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Abstract—Quantification of the degree of stenosis or vessel
dimensions are important for diagnosis of vascular diseases and
planning vascular interventions. Although diagnosis from three-
dimensional (3-D) magnetic resonance angiograms (MRA’s) is
mainly performed on two-dimensional (2-D) maximum intensity
projections, automated quantification of vascular segments di-
rectly from the 3-D dataset is desirable to provide accurate and
objective measurements of the 3-D anatomy.

A model-based method for quantitative 3-D MRA is proposed.
Linear vessel segments are modeled with a central vessel axis
curve coupled to a vessel wall surface. A novel image feature to
guide the deformation of the central vessel axis is introduced.
Subsequently, concepts of deformable models are combined with
knowledge of the physics of the acquisition technique to accu-
rately segment the vessel wall and compute the vessel diameter
and other geometrical properties.

The method is illustrated and validated on a carotid bifurcation
phantom, with ground truth and medical experts as comparisons.
Also, results on 3-D time-of-flight (TOF) MRA images of the
carotids are shown. The approach is a promising technique to
assess several geometrical vascular parameters directly on the
source 3-D images, providing an objective mechanism for stenosis
grading.

Index Terms—Magnetic resonance angiography, model-based
image analysis, quantification, stenosis grading.

I. INTRODUCTION

A CCURATE determination of vessel width is important
in grading vascular stenosis. Stenosis quantification in

the carotid arteries, for instance, determines the choice of
stroke treatment. Studies have revealed that a patient with a
severe ( 70%) symptomatic stenosis in the carotids should be
operated on, while patients with stenoses smaller than 30%
should not undergo surgical treatment [1], [2]. The benefit
of surgery in cases of stenosis with severity between 30 and
70% is still under investigation [2], [3]. These findings support
the relevance of accurate measurement techniques of vascular
segments.

Magnetic resonance angiography (MRA) is a technique
which can supply three-dimensional (3-D) information of the
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vasculature. Although evaluation by radiologists is mainly
performed on two-dimensional (2-D) maximum intensity pro-
jections (MIP’s) [4], it is known that these lead to vessel width
underestimation and a decreased contrast-to-noise ratio (CNR)
[4]–[6].

In order to improve grading of stenoses it would be desirable
to obtain quantitative morphological information directly from
the original 3-D images, and not only from their projections
[7]–[9]. To this end, accurate 3-D segmentation tools are
required.

Vessel enhancement and segmentation of 3-D images has
been investigated by many researchers. A number of ap-
proaches analyze the images at a single scale [10]–[16], which
limits their applicability to images in which the range of
vessel widths is small. This is probably the reason for the
observation made in [10], [11], and [13] that small vessels
are better enhanced than large vessels. A number of papers
have acknowledged the importance of multiscale algorithms
that can cope with vessel width variability [17]–[26].

The majority of approaches for vessel enhancement and
segmentation [17]–[22], [25] rely on purely morphological
criteria.1 This has the advantage that the method is appli-
cable to a wide variety of imaging modalities. However,
the physics of the image formation influences the eventual
depiction of the vessels and not taking this into account may
lead to important structural measurement errors. Consider,
for instance, the multiscale approaches that estimate vessel
width on the basis of the scale of maximum response of
some differential operators [17]–[25], as suggested in the
seminal work on scale selection by Lindeberg [27]. In these
approaches, a number of assumptions are made: the vessel
is circular with radius equal to some empirical function of
scale [17], [20]–[22], [24], [25]. This leads to the fact that the
discretization of the scale parametera priori determines the
possible vessel diameters. This is specially problematic when
one considers that the number of scales is in general small,
to reduce the computational burden involved in multiscale
methods. However, multiscale vessel enhancement methods
have proven to be very useful for reconstructing the vessel
tree, in order to provide a 3-D visualization. This can be highly
valuable for surgical planning where the relative location of
the vessels, rather than their precise width, is the important

