to the Test suite report tool at the
Erly Marsh Node.

Test cases can be executed sequentially or concurrently. Due to the use
of configuration data in the A-MLC Erlang/Efsm, concurrent execution
of test cases requires A-MLC to handle many concurrent configuration
data sets. Fortunately this is supported in A-MLC. Since handling of
concurrent requests was left outside of the A-MLC Erlang/Efsm spec-
ification, the choice whether execute sequentially or concurrently could
be made without affecting the functionality of the SUT. A drawback of
concurrent execution is that potential resource failures, such as checking
that used memory is returned properly, can not be traced to individual
test cases. Our testing revealed in total one such possible resource fail-
ure. Also, when executing a test case A-MLC may generate logs that
may reveal additional (hidden) failures, not discovered otherwise. Using
concurrent execution, Erly Marsh did not support distinguishing logs
from different test cases. As can be expected, a significant speedup was
achieved by running test cases concurrently.

7.2 Independent variables
The independent variables are the variables in the evaluation that are
controlled. Here, the identified independent variables mainly concern the
selection and execution of test cases. We are interested in studying the
effect of different values of these variables.

Recall that test cases can be represented on three abstraction levels:
the symbolic, the abstract, and the concrete level. Using the observer au-
tomata, introduced in Section 3.1, test cases are selected on the symbolic
level. Each selected symbolic test case represents a set of abstract test
cases. An abstract test case can be selected, either from a given symbolic
test case or by some other means e.g., random or manual. Thus, another
independent variable is the selection of abstract test cases. From each
abstract test case a concrete test case needs to be selected. In this case
study we do not study the selection of concrete test cases but rely on
a well defined one-to-one mapping between each abstract and concrete
value. Whenever a concrete test suite is selected we also need to select
how the test suite should be executed on the SUT. In Section 7.2.3 we
consider executing complete test suites sequentially or concurrently.

Thus, the four classes of the independent variables are (1) Symbolic test
case selection techniques, (2) Abstract test case selection techniques, (3)
Test execution strategies, and (4) Base model from which symbolic test

183

Erly Marsh Node SUT Node Environment Node

Store A-MLC Config
Store Abstract Test Case

slir/6

ati/1
atir/4
sri/1
srir/3
fsm/3
ati/1

fsmr/0
atir/4
ati/1
atir/4

slia/5

Verification report
Reset A-MLC Config

msc Typical use case

Figure 7.5. Typical execution of a test case in a simulated environment where
execution start by configure A-MLC with configuration data and the abstract
test case in the Test suite execution tool and Erly Marsh Verificator in the
Environment Node. The test case is then initiated by sending a slir/6 request
to the A-MLC, the A-MLC then executes a number of SS7 MAP operations
(i.e., ati/1, sri/1 and fsm/3 with corresponding responses) and returns a slia/5
response. After the test case has finished, the configuration needs to be reset
and results from the Erly Marsh Verificator are reported back to the Test suite
report tool at the Erly Marsh Node. Note that due to space restrictions, all
event parameter lists are simplified to a single parameter only indicating if real
parameters are MAP or MLP parameters.
184

cases are selected. In the following sections we discuss these independent
variables in more detail.

7.2.1 Symbolic test case selection techniques
We considered four different symbolic, coverage based, test case selections
(coverage criteria) for the A-MLC Erlang/Efsm.

These were:
• All paths (All-Paths) cover all possible paths by making an exhaus-

tive unfolding of all paths in the base model,
• All target locations (All-Locs) cover all possible target locations at

least once,
• All edges (All-Edges) cover all possible edges at least once, and
• Definition-Use pair (Def-Use) of state variables cover all possible

pairs of definition and (at least one) usage of state variables.
See Section 4 for more detailed info, including observers, for these cov-
erage criteria. Note that, although it is possible to use the observer au-
tomata to generate All-Paths test suites, we did instead use Erly Marsh
to simply search for all possible traces with a start location and a stop
location.

7.2.2 Abstract test case selection techniques
A symbolic test case represents a set of abstract test cases. By assigning
values to all symbolic parameters, i.e., the input expression parameters
and configuration data, an abstract test case can be obtained. The ab-
stract test case selection techniques determine how to select a few of many
possible abstract test cases obtained from a single symbolic test case. The
abstract test case selection techniques considered in this evaluation are
Biased and Rndsym abstract test case selection, see Section 5.4.1. We
here assume the formal specification to be detailed enough to only make
it necessary to select a single abstract test case from each symbolic test
case.

Random abstract test case selection
Randomly generated test suites were generated by first generating the
symbolic test suite with all symbolic test cases using the original base
model (All-Pathsorg), and then selecting random abstract test cases in
two steps: (1) Randomly select a symbolic test case with some probability
and (2) from the selected symbolic test case, randomly chose an abstract
test case from those covered by the selected symbolic test case. In order
to make this selection correspond to a selection in actual random test
generation, we must assign a weight to each symbolic test case, which is

185

proportional to the probability that a randomly generated abstract test
case is an instance of this symbolic test case. We have identified two
different ways to assign weights to symbolic test cases, corresponding to
different views on how test case selection is performed in random testing.
Test case weight We assume the probability of each possible abstract

test case to be equal. The weight (W tcw) of a symbolic test case is
then the number of possible different abstract test cases that can be
instantiated from it.

Event weight We consider that random testing is a process, in which
each consecutive input event is selected randomly among the ones
that are expected by the Erlang/Efsm model in its current state.
This view seems more in accordance with actual random testing,
which sends a sequence of input events, each randomly selected, to
the SUT. The weight of a symbolic test case will then be propor-
tional to the product of the probabilities that each input event is
included in the symbolic test case. We identify two different ways
to interpret this view, resulting in the two different ways to assign
weights: simple event weights (sew) and event weights (ew).
The case of simple event weights considers a scenario where the se-
lection of an input event is done without knowledge of which events
can actually be received by the SUT. In other words, an input is
selected without considering which are the preconditions of possi-
ble transitions from the current state. In general, a large fraction
of selected input events, that can not be received, will then be re-
jected, causing the corresponding test cases to be aborted. The
simple event weights are then the relative weights of the successful
non-aborted test cases. To calculate the simple event weight of a
symbolic test case, we use the formula

W sew = W tcw × P × T

where
• W sew is the simple event weight.
• W tcw is the test case weight.
• P is the probability for selecting the sequence of event types in a

symbolic trace. For example, P sew becomes 1
10×

1
10×

1
10 = 10−3

if there exists 10 possible types of events in the specification,
for a symbolic trace with 3 input expressions.

• T is the probability to select one of the abstract test cases
represented by the symbolic test case, without considering any
constraints given by guard expressions, i.e., without considering
whether the SUT can actually receive the selected input event.
For example, T becomes 1

10 ×
1
10 ×

1
10 = 10−3 if a test case has

3 symbolic parameters, all with a domain of size 10,

186

The other approach, i.e., the event weighted one, considers a random
selection only among input data that can actually be received by
the SUT (according to the model), i.e., input data that satisfies the
precondition of some enabled edge. To calculate the event weight of
a symbolic test case, we use the formula

W ew = W tcw × P × T

which is similar to that for simple event weights, but where
• W ew is the event weight.
• P is the probability for enabled input event types in a symbolic

trace to be selected. For example, P ew becomes 1
2 × 1

5 × 1
10 =

10−2 if there exist 2 enabled event types in the first location,
5 enabled event types in the second location and 10 enabled
event types in the third location, for a symbolic trace with 3
input expressions.

• T is the probability for enabled input parameter instances in
a symbolic trace to be selected. Letting T tcw

k be the number
of possible different abstract executions corresponding to the k

first steps of the symbolic test case, and letting T out
k be sum of

all enabled computation steps with the input event type in the
(k + 1)st computation step, this probability can be calculated
as

T =
1

T out
0

×
T tcw
1

T out
1

× . . .×
T tcw
n−1

T out
n−1

for a test case of length n.
In our experience, a longer test case often tends to include a larger num-
ber of symbolic parameters not occurring in the path condition. This
because it is often the case that the involved input expressions do not
have constraints on all parameters. This causes test case weighting to
favour longer test cases. Event weighting on the other hand, favours
short test cases, since both T and P become smaller for longer test cases.

Note that when calculating the number of possible different abstract
test cases that can be instantiated from a symbolic test case, we include
all symbolic parameters in the symbolic test case, also those not occurring
in the path condition.

Manual abstract test case selection
Manually created test suites (hand-crafted) is the traditional way of test-
ing, and the way A-MLC was tested before using any model-based test
tool assistance. We define manual testing here as the activity of

• generating a list of concrete test cases from a functional specifica-
tion given as informal textual descriptions and (possibly) message
sequence charts, and

187

• executing a list of concrete test cases, using some test environment
and (possibly) executed by some script.

The manual test cases used in this case study were designed to cover 11
“traffic scenarios” defined in the detailed functional specification where
each traffic scenario describes a set of similar use cases specified by a
hierarchical Message Sequence Diagram and informal text descriptions.
Further, the A-MLC Erlang/Efsm specification created did fully cover all
manual test cases previously created.

When creating manual test cases, priority was given to cover use cases
known to be most frequently used. In A-MLC, most frequent use cases
all start with a slir/6 request and ends with a slia/5 response with all
requested presence data included, i.e., only a few test cases represented
error cases. Due to the manual work involved in defining, executing and
validating a manual test case only a minimal number were defined. The
test suite was expected to get a reasonable coverage for a reasonable cost
with the tools available. In the evaluation, these test cases were trans-
lated into a format suitable for Erly Marsh so that automatic test case
execution, including validation, could be applied. As with the Randomly
generated test suites above, we then first generated the symbolic test suite
with all symbolic test cases using the original base model (All-Pathsorg),
and then selected matching abstract test cases.

7.2.3 Test execution strategies
One of the most important factors when comparing test suites in an in-
dustrial setting is the execution time of the test suite on the SUT. This
because of the often strict time constraints which limits available time
for testing. We have two possible options for executing all test cases in a
test suite:

1. Execute one test case at a time, and wait for the test case to finish
until the next test case is executed.

2. Execute test cases concurrently, and thus not wait for a test case
to finish until a new test case is executed. A consequence of such a
strategy is of course that the SUT may be overloaded with traffic,
that may cause it to drop requests. Any such failure was detected,
so to avoid this the test client was configured with a delay between
requests made. We did not try to find the optimal delay.

The A-MLC is designed to be able to handle multiple concurrent requests,
thus running test cases concurrently caused no problems in general. The
Erly Marsh Verificator was able to include SUT logs, measurements and
alarms, but not able to separate concurrent requests from each other.
Thus, the degree of validation of an executed test case was dependent on
the execution strategy used:

188

• If executing test cases concurrently, we only validated each test case
against the formal model. Thus, we can only validate the order and
parameters of all input and output expressions in a test case.

• If executing one test case at a time, we additionally validated re-
source utilization and unexpected exceptions. This required one
request at a time, because of measurement tool limitations.

7.2.4 Base models
We refer to a base model as the model on which different test selection
techniques are applied. We considered three different base models for the
A-MLC Erlang/Efsm. These were:

• The original base model, created from the original specification and
projection properties on 4 boolean symbolic parameters.

• The normalized base model, created from the normalized specifica-
tion (see Section 2.10), and a projection property with 4 boolean
parameters.

• The reduced base model, was created from the original specification
and a projection property with 20 (mainly) boolean parameters.

The projection properties for the original and normalized base models
limits the number of parameters in the slia/5 response and use of each
MAP session to a single request/response. The additional projection
properties for the reduced base model limited the number of parameters
in the slia/5 response event further and only covers test cases using the
PSI presence method.

Below we sometimes use the notation CovBaseModel where Cov is one
of the coverage criteria from Section 7.2.1, and BaseModel is the base
model from which test cases were selected. For example, All-Edgesorg
refers to a test suite that cover all possible edges at least once in the
original base model.

7.3 Dependent variables
The dependent variables are used to measure different aspects of the eval-
uation. The values of dependent variables are influenced by changes to
the independent variables.

When executing a concrete test case we assume a black-box view of
the SUT and therefore initially only observe failures. Investigating an
observed failure more closely can reveal a number of faults.

There exist many ways to measure faults in software. As we assume
the number and effect of the faults in the software we are testing to be
unknown to us we:

189

1. cannot assure a single failure on a test case is only caused by a single
fault, and

2. cannot assume continued execution after a fault do not cause addi-
tional failures that would not have been present without the initial
fault.

One approach could be to remove faults one by one until no faults can
be found for each test case. Here, we instead count bug fixes, each of
which is a correction of a fault detected, see Section 7.3.2. Our approach
was to correct all faults with bug fixes, then the number of bug fixes
exposed was counted. Thereby getting a fairly good picture of the number
of faults detected by the test suites. The source code coverage of the
implementation was measured after all faults were corrected with bug
fixes.

In this evaluation we will measure the dependent variables; (1) number
of failures detected, (2) number of bug fixes required to remove all faults
causing the failures, (3) source code coverage, (4) size of abstract test
suites, and (5) execution time (for test suite generation and execution).

7.3.1 Failures
We here define a failure to be the observed inability of a SUT to perform
a request for some reason. Failures were categorized by the origin of the
failure as follows:

Unexpected output event types
While executing a test case we observe event types not expected according
to the specification. This can be further categorized into:

1. unexpected output that occurs when the test execution environment
does not expect to receive any more output event, but still receive
an additional output event,

2. bad output that occurs when the test execution environment expects
to receive one output event type, but receives another output event
type, and

3. missing output which occurs when the test execution environment
expects to receive an output event type, but execution stopped too
early and the output event was never received.

All comparisons were made after parsing concrete output events and gen-
erating corresponding abstract events, on which a comparison was made
with the expected trace generated from the formal model. In all cases
the trace before the occurrence of the failure was verified to be correct.

Unexpected output event parameter values
While executing a test case we observe correct event types, but unex-
pected event parameter values according to the specification. We here

190

chose to only define two categories (based on a status code in the slia/5
event) because they were all considered to have a low severity level, and
the cluttering it would imply to include all possible sub-categories. How-
ever, the Erly Marsh tool was able to find many more sub-categories by
combining sets of parameters.

Resource utilization
It was assumed that a test case executed on the SUT should not cause
excessive memory consumption, as that would indicate a memory leak.
Thus we define one failure to be an observed bad resource usage. This
was further categorized in: (1) hanging processes which occur when, after
the test case has finished, additional processes are running compared to
the number of processes running before the test case started. Processes
created by SUT activities, e.g., to perform backup of data, were identified
and filtered out not to influence the results. (2) atom table leak occurs
when additional memory for the atom table was used for a test case. Note
that this is a problem since the current implementation of Erlang does
not garbage collect the global atom table that holds all Erlang atoms
used. If we can measure an increased size of the atom table we are likely
to have a memory leak. However, a first use of an atom always causes
allocation of memory but such an allocation is considered harmless as
long as it only occurs the first time a test case is executed. Thus, when
detecting a suspicious memory leak the test case was executed a second
time before reporting an atom table leak failure.

Exceptions
The Erlang run-time system may generate an exception when a run-
time error is detected. Typically, A-MLC logs data output from such
exceptions. Thus, after the test case had finished these logs were fil-
tered for known keywords associated with exceptions. Examples of such
keywords generated by the Erlang interpreter are 'EXIT' (the special
atom used to help represent exceptions in the Erlang run-time sys-
tem), function_clause (a matching function clause could not be found),
case_clause (a matching case clause could not be found) and bad_arg
(an expression was given an argument it could not handle).

7.3.2 Faults
We here define a fault to be a cause of a failure. Each fault may cause
multiple failures, and each failure may be caused by multiple faults. Thus
we can say that the existence of a failure indicates a need to fix one or
more faults. We introduce bug fixes as a way to characterize faults.

The SUT was not seeded with any faults. All faults found are “real”
faults, not (yet) detected by any other kind of testing. A main pur-

191

pose of the testing presented here is to discover faults on a functional
level, captured in the A-MLC Erlang/Efsm specification of the SUT.
Such faults typically originate in requirements misunderstood or not cov-
ered by the implementation. With respect to finding badly implemented
requirements, it is our belief that counting real faults gives more accurate
results, than mutating the implementation with, what is expected to be,
common programming errors.

In our experiments we wish to study programs containing multiple
faults. This causes additional obstacles as the faults may be dependent.
Thus we cannot decide which faults a particular test case reveals as de-
tection of a particular fault my be dependent on the existence of some
other fault. We avoid this by measuring number of different bug fixes
used to remove the faults.

Correction of faults (bug fixes)
Fault-detection effectiveness is the ability of a test suite to detect faults.
It can be measured by studying programs containing known faults, and
count the numbers of faults detected for each test suite. Since we want
to count all possible faults discovered by a test suite we run test cases
on corrected source code. The number of bug fixes needed to remove the
failures, roughly corresponds to the number of faults detected. In order
to ensure a close relationship between faults and bug fixes we need to
exactly define how a detected fault can be corrected with bug fixes.

A fault must originate in some executable source code. We define an
executable statement to be an Erlang expression, such as a matching
or function call, that may be executed when the program is executed.
Consider a sequence of executable statements s1, . . . , sn where a fault
can be attributed to statement sk. We define a bug fix to be a change of
sk into a correctly behaving Erlang expression. A bug fix that requires
the addition of an if or case expression is considered to be as many
bug fixes as there are clauses in the if or case expression with mapping
functions to correct Erlang expressions other than the identity function.

Example 7.2 Consider the following extract from an Erlang program:

Var1=1, Var2=2,

where Var2=2 is considered a faulty statement as the value matched with
Var2 depends on a variable SunnyDay. Thus, we introduce if clauses for
the possible values of SunnyDay. The resulting Erlang program includes
an if expression such that we get

Var1=1,
Var2=if

SunnyDay==yes -> two; % bug fix 1

192

SunnyDay==maybe -> three; % bug fix 2
SunnyDay==no -> 2 % NO bug fix

end,

As the replacing if expression has two additional possible execution paths
we say we have made two bug fixes. □

When comparing test suites in this evaluation, all test suites were ex-
ecuted without any faults detected, as they had been replaced with bug
fixes. To identify and count bug fixes each bug fix was additionally an-
notated with a call to a unique bug fix function. Thus, in the evaluation
the example above would become

Var1=1,
Var2=if

SunnyDay==yes -> bug1(),two; % bug fix 1
SunnyDay==maybe -> bug2(),three; % bug fix 2
SunnyDay==no -> 2 % NO bug fix

end,

where the implementation of bug1() and bug2() allowed us to implement
counters etc. independently from the SUT.

