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Compact polarimetry is an e�ective imaging mode for wide area observation, especially for the open ocean. In this study, we
propose a new method for pseudo-quad-polarization reconstruction from compact polarimetry based on the three-component
decomposition. By using the decomposed powers, the reconstruction model is established as a power-weighted model. Further,
the phase of the copolarized correlation is taken into consideration. 
e phase of double-bounce scattering is closer to � than to 0,
while the phase of surface scattering is closer to 0 than to �. By considering the negative (double-bounce re�ection) and positive
(surface re�ection) copolarized correlation, the reconstruction model for full polarimetry has a good consistency with the real
polarimetric SAR data. �-band ALOS/PALSAR-1 fully polarimetric data acquired on August 27, 2006, over an oil-spill area are used
for demonstration. Reconstruction performance is evaluated with a set of typical polarimetric oil-spill indicators. Quantitative
comparison is given. Results show that the proposed model-based method is of great potential for oil-spill observation.

1. Introduction

Crude oil and petroleum products pollution has severe
impact on the marine environment. It results in large scale
damage to local ecosystem, presenting potential enormous
harm to deep ocean and coastal sheries, wildlife, and
regeneration. Rapid increase in oil-spill pollution is primarily
due to the increased human ocean activities, which increase
the risk of oil-spillage from both ship/oil-platform/pipeline
accidents and routine ship operations like tank washing and
engine e�uent discharge.One of themostly used instruments
for ocean surveillance is synthetic aperture radar (SAR),
which has the all-day and all-weather imaging capability and
is sensitive to the ocean surface capillary-gravity waves [1–3].
Polarimetric SAR (Pol-SAR) o�ers multichannel polarimet-
ric information, and the fully or quad polarimetric (quad-
pol) SAR system allows the complete backscattering char-
acterization for scatterers. However, the fully polarimetric
imaging mode su�ers from system complexity, data volume,
and the limited imaging coverage compared to SAR systems

which use a single polarization for transmission [4]. In 2005,
a polarimetric imaging concept was proposed and generally
well known as compact polarimetry (CP) [5]. At present, both
the Indian RISAT-1 and JAXA ALOS/PALSAR-2 can provide
the CP mode. In the future, the CP mode will be prepared
for launches of other Earth Observation (EO) satellites, for
example, SAOCOM-1 and Radarsat Constellation Mission
(RCM).


e compact SAR data can be processed in two manners:
the rst one is to reconstruct pseudo-quad-polarization
data from compact polarimetry, and then many quad-pol
methods can be applied to the reconstructed data [5–9]
for various applications; the second one is to extract target
scattering information directly from compact data [4, 10,
11]. In this study, we focus on the reconstruction method.
In the multipolarization reconstruction, two assumptions
are very essential. One is the well-known re�ection sym-
metry assumption, and the other is the polarization state
extrapolation model, that is, the reconstruction model.
ere
mainly exist ve reconstruction methods in the literature.
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Studies in [5–8] are based on re�ection symmetry to estimate
the pseudocovariance matrix. 
e main di�erence between
these methods is that they adopt di�erent reconstruction
model parameter �. � is determined by either theoretical
assumptions or empirical tests. In [9], we developed a
method which can be applied to the nonre�ection case based
on the four-component decomposition. However, the four-
component decomposition is not applied well to describe the
ocean surface where re�ection symmetry always holds for
most sea state conditions.Methods proposed in [7] by Collins
et al. and in [8] by Li et al. are designed for ocean target
detection. However, both methods are all empirical methods
which need the prior fully polarimetric SAR data to t the
model parameter�. 
e nonlinear regression is usually used
to determine the best curve tting parameters.
e di�erence
between these two methods is that Li’s model parameter� needs updating when performing the iteration, while
Collins’s model parameter � is a constant only relating to
the incidence angle. Moreover, in [7], Collins et al. proposed
to use a negative exponential curve to estimate � for the�-band RADARSAT-2 data, while in [8], Collins’s model
parameter is tted with a polynomial function for the �-band
UAVSAR data. 
is implies that, for di�erent SAR sensors,
imaging geometry, and sea conditions, the tting curves
would probably like to vary greatly. 
is is not benecial for
practical applications. If the selected objective curve is not a
best t of the acquired data, then reconstruction performance
can be expected to deteriorate.