1Summerset al. [26], however, used phase-contrast MR images and,
therefore, could also incorporate flow directionality information. Note that
in this paper our main concern is to obtain accurate vessel dimensions and
not flow information.
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issue. However, accurate quantification in these approaches
is limited, since the underlying assumptions are often not
valid, especially in pathological conditions [28], [29]. The
fact that very few quantitative evaluation results have been
reported in the literature reveals, to some extent, the difficulty
of obtaining accurate measurements with purely geometry
guided algorithms. To our knowledge, a few schemes have
been proposed for automated quantitative angiography which
focus on quantitative coronary angiography (QCA) [30], [31]
from 2-D X-ray DSA images. Little work has been reported,
however, on automated quantitative MRA directly from the
3-D data. So, whereas the area of vessel enhancement and
segmentation has received considerable attention, there is still
progress to be made in automated quantitative 3-D MRA.

In this paper we suggest a novel scheme for quantitative
vessel analysis from MRA that uses knowledge of the image
formation process to accurately define vessel boundaries. The
procedure operates on the 3-D source images (not their projec-
tions), using a 3-D deformable model. The model consists of
a representation of a central vessel axis coupled to a vessel
wall surface. The use of a B-spline representation for the
curve and surface models enables the use of already existing
powerful interaction mechanisms inherited from computer-
assisted design (CAD). For initialization, which is an important
step in segmentation schemes based on deformable models, we
introduce a technique based on an isosurface rendering of the
vasculature, which allows for intuitive and efficient interaction
in a 3-D setting.

The paper is organized as follows. In Section II we introduce
a model-based approach to estimate the central axis and width
of a vessel. Section III discusses some implementation details.
Section IV describes the materials and methods involved in
the validation of our algorithm with phantom experiments
and clinical MRA datasets. After the results of the validation
are presented in Section V, the paper is concluded with a
discussion (Section VI).

II. M ODEL-BASED VESSEL SEGMENTATION

In this section, a two-step vessel segmentation procedure
is proposed. First, a representation of the central vessel axis
is obtained. This axis is subsequently used as a reference for
extracting the boundaries of the vessel.

A. Central Vessel Axis Model

The central vessel axis, is modeled using a B-spline
curve of degree with control points. This representation
enforces the lumen line to be connected

Here, are the control points, is the -th B-
spline basis function of order [32], and The
model (sometimes referred to as asnake) deforms toward the
center of the vessel by minimizing an energy functional,,
containing terms associated with the shape of the spline and
the image contents [33], [34]

(1)

where

provide the internal constraints over the first- and second-
order parametric derivatives. If we consider the central vessel
axis as a physical string, these constraints are associated
with simple approximations [35] to its stretch and bending
energies, respectively. The constants and regulate the
contribution of the internal forces with respect to that of the
external (or image driven) force. In the physical analogy, the
optimization process is interpreted as the evolution of the
model toward a state of minimal energy.

The external energy is used to attract the curve toward points
which have a high likelihood of lying along the central vessel
axis. For this purpose, a new filter [18] has been developed
that has the following properties: 1) it filters out non-line-like
structures; 2) it is maximum at the center of the vessel; and
3) it is sensitive to vessels of different sizes.

The filter computes the eigenvalues and eigenvectors of
the Hessian matrix at multiple scales. The eigenvalues are
then combined into a discriminant function that has maximum
response for structures behaving as a tube at scale.

We shall now formalize these ideas. Let be the Hessian
matrix at a given voxel

where denote regularized derivatives of the image
which are obtained by convolving the image with the

derivatives of the Gaussian kernel at scale[36], [37].

In the remainder of the paper will denote the eigenvalue
with the th smallest magnitude ( ). Under
this assumption, Table I summarizes the relations that must
hold between the eigenvalues of the Hessian for the detection
of different structures. In particular, a pixel belonging to a
vessel region will be signaled by being small (ideally zero)
and and being large and of equal sign (the sign is an
indicator of brightness/darkness). The respective eigenvectors
correspond to singular directions: indicates the direction
along the vessel (minimum intensity variation) andand
form a basis for the orthogonal plane.