7.3.3 Source code coverage
We may also measure effectiveness of a test case selection by studying
source code coverage. We are here limited to usage of existing, avail-
able tools and are only aware of the Cover [Erl 15] tool, part of the
Erlang/Otp distribution, and a more capable prototype tool described in
[Widera 04]. Due to the beta status of the Widera tool we decided to use
the Cover tool to count how many times each executable line of source
code was executed when a program was executed. Thus, by examining
output from the coverage tool Cover, we could e.g., directly see exactly
how many times each bug fix function had been used (i.e., number of
times corresponding bug fix was applied) by a test suite.

The Cover tool counts how many times each executable line of source
code is executed when a program is run. An executable line contains an
Erlang expression such as a matching, guard or a function call. A blank
line or a line containing a comment, function head or pattern in a case-
or if expression is not executable. Thus, for example,

foo() ->
Var1=2,
Var2=two,
if

SunnyDay==yes,

193

HappyDay==yes ->
Var1;

SunnyDay==maybe,
HappyDay==yes ->

Var2
end.

will be counted for as 4 possible executable lines that may be covered in
a test suite.

7.3.4 Abstract test suite size
The number of possible abstract test cases that may be created from a sin-
gle symbolic test case is found by instantiating the symbolic parameters
in all possible ways such that the path condition evaluates to true. Nat-
urally this number depends on the symbolic parameters that occur in the
path condition. But it also depends on those symbolic parameters that
occur in the trace but not in the path condition. This because the actual
implementation of the SUT may very well depend on the corresponding
concrete parameters and constants.

We assume that all symbolic parameters that occur in a symbolic test
case must be considered - even if not used in any expression. This includes
all input expression parameters in the symbolic trace and configuration
parameters depending on those input expression parameters. Further
dependencies between symbolic parameters were not considered. The
total number of abstract test cases, represented by a single symbolic test
case, can therefore be calculated by counting how many different ways
all these symbolic parameters can be assigned values while satisfying the
path condition. The number of possible abstract test cases that may be
created from a symbolic test suite is the sum of all abstract test cases
that may be created from each symbolic test cases in the symbolic test
suite.

7.3.5 Execution time
We consider both the time to generate a test suite and to execute a
generated test suite. The time to generate a test suite involves both the
time to generate a symbolic test suite and an abstract test suite. The
execution time of a concrete test suite against a SUT is measured in a
test environment. We consider both sequential execution and concurrent
execution of test cases against a SUT.

194

7.4 Threats to validity
All controlled experiments are subject to threats to validity that must
be considered when evaluating the results, see e.g., [Briand 07]. Here we
further distinguish between:

internal validity i.e., whether the outcome of the evaluation depends
only on the independent and dependent variables discussed in Section 7.2
and Section 7.3. I.e., “Did the experimental treatments make a differ-
ence?”

external validity i.e., whether the results of the evaluation can be applied
to circumstances outside the specific settings in which the study was
carried out. I.e., “To which extent can the results be applied to other
systems in need of testing?”

7.4.1 Internal validity
The combined test case generation tool used, Erly Marsh, is a novel tool
that has been developed in parallel with this evaluation. Although a lot
of effort has been put into ensuring correctness of the tool, its maturity
level is a risk. It should be noted that we can not use Erly Marsh to
validate itself.

Fault detection is limited to what can be measured. We consider all
output generated by the SUT, including; generated output events, alarms,
counters and logs. But automatically detecting faults is a difficult prob-
lem to solve completely. Alarms may not be raised as they should. Logs,
not designed to be automatically examined, may be scanned for the wrong
keywords indicating a fault. There is also no guarantee that faults, only
detectable from logs actually are logged, thus making it impossible to
detect the fault. However, when verifying executed test cases we take a
black-box view and only mandate correctness of (abstract) output events.

We did not exactly measure faults, but bug fixes that sometimes may
be done in multiple ways. Although some care was made to create a one-
to-one mapping between faults and bug fixes, we may have fixed more
than one fault or introduced additional new faults. Also, the existence of
multiple faults makes it possible that faults are masked by other faults.
Correct implementation of bug fixes would however elliminate this prob-
lem.

7.4.2 External validity
Only a single formal model and SUT was considered, consequently lim-
iting the validity in this evaluation. Several candidates for other studies
exist, the only reason these has not been included are time constraints.
The bottleneck is the creation of a formal model of the SUT, which re-

195

quires significant time and insight into the SUT. The SUT chosen, A-
MLC; (1) has a rather large set of possible use cases, (2) was considered
rather mature as it had been deployed at customers. Thus, most simple
and obvious bugs had been detected and removed. It is therefore our
belief that A-MLC is well representative for the class of applications we
are mainly interested in. In addition, it also operates in a standardized
environment and therefore shares much functionality with other nodes
operating in a similar environment (GSM/UMTS core network).

As the formal model and implementation of A-MLC were created sep-
arately from each other they have different structures. This has the im-
plication that certain selection mechanisms may be favored in code cov-
erage. We can only avoid this by running all possible abstract test cases
or creating a formal model with a well defined mapping directly to the
implementation. An implementation more similar to the formal model in
structure may thus reveal different results.

When comparing symbolic test case selection techniques we did not
consider different search strategies. We only used a depth first search
strategy. As the search strategy directly influences which test cases are
selected by the observer, we could have generated different test suites
with the use of alternative search strategies. This could have influenced
the results.

We use “real” faults to measure performance of the test selection. Al-
though it may be seen as a strength to be able to detect faults not detected
in any other testing performed, this may simply be because the SUT was
poorly tested. It was e.g., known that parts of the SUT was more “well-
tested” than other parts. Not having control of the failures also gives us
no control in distributing faults in an even manner. This may affect the
results, especially for those coverage criteria that only generated small
test suites. When the test suites were applied A-MLC was a relatively
mature product which may also affect the types of faults found.

Another performance measure used is implementation code coverage,
by the Cover tool. However, this tool only measures line coverage limiting
the usefulness of the results returned.

196

8. Results using Erly Marsh on A-MLC

This chapter present the results of our case study, whose setup was pre-
sented in the previous Chapter 7, for evaluating our framework for model-
based testing on A-MLC (Advanced Mobile Location Center) and differ-
ent strategies in model based testing. For specification of A-MLC we use
an Erlang/Efsm specification (see Section 2), and for definition of cover-
age criteria we use observer automata (see Section 3). The Erly Marsh
tool set (see Section 6) is used to generate and execute all test suites.

The chapter is organized as follows. Section 8.1 summarizes the results
of the experiments described in Chapter 7. Section 8.2 further discusses
the results concerning measured failures, Section 8.3 discusses the results
concerning measured faults, Section 8.4 discusses the results concerning
measured code coverage, and Section 8.5 discusses the results concerning
measured size of test suites and execution times. Finally, in Section 8.6
we summarize and discuss our findings.

8.1 Summary of the results
Our goal was to study the effects of automatic test suite generation based
on different techniques for selecting test cases. We did this by studying
the effects on the dependent variables (i.e., Failures, Faults, Source code
coverage, Abstract test suite size, and Execution time) while generating
and executing test suites with four symbolic test case selection techniques,
five abstract test case selection techniques, two test execution strategies,
on three different base models. The results are summarized in Table 8.1,
Table 8.2, Table 8.3 and Table 8.4. In all these tables we use a common
terminology where

• Failures is the number of different failures identified,
• Bug fixes is the number of bug fixes exposed to correct detected

faults,
• Code Coverage is the fraction of lines of code covered on selected

Erlang modules on the SUT, after excluding code out of scope from
the A-MLC Erlang/Efsm,

• Abstract TC is the maximum number of possible abstract test cases
in the corresponding symbolic test suite. That is, number of ways
the symbolic test suite can be instantiated. Test Cases is the num-
ber of concrete test cases executed,

197

• Time gen symb is the time measured to generate the symbolic test
suite,

• Time gen abs is the time measured to generate the abstract test
suite, given a symbolic test suite,

• Time exe seq is the time measured to execute the test suite sequen-
tially, and

• Time exe con is the time measured to execute the test suite con-
currently.

Further terminology used in the tables, explanations and motivations of
the test suites used in the case study are given as follows. Section 8.1.1
further explain Table 8.1 on the coverage based test suites, Section 8.1.2
further explain Table 8.2 on the random test suites, Section 8.1.3 further
explain Table 8.3 on the manual test suites, and Section 8.1.4 further
explain and motivates the test suites based on the reduced base model in
Table 8.4.

8.1.1 Coverage based test case selection
Using the original and normalized base models, see Section 7.1.2, we first
generated symbolic test suites considering the coverage criteria All-Locs
(All target locations Section 4.1.2), All-Edges (All edges Section 4.1.1),
Def-Use (Definition-Use pair Section 4.1.4), and All-Paths (All paths Sec-
tion 4.1.3). We then created abstract test suites from the generated sym-
bolic test suites using Biased and Rndsym abstract test case selection,
see Section 7.2.2.

A summary of the results, using test suites generated using observer
automata, is shown in Table 8.1 where Symbolic TC is the number of
symbolic test cases in the test suite. Furthermore, here we only select
a single abstract test case, and create a single concrete test cases from
each symbolic test case. Thus, the number of executed concrete test
cases is identical to the number of symbolic test cases in the test suite.
Note that results for Biased and Rndsym are shown in different rows
(e.g., Bug fixes/Biased and Bug fixes/Rndsym) whenever a significant dif-
ference was measured. For Failures, Time gen abs, Time exe seq and
Time exe con we did not measure any significant difference between Bi-
ased and Rndsym. Thus, only the results for Rndsym abstract test case
selection is shown for these measures.

8.1.2 Random test case selection
To better understand the power of applying the coverage based test suite
generation techniques we also created a number of Random test suites,
see Section 7.2.2. The results of running these test suites are shown in

198

Original base model:
Test suite name: All-Locsorg All-Edgesorg Def-Useorg All-Pathsorg

Symbolic TC 5 422 6,292 82,423
Abstract TC 31104 9 343 336 710 897 147 400 781 346 067
Failures/Rndsym 2 12 12 15
Bug fixes/Biased 13 78 80 93
Bug fixes/Rndsym 13 78 83 96
Code cov/Biased 58.18% 94.36% 92.67% 95.68%
Code cov/Rndsym 59.21% 95.49% 94.27% 97.18%
Time gen symb 00:00:17 00:00:19 01:18:23 00:10:57
Time gen abs/Rndsym 00:00:01 00:00:01 00:00:10 00:13:26
Time exe seq/Rndsym 00:00:04 00:06:50 03:54:23 62:00:40
Time exe con/Rndsym 00:00:01 00:00:12 00:03:18 00:55:33

Normalized base model:
Test suite name: All-Locsnor All-Edgesnor Def-Usenor All-Pathsnor

Symbolic TC 5 310 4 275 59 209
Abstract TC 641 520 14 369 363 770 390 937 400 781 346 067
Failures/Rndsym 2 12 12 15
Bug fixes/Biased 12 77 78 91
Bug fixes/Rndsym 13 73 81 95
Code cov/Biased 57.33% 91.73% 91.73% 94.55%
Code cov/Rndsym 58.08% 93.52% 94.36% 97.37%
Time gen symb 00:00:13 00:00:13 00:28:00 00:04:36
Time gen/Rndsym 00:00:01 00:00:01 00:00:07 00:07:16
Time exe seq/Rndsym 00:00:05 00:06:00 02:49:54 52:50:04
Time exe con/Rndsym 00:00:02 00:00:08 00:02:18 00:35:16

Table 8.1. Summary of test results for coverage based test case selection, using
the original and normalized base models for A-MLC.

199

Test case weight:
Test suite name: Rndtcw

1k Rndtcw
12k Rndtcw

48k Rndtcw
100k

Test cases 1000 12 000 48 000 100 000
Symbolic TC 968 8 464 20 276 28 583
Failures 12 13 15 15
Bug fixes 48 53 57 60
Code Coverage 83.08% 86.84% 89.13% 90.76%
Time exe con 00:00:46 00:09:02 00:31:59 01:02:00

Event weight:
Test suite name: Rndew

1k Rndew
12k Rndew

48k Rndew
100k

Test cases 1000 12 000 48 000 100 000
Symbolic TC 313 1195 2361 3283
Failures 13 15 15 15
Bug fixes 83 98 98 98
Code Coverage 96.20% 97.58% 97.55% 97.79%
Time exe con 00:00:14 00:02:56 00:11:01 00:23:55

Table 8.2. Summary of test results for creating and executing a selection of
the random test suites on the A-MLC.

Table 8.2, where Rndw
i is a random test suite utilizing weight w (i.e., test

case weight ew or event weight tcw) with i test cases, Symbolic TC is the
number of different symbolic test cases covered by the random test suite.

All reported results with the random test suites are the mean values of
three independently created test suites. Random test suites were created
in several different sizes, for brevity only a subset are shown in Table 8.2.

8.1.3 Manual test case selection
At the time the evaluated snapshot of A-MLC was made, not all of the
traffic scenarios found in the functional description had been deployed
at a customer. Therefore, the test suite used at Mobile Arts for test-
ing A-MLC was limited to 20 test cases, and covered 6 out of 11 traffic
scenarios defined in the functional specification, representing the most
frequently occurring use cases. All test suites were manually created, see
Section 7.2.2, and we will refer to this limited test suite as Manlim. Man-
ual test cases for the additional traffic scenarios, were constructed by the
first author following the same patterns as in the Manlim test suite. The
full manual test suite is referred to as Man. Only a few of these test cases
represented error cases.

200

Test suite name: Man Manlim

Test cases 50 20
Failures 2 2
Bug fixes 31 15
Code Coverage 80.98% 66.70%
Time exe con 00:00:02 00:00:01

Table 8.3. Summary of test results on the A-MLC for manual test suite.

The results of running these tests suite are shown in Table 8.3. Note
that both manual test suites found the same two failures (fail10 and fail13),
both estimated to be of low severity. Failures and severity levels are
further discussed in Section 8.2.

8.1.4 Testing with projected specification and reduced
validation

While executing the test suites, we were initially surprised by the large
number of bug fixes exposed. After investigations, we concluded that the
main reason was that the SUT was insufficiently tested since only a subset
of the implemented features were deployed and used by customers.

Previous testing of the SUT at Mobile Arts had been driven by Ac-
ceptance testing (see Section 1.1) and had been concentrated to limited
parts of the SUT. Other parts of the SUT had been implemented, but
incompletely tested. Not only was the number of test cases in the man-
ually selected test suite limited, but the SUT had been tested only by a
developer and the values of several parameters in output events had not
been validated during testing.

In order to search for failures in the more “well-tested” part of the SUT,
a reduced base model was created from the original specification, applying
a projection property with 20 symbolic parameters (mainly booleans).
All set to fixed values such that the resulting model excluded features
incompletely tested, such as an additional position method. Additionally,
validation of parameters in output events was relaxed to validate only
a subset of the parameters. The manually selected test suite, Manred,
contains the subset of Man which could be generated from the reduced
base model. The All-Pathsred test suite has full coverage of all symbolic
test cases in the reduced base model where a single abstract test case was
selected using Rndsym abstract test case selection.

A summary of the results running these test suites is shown in Table 8.4
where OK Test Cases is the number of concrete test cases executed and
validated successfully without exposing any bug fixes.

201

Test suite name: Manred All-Pathsred

Test Cases 20 5817
Failures 1 7
Bug fixes 16 41
OK Test Cases 19 196
Code Coverage 66.70% 66.33%

Table 8.4. Summary of test results found with test suites based on a reduced
base model, and using limited validation.

The manually selected test suite Manred revealed only a single failing
test case. As the SUT was a snapshot of a previously deployed system,
with some additional development, it was expected to only reveal a few
(or none) failing test cases when executing a similar test suite as had
been executed during previous acceptance testing. More surprising was
the large number of failing test cases when running test cases from all
symbolic traces in All-Pathsred. To some extent these results can be
explained by the fact that an inconsistent behavior for similar test cases
earlier had not been tested. In the specification some effort was made
to have a consistent behavior between input expression parameters and
output events which caused a number of additional observed failures.

8.2 Failures found while testing
As explained in Section 7.3.1, a failure is defined to be the observed
inability of a SUT to perform a request for some reason. During test
suite execution a number of failures were revealed, assisted by the Erly
Marsh tool, the results were examined more closely after executing the
test suites. To better understand the identified failures, they were further
classified into three different severity levels:

• low, indicating the failure was expected to have no, or only limited,
impact on a SUT deployed in a live network, without demanding
applications requiring correct quality of position etc.,

• middle, indicating the failure could have a severe impact on the SUT
during operation in a highly utilized live network, and

• high, indicating the failure would have a severe impact on the SUT
during normal operation in a live network.

Table 8.5 summarizes the results. Examining the identified failures
more closely they could be further categorized as:

• Unexpected output: fail1, ..., fail5. Test cases where the test ex-
ecution environment does not expect to receive any more output
event, but still receive an additional output event. All output event

202

Name Severity All-Locsorg All-Edgesorg Def-Useorg All-Pathsorg

fail1 low X X X
fail2 middle X X
fail3 middle X
fail4 middle X X X
fail5 low X X X
fail6 low X X X
fail7 middle X
fail8 low X X X
fail9 low X X X
fail10 low X X X X
fail11 low X X X
fail12 middle X X
fail13 low X X X X
fail14 high X X X
fail15 high X X

Table 8.5. Failures found when running test suites generated from the original
base model.

types towards the GSM/UMTS core network occurred as unex-
pected events in some test case. As over utilization of the HLR
should be avoided (most of the core network depends on the HLR)
failures detected with an additional output event towards the HLR
was classified as a middle severity failure. These were fail2 (unex-
pected first sri/1), fail3 (unexpected second sri/1), and fail4 (unex-
pected ati/1). All other failures (fail1 with unexpected fsm/3 and
fail5 with unexpected psi/3) were classified as low severity failures.