In this paper, a model-based reconstruction method is
proposed to extract the quad-pol information from com-
pact polarimetry for oil-spill observation. By assuming a
three-component decomposition for backscatter of the ocean
surface, the model parameter � is estimated based on the
decomposed scattering powers. �-band ALOS/PALSAR-1
fully polarimetric data are used for demonstration. �-band
polarimetric SAR data, especially the satellite data, are not
widely investigated for oil-spill detection due to its long
wavelength. Since �-band polarimetric SAR satellites are in
operation (e.g., ALOS/PALSAR-2) and to be planned for
future missions, it is necessary to explore the performance of�-band compact polarimetric data for oil-spill observation.

Performance of the proposed method is evaluated in terms
of a set of polarimetric indicators which are widely used for
oil-spill observation in the literature [1]. 
e organization of
the rest of this paper is as follows. In Section 2, we brie�y
introduce the �-band test data. In Section 3, the proposed
reconstruction method is presented. Section 4 gives the
experiments and comparison; and conclusions are given in
Section 5.

2. Test Data and Preprocessing

�-band ALOS/PALSAR-1 fully polarimetric data acquired
over the southern-eastern coast of Negros Island on August
27, 2006, are used for demonstration. 
ese data are relevant
to an oil-spill accident happened on August 11, 2006 [12]. A
subset of the image is shown in Figure 1, from which we can
see dark areas of oil-slicks. 
e fully polarimetric data are

Figure 1: Span image of the test data, acquired on August 27, 2006.
ALOS/PALSAR-1 site identication is ALPSRP031440190. 
e dark
area is an oil-slick [12].

received in the single look complex (SLC) product format.

is subset contains 1088 × 1088 pixels. Before performing
analysis, a boxcar lter with a window size 7 has been
applied to reduce the speckle. Linear compact polarimetric
SAR data are synthesized from the fully polarimetric SAR
data according to its specic scattering matrix, which will be
introduced in Section 3.

3. Pseudo-Quad-Polarization Reconstruction
from Linear Compact Polarimetry

3.1. Quad-Pol Data and�ree-Component Decomposition. In
the linear horizontal (H) and vertical (V) polarization base,
the scattering vector is dened as shown in the following
equation under the reciprocity theorem for the monostatic
backscattering case:

�⇀� � = [
HH
√2
HV 
VV]� , (1)

where 
HV denotes V in transmission and H in reception.
For the multilook case, the covariance matrix is shown in
the following equation to represent the average scattering
property:

C = ⟨�⇀� ��⇀�H

�⟩

= [[[[
[

⟨����
HH
����2⟩ √2 ⟨
HH
∗HV⟩ ⟨
HH
∗VV⟩√2 ⟨
HV
∗HH⟩ 2 ⟨����
HV

����2⟩ √2 ⟨
HV
∗VV⟩
⟨
VV
∗HH⟩ √2 ⟨
VV
∗HV⟩ ⟨����
VV����2⟩

]]]]
]
,

(2)

where ⟨⋅ ⋅ ⋅ ⟩ and H denote spatial average and matrix trans-
pose conjugate, respectively and ∗ denotes complex conjuga-
tion. Polarimetric target decomposition has been studied by
many researchers [13–15]. Model-based decomposition aims
to decompose the radar received backscattered energy into
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several components according to scattering models. 
ree-
component decomposition [13] can be written as follows:

C = �� [C�] +�� [C�] +�V [CV
] , (3)

where ��, ��, and �V are decomposed parameters to be deter-
mined corresponding to the surface, double-bounce, and
volume scatteringmodels, respectively.
ese three scattering
models are given by

[C�]=[[[
[

���� ����2 0  
0 0 0

 ∗ 0 1

]]]
]
,

[C�]=[[[
[

|!|2 0 !
0 0 0

!∗ 0 1

]]]
]
,

[C
V
]=[[
[
1 0 "
0 1 − " 0

" 0 1

]]
]
, " ∈ [0 1) ,

(4)

where  and ! are model parameters with arg( ) ≈ 0 and
arg(!) ≈ ±�. Di�erent three-component decomposition
methods are generally developed by modifying the volume
scattering model [C

V
]. [C

V
] presented in (4) is a general

volume scattering model exhibiting scattering azimuthal
symmetry. In Freeman and Durden’s 3-component decom-
position [13, 15], " is set to 1/3. E�ects of the parameter " on
scattering powers and on the compact reconstruction model
will be discussed in the next section. If we let " = 0, by
relating (3) and (4) to (2), the backscattered energy span can
be expanded into scattering powers as shown in the following:

%� = �� (1 + ���� ����2) ,
%� = �� (1 + |!|2) ,
%
V
= 3�

V
= 6 ⟨����
HV

����2⟩ ,
span = ⟨����
HH

����2⟩+ 2 ⟨����
HV
����2⟩+⟨����
VV����2⟩

= %� +%� +%V,

(5)

where %�, %�, and %
V
are the decomposed powers. Since

this decomposition has 5 unknowns with 4 equations, the
sign of Re(⟨
HH
∗VV⟩) is usually used to determine whether
surface re�ection or double-bounce re�ection is dominant
[13]. Specically, if Re(⟨
HH
∗VV⟩) > 0, then let ! = −1
(indicating a dominant surface re�ection); if Re(⟨
HH
∗VV⟩) <0, then let  = 1 (indicating a dominant double-bounce
re�ection), where Re(⋅ ⋅ ⋅ ) indicates the real part of a complex
number.

3.2. Compact Polarimetry and the Proposed Model-Based

Reconstruction Model

3.2.1. Linear �/4 Compact Data. 
e compact system mea-
sures a projection of the complex scattering matrix S onto

a transmitted electromagnetic eld
�⇀* �. When transmitting a

slant-linear polarization oriented at 45∘, the received electro-
magnetic wave is given by

�⇀* 	 = S
�⇀* � = 1√2 [


HH 
HV
HV 
VV][
1
1]

= 1√2 [

HH + 
HV
VV + 
HV

] .
(6)

�⇀* 	 is called the Jones vector of the scattered wave. Equation
(6) gives the scattering vector for the �/4 compact mode.
We usually use the wave covariance matrix, dened in (7),
to analyze the target average scattering property. From (7),
it is seen that for the �/4 mode, the covariance matrix C
/4
can be written as a sum of three parts, that is, a copolarized
information part, a cross-polarization part, and the residue
part:

C
/4 = ⟨�⇀* 	�⇀*H

	 ⟩ = [�11 �12�21 �22

]

= 1

2

{{{
[
[
⟨����
HH

����2⟩ ⟨
HH
∗VV⟩
⟨
VV
∗HH⟩ ⟨����
VV����2⟩

]
]
+⟨����
HV

����2⟩[1 1

1 1
]

+[ 2Re (⟨
HH
∗HV⟩) ⟨
HH
∗HV⟩ + ⟨
HV
∗VV⟩⟨
HV
∗HH⟩ + ⟨
VV
∗HV⟩ 2Re (⟨
VV
∗HV⟩) ]}}}
.

(7)

By assuming re�ection symmetry, the last submatrix in
(7) is usually omitted; that is, the terms involving products
of copolarized and cross-polarized terms are ignored. For
most terrain types, the omitted part is much smaller than
the others. Re�ection symmetry is also valid for the ocean
surface. By this means, there are only 4 parameters le� in

C
/4, that is, ⟨|
HH|2⟩, ⟨|
VV|2⟩, ⟨
HH
∗VV⟩, and ⟨|
HV|2⟩. In
the reconstruction of pseudo-quad-pol information, these
parameters need to be estimated. 
ere are 4 unknowns,
but only 3 equations can be obtained from (7), so an extra
reconstructionmodel is needed to relate these parameters. In
the literature, there exist fourmain reconstructionmodes [5–
8] which have the following general form:

⟨����
HV
����2⟩

⟨����
HH
����2⟩ + ⟨����
VV����2⟩ = 1 − ����C����� , (8)

where C is the copolarization correlation coe�cient, dened

by C = ⟨
HH
∗VV⟩/√⟨|
HH|2⟩⟨|
VV|2⟩ and � is the model

parameter which is di�erent for di�erent reconstruction
algorithms. Souyris et al. rst proposed the reconstruction

model using � = 4. We calculate both ⟨|
HV|2⟩/(⟨|
HH|2⟩ +⟨|
VV|2⟩) and C for the scattering models in (4), as shown
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in (9). We could observe that Souyris’s model satises all
these scattering behaviours when the scattering models are
considered separately:

C�:
⟨����
HV

����2⟩
(⟨����
HH

����2⟩ + ⟨����
VV����2⟩) = 0, C = 1,

C�:
⟨����
HV

����2⟩
(⟨����
HH

����2⟩ + ⟨����
VV����2⟩) = 0, C = −1,

C
V
:

⟨����
HV
����2⟩

(⟨����
HH
����2⟩ + ⟨����
VV����2⟩) =

1 − "
4

, C = ".