Based on these observations, we developed a discriminant
function [18] that enhances tubular structures while reducing
the effect of other morphologies. The discriminant function
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TABLE I
POSSIBLE PATTERNS IN 3-D BASED ON HESSIAN EIGENANALYSIS

can be expressed as

otherwise

(2)

where , , and correspond to local measures of cross-
sectional asymmetry, blobness, and degree of image structure
[18]. The parameters , , and tune the sensitivity of the
filter to deviations in , , and , relative to the ideal
behavior for a line structure.

In Fig. 1, a typical filter output for a straight vessel model
with Gaussian luminance cross-section is shown. The max-
imum is achieved at the center, while the signal decays
smoothly toward the boundaries. This behavior is desirable
since it implies that a long-range potential will attract the
spline toward the center. Similar results can be derived for
other symmetric luminance models which is consistent with
results reported on previously proposed filters [22], [24], [25].

Equation (2) explicitly states that the filter response is a
function of the scale at which the Gaussian derivatives are
computed. The filter is applied at multiple scales that span
the range of expected vessel widths according to the imaged
anatomy. In order to provide a unique filter output for each
pixel, the multiple scale outputs undergo ascale selection
procedure [27]. This amounts to computing the maximum filter
response across scales

In this way, different vessel sizes will be detected at their
corresponding scales and both small and large vessels will
be captured with the same scheme. In order to deform the
vessel central axis, we chose for the following external energy
formulation:

(3)

Fig. 1. Typical filter response at single scale. The parameterc controls the
influence of the image contrast and represents the sensitivity of the filter as
a percentage of the maximum grey-level value at the center of the vessel.
Parameters� and � control the sensitivity to the vessel radial asymmetry
and similarity with a blob-like structure, respectively. In all experiments we
use� = � = 0:5 and c = 0:25 � Imax; where Imax is the maximum
luminance value in a region of interest inside the vessel [18]. This filter
creates a long-range potential which assures that the maximum is found, even
if the initialization of the vessel axis is significantly off.

Fig. 2. Toroidal vessel model with outer radiusR and a Gaussian luminance
profile of width2s. D(x) is the distance between the central axis of the torus
and a pointx in the orthogonal plane.

Minimization of this energy will move the model toward
the central axis of the vessel. Note that all terms in (1) are
normalized with respect to the length of the vessel axis. This
avoids a decrease in the bending and stretching energies, which
would result in an artifactual shrinkage.

To investigate the effects of vessel curvature on the response
of the filter, we analyzed a toroidal vessel model (Fig. 2) with
width 2 , radius , and a Gaussian cross-sectional luminance
profile

(4)

where is the distance between the pointand the axis
of the torus. The Hessian matrix for this model and its eigen
decomposition were computed analytically by Krissianet al.
[20]. We summarize the relevant results in the Appendix. By
using the analytic expressions for the different eigenvalues,

, it is possible to analytically evaluate the response of the
filter for this vessel model.

Fig. 3 shows the response of the filter in the radial direction.
This radius was computed in the plane. From this figure
we conclude that curved vessels only will be distorted when
the radius of curvature is of the order of their width (which
only occurs in extremely tortuous vessel paths). For vessels
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Fig. 3. Simulation of the influence of vessel curvature on filter response at
a single scale. For very small radii of curvature, the response of the filter
increases toward the boundaries of the vessel, the strongest effect being
observed in the direction of the center of curvature. Simulation performed
when� ! 0. In general, replaces 7!

p
s2 + �2.

with a radius of curvature larger than twice the vessel radius,
the filter response is still maximum at the central vessel axis.

We have to note that the proposed filter is not well suited for
vessel segmentation on its own, since width estimation is only
possible if a model of the cross-sectional luminance profile is
known, which varies depending on the acquisition technique
and owing to the large variation in patient anatomies.