• Bad output: fail6, ..., fail7. Test cases where the test execution
environment expects to receive one output event type, but receives
another output event type. These failures occurred when an imme-
diate position request was expected, but the A-MLC instead chose
to first force an update of the position (fail6 low severity, expected
psi/3 but got fsm/3) or request additional information from the
HLR (fail7 middle severity, expected psi/3 but got sri/1).

• Missing output: fail8, ..., fail11. Test cases where the test execution
environment expects to receive an output event type, but execution
stopped too early and the output event was never received. This
occurred for all event types towards the GSM/UMTS core network
in some test case. As a result of these, the requested quality of
position was not performed, although it may have been fulfilled if

203

the expected events had occurred. In more detail; in fail8 a second
ati/1 was expected after a forced update, in fail9 a second psi/3
was expected after a forced update, in fail10 a forced update was
expected after an ati/1, and in fail11 a forced update was expected
after an sri/1. All these failures were classified with low severity
level.

• Unexpected output event parameter values: fail12, fail13. The fail12
failure were test cases failing by a position response code indicat-
ing that a successful slia/5 response was received, despite it should
return an error according to the specification. This failure was clas-
sified with middle severity level. The fail13 failure were test cases
failing by other unexpected or bad parameter values in the slia/5
response to the user. This failure was classified with low severity
level.

• Resource utilization: fail14. A highly severe failure was found when
executing over 1000 requests. The reason was that the XML parser
did not free an allocated hash table (Erlang ets table), causing a
complete system crash after a system limit was reached. This failure
had to be fixed before further testing could be made.

• Exceptions: fail15. Missing clause in state machine caused the
handler process to exit, and a default error response was returned.

In summary, the different test suites found different subsets of the fail-
ures and only the largest, most complete test suite (All-Pathsorg and the
larger random test suites e.g., Rndtcw

48k and Rndtcw
100k), found all. It can be

noted that the (minimal) All-Locsorg test suite did not find any of the
highly critical failures. The All-Edgesorg test suite found almost as many
failures as the Def-Useorg test suite, despite that test suite included 93%
less executed test cases. However, it did not find the severe memory leak,
fail14, since this required the size of the test suite to be at least 1000 test
cases.

8.3 Faults found while testing
The failures described in Section 8.2 were all caused by detected faults.
All these faults are either found by comparing the expected behavior in
the formal model with the actual behavior of the SUT, or faults that were
found based on general assumptions regarding resource utilization. The
formal model does not give any information regarding resource utilization.
Nevertheless it was assumed that running a test suite should only affect
resource utilization temporarily such that allocated resources, that could
harm long-term usage, were always returned. After correction of the faults
with bug fixes, the number of different bug fixes exposed when running
the test suites was noted. In total we found it necessary to patch the SUT

204

Figure 8.1. Number of test cases exposing each bug fix when running the
All-Pathsorg test suite with random abstract test case selection. The y-axis
shows the number of different bug fixes exposed by the same number of test
cases, and the x-axis shows the number of test cases exposing a bug fix.

with 102 bug fixes to make it compliant with the A-MLC Erlang/Efsm
specification. None of the test suites found all of these bug fixes. The
faults in the implementation varied in how hard they were to detect.

Figure 8.1 shows how many times each bug fix was exposed when ex-
ecuting the All-Pathsorg test suite. It can be noted that 9 bug fixes are
only exposed by a single test case. These represent faults than can be
assumed to be hard to detect and are therefore only detected by a few
of the test suites in the evaluation. On the other hand, a majority of the
bug fixes are exposed by more than 1000 test cases. The most common
bug fix was exposed by 55446 test cases.

We then compared test suites by relating the fraction of the exposed bug
fixes found with the size of the test suite measured in number of test cases.
Figure 8.2 summarizes the results for the coverage based test suites. With
respect to the rather few coverage based test suites and the difference
among them it can be noted that choosing the original or normalized
base model had an effect of the outcome, although limited. Test suites
selected from the original base model in general perform better than the
normalized base model. This, despite both representing the same state
space. This can be understood by considering how the chosen coverage
criteria interact with the “coding style” used. In the normalized base
model the number of edges has been reduced which causes the generated
symbolic test suites to become smaller. Our results indicate that this also
reduces the quality of the generated test suites. An explanation can be
that with smaller size of the symbolic test suite there are more possible
ways to instantiate each symbolic test case. Another possible explanation

205

can be that the logical structure of the specification is of importance for
which test cases are selected, but the normalized base model blurs this
structure.

Random abstract test case selection (Rndsym) perform better than bi-
ased (Biased) regardless of base model. This was as expected, but the
differences were quite minimal though. Therefore, we did not investigate
further possible improvements, see Section 11.9. It can be noted that
the influence the abstract test case selection technique has, also depends
on the amount of details included in the model. A more detailed base
model implies a closer correspondence with generated test suites and im-
plementation, but also a larger state space. On the other hand, a more
abstract base model increase the importance of the abstract test case se-
lection technique used. The specification used in the evaluation can be
considered to be rather detailed and close to the implementation. Thus,
the test suite generation on the base models was expected to be more
important than the abstract test case selection techniques.

The Man test suite did expose relatively few bug fixes. Most test
cases included in the manual test suites were test cases with presence
data successfully requested and responded back to the user. Thus, it
can be concluded that test cases with failing requests (because of bad
configuration data) and responses with bad or missing presence data only
exercise a relatively small part of the source code. The manual test suite
Man also exposed rather few bug fixes (30%) which can be explained by
the fact that these test cases had been previously executed.

Next we ran random test suites using test case weights (Rndtcw) and
event weights (Rndew and Rndsew) where Rndsew are test suites based on
the simpler event weights requiring no knowledge on which computation
steps the current state in the execution enable, see Section 7.2.2.

As can be seen in Figure 8.3 the coverage-based test suites, with the
exception of All-Locs, performed rather well. Of the coverage-based test
suites, the All-Edges test suite stands out by a comparatively good re-
lationship between exposed faults and test suite size. We note that the
random test suite using a uniform distribution over test cases (using test
case weights) performs clearly worse than all other test suites for test
suites larger than a few hundred test cases; this is is to be expected since
its bias will leave some parts of the model unexplored. There was no
clear difference in fault-detection capability between coverage-based and
random test suites of similar size. It should then be remembered that
the random test suites base the selection of next input on information
provided by the A-MLC specification. As the size of test suites increase,
the law of decreasing marginal utility sets in; larger test suites only give a
small improvement in the number of exposed bug fixes. It should also be
noted that both types of random test suites detected faults not detected
by the manual or any of the coverage based test suites.

206

All-Locs

Def-Use
All-Edges

All-Paths

Manlim

Man

Figure 8.2. Relative number of different bug fixes exposed when running the
coverage based test suites for both the original and normalized base model. For
reference, the manual test suites are additionally included. The x-axis shows
the number of test cases executed, and the y-axis shows the percentage of bug
fixes (of all 102) that were exposed.

All-Locsorg

Def-UseorgAll-Edgesorg All-Pathsorg

Figure 8.3. Relative number of different bug fixes exposed when running the
coverage based test suites with the original base model and random abstract
test case selection, random test suites generated using test case weights, and
two different random test suites generated using event weights. The x-axis
shows the number of test cases executed, and the y-axis shows the percentage
of bug fixes (of all 102) that were exposed.

207

8.3.1 Characteristics of a selection of test suites
The tested version of A-MLC included some functionality only tested to
a limited extent. A hypothesis was therefore that some parts of the SUT
contained more faults than other parts, and because of this, certain test
cases would expose significantly more bug fixes than others. Thus, a test
suite with many test cases exposing many bug fixes could be suspected
to better cover the less tested part of the SUT. Further, a test suite with
better coverage of the less tested part could be suspected to expose more
different bug fixes in total. Figure 8.4 shows the result of measuring

Figure 8.4. Number of different bug fixes exposed by test cases when running
the All-Pathsorg test suite with random abstract test case selection, the ran-
dom Rndew

100k test suite, and the random Rndtcw
100k test suite. The x-axis shows

the number of bug fixes exposed by a single test case, and the y-axis shows
the percentage of test cases in the test suite that expose the same number of
different bug fixes.

the number of different bug fixes exposed by each test case part of the
All-Pathsorg, Rndtcw

100k, and Rndew
100k test suites.

It can be noted that the Rndtcw
100k test suite has the highest concentration

of test cases exposing many bug fixes. Still, in Figure 8.3 it does not
perform very well with respect to exposed bug fixes. The reason is most
likely that those faults detected on test cases with a high concentration
of bug fixes are easy to detect, and found by many different test cases.

Investigating further, as can be seen in Figure 8.5, the length of test
cases in the two random suites and All-Pathsorg test suite show very
different characteristics. While the random test suites using event weights
have a large number of short test cases, the random test suite using test
case weights have a large number of long test cases, The All-Pathsorg test
suite is more balanced although longer test cases are more frequent than

208

Figure 8.5. Length of test cases (number of edges) in the All-Pathsorg test
suite with random abstract test case selection, the random Rndew

100k test suite,
and the random Rndtcw

100k test suite. The x-axis shows the length of the test
case, and the y-axis shows the fraction of test cases in the test suite with that
length in the test suite.

shorter. The Rndew
100k test suite, with many shorter test cases, has a high

concentration of test cases requiring few bug fixes.
Examining the source code of the SUT it also seems a large portion of

the source code can be covered by only using short test cases, as longer
test cases use the same function over and over again. Thus, for this
particular SUT it seems more efficient to run many different shorter test
cases.

Continuing our investigation, we measured when, during the execution
of a test suite, new bug fixes were exposed. With the characteristics of the
SUT that most bug fixes are exposed by short test cases it seems natural
that the execution order is of importance. In the upper Figure 8.6 all
test suites where executed in the same order as they were created. In the
lower Figure 8.6 the test suites were sorted before execution such that the
shortest test cases were executed first. As can bee seen, the results were
quite different. It is particularly striking that the compared test suites
behaves so differently. The All-Pathsorg test suites find the faults much
faster compared to the event weighted randomized test suite (Rndew

100k).
Further, both the All-Pathsorg and Random Rndtcw

100k test suite expose no
more new bug fix after less than 7000 test cases. On the other hand,
the Random Rndew

100k test suite only expose very few bug fixes before the
first 53000 test cases. Reason for this is likely that there exists faults
in many different parts of the SUT. The All-Pathsorg ensure we visit all
these parts, and by ordering test cases with shortest first we also visit

209

these parts more randomly than when not sorted. The fact that Rndew
100k

in total still exposes many different bug fixes can probably be explained
by that there exists some “hard to find” short test cases.

8.4 Code coverage
Code coverage of the SUT was made using the Cover tool on a few
Erlang modules. These were selected because the functionality described
in the A-MLC Erlang/Efsm was mainly implemented by these modules.
The code coverage tool measured covered lines in the complete module,
including e.g., test functions and debugging utilities.

The reported coverage was rather low at the first measurement, despite
the large number of test cases executed. To get a better understanding
of the effectiveness of the test suites we then examined the relevant part
of the source code “by hand”. We distinguished the following 7 reasons
for why source code may not be covered:

1. Unreachable source code: Source code that cannot be executed, re-
gardless of input. Some of the unreachable source code were also
confirmed by the Dialyzer tool.

2. Unexpected exception handling: Source code to handle exceptions
originating from some unexpected fault. Handling of such potential
errors (aka “defensive programming”) cannot be executed unless
there is some unexpected fault in the source code. Thus, it is outside
the scope of Erlang/Efsm specification. As we assume the SUT to
operate according to the specification (or all faults to be removed by
bug fixes) such source code cannot be executed by our test suites.

3. Diagnostic functions: Functions not used in normal traffic cases.
Typically these are functions used for debugging, test, and operation
and maintenance.

4. Implemented behavior not modeled: These are implemented features
present in the SUT that has been excluded from the formal model,
but still may be used during normal operation. For example, a
problem with some configuration data missing for a subscriber is
always treated in the same way. It is therefore considered an isolated
error case on which testing can be made by some other means. Thus,
it can be noted that by extending the base model even further it
would be possible to generate test suites with improved coverage.

5. Projection property: Source code that cannot be executed because
of a projection property exclude functionality in the generated test
suite.

6. Unused abstract mapping: Source code included by symbolic test
cases part of test suite. But, we do not instantiate the symbolic test

210

As created:

Shortest first:

Figure 8.6. Accumulated bug fix usage when executing the test suites as created
and sorted such that the shortest test cases are executed first. Results shown
for the All-Pathsorg test suite with random abstract test case selection, and
two random test suites with 100,000 test cases using event weights (Rndew

100k)
and test case weights (Rndtcw

100k). The x-axis shows the number of test cases
executed, and the y-axis shows the accumulated percentage of bug fixes that
were exposed.

211

cases with all possible abstract values. Thus there is a possibility
we pick abstract values in such a way source code is not executed.

7. Unused concrete mapping: Source code not excluded by abstract test
cases part of test suite. But, each abstract parameter is mapped to
a concrete value. Thus there is a possibility we pick concrete values
in such a way source code is not executed.

We concluded that reasons 1 to 5 are reasons outside the scope of the
test suites generated and excluded all those lines in the results reported
on source code coverage. Examining the output of Cover after executing
the test suite with the reported highest coverage (original base model,
All-Pathsorg and Rndsym) we got the results in Table 8.6 for three main
Erlang modules in the SUT.

Coverage Mod1 Mod2 Mod3

Unreachable source code 13.19% - -
Unexpected exception handling 2.63% - -
Diagnostic functions 4.40% - -
Implemented behavior not modeled 20.22% 42.86% 33.98%
Projection property 5.38% 5.53% 11.13%
Not part of A-MLC Erlang/Efsm
model 45.71% 48.39% 45.12%
Unused abstract mapping 1.76% - 4.30%
Unused concrete mapping 3.30% - 0.39%
Part of A-MLC Erlang/Efsm
model, but not covered 5.06% - 4.69%

Table 8.6. Classification of executable statements reported not covered by the
tool Cover. The percentages shown are the part of the complete module not
covered because of the given reason.

In Figure 8.7 and Figure 8.8, the results on source code coverage are
summarized. These results only include source code not covered because
of Unused abstract mapping (reason 6) and Unused concrete mapping
(reason 7).

Comparing the results for the different test suites, the manually created
test suites have a relatively good coverage of the source code. This is as
expected as the test cases part of this test suite has been selected with
coverage of the main features in mind.

For comparison, in Figure 8.8, we also show the results running test
suites based on the simpler event weights requiring no knowledge on which
computation steps the current state in the execution enable (Random
SEW), see Section 7.2.2. Figure 8.9 shows the relation between exposed

212

All-Locs

Def-UseAll-Edges
All-Paths

Manlim

Man

Figure 8.7. Relative source code coverage when running coverage based test
suites for both the original and normalized base model. For reference, the
manual test suites are additionally included. The x-axis shows the number of
test cases executed and the y-axis shows the measured relative coverage.

All-Locsorg

Def-Useorg
All-Edgesorg

All-Pathsorg

Figure 8.8. Relative source code coverage when running the coverage based
test suites with the original base model and random abstract test case selection,
random test suites generated using test case weights, and two different random
test suites generated using event weights. The x-axis shows the measured
relative coverage and the y-axis shows the number of test cases executed.

213

bug fixes and source code coverage. As expected, there exists a correlation
such that test suites with large source code coverage also expose more bug
fixes. In general it is also the larger test suites that perform best, although
both Def-Useorg and All-Edgesorg perform comparatively well with rather
limited sizes of the test suites.

All-Locsorg

Def-Useorg
All-Edgesorg

All-Pathsorg

Figure 8.9. Relation between source code coverage and number of exposed bug
fixes. with the original base model. The x-axis shows the measured relative
coverage and the y-axis shows the percentage of exposed bug fixes.

It can be noted that the chosen base model did not affect the outcome
in a significant matter. Nor did the coverage based abstract test case
selection technique have any significant importance. Test suites created
completely randomly in general performed worse than those selected by
some criterion. As could be expected the Man test suite had a relatively
high source code coverage in relation to the limited number of test cases.

8.5 Test suite size and execution times
Normally, in an industrial environment only a strictly limited amount of
time can be spent on testing. The amount of time spent generating and
concurrently executing the coverage based test suites once is shown in Fig-
ure 8.10. Generating All-Pathsorg is rather efficient, but then we are not
using an observer. However, in a test suite such as Def-Useorg, requiring
a more complicated observer, the overhead in the current implementation
of Erly Marsh is rather significant.

The two random test suites had the same number of test cases, but the
execution times differ quite significantly because of different lengths of
the involved test cases.

The main reason for using selection techniques to generate (smaller)
test suites with decent performance is to save test suite execution time.

214

Additionally, if it is possible to run test cases concurrently this would
normally be faster than running them sequentially. This is especially
true for test cases including timers that need to timeout before the test
case can continue. In test suites for A-MLC this is quite common. Fig-
ure 8.11 shows the difference in execution time between executing test
suites concurrently and sequentially on A-MLC.

28:33:38

Figure 8.11. Comparing executing test suites concurrently and sequentially.

A deployed A-MLC will have many concurrent requests running. Thus,
in this sense, by running test cases concurrently the SUT operates in a
more realistic environment. It also makes it possible to generate higher
loads on the SUT, with the additional benefit that potential performance
bottle-necks can be detected. The higher load may also cause the SUT to

215

Figure 8.10. Comparison in time generating and concurrently executing the
All-Edgesorg, Def-Useorg, All-Pathsorg, Rndtcw

100k, and Rndew
100k test suites.

handle test cases incorrectly, that would not be present with some lower
load.

8.6 Summary of main findings
Let us here summarize main observations and findings from the results of
the case study.

• The test suite All-Edgesorg had a comparatively good relationship
between number of exposed faults and test suite size; a stronger cov-
erage criterion increases the fault-detection capability marginally.

• The choice of base model, i.e., the structure of the specification of
the SUT, had an effect of the outcome, although limited.