(9)

We review Souyris’s model from a new perspective. A
scattering process is actually amixture of scattering processes
of elemental scatterers in a resolution cell. Backscatter is
a�ected by all the elemental scatterers. If we assume a three-
component decomposition and that each component con-
tributes to the backscattered features in the scale of its power
proportion, then Souyris’s model can be taken as a power-
weighted model as long as the phase of C is not considered;
that is, |C| is used in the reconstruction model. Souyris’s
model does not distinguish the di�erence of the copolarized
correlation coe�cients of the surface and double-bounce
re�ections. 
e typical single-bounce re�ection has a value
of C equal to 1, while the typical double-bounce re�ection has
a value of C equal to −1. By taking into consideration that the
copolarized correlation coe�cient C can be either positive or
negative, we propose a new reconstruction model based on
three-component decomposition, given in the next section.

3.2.2. �e Proposed Reconstruction Model. From (9), we
can establish a model-based power-weighted reconstruction
model. By assuming that the backscattered energy is a sum
of the surface scattering power %�, double-bounce scattering
power %�, and volume scattering power %

V
, the following

relationship can be obtained:

C� +C� +CV

F⇒
{{{{{{{{{

⟨����
HV
����2⟩

⟨����
HH
����2⟩ + ⟨����
VV����2⟩ = 1 − "

4

%
V

span

1 − C
4

= 2%� + (1 − ") %V
4span

.
(10)

For natural distributed targets, C is a complex number, so|C| is still used in the reconstruction [5]. However, in order to
preserve the positive or negative correlation property (i.e., the
copolarized phase di�erence is either closer to 0 or closer to�) of the surface or double-bounce scattering, Re(⟨
HH
∗VV⟩)
is incorporated in the modied model as follows:

⟨����
HV
����2⟩

⟨����
HH
����2⟩ + ⟨����
VV����2⟩

= 1 − sgn (Re (⟨
HH
∗VV⟩)) ����C����4 (1 − ") %
V2%� + (1 − ") %V ,

(11)

where sgn(⋅ ⋅ ⋅ ) is a signum function. In order to nd a suitable
parameter " for the reconstruction, we test the equality of
the two sides of (11). When " varies in the interval [0 1),
the proportion of scattering powers decomposed from (3)
varies accordingly. Using the test data for illustration, the
polynomial curves tting to the two sides of (11) is shown in
Figure 2(a), from which it is observed that the tted curve
with " = 0 is much closer to the diagonal line than the
other tted lines. It should be noted that " should not be
larger than (span − 6⟨|
HV|2⟩)/(span − 2⟨|
HV|2⟩); otherwise
there will occur with negative decomposed powers. Further,
when " increases from 0, the number of the pixels falling in
the plane of Figure 2(a) decreases. 
is variation is shown
in Figure 2(b), which means that the number of e�ective
pixels decreases with " increasing.
us in order tomake sure
that (11) is valid and e�ective for most pixels and ensures the
equality, " is set to 0.


en the proposed reconstructionmodel is then obtained
as

⟨����
HV
����2⟩

⟨����
HH
����2⟩ + ⟨����
VV����2⟩ = 1 − sg ⋅ ����C����

4

%
V

2%� + %V , (12)

where sg = sgn(Re(⟨
HH
∗VV⟩)). Using the test data, Figure 3
compares the present reconstruction model with Souyris’s
model. It is observed that the developed model is more
consistent with the real polarimetric SAR data; that is, the
points are scattered much closer to the diagonal line with the
proposed model.

Next we need to consider how to approximate
sgn(Re(⟨
HH
∗VV⟩)), %�, and %

V
in the linear �/4 compact

polarimetric mode. From the coherency matrix shown in
(7), we notice that when assuming re�ection symmetry,
the sign of Re(⟨
HH
∗VV⟩) is only a�ected by ⟨|
HV|2⟩.
For the ocean surface, the high copolarized correlation is
always expected to make the copolarized terms larger than
the cross-polarized term [12]. Hence, we use Re(�12) to
determine whether the backscatter process is dominated by
surface or by double-bounce scattering. We use the whole
data of ALPSRP031440190, which contains 18432 × 1088
pixels, to test the consistency between areas determined by
Re(�12) > 0 and Re(⟨
HH
∗VV⟩) > 0. 
e overall agreement
is 96.7%. 
us, this principle is valid and reasonable to
determine which scattering mechanism dominates the
backscatter of the CP mode, at least for the �-band PALSAR
data.