However, the filter is useful for localization of the central
vessel axis since it represents an image feature which smoothly
decays from the central vessel axis toward the vessel wall.
This image feature provides a long-range potential map which
also avoids intervessel response interference, given its zero
response beyond vessel boundaries. The response of the filter
is only marginally dependent on the curvature of the vessel,
which makes it even suited for finding tortuous segments.
Finally, as shown in [18], the filter provides excellent noise
suppression, which will improve the convergence properties
of the central vessel axis model. Noise reduction is both a
consequence of the multiscale nature of the filter and the
discriminant function (especially the factor containing).

Bifurcations are not incorporated in our local vessel model
(a tubular structure). For instance, in bifurcations lying on
a plane ( ) there is signal loss in the filtered image around
the joint. Such bifurcation behaves halfway between a plate
and a tubular structure. The eigenvector with the highest
magnitude eigenvalue is directed across the plane defined
by the bifurcation. The other two eigenvectors point in the
same direction as the branches of the bifurcation, but form
an angle of 90 regardless of the bifurcation angle. The
magnitude of these two eigenvalues depends on the symmetry
of the bifurcation, the bifurcation angle, etc. In the case of
a symmetric bifurcation, the magnitude of these eigenvalues
will not be zero (as in a plate) but similar to each other and
smaller than the third eigenvalue. In this situation, the factors
in (2) will only differ from the tubular case in that the term
in will be smaller. Despite this fact, in the experiments
reported in this paper we have not seen that this effect imposes
a severe obstacle for a reasonable detection of the vessel axis
at the joint.

B. Diameter Criterion for MRA

Once the central vessel axis is estimated we proceed to
capture the boundary of the vessel and, therefore, its width.
To this enda priori knowledge of the MRA image acquisition
is exploited. In a previous work by Hoogeveenet al. [38],
the factors that can hamper accurate vessel width assessment
from MRA were identified. Intrinsic limitations in the im-
age formation/reconstruction process, finite spatial resolution,
gridding artifacts, and interpolation determine the achievable
accuracy. If the acquisition process is accurately modeled, it
is possible to find precise diameter criteria for the three MRA
types most frequently used for stenosis grading and/or flow
quantification, namely, time-of-flight (TOF), phase-contrast
(PC) and contrast-enhanced (CE) MRA. The boundary criteria
are defined as a percentage roll-off factor with respect to the
maximum luminal MR signal.2 For TOF and CE MRA the
full-width-half-maximum (FWHM) criteria is applied, while
for PC MRA the criteria used is the full-width-10%-maximum
(FWTM).

These criteria can provide accurate diameter estimates for
TOF, PC, and CE MRA if the acquisition meets a number of
requirements [38]: 1) resolution is sufficiently high (at least
3 pixels/diameter); 2) saturation due to slow inflow at the
borders is limited (only for TOF MRA); and 3) flow artifacts
are negligible.

For smaller vessels, diameter quantification is still possible
but a more complex model of the acquisition is required which
also incorporates tissue properties and parameters of the MR
imaging sequence [39].

C. Vessel Wall Model

The vessel wall is modeled using a tensor product B-spline
surface [40]

where are control points, is the
th B-spline periodic basis function of order, and

is the th B-spline nonperiodic basis function of
order and The parameters and traverse
the surface in the circumferential and longitudinal directions,
respectively.3 We have deliberately coupled the longitudinal
parameter () of the vessel wall and central vessel axis since
both span the vessel in the longitudinal direction. This coupling
makes it possible to relate central vessel axis points with the
corresponding boundary points.

The model can be initialized using a standard CAD tech-
nique known asswept surfaces[40]. A prototype cross section
(viz.a circle with a radius equal to the expected average vessel

2Compared to [38], the criterion has been made more robust to noise by
using as a reference the average of the MR signal in a small neighborhood
along the central vessel axis. Although the derivation of the FWHM in [38]
was done only for TOF MRA, the same criterion is valid for CE MRA since it
is based on assuming a step-like intensity function. This function corresponds
to full inflow, an assumption also valid in CE MRA.

3For the sake of simplicity, the arguments of the vessel wall model will be

henceforth omitted, i.e.,W
�
=W(v; u):
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width) is swept along the central vessel axis and orthogonal to
the curve at every point. In this way, the model is initialized
as a flexible cylinder.