• We found no clear difference in power between coverage-based test
suites and the randomly generated test suites with event weights of
the same size, as measured by the number of detected faults and
source code coverage.

• Some of the bug fixes hardest to find were only be exposed by a
single symbolic test case with certain instantiations of the sym-
bolic parameters. Thus, as it turned out, the randomly generated
test suites had an advantage in that multiple test cases could be
selected from a single symbolic test case. It may therefore be pos-
sibley to improve the results for the coverage-based test suites, by
an improved abstract test case selection, or by randomly selecting
several test cases from each symbolic test case.

• As the size of test suites increase, the differences between different
test suites decreases.

• Traditional manual testing often does not check that test outputs
correspond completely to requirements. Formalizing requirements
by a model, and using it for automated testing, can reveal deficien-
cies of earlier, less thorough, testing. We note that this observation
need not generalize to other contexts.

• Generating a random test suite can be expensive if there exist many
complicated constraints on parameters that decide whether a pa-
rameter combination is included in the model or not. In such cases
many random selections of parameter values will be unfeasible test
cases, not covered by the model. In our case, first randomly assign-
ing values to all parameters, and then validating that the selected
parameter value combination is feasible, turned out to be very ex-
pensive. Reason was that only 1 of approximately randomly chosen
8000 combinations of the symbolic parameter values corresponded
to a valid test case. To solve this, we based all our random test
suites on an existing coverage based test suite All-Pathsorg, and
used weights to generate the randomization. It can further be noted

216

that also combinatorial testing techniques (see Section 1.5.3) suffer
from similar problems.

• During the evaluation, we found that tool support is essential for
effective test suite generation, test execution, and model validation.
The observation that at least one severe failure was dependent on the
size of the test suite indicates that testing functional requirements
by model-based testing should be complemented with other types
of testing for finding resource and other non-functional errors, such
as memory leaks.

8.6.1 Experiences from the Case Study
In general, we found the new specification language well suited for speci-
fication of the expected behavior of the SUT. As the formal model grew
larger, we soon had problems with state space explosion. This called for
various solutions on how to reduce the state space for this particular case
study (by the use of abstractions, projections, symbolic execution, effi-
cient representations of conditions etc.). Still, even with a limited state
space, the number of possible test cases was found to be to large. Reduc-
ing the number of test cases to be part of such a limited test suite, called
for a need to generate several different smaller test suites that could be
compared. Further, characteristics was unknown before generating and
executing these test suites, but was expected to depend on both formal
specification and SUT. This also motivates the need for flexible test case
selection.

As with any model-based testing approach, creating a high quality for-
mal specification is a major burden. Our approach, creating the A-MLC
Erlang/Efsm formal specification by hand, was no exception and was by
far the most time consuming part of the test suite generation. Still, this
(high) cost needs to be compared with the cost of writing large test suites
by hand that are difficult to maintain with changing requirements. Pos-
sibly, a good approach is to start with a small specification and let it
incrementally grow. Whenever it grow large enough so that all test cases
can not be executed - use some selection technique.

An initial problem implementing the model in Erly Marsh was how
to represent the path condition and symbolic trace for each test case
efficiently. NDD:s were chosen, after a first (naive) approach to represent
them as symbolic Erlang terms had failed because of the size of the A-
MLC Erlang/Efsm. While performing the case study we found faults
in the implementation, specification and test tool. For each fault found,
test suites were required to be executed again, after a bug fix had been
implemented. For faults found in the specification and Erly Marsh, we
additionally had to regenerate test suites again. Thus it was essential to

217

be able to have tool support for automatically generating, executing and
validating test suites. We noted that execution times of larger test suites
may become a problem. A possibility to execute tests cases concurrently
was therefore essential for the test suite to hold time constraints, even
if this meant validation had to be relaxed. Concurrent execution also
put an additional burden on the test environment that must be able to
distinguish different test cases.

From the experiences we got while performing the case study we also
identified additional problems that had to be considered by Erly Marsh.

• Necessary to also be able to specify and execute manually generated
test suites, to ensure inclusion of particularly important test cases.
We solved this by implementing support for a user friendly format
for specification of individual test cases, part of the formal model of
the SUT.

• Large test suites must be supported of all involved parts of the tool,
including test suite generation, execution and validation. We solved
this by implementing a tool where test suite generation, execution
and validation all are integrated parts.

• Presentation of results after executing a generated test suite is es-
sential. We solved this by implementing tool support for clustering
detected faults considered similar, and possibility to combine all rel-
evant data for a test case in a single view. For example, from the
formal model: trace and parameter values, and from the SUT and
test environment: executed trace and log extracts.

Since our evaluation was limited to a single SUT one must be careful
with empirical conclusions from the measured results. Nevertheless, our
preliminary results were achieved for the type of larger industrial systems
that we consider as the target of our research. We therefore have reason
to believe that many of our conclusions results will generalize to other
similar industrial systems.

218

9. Other tools for testing Erlang programs

This chapter presents a small study investigating a few existing tools for
testing of Erlang programs. These tools have different focus (than Erly
Marsh) on how and what to test, thus a fair comparison is hard. One
might even argue that they rather complement each other. However, the
main purpose for this study was to get a better understanding of the
relevance of the results in the previous chapters.

The chapter is organized as follows. Section 9.1 discusses random based
testing tools such as QuickCheck and Proper, and Section 9.2 shows the
result of using the Dialyzer on A-MLC.

9.1 QuickCheck and other random based testing tools
There exists several tools for Erlang utilizing methods to randomly se-
lect test cases, execute those selected, and validate against “properties”.
The commercial QuickCheck tool [Arts 06, Hughes 10], has lately been
followed by other similar open source tools such as Triq [Thorup 10] and
Proper [Arvaniti 11].

In property based testing input to a test function is generated from
a specification of the arguments and output validated against a specifi-
cation (property) of the desired return values. This can be extended to
also include systems that have many states. A property model of such
a system, expressed as a state machine, can be specified by giving: (1)
the initial state, (2) input events (commands) with generators for how
data values to input events should be randomly generated, and (3) a
set of possible edges, specified by call-back functions on how an input
event changes state (next_state/3), and (optionally) for conditional gen-
eration pre- (precondition/2) and post-condition (postcondition/3). A
property model over A-MLC would need to express all the details on state
transitions, guards to input events etc. as the Erlang/Efsm specification
in Section 7.1.1 (ignoring abstraction level). We would also end up in a
similar problem as reported on in Section 8.6 with a very inefficient ab-
stract test case selection as input data is generated before the precondition
check.

Resulting test cases symbolically represents function calls and variable
bindings (but not parameters to input events) to allow for “shrinking”
long test cases to smaller. Optionally it is also possible to specify weights

219

on edges, where a higher weight implies larger likelihood for an edge to
be included in a test case.

The specifications of properties and generators are written directly in
Erlang making it possible to operate directly on implementation and use
existing type declarations as generators. Also, abstraction/concretiza-
tion to minimize state space is optional. Thereby the scope of generated
test suites normally becomes a little bit different from Erly Marsh that
assumes an abstract specfication to work efficiently, test cases are sym-
bolically executed to allow for control of test suite generation, and use a
constraint solver to find values on depending parameters.

By creating a random test suite with event weights in Erlang/Efsm,
see Section 7.2.2, we tried to mimic the creation of a random test suite
in e.g., Proper. In both cases, similar models of the expected behavior of
the SUT are required. Thus, the effort to create these can be expected to
be similar. Although Erlang/Efsm is a version of Erlang dedicated for
the purpose of creating such specifications.

In Proper it is only possible to control test suite generation by giving
edges different weights. Thus, for what can be expressed in Erlang/Efsm,
the possible test suites created with Proper is a subset of the test suites
possible to create with Erly Marsh. For this reason, we have not created
any test suites with Proper, or any of the other existing property based
testig tools in Erlang. A direct comparison with the results using Erly
Marsh in Section 8.1 was therefore not possible.

Tools like Proper and QuickCheck have had some success in the Er-
lang community. For example, [Boberg 08] report on results from a
case study using QuickCheck. Using this tool, test suites were gener-
ated randomly given an abstract state machine and an adaption layer. A
conclusion made is that starting model-based testing from early develop-
ment, significantly increases the number of faults detected during system
testing.

9.2 Dialyzer static analysis tool
The Dialyzer tool [Lindahl 06] was originally developed at Uppsala Uni-
versity, Sweden and operates directly on Erlang source code (or a debug-
compiled object file) without the need to create a formal model of the sys-
tem or any annotations of the source code. Dialyzer uses static analysis
techniques, i.e., analysis is performed without actually executing pro-
grams, to detect “discrepancies”. Examples of discrepancies detected
include type errors and unreachable code such that Dialyzer will give
warnings if it detects e.g., functions never called and non-matching pat-
terns.

220

As a model of the system is not required it is much easier to start
using Dialyzer than e.g., Erly Marsh. Dialyzer had not been previously
used on the relevant parts of the SUT evaluated in Section 7. It was
therefore possible to study the ability of Dialyzer to reveal faults not
found with manual testing and compare the results with faults found
with Erly Marsh.

In order to study the ability of Dialyzer to find faults we used the
same development release of A-MLC as in Section 7.1. We used version
2.5 of Dialyzer and studied the output after analyzing the same Erlang
modules on which we we measured code coverage in Section 8.4, before
any of these modules was updated with bug fixes. All necessary modules
for Dialyzer to make a complete analysis were included. However, in
order to utilize a compatible version of the compiler, for version 2.5 of
Dialyzer, we also needed to modify the source code of the SUT slighly.
One of these changes was related to improvements in the built-in static
analysis performed by the compiler, leading to detection of one fault by
the compiler.

In total Dialyzer needed 21 seconds for a complete analysis. Before any
bug fixes 27 warnings were reported, and after all bug fixes were applied
23 warnings remained. The difference on 4 warnings corresponded to 4
faults, exposed as 4 different bug fixes in the case study in Section 7. All of
the remaining warnings detected by Dialyzer were related to unreachable
source code. Comparing with the categorization in Section 8.4 Dialyzer
found most of the source code reported as unreachable source code in
Table 8.6. It can be noted the unreachable source code not reported by
Dialyzer was of a type requiring manual inspection such as exported but
unused interfaces and test functions.

The results can be compared e.g., with the 96 bug fixes detected by
All-Pathsorg. It can also be noted that these 1+4 bug fixes where exposed
by all test suites generated with coverage based test case selection except
those utilizing the coverage criteria All target locations. A conclusion is
that static analysis tools, such as Dialyzer, are best suited to find faults
caused by type and pattern matching problems. The relatively few faults
found with the Dialyzer tool indicate that the SUT only had few such
faults.

With both Erly Marsh and Dialyzer it is sometimes difficult to un-
derstand what causes the fault and how to fix the bug. The reasons differ
though; Erly Marsh gives a complete failing test case, but no detailed
info on where to find the fault in the source code. Dialyzer gives some
detailed information on wich function in the source code that fails, but
it may be a problem to understand the exact reason why the function
fails as the test case is not given. Thus it is hard to decide what test
cases were affected by the failure, and the only feedback after a bug has
been fixed is that it will then pass the Dialyzer test. We can not test

221

that a bugfix also makes the system behave in a desired way and that the
problem was solved in the correct way.

222

10. Related work

This chapter gives an overview of some related work and is organized as
follows. Section 10.1 discuss some relevant generation techniques, tools,
and specification languages, Section 10.2 techniques for specifying cover-
age criteria, and Section 10.3 case studies.

10.1 Test suite generation techniques
From a formal specification of a SUT and a specification of a coverage
criterion it is possible to automatically generate a test suite. There ex-
ists a wide variety of testing tools, both in academia and in industry,
supporting model-based testing and test suite generation. The capabil-
ities of these approaches differ because of different priorities concerning
usability, expressiveness, and efficiency of test suite generation. In gen-
eral they are therefore hard to compare, although there exist comparisons,
e.g., [Goga 01, Sinha 06, Utting 12, Shafique 15]. Here we will only briefly
outline test suite generation tools and specification languages supporting
similar technologies as presented in this thesis, i.e., black-box, coverage-
based and model-based test suite generation.

For a user of model-based testing, the most effort-requiring, labor-
intensive task is the process of creating the formal model. There are many
aspects of this, e.g., a specification language should be easy to use and
able to express desired properties in desired way. Basic components of a
specification language includes e.g., constructs for specifying components
such as types and functions, structuring mechanisms for building large
specifications, and a way of relating specifications to implementations. In
each case there are various alternatives to choose from, but no single best
combination because this depends on e.g., purpose of test specification
and type of SUT. Existing specification languages used for coverage-based
model-based test suite generation includes e.g., Lotos [Bolognesi 89], SDL
[ITU-T 99b] and UML Statecharts [Gnesi 02, OMG 03]. In Section 2.3 we
suggested the use of Erlang/Efsm for the specification of state machines.
In contrast to the above list of specification languages, Erlang/Efsm has
it roots in a functional language with an ability to express functional
requirements in a concise way.

One argument introducing yet another specification language is our be-
lief that all parties involved in the software development process benefit

223

using a common language. Similar arguing can also be found in mo-
tivations using the model-based testing tool Spec Explorer [Veanes 08]
and the open source variant NModel [Jacky 08] that use the C# syn-
tax (or AsmL) as specification language for testing implementations in
e.g., C#. For Java implementations also the Java Modeling Language
(JML) [Leavens 99] allows for coverage-based test suite generation of Java
implementations by the tool Korat [Boyapati 02]. Although this approach
is different in requiring augmenting Java methods in the implementation
with pre-conditions and post-conditions, i.e., white-box testing.

A popular approach in model-based testing is to use a model checker
to find a counterexample which can be be transformed into a test case.
State space is searched from an initial state by forward exploration until
a violation of a property is found. The counterexample (i.e., test case) is
simply the explored path back to the initial state. See e.g., [Fraser 09] for
an overview on test suite generation with model checkers. In the following
we distinguish between Explicit model checking, requiring an explicitly
represented state space, and Symbolic model checking [Burch 92, Lin 96]
requires sets of states to be handled symbolically.

In Explicit model checking due to the state space being explicit, finite-
state models are assumed. An effect of this is that data variables in
the model must often be assigned specific values in order to generate
test cases. An early example is Autolink [Koch 98] that was used (part
of Tau/Telelogic, now Rational Tau [IBM 11]) for generating test suites
from SDL and UML specifications, Other early examples are (from Lo-
tos or SDL specifications) the TGV tool set [Jard 05] and (from Lotos,
Promela or FSP specifications) the TorX tool set [Vries 00, Tretmans 02],
later rewritten into JTorX [Belinfante 10]. Both TGV and TorX are based
on IOLTS (Input Output Labeled Transition System) and use the ioco
conformance relation [Tretmans 96] which characterizes the relation be-
tween the formal model and the SUT. Test suites are generated by first
creating a synchronous product between a test purpose and a specifica-
tion. The resulting EFSM then represents a set of test cases satisfying
the test purpose, a set of test cases failing according to the ioco relation,
and possibly a set of correct test cases but only partially covered by the
test purpose.
Promela (Process Meta Language) [Holzmann 03] is a language orig-

inally developed as the input language to the tool SPIN. The SPIN tool
is a model checker that supports verification of properties expressed in
Linear Temporal Logic (LTL), but was also early used in model-based
testing, e.g., on-the-fly testing in [Fernandez 96]. More lately it has also
been used in e.g., [D’Souza 03] for checking consistency between a SDL
specification and test purposes expressed as MSC Specifications.

Symbolic model checking is by definition not limited to finite state
spaces. To represent the sets of states, and function relations on these

224

states, (typically) BDDs are used. Thus, in practice the selected tech-
nique to represent the sets of states (e.g., BDDs) enforce a finite state
space.

There exists several approaches using the model checker SMV for ex-
ample, [Gargantini 01] (from ASM specifications) and [Rayadurgam 01]
(from RSML specifications) as well as its derivative NuSMV [Kadono 09]
(from Statechart specifications) and [George 12] (from RSML specifica-
tions). In [Friedman 02] the MurΦ model checker [Ip 99] is used to gener-
ate test suites, using coverage criteria specified in terms of projections in
the GOTCHA tool. The STG tool [Clarke 02, Frantzen 05] use an exten-
sion of IOLTS, known as IOSTS, supporting guards and state variables.
Based on the theory behind the TGV and TorX tools, but with symbolic
transitions on state graphs, test suites are generated by first creating a
synchronous product between a test purpose and a specification. The re-
sulting IOSTS then contains a symbolic representation of the set of test
cases satisfying the test purpose. Also the Agatha tool [Rapin 03] use a
similar extension of IOLTS, known as EIOLTS (Extended IOLTS).

More recent tools include the cover tool [Hessel 07, Hessel 08] using
observer automata on timed automata to specify coverage criteria. Test
suites are generated using Uppaal [Larsen 97] (from Timed Automata
specifications), an explicit model checker with symbolic handling of clocks.
Commercially available tools include e.g., Conformiq Designer [Huima 07,
Sving 10] that generate test suites using symbolic execution. Several
specification languages are supported, e.g., UML Statecharts, and several
different coverage criteria can be used. Resulting test suites can be rep-
resented in e.g., TTCN-3 [TTC 03], where a test suite is formulated as a
(parameterized) tree when a SUT respond in different ways to the same
stimuli.

Theorem provers use inference rules and axioms to automatically (if
possible) derive proofs of properties. Theorem provers are For model-
based testing approaches the SUT is modeled by a set of logical expres-
sions (predicates) specifying the SUT’s behavior For example, [Brucker 13]
use the higher-order logic theorem prover system Isabelle to encode state
machines and test derivation strategies. Proofs of Similar to Symbolic
model checking tools, theorem provers are not limited to finite state
spaces, as long as the derived proofs can use inference rules with symbolic
parameters.

10.2 Coverage criteria and Test purposes
The idea to be able to specify (almost) arbitrary coverage criteria using a
dedicated formalism is not new. The expressiveness in these formalisms
vary: some formalisms target more specific test purposes, others allow

225

specification of more generic coverage criteria, see Section 1.5.3. The
distinction between test purposes and coverage criteria is not sharp. If
we regard a test purpose as a specific part of functionality to be covered
by a test case, then a coverage criterion can be regarded as a (sometimes
huge) collection of test purposes (coverage items in the terminology of
Section 3.1).