From the covariance scattering models in (4), the corre-
sponding compact scattering models can then be synthesized
as shown in (13), where the parameter " in C

V
is set to 0:

[C�]CP = [
���� ����2   ∗ 1] ;

[C�]CP=[|!|
2 !

!∗ 1
] ;

[C
V
]
CP
=[1.5 0.5

0.5 1.5] .

(13)
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Figure 2: (a) First order polynomial curve ttings of the le� side (shown on the abscissa) and the right side (shown on the ordinate) of (11)
by varying the parameter " by using the test data. (b) Variation of " versus the number of the pixels falling in the plane in (a).
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Figure 3: Comparison of reconstruction models. (a) Souyris’s model. (b) 
e proposed model.

[C�]CP, [C�]CP, and [C
V
]CP are the compact covariance

matrices of surface, double-bounce, and volume scattering,
respectively. 
en the compact covariance matrix can be
expanded as

C
/4=��� [C�]CP +��� [C�]CP +�V� [CV
]
CP
, (14)

where ���, ���, and �V� are the expansion coe�cients. From
(14), we have 3 equations with 5 unknowns. It is noted
from (5) that, for the fully polarimetric case, we have �

V
=

2⟨|
HV|2⟩. 
e backscattered energy in full polarimetry is
double that of compact polarimetry. Hence, the decomposed
coe�cient �

V� is expected to be proportionally reduced. Let�
V� = ⟨|
HV|2⟩. ⟨|
HV|2⟩ is a parameter needed to be estimated

in the reconstruction. If ⟨|
HV|2⟩ is retained to be determined
later, then (14) can be solved in a similar way as that of
three-component decomposition. When Re(�12) is positive,
we decide that surface scattering is dominant and let ! =−1. When Re(�12) is negative, we decide that double-bounce



6 Journal of Sensors

scattering is dominant and let  = 1. Finally, the surface
scattering power %�� and the double-bounce scattering power%�� can be obtained as follows:

M = �11 − 1.5�V�;
N = �22 − 1.5�V�;
O = �12 − 0.5�V�;

%�� = 2
MN − |O|2M + N + 2Re (O) , if Re (�12) > 0, ! = −1

or %�� = 2
MN − |O|2M + N − 2Re (O) , if Re (�12) < 0,  = 1.

(15)

A�er %�� or %�� is obtained, for the above two cases, %�� in
the case Re(�12) > 0 and %�� in the case Re(�12) < 0
can be directly obtained from %�� = span� − %�� − %

V� and%�� = span� − %�� − %
V�, respectively, where span� = �11 +�22 is the total backscattered power. 
e volume scattering

power %
V� = 3�

V� = 3⟨|
HV|2⟩ will be estimated during
the iteration introduced in the next section. Note that this
three-component decomposition only serves for the purpose
of pseudo-quad-pol data reconstruction. It is quite di�erent
from other compact target decompositions [4, 11].

3.3. Reconstruction Algorithm. 
e iteration approach is
employed to solve the nonlinear system [5–9]. 
e iteration
procedure is detailed as follows.

Step 0. Initialization. Consider

�(0) = 4,
C(0) = �12√�11�22

,
�
V�(0) = (�11 +�22) 1 − sg ⋅ ����C(0)�����(0)/2 + 1 − sg ⋅ ����C(0)���� .

(16)

Step 1. Iteration. Consider

M = �11 − 1.5�V�(�);
N = �22 − 1.5�V�(�);
O = �12 − 0.5�V�(�);

%��(�) = 2
MN − |O|2M + N + 2Re (O)

�(�+1) = 4
2%��(�) + 3�

V�(�)
3�

V�(�)

if Re (�12) > 0

or %��(�) = 2
MN − |O|2M + N − 2Re (O)

�(�+1) = 4
2span� − 2%��(�) − 3�

V�(�)
3�

V�(�)

if Re (�12) < 0

C(�+1) = �12 − �V�(�)/2
√(�11 − �V�(�)/2) (�22 − �V�(�)/2)

�
V�(�+1) = (�11 +�22) 1 − sg ⋅ ����C(�+1)�����(�+1)/2 + 1 − sg ⋅ ����C(�+1)���� ,