To fit the vessel wall model in a smooth fashion we
use an approach similar to the one applied in Section II-A,
extending the concept from curves to surfaces. The wall model
is deformed in a way that maximizes the following integral
criterion:

(5)

where

where and are vectors of weight factors for the internal
energy terms. The stretching energy term can be physically
interpreted as an approximation to the energy of a thin plate
under tension, while the bending energy is related to the
rigidity of the deformable surface [35].

So far, the vessel wall model is purely geometric. To
further incorporate prior knowledge of the acquisition, let us
assume that the maximum of the MR signal is attained at
the central vessel axis. Although this assumption might be
violated in certain cases, it provides a simplified formulation
of the problem that leads to accurate results in most situations.
Under this assumption we can cast the diameter criteria of
Section II-B into the external energy term of the deformable
wall as follows:

(6)

where is a threshold that introduces the knowledge about
the type of MRA imaging technique. This constant equals 0.5
for TOF and CE MRA and 0.1 for PC MRA (cf. Section II-B).

III. I MPLEMENTATION ISSUES

A. Image Resampling

In order to reduce the effect of gridding artifacts due
to the MR image reconstruction, the original image was
interpolated to a two-fold larger reconstruction matrix. Based
on the properties of the MR image formation process, Du
et al. [41] showed that partial volume effect in MR can
be reduced withsinc interpolation. They also suggested an

efficient implementation based on zero-filled interpolation. We
have used an approximation tosinc interpolation based on
cubic convolution, which is computationally more efficient
than zero-filled interpolation and has extremely goodsinc
approximating properties [42].

B. Scenario for 3-D Interaction

Although deformable models have been shown to be useful
in a variety of 3-D applications, it has been recognized that
initialization and interaction in 3-D is, in general, an open
problem. On the other hand, it has also been acknowledged
that proper initialization is a requirement for good convergence
of most deformable model approaches.

We suggest the use of an isosurface rendering for interac-
tively inspecting the vascular anatomy and for selecting the
target segment in which the quantitative analysis will be per-
formed. In Fig. 4, the steps of the procedure are highlighted.
First, an isosurface rendering of the original angiogram is
generated [Fig. 4(a)]. This is accomplished usingmarching
cubes[43]. We are aware that this step implies the selection
of a threshold. However, we recall that the only purpose
of this step is to provide a support for visual interaction.
Second, the operator defines a vessel segment by clicking
two points on the isosurface which define the end-points
of a geodesicpath.4 This path is used for initializing the
central vessel axis after it has been converted into B-spline
form using a least squares approximation [Fig. 4(b)]. Third,
once the central vessel axis has been determined, the vessel
wall must be initialized. This can be accomplished with no
extra user interaction by computing a radius function as the
distance between the central vessel axis and the geodesic path.
Since the geodesic path lies somewhere close to the vessel
boundary, its distance to the vessel axis provides a rough
approximation of the vessel radius at every point along the
center line. This function is subsequently used to modulate
the radius while sweeping a circular cross section along the
vessel axis [Fig. 4(c)]. Fig. 4(d) shows the final result of the
fitting procedure. Once the model is obtained, a report can be
generated indicating cross-sectional area as well as minimum,
maximum, and average vessel diameter along the vessel axis.

C. Model Optimization

Having specified the energy functionals for the central vessel
axis and vessel wall, we must choose how to optimize the
degrees of freedom of these geometric models (the control
points of the B-spline curve/surface).