There are several approaches to specifying coverage criteria in terms of
individual test purposes. In [Mandrioli 95] a linear time temporal logic,
TRIO, is used for specification of a model of the SUT and coverage cri-
teria. In [Gargantini 03] several coverage criteria is specified using so-
called “test predicates”, each of which specifies a particular testing goal,
e.g., whether a particular statement has been executed. They there-
after use the SPIN model checker to search for an execution which meets
this testing goal. In a slightly earlier work [Gargantini 01] the branching
time temporal logic, CTL, is used for specification of coverage criteria,
something they share with [Rayadurgam 01]. Also [Hong 02, Hong 03]
describe how flow-based coverage criteria can be expressed in CTL. A
particular coverage item is expressed in CTL, and a model checker gener-
ates a trace which covers the coverage item. In particular they also give
several examples of how more complicated data-flow coverage criteria, as
Def-Use, can be accomplished.

In several approaches, automata are used to specify individual test pur-
poses. In [Jard 05], and also [Tretmans 02], finite automata is used, with
accepting and rejecting states to express test purposes. A problem with
pure temporal logic or finite automata is that parameterized scenarios
are hard to describe. In [Rusu 00] this is addressed by using (not nec-
essarily finite-state) symbolic automata to represent test purposes. This
allows test purposes to consider data parameters in the generation of test
cases. Of course, the test case generation must now deal with symbolic
expressions over the data parameters. However, they do not support the
generation of a set of test cases, indexed by some parameters, as in our
use of parameterized observers.

Our use of observer automata for generation of test suites are also re-
lated to the work of [Friedman 02]. In their approach, a coverage criterion
is specified by means of a projection of the state space of an EFSM onto
a subset of its variables. For each combination of values of these vari-
ables, a corresponding test suite should contain a test case which visits
that combination. The tool used for creating test suites, GOTCHA, is
capable of handling projections onto any of the syntactical components
which are part of an EFSM.

The main novelty of our approach lies in the ability to specify test suites
by means of coverage criteria that are parameterized on arbitrary syn-
tactical components. For example, the possibility to express a coverage
criterion, such as All-Locs, by means of quantification over the meta-

226

variable “locations” is not present in other approaches. Instead, coverage
of each location has to be expressed explicitly, e.g., by means of a sep-
arate formula for each location. This means that test suite generation
must employ repeated searches of the state space.

The idea of an observing automata watching the behavior of a state
graph, can also be found to be used for other purposes than testing. This
idea goes back to the “automata-theoretic approach” to model checking
[Vardi 86]. Uses of this idea include [Alfaro 01], who observe “compat-
ible” sequences events on an interface between two components to find
environments on which they are compatible. Automata are also often
used to specify temporal properties. For example, [Beyer 04, Beyer 13]
monitors execution of C programs in the BLAST tool to verify temporal
properties of traces. Later BLAST has also been used for test suite gen-
eration [Beyer 13] (white-box testing directly on the implementation) by
the use of a model checker in a similar fashion as described in Section 10.1.

In Section 8.3 we noted that chosing the original or normalized base
model had an effect of the outcome. These results are also supported
by [Heimdahl 04] that argue common coverage criteria are inadequate
because they do not consider the logic of the model. I.e., knowledge of
the model required to use a proper search strategy and avoid testing parts
of the specification most easily accessible.

We did not try to further compare the coverage criteria and test suites
against each other as it would have required some normalization of the
results. It can be noted approaches exists in the literature using a relia-
bility growth model, e.g., [Malaiya 02], where the reliability of the SUT
is measured in e.g., number of failures detected. Over time, during de-
velopment, the number of failures detected can be expected to decrease
and reliability increase. Comparing how reliability increase with different
testing strategies (e.g., coverage criteria) over time then make it possible
compare them.

Further comparisons between different coverage criteria is needed in
order to better understand when to use a particular coverage criteria and
how to generate it most effectively. As also stated in [Bertolino 07], the
existing number of coverage criteria is so large that it is a real challenge
to understand how to make a justified choice, or understand how several
coverage criteria can be combined most efficiently. The decision on how
test suites should be generated must consider not only the functional
requirements, but also the time to generate and execute test suites.

10.3 Case studies
There exists many case studies of model-based testing in the literature, see
Section 10.3, but to our knowledge none with a comparable size and scope

227

evaluating coverage based testing. The large amount of time spent on this
case study is also the main motivation on why only a single evaluation
was performed.

In the literature there exists many case studies on different types of
software testing. On model-based testing most of such case studies are
either not focused on evaluating coverage based testing, small, using non-
industrial development methods (e.g., open source), or on SUTs popu-
lated with generated faults e.g., [Fernandez 97, Bouquet 03, Tretmans 03,
Mäkinen 07, Santos-Neto 08]. Thus, they may not reveal the same results
as testing industrial size products with real faults. To our knowledge,
there exists no published results of industrial case studies with directly
comparable results. Here we will only briefly outline case studies found
most relevant in the literature.

Most closely related studies include [Heimdahl 04, George 05, Staats 12],
which differ in that faults are injected by mutation. In [Heimdahl 04]
coverage-based test suites are generated using a different technique than
in our tool. This results in an abundance of very short test cases, with
a modest ability to detect faults. They explain the poor fault detection
ability by observing that the structure of the system does not well match
the coverage criterion, and that criteria based on decision coverage may
be deficient if they to not force the test suite to exercise relevant data
flows. The findings by Heimdahl et al. contrast with the findings from our
case study, in which the coverage-based test suites perform comparatively
well. Contrasting with [Heimdahl 04], we note that our test generation
technique, using observers, does not have an excessive bias towards short
test cases, and that the data flow coverage criterion of Def-Useorg gives
excellent fault detection power. Poor performance of only coverage-based
test suites was again observed in [Staats 12]. Reading this, one possible
explanation is that their counterexample-based technique for test suite
generation creates some bias. It could be the case that our observer-
based technique avoids such bias, but deeper investigations are needed
before this can be confirmed.

In [Pretschner 05] model-based testing is compared with manual test-
ing in terms of quality and cost. Generated test suites were created by
randomly selecting test cases from a model of an automotive infotainment
system. The largest generated test suite included 1000 test cases. A find-
ing of the study was that the generated test suites found significantly
more requirements faults compared to manual testing while the number
of detected programming faults was approximately equal. Also, no cor-
relation between severity of errors and types of test cases were found.

Spec Explorer is a a popular Model-based testing tool by Microsoft
that is used in several case studies. As reported in [Grieskamp 11] Spec
Explorer is also used extensively internally at Microsoft. From the prelim-
inary results in this study 125 protocols with an investment of 50 person

228

years has resulted in a 42% productivity gain when compared to tradi-
tional (i.e., manual) testing. In another industrial case study [Sarma 10]
by Siemens Spec Explorer [Veanes 08] is compared with Qtronic [Huima 07].
A general conclusion is that these tools deserve to be considered in in-
dustrial projects. Nevertheless, a number of shortcomings are identified
in both tools including:

• Integration with different types of testing, e.g., performance testing
and unit testing (see also Section 1.1).

• More possibilities to optimize test suites e.g., by prioritization of
test test cases or design of better coverage criteria.

• Support of round-trip engineering, i.e., faults detected should be
easy to map to the corresponding specification (e.g., by highlighting
relevant part).

Five different case studies are reported in [Weißleder 10], with test
suites ranging from 10 to less than 1000 test cases. All these case studies
use a specification in UML and mutated implementations to compare 5
different coverage criteria. A conclusion is that a combination of coverage
criteria often performs best.

In [Weiglhofer 09] a mutation of the specification is used in two case
studies utilizing fault-based testing (see 1.5.3). In these case studies fault-
based testing is compared with random testing and testing based on hand-
crafted test purposes. A conclusion is that fault-based testing finds faults
not found by the other methods. However, unclear if the faults only found
by the fault-based testing could have been found as effectively with better
coverage criteria.

Out of the many existing case studies on testing, not utilizing an ab-
stract model of system to generate test suites from (i.e., not model-based
testing), we also like to mention two case studies. In [Janhunen 11] cov-
erage based testing is compared with random testing on declarative pro-
grams (the Answer set programming language Gringo). The results indi-
cate that random testing is quite ineffective for some benchmarks, while
coverage based techniques catch faults with a more consistent rate. How-
ever, even if coverage based testing gives a clear advantage over random
testing for some SUTs, for other SUTs one approach can not be said to
be better than the other.

As part of the European project EvoTest two larger industrial case
studies were performed [Vos 12]. Although these studies use a different
test methodology (Evolutionary Testing based on Artificial Intelligence),
i.e., not model-based testing, the results indicate that a computer assisted
effort spent on test suite generation pays off compared to manual and
random testing.

229

11. Conclusions

This chapter concludes the thesis by summarizing and discussing the re-
sults presented in this thesis. It is organized as follows. Section 11.1 gives
a summary of the achivements of the thesis. In the following sections we
discuss the research contributions in more depth. Section 11.2 on our
Erlang based modeling languages, Section 11.3 on the flexible observers,
Section 11.4 on the symbolic test suite generation, Section 11.5 on how we
concretize abstract test cases in the case study, Section 11.6 on our tool
for support of model-based testing, and Section 11.7 evaluate different
test suite generation strategies. In Section 11.8 we further discusses the
work in this thesis, and Section 11.9 presents some ideas for future work.

11.1 Summary
This thesis is about model-based protocol testing of an implementation
of a SUT in an Erlang environment. For specification of models we have
introduced a specification language, Erlang/Efsm, based on the func-
tional language Erlang in Chapter 2. We have based Erlang/Efsm on
Erlang and combined this syntax and semantics with explicit notation
for expressing abstract state machines. Examples of additions to Erlang
include additional constructs to handle locations and global state vari-
ables. The semantics for Erlang/Efsm was given as a big-step structural
operational semantics in the form of transition rules between structural
states. We have also given a symbolic semantics with transition rules for
symbolic execution where symbolic parameters are not evaluated. The
close relationship with Erlang was also advantageous for the straight-
forward translation of an Erlang/Efsm specification into an executable
Erlang module.

We have introduced observers (automata) as a tool for flexible specifi-
cation of coverage criteria, in Chapter 3. An observer is a state machine
that monitor EFSM runs by utilizing observer predicates as conditions
for a test case to be included in a test suite. The user-definable observer
predicates control execution of the observer by utilizing match variables,
the interface between the observer and the EFSM. The syntax for specify-
ing observers, Erlang/Obs, has many similarities with Erlang/Efsm but
is more limited since observers, in general, are much simpler in structure.
We have also developed a graphical notation for specification of observers.

230

The semantics for Erlang/Obs was based on the semantics for Er-
lang/Efsm, in the form of transition rules between structural states. We
also gave transition rules for symbolic execution of observers. In Chap-
ter 4 we gave several examples on the flexibility of observers by giving sev-
eral examples on coverage criteria expressed as observers in Erlang/Obs.

We have presented our technique for generating test suites from Er-
lang/Efsm models extended with observers in Chapter 5. Here we gave a
symbolic state space exploration algorithm for test suite generation. We
noted that for handling large test suites, an efficient representation of
guards and path conditions is crucial. To handle complex observers we
identified the need to efficiently represent large sets of observer states.

We have given an overview of Erly Marsh in Chapter 6. This is a tool
we have developed for model-based test suite generation and test suite
execution. An ambition with this tool was to cover all aspects required
for industrial usage of model-based testing. Thus, in addition to test suite
generation, we also integrates possibilities to validate the Erlang/Efsm
specification, concretize and execute generated abstract test suites, and
generate reports on the outcome of executing both individual test cases
and test suites.

The setup for our case study, where we use our techniques for model-
based test suite generation, was presented in Chapter 7. The results of
using Erly Marsh on this case study was presented in Chapter 8. In
Chapter 9 we compared these results with other tools for testing and
verifying Erlang programs.

11.2 Modeling Language
One of the main motivations for developing a new modeling language
was to make it easier for Erlang developers to make formal models. In
Erlang/Efsm we combine the syntax and semantics Erlang with addi-
tional notation for more explicit expression of abstract state machines.
The result is a language specifically targeted for specification of protocol
modules. Our experience from using Erlang/Efsm, in particular when cre-
ating the A-MLC model, is that the particular features of Erlang that
are retained in Erlang/Efsm make modeling of protocol modules quite
convenient. This is not surprising, since Erlang was originally developed
for programming communication protocols. A prominent feature of Er-
lang, such as pattern matching, allows to make compact representations
of specifications, both of parameters in input events, and of any expres-
sion triggered by the occurrence of an input event. For example, complex
data structures, such as records, in Erlang/Efsm can be decomposed in a
convenient way. Another feature in Erlang is the possibility to structure
the definitions of functions decomposed into several function clauses. In

231

Erlang/Efsm we can use this to specify different input event types into
different function clauses, to get more intuitive mappings to edges in an
EFSM.

There exists other modeling languages that have a well-developed tool
support (e.g., Spec Explorer). But to learn mastering a new language and
tool is a hurdle for anyone not previously familiar. Therefore, one can
argue that for Erlang developers, already well accustomed with syntax
and editors to develop Erlang programs, it is a small step to learn to
create models in Erlang/Efsm and observers in Erlang/Obs.

The close relationship with Erlang also had the implication that we
could use the existing Erlang parser when parsing models in Erlang/Efsm
and observers in Erlang/Obs. Thus, as Erly Marsh is written in Erlang,
development of this tool could be developed faster and more reliably.
Naturally, implementing Erly Marsh in Erlang also makes it easier to
implement an interface to a SUT written in Erlang.

11.3 Specifying Test Case Selection
There exist many types of SUTs, and each can be specified in many
ways. Further, each specification of a SUT can be utilized for model-
based testing in many ways. This calls for a need of flexible specification
of coverage criteria. Using the observer automata, a selection of such
coverage criteria was given in Chapter 4. In fact, with the limitations
implied by what can be expressed in Erlang/Efsm, we have been able
to specify all existing coverage criteria we have found in the literature.
Further examples of the flexibility of the observer automata is given in
Section 5.5 where we show that only slight modifications are needed in
order to use observer automata as a filter (for inclusion of all test cases
that share a certain property) or for property validation.

There are costs incurred by using more complex coverage criteria, and
in the flexibility of using observers to implement the coverage criteria.
How high these costs are depends on the complexity of the coverage cri-
teria and the implementation of the tool used. For an implementation
using observers, a main cost is related to the book-keeping required for
each additional observer location in the observer. When we need a com-
pact representation and utilize a lot of book-keeping, observer locations
might be most efficiently represented by bitvectors. In other situations
some other choice be a better alternative. In the case study we used
bitvectors to represent all observer locations and showed, in Section 8.5
that the additional time required for a more complex observer (Def-Use)
to generate a test suite can be significant.

232

11.4 Efficient Generation of Test Suites
Before test suite generation can begin we need to create a model. To
validate a created model without executing test cases against a SUT,
Erly Marsh offers:

• model checking by using a slight modification of the symbolic state
space exploration algorithm for test suite generation and observer
automata, see Section 5.5.2, and

• the possibility to use the Erly Marsh integrated simulator and an-
imate the specification, see Section 6.1.

In this thesis we have concentrated on functional system testing where
the state space of the implementation of the SUT is large and we therefore
based our test suite generation on an abstract model of the system. To
efficiently generate test suites we used a combination of several existing
approaches, in particular

• Abstraction macros to fine-tune the abstraction level in the specifi-
cation. This allowed us to express details in the specification more
clearly and use more natural domains on parameters. Examples in-
clude e.g., sets of status codes from standards that, with an abstract
view, should be treated in the same way. Abstraction macros let us
keep all the different concrete values in the specification, without
increasing the state space. In the case study we used 9 abstraction
macros to increase readability of the specification and limit the state
space.

• Partial evaluation to limit the size of symbolic expressions on each
edge in the EFSM. By evaluating all expressions (e.g., case and if
expressions) in the transition clauses in the specification as much
as possible we were able to greatly simplify expressions. Thus, the
resulting edge clauses had much simpler expressions which was ben-
eficial for test suite generation.

• NDD:s to efficiently represent and store guards and path conditions.
In the case study it was clear that due to the large state space and
often complex guards it was crucial to have an efficient representa-
tion of guards and path conditions. But it was only after evaluating
several alternative representations that the NDD:s representation
were chosen.

• Symbolic execution to efficiently generate larger test suites. With
an efficient symbolic representation of the guard of each edge it was
a natural choice to also symbolically execute all other expressions in
the edge during test suite generation. This limited the problem with
state space explosion. Symbolic execution was particularly success-
ful in our case study, due to the lack of complicated constraints to
solve when selecting abstract test cases, after symbolically executing
the specification.

233

In the case study we partially evaluated all transition clauses in the EFSM
improving speed in test suite generation and without losing any significant
details. The resulting state space, after using all of the above mentioned
approaches, in the abstract model used for test suite generation was cov-
ering more than 238 abstract test cases. Without a symbolic approach it
would not have been possible for us to generate such a large number of
abstract test cases off-line.

11.5 Concretization of Generated Test Cases
For any Erlang/Efsm specification, which represents an abstraction of
a SUT there is a need to concretizate any input to the SUT (abstract
any output). In Erly Marsh this is solved by the use of functions in a
call-back module to handle the concretization and abstraction.

The created A-MLC model in Erlang/Efsm had a rather low level of ab-
straction. An implication of this was that the concretization/abstraction
functions were often simple mappings, because corresponding input/out-
put expressions and configuration access functions in the formal model
could easily be identified with real elements in the implementation. For
example, an input expression such as slir(MS,MlpAge) had straight-
forward mappings with elements and attributes in the XML document
carrying the concrete slir event as accepted by the SUT. In the case study
there was a number of such often complex data types/large domains in
the implementation that were mapped against simpler data types/smaller
domains in the formal model.

11.6 Efficient Test Execution and Verification
When executing test cases concurrently there is a need to separate dif-
ferent test cases. In Erly Marsh this is solved during concretization by
using parameters in concrete elements to carry test identifiers. Naturally,
this requires the existence of such available parameters. In the case study
a considerable amount of time was saved by the possibility in Erly Marsh
to execute test cases concurrently.