(17)

where sg = sgn(Re(�12)) and Q = 0, 1, 2, . . . is the iterations
number. Given a converged value for �

V�, where ⟨|
HV|2⟩ =�
V�, the pseudo-quad-pol covariance matrix is estimated as

Cpseudo-quad

=[[[[
[

2�11 − ⟨����
HV
����2⟩ 0 2�12 − ⟨����
HV

����2⟩
0 2 ⟨����
HV

����2⟩ 0
2�∗12 − ⟨����
HV

����2⟩ 0 2�22 − ⟨����
HV
����2⟩

]]]]
]
. (18)

4. Experiments

In experiments, by comparing with the method proposed
by Souyris et al., we validate the proposed model-based
method in the following aspects: rstly, the reconstructed
covariance matrix is evaluated in terms of the co- and cross-
polarized elements; and secondly, several typical oil-slick
indicators derived in full polarimetry are used to assess
the performance of the proposed method. Souyris’s method
is selected for comparison mainly due to the reason that
Souyris’s method can also be seen as a power-weighted
pseudo-quad-pol information reconstruction method. 
e
only di�erence with the proposedmethod is that the negative
or positive copolarized correlation property is considered in
this study to discriminate between the surface and double-
bounce scattering.
us, the comparison results would clearly
display the signicance of the phase information in the
improvement of reconstruction accuracy. 
e included fully
polarimetric oil-spill indicators [1] are summarized in Table 1.
Reconstruction results are shown in Table 2. From Table 2,
it can be observed that the proposed method improves
the reconstruction stably. In addition, this reconstruction
method does not need prior fully polarimetric data to train
the model parameter�.

5. Conclusion

In this study, we proposed a model-based reconstruction
method for the linear �/4 compact polarimetry. By taking
the negative and positive copolarized correlation proper-
ties (negative for the double-bounce dominated case and
positive for the surface dominated case) into consideration,
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Table 1: Oil-spill indicators of fully polarimetric SAR images.

Copolarized correlation coe�cient
����C���� =

�������������
⟨
HH
∗VV⟩

√⟨����
HH
����2⟩ ⟨����
VV����2⟩

�������������
Copolarized phase di�erence CPD = angle (⟨
HH
∗VV⟩)
Conformity coe�cient R = 2 (Re (⟨
HH
∗VV⟩) − ⟨����
HV

����2⟩)
span

Circular polarization correlation CPC =
�������������

⟨
RR
∗LL⟩
√⟨����
RR����2⟩ ⟨����
LL����2⟩

�������������
,where{{{{{{{


RR = (
HH − 
VV + 2S
HV)2

LL = (
HH − 
VV − 2S
HV)2T, UVWℎU, Y Cloude-Pottier’s decomposition

Table 2: Mean (m.) and standard deviation (Std.) of the pseudo-quad-pol reconstruction errors for the covariance elements and the
polarimetric parameters listed in Table 1.� = 4 indicates the results of Souyris’s model.

⟨����
HH
����2⟩ ⟨����
VV����2⟩ ⟨����
HV

����2⟩ ����C���� CPD (∘)

m. Std. m. Std. m. Std. m. Std. m. Std.

� = 4 0.023 0.018 0.027 0.021 0.029 0.019 0.011 0.0175 0.861 6.544

Proposed model 0.022 0.017 0.026 0.020 0.027 0.017 0.010 0.016 0.760 5.693

R CPC T YVWℎU (∘) Y
m. Std. m. Std. m. Std. m. Std. m. Std.

� = 4 0.040 0.033 0.316 0.128 0.070 0.040 0.303 1.034 0.324 0.124

Proposed model 0.360 0.028 0.290 0.122 0.065 0.036 1.190 0.857 0.330 0.124

the proposed model is generally consistent with the real
polarimetric SARdata. By employing amodel-based compact
target decomposition scheme, the reconstruction can be
implemented via an iteration approach. In experiments,
reconstruction performance is evaluated in terms of both co-
and cross-polarized elements and several typical polarimetric
oil-spill indicators. Results showed that, by comparison with
the Souyris method, the proposed method has a stable
superior performance. In addition, this study investigated the
capability of �-band satellite polarimetric SAR data for oil-
spill observation in compactmode, which has rarely appeared
in the literature. In the future, detailed works will be carried
out and the extension of this method to the circular compact
mode will also be fully evaluated.
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