The optimization is performed in two steps. First, the central
vessel axis is deformed according to (1). Once it converges,
the initial guess of the vessel wall is generated by sweeping
along the central vessel axis. Subsequently, the model of the
vessel wall is deformed to reach the vessel boundary following
(5). The deformation process of both the central vessel axis
and vessel wall is performed using the conjugate gradient
[44] algorithm with analytical derivatives. The energy integrals

4Given two points on a surface, ageodesicis defined as the shortest path
on the surface connecting them.
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(a) (b) (c) (d)

Fig. 4. Interaction scenario. (a) A user initializes two (or more) points on the iso-surface generated from the original image. (b) From these seeds, ageodesic
path is computed. (c) The geodesic path is deformed until the central vessel axis is determined. Using the distance between the newly obtained vessel axis and
the original geodesic, a circular cross section is swept along the axis to generate an initialization of the vessel wall model. (d) Vessel wall (after deformation)
and central vessel axis. Note that each model deforms using a different external energy [cf. (3) and (6)].

involved in (1) and (5) were computed numerically using
Gauss–Legendre quadrature formulas [44].

To avoid surface self intersections during the deformation
process of the wall model, we constrain the movement of the
control points. Each subset of control points sharing the same
column index (i.e., affecting the same circumferential wall
strip) are constrained to move in a plane perpendicular to the
central vessel axis (Fig. 5). Mathematically

where , , and are the central vessel axis coordinates
and the central vessel axis normal and binormal vectors of
its Frenet frame at parameter value .5 In this expression,

represents the location of the control point
in polar coordinates of the local cross-sectional plane. By
restricting and 6 The central
vessel axis is enforced to lie inside the boundaries of the vessel
wall.

5Here,vk is the parametric value,v, where the basis functionNk m(v)
is maximal. This corresponds to the parameter value for whichPjk have
maximum influence on the curve for allj.

6In this expressionj denotes a cyclic index with periodq.

Fig. 5. The control points of the vessel wall model are restricted to move
in a plane orthogonal to the vessel axis.

D. Geometric Modeling

In Table II, the parameters of the vessel model for the
carotid bifurcation segment are summarized. Note that the
internal energy weights are small (the external energy range
typically from zero to one) such that, unless the model is
subjected to large stretching or bending deformations, it mainly
will be guided by the external energy term. Problems often
attributed to deformable models are thead hocnature of the
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TABLE II
GEOMETRIC MODEL PARAMETERS

selection of weights and the fact that they have to be tuned for
each application (which most of the time means each image).
In our implementation we chose to normalize each internal
energy term with respect to its value in the initialization. By
proceeding in this way, we obtain internal energy terms that
are dimensionless and that were suited for all the experiments
we carried out (Table II). Moreover, internal energy terms and
the external energy are now commensurable and it is possible
to incorporate an extra coefficient in the weights that represents
their relative contribution to the total energy. Note that using
such normalization factors is justified if the initial shape of the
models is representative of their final shape, which is ensured
by our initialization procedure.

IV. I N VITRO EVALUATION

A. Phantom and Image Acquisition

In order to assess the performance of the algorithm we
addressed the problem of diameter measurements for stenosis
grading in an MR compatible carotid bifurcation phantom
with an asymmetric stenosis (R. G. Shelley Ltd., North York,
Ontario). A photograph of this phantom is shown in Fig. 6.
The phantom is embedded in a rigid transparent acrylic and
manufactured to reproduce normal dimensions in the human
vasculature [45].

Images were acquired on a 1.5-T MR imaging system
(Philips Gyroscan ACS-NT, PowerTrak 6000 gradients,
Philips Medical Systems, Best, The Netherlands) with a
quadrature head–neck receiver coil. Imaging parameters
for experiments on the carotid bifurcation phantom were
as follows. Three-dimensional TOF MRA acquisition: echo
time (TE) 1.9 ms, repetition time (TR) 25.0 ms and flip
angle ( ) 15 , slice thickness 1.0 mm. CE MRA acquisition:
TE 2.0 ms, TR 6.6 ms, 40 , slice thickness 1.0 mm.
Both acquisitions: FOV 256 mm, scan matrix 256 256.
First-order flow compensation was applied in the TOF MRA
acquisition. The flow was regulated by a computer-controlled
pump (Quest Image Inc., London, Ontario). Water was guided
through the phantom with constant velocity (5 ml/s) and a

Fig. 6. Carotid bifurcation phantom with a 70% asymmetric stenosis (Cour-
tesy of R. G. Shelley Ltd., North York, Ontario, Canada). Two indexes
(NASCET and CC) are usually used to quantify stenosis in the carotids with
different reference diameters.

long inlet length was taken to assure that laminar flow was
established. For CE MRA acquisitions, a 5 mM solution
of gadopentetate dimeglumine (Magnevist, Schering, Berlin,
Germany) was used under the same flow conditions as the
TOF MRA acquisition.