Executed test cases must conform to the formal model after applying
any concretization/abstraction functions, and results must be presented
so that they can be understood by a user. Erly Marsh is able to generate
a report of each test case executed with information on which part of the
test case that conformed with the formal model. SUT dependent data,
e.g., logs, counters and raised alarms, may optionally be added to such
generated reports. Further, Erly Marsh generates a summary of all test
case results after a test suite has been executed. The generation of these
reports were highly essential when performing the case study.

234

11.7 Evaluation of Different Test Generation Strategies
In the evaluation, we generated test suites satisfying different coverage
criteria. For comparison, we also included a number of randomly gener-
ated test suites of similar sizes, and a hand-crafted manual test suite.

Ideally we would be able to measure the quality of generated test suites.
An important distinction in our case study is the use of the measure bug
fixes (see Section 7.3.2). That is, we used existing, real faults in the SUT
when comparing different test suite generation strategies. We argue that
a measure of real faults has benefits, in particular as in the case study,
when studying software where obvious faults are fixed. Interestingly, ex-
amples from the case study includes functional faults that were caused by
inconsistent behavior and over utilization of external interfaces. These are
examples of faults, with potentially great impact, that can be found only
with test cases in which actual values of input and output are provided.
A consistent description of test cases was further enforced by the formally
expressed state machine in Erlang/Efsm. The relatively few faults found
with the Dialyzer tool in Section 9.2 also indicate that that the kind of
faults found with Erly Marsh are hard to find with other approaches.

Test suite generation depends on a combination of such diverse aspects
as model of the SUT, time frame, and type of testing. We did therefore
not try to designate a coverage criterion as the “best choice”, and note
that what is used as a measurement may also affect the results.

A much debated topic in software testing is whether it is most effi-
cient with a partition based technique to select test cases to be part of
a test suite, or if they could equally well be selected completely random
e.g., [BJK 04, Janhunen 11]. Our experience with random test suites
from Section 8.1 showed no clear difference in power between coverage-
based test suites and randomly generated test suites of the same size,
as measured by the number of detected faults and source code coverage.
As the size of test suites increased, the differences between different test
suites decreased. It should then be remembered that for the random test
suites, the results very much depended on information provided by the
A-MLC specification. Also the fact that, for this particular SUT, we got
good results after executing many short test cases favoured the random
test suites with such characteristics, i.e., those using event weights. See
also summaries of findings on case studies comparing random testing in
Section 10.3 and discussion in Section 8.6.

11.8 Discussion
Model-based testing is more than just generating an abstract test suite
from a formal model. To be useful in an industrial setting we must con-
sider the complete picture, from creating and validating the formal spec-

235

ification to verificating results of executing a test suite. Of particular
interest was if model-based testing would deliver results to be useful for
an industrial sized systems. This thesis contributes to this area by the
case study.

The case study started out with the ambition to handle the problem on
how to handle testing of software in a small company. A prerequisite was
therefore that there only existed a limited amount of resources. Identi-
fied needs included functional testing, but also performance testing, and
testing required with software problems reported. This required a flexible
solution in order to reuse as much as possible between the different types
of testing needed. Given an existing detailed functional specification of
the SUT, the use of an integrated tool supporting model-based testing
therefore seemed a natural solution.

When a software problem is reported it might be interesting to generate
test suites based on available knowledge of the problem. Thus, be able
to reproduce the problem in a controlled environment. Using observers
we can then generate test suites covering the fraction of the SUT where
the software problem occurs. Further, whenever a fault is detected and
a bug fix has been applied we have gained some knowledge about the
fault. Again we then might want to use an observers to generate test
suites covering not only (previously) failing test cases, but also test cases
dependent on the bug fix, to verify the bug fix.

A small company is often characterized by an agile workflow with short
distances between the different roles. Development of a formal model
simultaneously with the implementation can therefore be beneficial also
from a communication perspective between people. Later, when main-
taining the system, the formal model acts both as a document describing
the system and as source to generate regression test suites from (using
observers). It is therefore our belief that model-based testing has strong
merits to be used for testing implementations of industrial size products
on a functional level, in particular using Erly Marsh for systems imple-
mented in Erlang.

11.9 Future Work
We will in the following briefly discuss some additional directions for
future work, including e.g., how the framework can be extended to make
evaluations of different systems and aspects of testing possible. But we
can also note that the possibly most urgently needed future work are
additional evaluations on how generated test suites behave on industrial
systems. In particular, to contribute to the important question on how
to aid in the determination on how to select better test suites to generate
for a particular occasion and/or SUT.

236

11.9.1 Creating specifications
There exists additional features part of Erlang, not part of Erlang/Efsm,
that would potentially be useful in a specification language. An important
concept in Erlang is the use of communicating processes, that may send
messages between each other using mailboxes. An addition of processes
to Erlang/Efsm is possible but as the purpose is specification of systems,
other communication strategies than mailboxes are possible. However,
the need of support for “true” concurrency in Erlang/Efsm is not clear.
For example, one may argue that partitioning into communicating pro-
cesses is a design decision and should not be part of the specification
[Jantsch 00]. Assuming the support for concurrency in Erlang can be
trusted on also limits the need to generate test suites of implementations
in Erlang, verifying an application handles concurrency properly.

Missing is also the possibility to structure larger specifications into
smaller modules. Several approaches are possible. It may, for example,
be desirable to introduce hierarchically nested states as in UML State-
charts. Nested states can then be specified in separate modules. There
exists other examples of possible extensions of Erlang/Efsm, e.g., im-
proved support for cyclic behaviours and non-deterministic behaviours.
But it may be noted that addition of new features would possibly imply
that the current big-step operational semantics of Erlang/Efsm could not
be extended on.

The specification language used to express a test suite is restricted by
how guards and path conditions are represented. In the evaluation in
Section 7 we used NDD:s to represent path conditions as it was a suitable
choice for this particular system. For other specifications of systems, an
alternative representation of guards and path conditions might be more
appropriate. Thus, to optimally representing test suites it is relevant to
explore some of the large number of efficient representations of different
subsets of expressions found in the literature.

11.9.2 Generating test suites
The current framework is limited to support test suite generation on finite,
deterministic specifications with a set of stop locations only. All of these
are components that in some cases may be considered more adequate to
generalize. How to do that is considered future work, but we do not expect
major updates to be required in our test suite generation algorithm and
tool.

Together with an efficient representation of test cases, the search strat-
egy maybe has the most significant impact on the performance of the test
suite generation algorithm. In this thesis we did only investigate depth-
first search. One interesting idea of an alternative search strategy would

237

be to create a concurrent algorithm where multiple branches of the search
are executed concurrently. For example, using the technique described in
[Staats 10] where different evaluations, of frequently occurring symbolic
parameters in edge clauses, are separated into different concurrently exe-
cuted branches. A concurrent algorithm also requires the use of a global
data structure that can be updated by each concurrently executed branch.

Observer predicates are user definable and we allow match functions,
used to help define observer predicates, to also include additional Erlang
expressions. However, the current version of Erly Marsh only supports
a set of predefined observer predicates and conditioned observer states
⟨ι(e), H⟩ that do not have any symbolic parameters, and where H is true.
We did also not yet include a constraint solver simply because it was not
needed for the A-MLC Erlang/Efsm specification in the evaluation. A
consequence is that Erly Marsh currently can not generate all test suites
that is possible to express with Erlang/Efsm.

Abstract test case selection
Further possible improvements of the abstract test case selections include:

• For each symbolic test case, let the number of abstract test cases,
covered by the symbolic test case, decide if more than one test
case should be selected. Thus, randomly selecting multiple abstract
test cases from symbolic test cases with many possible abstract test
cases.

• For each symbolic test case, use a combination strategy, such as all
pairs of parameter values see Section 1.5.3, to decide if more than
one test case should be selected. Thus, selecting multiple abstract
test cases from symbolic test cases with many possible parameter
value combinations.

238

References

[Aichernig 12] Aichernig, Bernhard K. 2012. Model-Based Mutation
Testing: Theory and Application. Habilitation thesis, Graz
University of Technology, Austria.

[Aichernig 09] Aichernig, Bernhard K. and Jifeng, He. 2009. Mutation
testing in UTP. Formal Aspects of Computing, Volume 21, no. 1-2,
pages 33–64.

[Alfaro 01] Alfaro, Luca De and Henzinger, Thomas A. 2001. Interface
automata. In Proc. ESEC/FSE. ACM, pages 109–120.

[Ammann 08] Ammann, Paul and Offutt, Jeff. 2008. Introduction to
Software Testing, 1 edition. Cambridge University Press, New York,
NY, USA.

[Ammann 03] Ammann, Paul, Offutt, Jeff, and Huang, Hong. 2003.
Coverage Criteria for Logical Expressions. In Proc. 14th Int.
Symposium on Software Reliability Engineering (ISSRE ’03). IEEE
Computer Society, pages 99–107.

[Ammons 03] Ammons, Glenn, Mandelin, David, Bodík, Rastislav,
and Larus, James R. 2003. Debugging temporal specifications
with concept analysis. In Proc. ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI). ACM,
pages 182–195.

[Anand 13] Anand, Saswat, Burke, Edmund K, Chen, Tsong Yueh,
Clark, John, Cohen, Myra B, Grieskamp, Wolfgang,
Harman, Mark, Harrold, Mary Jean, McMinn, Phil, et al.
2013. An orchestrated survey of methodologies for automated
software test case generation. Journal of Systems and Software,
Volume 86, no. 8, pages 1978–2001.

[Arts 06] Arts, T., Hughes, J., Johansson, J., and Wiger, U. 2006.
Testing Telecoms Software with Quviq QuickCheck. In Proc. 2006
ACM SIGPLAN workshop on Erlang. ACM, Portland, Oregon, USA,
pages 2–10.

[Arvaniti 11] Arvaniti, Eirini. 2011. Automated Random Model-Based
Testing of Stateful Systems. Diploma thesis, National Technical
University of Athens.

[Asarin 97] Asarin, E., Bozga, M., Kerbrat, A., Maler, O.,
Pnueli, M., and Rasse, A. 1997. Data Structures for the
Verification of Timed Automata. In Int. Workshop Hybrid and
Real-Time Systems (HART), Volume 1201 of Lecture Notes in
Computer Science. Springer, pages 346–360.

[Barklund 99] Barklund, J. and Virding, R. 1999. Erlang 4.7.3
Reference Manual.

239

[Beizer 90] Beizer, B. 1990. Software Testing Techniques. Van Nostrand
Reinhold, New York.

[Belinfante 10] Belinfante, Axel. 2010. JTorX: A Tool for On-line
Model-driven Test Derivation and Execution. In Proc. Int. Conf. on
Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), Volume 6015 of Lecture Notes in Computer Science.
Springer, pages 266–270.

[Bertolino 07] Bertolino, Antonia. 2007. Software Testing Research:
Achievements, Challenges, Dreams. In Int. Conf. on Software
Engineering, (ICSE), Workshop on the Future of Software
Engineering, (FOSE). IEEE Computer Society, pages 85–103.

[Beyer 04] Beyer, Dirk, Chlipala, Adam J., Henzinger, Thomas A.,
Jhala, Ranjit, and Majumdar, Rupak. 2004. The Blast query
language for software verification. In Proc. 11th Int. Symp. Static
Analysis (SAS), Volume 3148 of Lecture Notes in Computer Science.
Springer, pages 2–18.

[Beyer 13] Beyer, Dirk, Holzer, Andreas, Tautschnig, Michael, and
Veith, Helmut. 2013. Information Reuse for Multi-goal
Reachability Analyses. In Proc. 22nd European Symp. on
Programming (ESOP). Volume 7792 of Lecture Notes in Computer
Science. Springer, pages 472–491.

[Binder 99] Binder, R. 1999. Testing Object-Oriented Systems: Models,
Patterns, and Tools. Addison Wesley.

[Bishop 05] Bishop, Steve, Fairbairn, Matthew, Norrish, Michael,
Sewell, Peter, Smith, Michael, and Wansbrough, Keith.
2005. Rigorous specification and conformance testing techniques for
network protocols, as applied to TCP, UDP, and sockets. In Proc.
ACM SIGCOMM 2005 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications
(SIGCOMM). ACM, pages 265–276.

[Boberg 08] Boberg, Jonas. 2008. Early fault detection with model-based
testing. In Proc. 7th ACM SIGPLAN workshop on Erlang,
ERLANG ’08. ACM, New York, NY, USA, pages 9–20.

[Bolognesi 89] Bolognesi, T. and Brinksma, E. 1989. Introduction to the
ISO Specification Language LOTOS. Computer Networks,
Volume 14, no. 1 (Jan.), pages 25–59.

[Bouquet 03] Bouquet, F. and Legeard, B. 2003. Reification of
Executable Test Scripts in Formal Specification-Based Test
Generation: The Java Card Transaction Mechanism Case Study. In
Proc. Int. Symp. on Formal Methods Europe (FME), Volume 2805 of
Lecture Notes in Computer Science. Springer-Verlag, pages 778–795.

[Boyapati 02] Boyapati, Rasekhar, Khurshid, Sarfraz, and
Marinov, Darko. 2002. Korat: Automated testing based on Java
predicates. In Proc. Int. Symposium on Software Testing and
Analysis (ISSTA). ACM Press, pages 123–133.

[Briand 07] Briand, Lionel C. 2007. A Critical Analysis of Empirical
Research in Software Testing. In First Int. Symposium on Empirical

240

Software Engineering and Measurement. IEEE Computer Society
Press, pages 376–387.

[BJK 04] Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., and
Pretschner, A., Editors. 2004. Model-Based Testing of Reactive
Systems. Volume 3472 of Lecture Notes in Computer Science.
Springer-Verlag.

[Brucker 13] Brucker, Achim D. and Wolff, Burkhart. 2013. On
theorem prover-based testing. Formal Aspects of Computing,
Volume 25, no. 5, pages 683–721.

[Bryant 86] Bryant, R.E. 1986. Graph-Based Algorithms for Boolean
Function Manipulation. IEEE Trans. on Computers, Volume C-35,
no. 8 (Aug.), pages 677–691.

[Burch 92] Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L.,
and Hwang, L. J. 1992. Symbolic Model Checking: 1020 States and
Beyond. Information and Computation, Volume 98, no. 2 (June),
pages 142–170.

[Chilenski 94] Chilenski, John Joseph and Miller, Steven P. 1994.
Applicability of Modified Condition/Decision coverage to software
testing. Software Engineering Journal, Volume 9, no. 5 (September),
pages 193–200.

[Ciupa 07] Ciupa, Ilinca, Leitner, Andreas, Oriol, Manuel, and
Meyer, Bertrand. 2007. Experimental assessment of random
testing for object-oriented software. In Proc. Int. Symposium on
Software Testing and Analysis (ISSTA). ACM, New York, NY, USA,
pages 84–94.

[Clarke 89] Clarke, Lori A., Podgurski, Andy,
Richardsson, Debra J., and Zeil, Steven J. 1989. A Formal
Evaluation of Data Flow Path Detection Criteria. IEEE Trans. on
Software Engineering, Volume SE-15, no. 11 (Nov), pages 1318–1332.

[Clarke 99] Clarke, E.M., Grumberg, O., and Peled, D. 1999. Model
Checking. MIT Press.

[Clarke 02] Clarke, D., Jéron, T., Rusu, V., and Zinovieva, E. 2002.
STG: A Symbolic Test Generation Tool. In Proc. Int. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems
(TACAS), Volume 2280 of Lecture Notes in Computer Science.
Springer-Verlag, pages 470–475.

[Cohen 97] Cohen, D.M., Dalal, S.R., Fredman, M.L., and
Patton, G.C. 1997. The AETG system: An approach to testing
based on combinatorial design. IEEE Trans. on Software
Engineering, Volume SE-23, no. 7 (July), pages 437–444.

[Consel 93] Consel, C. and Danvy, O. 1993. Tutorial Notes on Partial
Evaluation. In Proc. ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL). ACM Press, pages
493–501.

[Cronqvist 04] Cronqvist, Mats. 2004. Troubleshooting a large Erlang
system. In Proc. 2004 ACM SIGPLAN workshop on Erlang,
ERLANG ’04. ACM, New York, NY, USA, pages 11–15.

241

[D’Souza 03] D’Souza, Deepak and Mukund, Madhavan. 2003. Checking
Consistency of SDL+MSC Specifications. In Proc. 10th Int. SPIN
Workshop, Volume 2648 of Lecture Notes in Computer Science.
Springer, pages 151–165.

[Dijkstra 75] Dijkstra, Edsger W. 1975. Guarded Commands,
Nondeterminacy and Formal Derivation of Programs. Commun.
ACM, Volume 18, no. 8 (Aug.), pages 453–457.

[TTC 03] ETSI. 2003. The Testing and Test Control Notation version 3.
[El-Far 02] El-Far, Ibrahim K. and Whittaker, J.A. 2002. Model-based

software testing. Encyclopedia of Software Engineering, Volume 1,
pages 825–837.

[Fernandez 96] Fernandez, J.-C., Jard, C., Jéron, T., and Viho, C.
1996. Using On-the-fly Verification Techniques for the Generation of
Test Suites. In Proc. 8th Int. Conf. on Computer Aided Verification
(CAV), Volume 1102 of Lecture Notes in Computer Science.
Springer, pages 348–359.

[Fernandez 97] Fernandez, J.-C., Jard, C., Jéron, T., and Viho, C.
1997. An Experiment in Automatic Generation of Test Suites for
Protocols with Verification Technology. Science of Computer
Programming, Volume 29, no. 1-2, pages 123–146.

[Frankl 88] Frankl, P.G. and Weyuker, E. J. 1988. An Applicable
Family of Data Flow Testing Criteria. IEEE Trans. on Software
Engineering, Volume 14, (Oct.), pages 1483–1498.

[Frantzen 05] Frantzen, L., Tretmans, J., and Willemse, T. 2005. Test
Generation Based on Symbolic Specifications. In Proc. Int. Workshop
on Formal Approaches to Testing of Software (FATES), Volume 3395
of Lecture Notes in Computer Science. Springer-Verlag, pages 1–15.