B. Performance Assessment

We assessed the performance of the algorithm in comparison
with two human operators and the ground truth as the gold
standard. To this end, the stenosis in the carotid phantom
was graded by two experts following a manual procedure.
This is based on visual inspection of vessel dimensions on
a multiplanar reformatted (MPR) image. The reformatting
was generated by manually drawing a central vessel axis and
subsequently computing the plane perpendicular to it. This pro-
cedure was performed on a clinical workstation (EasyVision,
Philips Medical Systems, Best, The Netherlands).

In order to compare the measurements provided by the
experts and the results obtained with our algorithm, a mea-
surement protocol was established. The degree of stenosis was
computed using the NASCET index [1]. A second measure
of stenosis, taken relative to the common carotid artery (CC
index) was also computed for comparison.7 To incorporate the
variability inherent to the definition of the stenosis diameter,
our protocol required that the experts measured the distal
diameter at mm from the center of the stenosis and
repeated the measurements for two other successive planes
separated by mm. For each plane, the minimum and
maximum observed diameters were recorded. All measure-
ments were done twice by the same expert, with enough delay
to disregard any possible bias in the second measurement.
The average stenosis grade and the 99% confidence interval
(CI) were computed for each observer, for both observers, and
for the proposed algorithm. The statistics of stenosis grading
with the model-based approach were computed, based on all
possible values of the degree of stenosis for a region of 2 mm

7The definition of the two indexes can be found in the inset of Fig. 6.
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TABLE III
STENOSIS GRADING SUMMARY : CAROTID BIFURCATION PHANTOM WITH ASYMMETRIC STENOSIS.

WITHIN (WO1; WO2) AND BETWEEN OBSERVER (BO12) STATISTICS OF TWO EXPERTS COMPARED TO THE MODEL-BASED APPROACH(MB)

Fig. 7. Average diameter of the carotid bifurcation phantom. The average is
performed over all pairs of antipodal points at a given point along the vessel
axis. The diameter of the phantom (estimated from phantom specifications
[45]) and the box-and-whisker plots corresponding to the measurements
performed by two experts are also included (average between min and max
diameter). For the sake of clarity, the average abscissa of each pair of boxes
corresponds to the place were the measurements were carried out.

around the stenosis and a region of mm centered at
a distance mm from the stenosis. This yields a
measure of stability of the model-based measurements in the
region where the operators performed the manual analysis.

V. RESULTS

A. Carotid Bifurcation Phantom

In Fig. 7, the average diameter measurements are shown
(the average diameter in the orthogonal plane at a given loca-
tion along the central vessel axis). For comparison purposes
it also includes, at three points, diameter values from the
specifications of the phantom [45]. From this figure it is ap-
parent that manual assessment suffers from a large variability.
This can be attributed to factors such as the window leveling
settings of the MR console and the subjective criterion that
each radiologist uses to define the boundaries of the vessel.
This is further aggravated by the fact that even circular vessels
will show different apparent cross sections [38], depending on
the effective resolution (the number of pixels per diameter).

In Table III, the statistics of the stenosis grading are sum-
marized. The phantom we used has a stenosis index of 69.2%
according to NASCET and 78.5% according to CC [45]. The
table shows that the method improves stenosis grading, with an

absolute error smaller than 3.3% for both criteria. Moreover,
reproducibility is much better in the model-based approach.