[Fraser 09] Fraser, Gordon, Wotawa, Franz, and Ammann, Paul E.
2009. Testing with Model Checkers: A Survey. Softw. Test. Verif.
Reliab., Volume 19, no. 3 (Sept.), pages 215–261.

[Fredlund 01] Fredlund, Lars Åke. 2001. A Framework for Reasoning
about Erlang code. PhD thesis, Royal Institute of Technology,
Stockholm.

[Friedman 02] Friedman, G., Hartman, A., Nagin, K., and Shiran, T.
2002. Projected State Machine Coverage for Software Testing. In
Proc. Int. Symposium on Software Testing and Analysis (ISSTA).
ACM, pages 134–143.

[Gargantini 01] Gargantini, A. and Riccobene, E. 2001. ASM-Based
Testing: Coverage Criteria and Automatic Test Sequence. Journal of
Universal Computer Science, Volume 7 , no. 11, pages 1050–1067.

[Gargantini 03] Gargantini, A., Riccobene, E., and Rinzivillo, S.
2003. Using Spin to Generate Tests from ASM Specifications. In
Proc. 10th Int. Workshop on Abstract State Machines (ASM 2003),
Volume 2589 of Lecture Notes in Computer Science. Springer-Verlag,
pages 263–277.

[George 12] George, Devaraj. 2012. On the effectiveness of
specification-based structural test-coverage criteria as test-data

242

generators for safety-critical systems. PhD thesis, University of
Minnesota.

[George 05] George, D., Heimdahl, M., and Liang, D. 2005.
Coverage-Directed Test Generation with Model Checkers: Challenges
and Opportunities. In COMPSAC 2005, Volume 1. IEEE Computer
Society, pages 455–462.

[Gnesi 02] Gnesi, Stefania, Latella, Diego, and Massink, Mieke.
2002. Modular semantics for a UML statechart diagrams kernel and
its extension to multicharts and branching time model-checking.
Journal of Logic and Algebraic Programming, Volume 51, no. 1,
pages 43–75.

[Goga 01] Goga, N. 2001. Comparing TorX, Autolink, TGV and UIO Test
Algorithms. In Proc. 10th International SDL Forum, Volume 2078 of
Lecture Notes in Computer Science. Springer-Verlag, pages 379–402.

[Gotlieb 98] Gotlieb, Arnaud, Botella, Bernard, and
Rueher, Michel. 1998. Automatic test data generation using
constraint solving techniques. In Proc. Int. Symposium on Software
Testing and Analysis (ISSTA). ACM, pages 53–62.

[Grabowski 95] Grabowski, J., Hogrefe, D., Nussbaumer, I., and
Spichiger, A. 1995. Test Case Specification Based on MSCs and
ASN.1. In SDL’95 with MSC in CASE, Proc. 7th SDL Forum.
Elsevier, Oslo, Norway, pages 307–322.

[Grieskamp 11] Grieskamp, Wolfgang, Kicillof, Nicolas,
Stobie, Keith, and Braberman, Victor. 2011. Model-based
Quality Assurance of Protocol Documentation: Tools and
Methodology. Softw. Test. Verif. Reliab., Volume 21, no. 1 (Mar.),
pages 55–71.

[Grindal 07] Grindal, Mats. 2007. Handling Combinatorial Explosion in
Software Testing. PhD thesis, Linköping University, Linköping,
Sweden.

[Havelund 02] Havelund, K. and Rosu, G. 2002. Synthesizing Monitors for
Safety Properties. In Proc. Int. Conf. on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), Volume 2280 of
Lecture Notes in Computer Science. Springer-Verlag, pages 324–356.

[Heimdahl 04] Heimdahl, Mats P.E., George, Devaraj, and
Weber, Robert. 2004. Specification Test Coverage Adequacy
Criteria = Specification Test Generation Inadequacy Criteria? In 8th
IEEE Int. Symp. on High-Assurance Systems Engineering (HASE).
IEEE Computer Society, pages 178–186.

[Herman 76] Herman, P.M. 1976. A data flow analysis approach to program
testing. Australian Computer J., Volume 8, no. 3 (Nov.),
pages 92–96.

[Hessel 07] Hessel, A. 2007. Model-Based Test Case Generation for
Real-Time Systems. PhD thesis, Dept. of Information Technology,
Uppsala University, Sweden, Uppsala, Sweden.

[Hessel 08] Hessel, Anders, Larsen, Kim Guldstrand,
Mikucionis, Marius, Nielsen, Brian, Pettersson, Paul, and

243

Skou, Arne. 2008. Testing Real-Time Systems Using UPPAAL. In
Formal Methods and Testing, An Outcome of the FORTEST
Network, Revised Selected Papers, Volume 4949 of Lecture Notes in
Computer Science. Springer-Verlag, pages 77–117.

[Holzmann 97] Holzmann, G.J. 1997. The Model Checker SPIN. IEEE
Trans. on Software Engineering, Volume SE-23, no. 5 (May),
pages 279–295.

[Holzmann 03] Holzmann, G.J. 2003. The SPIN Model Checker.
Addison-Wesley.

[Holzmann 02] Holzmann, G.J. and Smith, H. 2002. An Automated
Verification Method for Distributed Systems Software Based on
Model Extraction. IEEE Trans. on Software Engineering, Volume 28,
pages 1–14.

[Hong 02] Hong, H.S., Lee, I., Sokolsky, O., and Ural, H. 2002. A
Temporal Logic Based Theory of Test Coverage and Generation. In
Proc. Int. Conf. on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), Volume 2280 of Lecture Notes in
Computer Science. Springer-Verlag, pages 327–341.

[Hong 03] Hong, H.S., Cha, S.D., Lee, I., Sokolsky, O., and Ural, H.
2003. Data Flow Testing as Model Checking. In Proc. Int. Conf. on
Software Engineering (ICSE). IEEE Computer Society, pages
232–242.

[Hughes 10] Hughes, John. 2010. Software testing with QuickCheck. In
Central European Functional Programming School. Springer-Verlag,
pages 183–223.

[Huima 07] Huima, Antti. 2007. Implementing Conformiq Qtronic. In Proc.
TestCom/FATES, Volume 4581 of Lecture Notes in Computer
Science. Springer-Verlag, pages 1–12.

[IBM 11] IBM. 2011. Rational Tau.
[ITU-T 99a] ITU-T. 1999. Recommendation Z.120, Message Sequence Charts

(MSC).
[ITU-T 99b] ITU-T. 1999. Recommendation Z.100, Specification and

Description Language (SDL).
[Ip 99] Ip, C. Norris and Dill, David L. 1999. Verifying Systems with

Replicated Components in Murφ. Formal Methods in System Design,
Volume 14, no. 3 (May), pages 147–158.

[Jacky 08] Jacky, Jonathan, Veanes, Margus, Campbell, Colin, and
Schulte, Wolfram. 2008. Model-Based Software Testing and
Analysis with C#. Cambridge University Press.

[Janhunen 11] Janhunen, Tomi, Niemelä, Ilkka, Oetsch, Johannes,
Pührer, Jörg, and Tompits, Hans. 2011. Random
vs. Structure-Based Testing of Answer-Set Programs: An
Experimental Comparison. In Logic Programming and
Nonmonotonic Reasoning. Volume 6645 of Lecture Notes in
Computer Science. Springer-Verlag, pages 242–247.

[Jantsch 00] Jantsch, Axel and Sander, Ingo. 2000. On the Roles of
Functions and Objects in System Specification. In Proc. Int.

244

Workshop on Hardware/Software Codesign (CODES). ACM, pages
8–12.

[Jantsch 98] Jantsch, A., Kumar, S., Sander, I., Svantesson, B.,
Oberg, J., Hemani, A., Ellervee, P., and O’Nils, M. 1998.
Comparison of six languages for system level descriptions of telecom
systems. In First Int. Forum on Design Languages, Volume 2.
Lausanne, Switzerland, pages 139–148.

[Jard 05] Jard, C. and Jeron, T. 2005. TGV: theory, principles and
algorithms. Int. Journal on Software Tools for Technology Transfer,
Volume 7 , no. 4, pages 297–315.

[Kadono 09] Kadono, Masaya, Tsuchiya, Tatsuhiro, and
Kikuno, Tohru. 2009. Using the NuSMV Model Checker for Test
Generation from Statecharts. In Proc. 2009 15th IEEE Pacific Rim
Int. Symposium on Dependable Computing, PRDC ’09. IEEE
Computer Society, Washington, DC, USA, pages 37–42.

[King 76] King, James C. 1976. Symbolic Execution and Program Testing.
Communications of the ACM, Volume 19, no. 7 (July),
pages 385–394.

[Knoop 96] Knoop, J., Steffen, B., and Vollmer, J. 1996. Parallelism
for Free: Efficient and Optimal Bitvector Analyses for Parallel
Programs. ACM Transactions on Programming Languages and
Systems, Volume 18, no. 3, pages 268–299.

[Koch 98] Koch, Beat, Grabowski, Jens, Hogrefe, Dieter, and
Schmitt, Michael. 1998. Autolink - A Tool for Automatic Test
Generation from SDL Specifications. In Proc. Workshop on
Industrial Strength Formal Specication Techniques (WIFT’98). IEEE
Computer Society, pages 21–23.

[Lai 02] Lai, R. 2002. A survey of communication protocol testing. Journal
of Systems and Software, Volume 62, pages 21–46.

[Larsen 97] Larsen, K.G., Pettersson, P., and Yi, W. 1997. UPPAAL
in a Nutshell. Software Tools for Technology Transfer, Volume 1,
no. 1-2, pages 134–152.

[Laski 83] Laski, J. W. and Korel, B. 1983. A Data Flow Oriented
Program Testing Strategy. IEEE Trans. on Software Engineering,
Volume SE-9, no. 3 (May), pages 347–354.

[Leavens 99] Leavens, Gary T., Baker, Albert L., and Ruby, Clyde.
1999. Preliminary design of JML: A behavioral interface specification
language for Java. Technical report, Techn. Rep. 98-06c, Dep. of
Comp. Sci., Iowa State Univ. (http://www.cs.iastate.edu.

[Lin 96] Lin, Huimin. 1996. Symbolic transition graph with assignment. In
Proc. Int. Conf. on Concurrency Theory (CONCUR), Volume 1119 of
Lecture Notes in Computer Science. Springer-Verlag, pages 50–65.

[Lindahl 06] Lindahl, Tobias and Sagonas, Konstantinos. 2006.
Practical type inference based on success typings. In Proc. 8th ACM
SIGPLAN Symposium on Principles and Practice of Declarative
Programming (PPDP). ACM Press, New York, NY, USA, pages
167–178.

245

[Malaiya 02] Malaiya, Yashwant K., Li, Michael Naixin,
Bieman, James M., and Karcich, Rick. 2002. Software
Reliability Growth with Test Coverage. IEEE Transactions on
Reliability, Volume 51, pages 420–426.

[Mandl 85] Mandl, O. 1985. Orthogonal Latin Squares: An experiment
design to compiler testing. Communications of the ACM, Volume 28,
no. 10 (Oct.), pages 1054–1058.

[Mandrioli 95] Mandrioli, D., Morasca, S., and Morzenti, A. 1995.
Generating Test Cases for Real-Time Systems from Logic
Specifications. ACM Trans. on Computer Systems, Volume 13, no. 4
(Nov.), pages 365–398.

[Marinescu 15] Marinescu, Raluca, Seceleanu, Cristina,
Guen, Hlne Le, and Pettersson, Paul. 2015. A Research
Overview of Tool-Supported Model-based Testing of
Requirements-based Designs. Advances in Computers, Volume 98,
pages 89 – 140.

[Mauw 97] Mauw, S. and Reniers, M.A. 1997. Operational Semantics for
MSC’96. In SDL’97 - Time for Testing - SDL, MSC and Trends.
Elsevier, pages 135–152.

[Myers 79] Myers, Glenford J. 1979. Art of Software Testing. John Wiley
& Sons, Inc., New York, NY, USA.

[Mäkinen 07] Mäkinen, M. A. 2007. Model Based Approach to Software
Testing. Master’s thesis, Helsinki University of Technology.

[Ntafos 88] Ntafos, S. C. 1988. A Comparison of Some Structural Testing
Strategies. IEEE Trans. Softw. Eng., Volume 14, no. 6,
pages 868–874.

[Ntafos 01] Ntafos, Simeon C. 2001. On Comparisons of Random,
Partition, and Proportional Partition Testing. IEEE Trans. Softw.
Eng., Volume 27 , no. 10, pages 949–960.

[Plotkin 81] Plotkin, G. 1981. A Structural Approach to Operational
Semantics. Technical report DAIMI FN-19, Computer Science
Department, Aarhus University, Denmark.

[Prenninger 05] Prenninger, W. and Pretschner, A. 2005. Abstractions
for Model-Based Testing. Electronic Notes in Theoretical Computer
Science, Volume 116, (Jan), pages 59–71.

[Pretschner 01] Pretschner, A. 2001. Classical search strategies for test
case generation with constraint logic programming. In Proc. Formal
Approaches to Testing of Software, FATES ’01. Aalborg, Denmark,
pages 47–60.

[Pretschner 05] Pretschner, A., Prenninger, W., Wagner, S.,
Kühnel, C., Baumgartner, M., Sostawa, B., Zölch, R., and
Stauner, T. 2005. One evaluation of model-based testing and its
automation. In Proc. Int. Conf. on Software Engineering (ICSE).
ACM, New York, NY, USA, pages 392–401.

[Rapin 03] Rapin, N., Gaston, C., Lapitre, A., and Gallois, J.-P.
2003. Behavioural Unfolding of Formal Specifications Based on
Communicating extended automata. In Proc. 1st Int. Workshop on

246

Automated Technology for Verification and Analysis. Tapei, Taiwan.
[Rapps 85] Rapps, Sandra and Weyuker, Elaine J. 1985. Selecting

software test data using data flow information. IEEE Trans. on
Software Engineering, Volume 11, no. 4 (Apr.), pages 367–375.

[Rayadurgam 01] Rayadurgam, S. and Heimdahl, M. P. 2001.
Test-Sequence Generation from Formal Requirements Models. In
Proc. 6th IEEE Int. Symposium on High-Assurance Systems
Engineering (HASE 2001). IEEE Computer Society Press, pages
23–31.

[Richardson 92] Richardson, D.J., Leif-Aha, S., and O’Malley, T.O.
1992. Specification-Based Test Oracles for Reactive Systems. In
Proc. Int. Conf. on Software Engineering (ICSE). ACM Press, pages
105–118.

[Rusu 00] Rusu, V., du Bousquet, L., and Jéron, T. 2000. An Approach
to Symbolic Test Generation. In Proc. Int. Conf. Integrated Formal
Methods (IFM), Volume 1945 of Lecture Notes in Computer Science.
Springer-Verlag, pages 338–357.

[Santos-Neto 08] Santos-Neto, Pedro, Resende, Rodolfo F., and
Pádua, Clarindo. 2008. An evaluation of a model-based testing
method for information systems. In Proc. 2008 ACM symposium on
Applied computing, SAC ’08. ACM, New York, NY, USA, pages
770–776.

[Sarma 10] Sarma, Monalisa, Murthy, P. V. R., Jell, Sylvia, and
Ulrich, Andreas. 2010. Model-based testing in industry: a case
study with two MBT tools. In Proc. 5th Workshop on Automation of
Software Test, AST ’10. ACM, New York, NY, USA, pages 87–90.

[Shafique 15] Shafique, Muhammad and Labiche, Yvan. 2015. A
systematic review of state-based test tools. Int. Journal on Software
Tools for Technology Transfer, Volume 17 , no. 1, pages 59–76.

[Sinha 06] Sinha, A., Williams, C. E., and Santhanam, P. 2006. A
measurement framework for evaluating model-based test generation
tools. IBM Systems Journal, Volume 45, no. 3, pages 501–514.

[Sommerville 10] Sommerville, Ian. 2010. Software Engineering, 9 edition.
Addison Wesley.

[Staats 10] Staats, Matt and Pǎsǎreanu, Corina. 2010. Parallel
symbolic execution for structural test generation. In Proc. Int.
Symposium on Software Testing and Analysis (ISSTA). ACM, New
York, NY, USA, pages 183–194.

[Staats 12] Staats, M., Gay, G., Whalen, M., and Heimdahl, M. 2012.
On the danger of coverage directed test case generation. In
Fundamental Approaches to Software Engineering. Volume 7212 of
Lecture Notes in Computer Science. Springer-Verlag, pages 409–424.

[Sving 10] Sving, Robin and Öman, Peter. 2010. Pilot Project for Model
Based Testing using Conformiq Qtronic. Master’s thesis, University
of Uppsala.

[Thorup 10] Thorup, K. K. 2010. Triq.
[Tretmans 96] Tretmans, J. 1996. Test Generation with Inputs, Outputs,

247

and Quiescence. Software – Concepts and Tools, Volume 17 , no. 3,
pages 103–120.

[Tretmans 02] Tretmans, J. and Brinksma, E. 2002. Côte de Resyste –
Automated Model Based Testing. In Progress 2002 – 3rd Workshop
on Embedded Systems. STW Technology Foundation, Utrecht, The
Netherlands, pages 246–255.

[Tretmans 03] Tretmans, Jan and Brinksma, Ed. 2003. TorX:
Automated Model-Based Testing. In First European Conference on
Model-Driven Software Engineering, pages 31–43.

[Utting 08] Utting, M. 2008. The Role of Model-Based Testing. In Conf.
Verified Software: Theories, Tools, Experiments (VSTTE)
2005,Revised Selected Papers and Discussions, Volume 4171 of
Lecture Notes in Computer Science. Springer-Verlag, Zürich,
Switzerland, pages 510–517.

[Utting 07] Utting, Mark and Legeard, Bruno. 2007. Practical
Model-Based Testing: A Tools Approach. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

[Utting 12] Utting, Mark, Pretschner, Alexander, and
Legeard, Bruno. 2012. A taxonomy of model-based testing
approaches. Software Testing, Verification and Reliability,
Volume 22, no. 5 (Aug.), pages 297–312.

[Vardi 86] Vardi, M. Y. and Wolper, P. 1986. An automata-theoretic
approach to automatic program verification. In Proc. Symp. on Logic
in Computer Science (LICS). IEEE Computer Society, pages
332–344.

[Veanes 08] Veanes, Margus, Campbell, Colin,
Grieskamp, Wolfgang, Schulte, Wolfram,
Tillmann, Nikolai, and Nachmanson, Lev. 2008. Model-Based
Testing of Object-Oriented Reactive Systems with Spec Explorer. In
Formal Methods and Testing, An Outcome of the FORTEST
Network, Revised Selected Papers. Volume 4949 of Lecture Notes in
Computer Science. Springer-Verlag, pages 39–76.

[Vilkomir 01] Vilkomir, S. A. and Bowen, J. P. 2001. Formalization of
software testing criteria using the Z notation. In Proc. 25th Int.
Computer Software and Applications Conference (COMPSAC 2001).
IEEE Computer Society Press, pages 351–356.

[Vos 12] Vos, Tanja EJ, Baars, Arthur I, Lindlar, Felix F,
Windisch, Andreas, Wilmes, Benjamin, Gross, Hamilton,
Kruse, Peter M, and Wegener, Joachim. 2012. Industrial Case
Studies for Evaluating Search Based Structural Testing. Int. Journal
of Software Engineering and Knowledge Engineering, Volume 22,
no. 08, pages 1123–1149.

[Vries 00] Vries, René G. De and Tretmans, Jan. 2000. On-the-fly
Conformance Testing using SPIN. Int. Journal on Software Tools for
Technology Transfer, Volume 2, no. 4, pages 382–393.

[Weiglhofer 09] Weiglhofer, Martin, Aichernig, Bernhard K, and
Wotawa, Franz. 2009. Fault-Based Conformance Testing in

248

Practice. Int. J. Software and Informatics, Volume 3, no. 2-3,
pages 375–411.

[Weißleder 10] Weißleder, Stephan. 2010. Test models and coverage
criteria for automatic model-based test generation with UML state
machines.. PhD thesis, Humboldt University of Berlin.

[Widera 04] Widera, M. 2004. Flow Graphs for Testing Sequential Erlang
Programs. In Proc. 2004 ACM SIGPLAN workshop on Erlang.
Snowbird, Utah, USA.

[Wille 82] Wille, Rudolf. 1982. Restructuring lattice theory: an approach
based on hierarchies of concepts. In Ordered sets. Reidel,
Dordrecht–Boston, pages 445–470.

[3gp 99] 3GPP. 1999. Mobile Application Part (MAP) specification.
[3gp 00] 3GPP. 2000. Functional stage 2 description of Location Services

(LCS).
[Erl 15] Ericsson. 2015. Erlang Open Telecom Platform.
[oma 04] OMA. 2004. Mobile Location Protocol.
[OMG 03] OMG. 2003. Unified Modeling Language, UML.

249

Acta Universitatis Upsaliensis
Uppsala Dissertations from the Faculty of Science
Editor: The Dean of the Faculty of Science

1–11: 1970–1975

12. Lars Thofelt: Studies on leaf temperature recorded by direct measurement and

by thermography. 1975.

13. Monica Henricsson: Nutritional studies on Chara globularis Thuill., Chara zey-

lanica Willd., and Chara haitensis Turpin. 1976.

14. Göran Kloow: Studies on Regenerated Cellulose by the Fluorescence Depolar-

ization Technique. 1976.

15. Carl-Magnus Backman: A High Pressure Study of the Photolytic Decomposi-

tion of Azoethane and Propionyl Peroxide. 1976.

16. Lennart Källströmer: The significance of biotin and certain monosaccharides
for the growth of Aspergillus niger on rhamnose medium at elevated tempera-

ture. 1977.

17. Staffan Renlund: Identification of Oxytocin and Vasopressin in the Bovine Ade-

nohypophysis. 1978.

18. Bengt Finnström: Effects of pH, Ionic Strength and Light Intensity on the Flash

Photolysis of L-tryptophan. 1978.

19. Thomas C. Amu: Diffusion in Dilute Solutions: An Experimental Study with

Special Reference to the Effect of Size and Shape of Solute and Solvent Mole-

cules. 1978.

20. Lars Tegnér: A Flash Photolysis Study of the Thermal Cis-Trans Isomerization

of Some Aromatic Schiff Bases in Solution. 1979.
21. Stig Tormod: A High-Speed Stopped Flow Laser Light Scattering Apparatus and

its Application in a Study of Conformational Changes in Bovine Serum Albu-

min. 1985.

22. Björn Varnestig: Coulomb Excitation of Rotational Nuclei. 1987.

23. Frans Lettenström: A study of nuclear effects in deep inelastic muon scattering.

1988.

24. Göran Ericsson: Production of Heavy Hypernuclei in Antiproton Annihilation.

Study of their decay in the fission channel. 1988.
25. Fang Peng: The Geopotential: Modelling Techniques and Physical Implications

with Case Studies in the South and East China Sea and Fennoscandia. 1989.

26. Md. Anowar Hossain: Seismic Refraction Studies in the Baltic Shield along the
Fennolora Profile. 1989.

27. Lars Erik Svensson: Coulomb Excitation of Vibrational Nuclei. 1989.
28. Bengt Carlsson: Digital differentiating filters and model based fault detection.

1989.

29. Alexander Edgar Kavka: Coulomb Excitation. Analytical Methods and Experi-

mental Results on even Selenium Nuclei. 1989.

30. Christopher Juhlin: Seismic Attenuation, Shear Wave Anisotropy and Some

Aspects of Fracturing in the Crystalline Rock of the Siljan Ring Area, Central

Sweden. 1990.

31. Torbjörn Wigren: Recursive Identification Based on the Nonlinear Wiener Model.
1990.

32. Kjell Janson: Experimental investigations of the proton and deuteron structure

functions. 1991.

33. Suzanne W. Harris: Positive Muons in Crystalline and Amorphous Solids. 1991.

34. Jan Blomgren: Experimental Studies of Giant Resonances in Medium-Weight

Spherical Nuclei. 1991.

35. Jonas Lindgren: Waveform Inversion of Seismic Reflection Data through Local
Optimisation Methods. 1992.

36. Liqi Fang: Dynamic Light Scattering from Polymer Gels and Semidilute Solutions.

1992.

37. Raymond Munier: Segmentation, Fragmentation and Jostling of the Baltic Shield
with Time. 1993.

Prior to January 1994, the series was called Uppsala Dissertations from the Faculty of
Science.

Acta Universitatis Upsaliensis
Uppsala Dissertations from the Faculty of Science and Technology
Editor: The Dean of the Faculty of Science

1–14: 1994–1997. 15–21: 1998–1999. 22–35: 2000–2001. 36–51: 2002–2003.

52. Erik Larsson: Identification of Stochastic Continuous-time Systems. Algorithms,
Irregular Sampling and Cramér-Rao Bounds. 2004.

53. Per Åhgren: On System Identification and Acoustic Echo Cancellation. 2004.
54. Felix Wehrmann: On Modelling Nonlinear Variation in Discrete Appearances of

Objects. 2004.
55. Peter S. Hammerstein: Stochastic Resonance and Noise-Assisted Signal Transfer.

On Coupling-Effects of Stochastic Resonators and Spectral Optimization of Fluctu-

ations in Random Network Switches. 2004.

56. Esteban Damián Avendaño Soto: Electrochromism in Nickel-based Oxides. Color-
ation Mechanisms and Optimization of Sputter-deposited Thin Films. 2004.

57. Jenny Öhman Persson: The Obvious & The Essential. Interpreting Software Devel-
opment & Organizational Change. 2004.

58. Chariklia Rouki: Experimental Studies of the Synthesis and the Survival Probabili-

ty of Transactinides. 2004.

59. Emad Abd-Elrady: Nonlinear Approaches to Periodic Signal Modeling. 2005.

60. Marcus Nilsson: Regular Model Checking. 2005.

61. Pritha Mahata: Model Checking Parameterized Timed Systems. 2005.

62. Anders Berglund: Learning computer systems in a distributed project course: The

what, why, how and where. 2005.

63. Barbara Piechocinska: Physics from Wholeness. Dynamical Totality as a Concep-

tual Foundation for Physical Theories. 2005.

64. Pär Samuelsson: Control of Nitrogen Removal in Activated Sludge Processes.

2005.

65. Mats Ekman: Modeling and Control of Bilinear Systems. Application to the Acti-
vated Sludge Process. 2005.

66. Milena Ivanova: Scalable Scientific Stream Query Processing. 2005.
67. Zoran Radovic´: Software Techniques for Distributed Shared Memory. 2005.

68. Richard Abrahamsson: Estimation Problems in Array Signal Processing, System

Identification, and Radar Imagery. 2006.
69. Fredrik Robelius: Giant Oil Fields – The Highway to Oil. Giant Oil Fields and their

Importance for Future Oil Production. 2007.
70. Anna Davour: Search for low mass WIMPs with the AMANDA neutrino telescope.

2007.

71. Magnus Ågren: Set Constraints for Local Search. 2007.

72. Ahmed Rezine: Parameterized Systems: Generalizing and Simplifying Automatic

Verification. 2008.
73. Linda Brus: Nonlinear Identification and Control with Solar Energy Applications.

2008.

74. Peter Nauclér: Estimation and Control of Resonant Systems with Stochastic Distur-

bances. 2008.

75. Johan Petrini: Querying RDF Schema Views of Relational Databases. 2008.
76. Noomene Ben Henda: Infinite-state Stochastic and Parameterized Systems. 2008.
77. Samson Keleta: Double Pion Production in dd→αππ Reaction. 2008.
78. Mei Hong: Analysis of Some Methods for Identifying Dynamic Errors-invariables

Systems. 2008.

79. Robin Strand: Distance Functions and Image Processing on Point-Lattices With

Focus on the 3D Face-and Body-centered Cubic Grids. 2008.
80. Ruslan Fomkin: Optimization and Execution of Complex Scientific Queries. 2009.
81. John Airey: Science, Language and Literacy. Case Studies of Learning in Swedish

University Physics. 2009.

82. Arvid Pohl: Search for Subrelativistic Particles with the AMANDA Neutrino Tele-

scope. 2009.

83. Anna Danielsson: Doing Physics – Doing Gender. An Exploration of Physics Stu-

dents’ Identity Constitution in the Context of Laboratory Work. 2009.

84. Karin Schönning: Meson Production in pd Collisions. 2009.

85. Henrik Petrén: η Meson Production in Proton-Proton Collisions at Excess Energies
of 40 and 72 MeV. 2009.

86. Jan Henry Nyström: Analysing Fault Tolerance for ERLANG Applications. 2009.

87. John Håkansson: Design and Verification of Component Based Real-Time Sys-

tems. 2009.

88. Sophie Grape: Studies of PWO Crystals and Simulations of the ̄pp → Λ̄Λ, Λ̄Σ0 Re-

actions for the PANDA Experiment. 2009.

90. Agnes Rensfelt. Viscoelastic Materials. Identification and Experiment Design. 2010.
91. Erik Gudmundson. Signal Processing for Spectroscopic Applications. 2010.

92. Björn Halvarsson. Interaction Analysis in Multivariable Control Systems. Applica-

tions to Bioreactors for Nitrogen Removal. 2010.
93. Jesper Bengtson. Formalising process calculi. 2010.

94. Magnus Johansson. Psi-calculi: a Framework for Mobile Process Calculi. Cook

your own correct process calculus – just add data and logic. 2010.

95. Karin Rathsman. Modeling of Electron Cooling. Theory, Data and Applications.

2010.

96. Liselott Dominicus van den Bussche. Getting the Picture of University Physics.

2010.

97. Olle Engdegård. A Search for Dark Matter in the Sun with AMANDA and IceCube.

2011.

98. Matthias Hudl. Magnetic materials with tunable thermal, electrical, and dynamic

properties. An experimental study of magnetocaloric, multiferroic, and spin-glass

materials. 2012.

99. Marcio Costa. First-principles Studies of Local Structure Effects in Magnetic Mate-

rials. 2012.

100. Patrik Adlarson. Studies of the Decay η→π+π-π0 with WASA-at-COSY. 2012.
101. Erik Thomé. Multi-Strange and Charmed Antihyperon-Hyperon Physics for PAN-

DA. 2012.

102. Anette Löfström. Implementing a Vision. Studying Leaders’ Strategic Use of an
Intranet while Exploring Ethnography within HCI. 2014.

	Abstract
	Contents
	List of Tables
	Acknowledgments
	Publications by the Author
	Summary in Swedish

	1. Introduction
	1.1 Testing
	1.2 Terminology
	1.3 Introducing state machines
	1.4 Erlang
	1.5 Model-based testing
	1.5.1 Creation of a formal model
	1.5.2 Validation of the formal model
	1.5.3 Test Suite Generation
	1.5.4 Concretization
	1.5.5 Execution of test cases
	1.5.6 Verification

	1.6 Contributions of this Thesis
	1.6.1 Modeling Language
	1.6.2 Specifying Test Case Selection
	1.6.3 Efficient Generation of Test Suites
	1.6.4 Concretization of Generated Test Cases
	1.6.5 Efficient Test Execution and Verification
	1.6.6 Evaluation of Different Test Generation Strategies

	1.7 Organization of Thesis

	2. A specification language based on Erlang
	2.1 Introducing Erlang/Efsm
	2.2 An Overview of Erlang/Efsm
	2.3 Erlang/Efsm - an extension of Erlang
	2.3.1 Syntax for a restricted set of Erlang
	2.3.2 Erlang/Efsm extensions to Erlang

	2.4 Operational semantics of Erlang/Efsm
	2.4.1 Pattern matching
	2.4.2 Transition Rules for Erlang/Efsm Expressions

	2.5 Derived State Machines
	2.6 Runs, Traces, and Test Cases
	2.7 Symbolic operational semantics
	2.7.1 Pattern matching
	2.7.2 Transition Rules for Erlang/Efsm Expressions

	2.8 Correspondence Between non-Symbolic and Symbolic Semantics
	2.9 Symbolic Runs and Test Cases
	2.10 Defining and Normalizing Edge Clauses
	2.11 Creating an executable specification
	2.11.1 The gen_fsm behavior in Erlang/Otp
	2.11.2 Creating an executable Erlang module

	3. Specifying test case selection
	3.1 Observers: An Informal Introduction
	3.2 Erlang/Obs - observers with Erlang syntax
	3.2.1 Syntax for Erlang/Obs

	3.3 Defining observer predicates
	3.3.1 Match variables
	3.3.2 Match functions
	3.3.3 Observer predicate definition in Erlang/Obs

	3.4 Graphical observer notation
	3.5 Operational semantics of Erlang/Obs
	3.5.1 Observer expressions
	3.5.2 Observer predicates
	3.5.3 Observer edge clauses

	3.6 The Observer Defined by an Erlang/Obs Specification
	3.7 Symbolic semantics of Erlang/Obs
	3.7.1 Observer expressions
	3.7.2 Observer predicates
	3.7.3 Observer edge clauses
	3.7.4 Correspondence with Operational Semantics

	3.8 Symbolic Observers and Symbolic Coverage

	4. Coverage criteria
	4.1 Model-independent coverage criteria
	4.1.1 Coverage of guards
	4.1.2 Coverage of locations
	4.1.3 Coverage of paths
	4.1.4 Coverage of data flow

	4.2 Model-dependent coverage criteria

	5. Generating test suites
	5.1 Generating Symbolic Test Cases
	5.2 Generating symbolic test suites
	5.2.1 Refining the search exploration algorithm

	5.3 Efficiently representing sets of states
	5.3.1 Bitvector Representation of Sets of Observer States

	5.4 Concretisation
	5.4.1 Generating abstract test suites from symbolic test suites
	5.4.2 Generating concrete test suites from abstract test suites

	5.5 Alternative usage of observer automata
	5.5.1 Filtering the specification
	5.5.2 Model Checking of a Specification

	6. Introducing Erly Marsh
	6.1 Prototyper and Simulator
	6.2 Model compiler
	6.3 Pretty printer
	6.4 Test suite generator
	6.5 Test suite execution tool
	6.6 Erly Marsh Verificator
	6.7 Test suite report tool

	7. Evaluation: Testing a Telecom Software Application
	7.1 Mobile Arts Advanced Mobile Location Center
	7.1.1 The A-MLC Erlang/Efsm specification
	7.1.2 Symbolic test suite generation
	7.1.3 Test Execution Environment

	7.2 Independent variables
	7.2.1 Symbolic test case selection techniques
	7.2.2 Abstract test case selection techniques
	7.2.3 Test execution strategies
	7.2.4 Base models

	7.3 Dependent variables
	7.3.1 Failures
	7.3.2 Faults
	7.3.3 Source code coverage
	7.3.4 Abstract test suite size
	7.3.5 Execution time

	7.4 Threats to validity
	7.4.1 Internal validity
	7.4.2 External validity

	8. Results using Erly Marsh on A-MLC
	8.1 Summary of the results
	8.1.1 Coverage based test case selection
	8.1.2 Random test case selection
	8.1.3 Manual test case selection
	8.1.4 Testing with projected specification and reduced validation

	8.2 Failures found while testing
	8.3 Faults found while testing
	8.3.1 Characteristics of a selection of test suites

	8.4 Code coverage
	8.5 Test suite size and execution times
	8.6 Summary of main findings
	8.6.1 Experiences from the Case Study

	9. Other tools for testing Erlang programs
	9.1 QuickCheck and other random based testing tools
	9.2 Dialyzer static analysis tool

	10. Related work
	10.1 Test suite generation techniques
	10.2 Coverage criteria and Test purposes
	10.3 Case studies

	11. Conclusions
	11.1 Summary
	11.2 Modeling Language
	11.3 Specifying Test Case Selection
	11.4 Efficient Generation of Test Suites
	11.5 Concretization of Generated Test Cases
	11.6 Efficient Test Execution and Verification
	11.7 Evaluation of Different Test Generation Strategies
	11.8 Discussion
	11.9 Future Work
	11.9.1 Creating specifications
	11.9.2 Generating test suites

	References