B. Illustration of the Algorithm on Patient Data

In Fig. 8, results of the algorithm on patient data are shown.
Fig. 8(a) and 8(b) shows MIP’s of 3-D TOF angiograms of the
left (mild stenosis) and right (severe stenosis) carotids of the
same patient, respectively. Fig. 8(c) shows the left carotids of
a second patient with a mild stenosis. The datasets are part of
an ongoing trial in our hospital to compare several imaging
techniques for stenosis grading. The parameters of the 3-D
TOF MRA sequence were as follows: TR 30.6 ms, TE 6.8
ms, 15 , with a pixel size of 0.5 mm, slice thickness of 1.0
mm, and a slice gap of 0.5 mm.

A summary of quantitative results for stenosis grading of
these data is given in Table IV. In the same table, stenosis
grades assessed by a radiologist from MIP’s of 3-D TOF
MRA images and 2-D DSA projections are also included
for comparison. To illustrate that in our model there is no
assumption of circularity, we show in Fig. 9 several shape
characteristics, such as the minimum, maximum and average
diameter, and cross-sectional area measurements for the ex-
ample of Fig. 8(a). Our model based method correlates better
with DSA, which is the gold standard in many radiological
studies [7]–[9], than the manual assessment from 3-D TOF.

Flow artifacts were small in thein vitro experiments. In
patient data, however, the algorithm performs well for nonse-
vere stenosis and/or when flow artifacts are negligible. This
was one of the assumptions for the validity of the FWHM
criterion. In Fig. 8(b) an example of a severe stenosis is shown.
Post-stenotic flow artifacts hampered good fit of the model at
the the stenosis and distal to it. At the stenosis, the luminal
intensity has a cloudy appearance and the vessel axis in this
region is mainly guided by the internal energy term which
forces the axis model to extrapolate the nonstenosed vessel
axis. Even when the degree of stenosis occasionally agrees
with the expert’s grading based on DSA, if the vessel axis
falls outside the vessel lumen, the vessel wall determination
cannot be accurate. We therefore considered this as a failure
case (noted between parenthesis). When images contain large
flow artifacts, manual assessment of the degree of stenosis is
also difficult and more susceptible to intraobserver variability.

VI. DISCUSSION

We devised a method to perform quantitative diameter
assessment with subvoxel precision. The method shares some
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(a) (b) (c)

Fig. 8. Stenosed leftinternal carotid arteries(ICA). The top row shows
MIP’s of 3-D TOF datasets of the ICA. (a) and (b) correspond to the left
and right ICA of the same patient and (c) corresponds to the left ICA of a
second patient. In the lower row we show the corresponding vessel models.
The models are quite accurate for the two left ICA cases shown. For the
right ICA, however, the presence of flow artifacts close to the severe stenosis
(90% graded on MRA and 53% on DSA according to NASCET) precluded
following the vessel axis.

TABLE IV
IN-VIVO STENOSIS GRADING OF THE CAROTIDS

MANUAL (3-D TOF AND DSA) AND MODEL-BASED (3-D TOF)

features with multiscale vessel enhancement algorithms based
on eigenvalue analysis of the Hessian matrix originally pro-
posed by Koller and co-workers [19] and further modified
by Sato et al. [24], [25] and Lorenzet al. [22]. However,
in these approaches a segmentation of the vasculature was
obtained by estimating the vessel width as a function of the
scale of maximum response. The accuracy of these algorithms
is thereforea priori limited by the discretization of the scale
parameter. This limits the applicability of these methods to
give a general overview of the vasculature. For stenosis
grading a more accurate approach is required.

Our method performs quantitative analysis based on the
original 3-D images. It is known from the literature [7]–[9] that

assessment of stenosis based on MIP’s tends to overestimate
the degree of stenosis. Table IV nicely exemplifies this fact.
This artifact is not only attributed to flow related signal loss,
but also to the image processing involved in generating the
MIP’s [4]–[6]. In order to eliminate this artifact, some authors
have argued in favor of methods that avoid the MIP operation.
Anderson et al. [9], for instance, have suggested grading
stenoses based on the source images. De Marcoet al. [7]
resourced to MPR images which allow for better visualization
of the vessel lumen in a plane orthogonal to the vessel axis.
De Marcoet al. [7] compared stenosis grading based on MIP’s
and MPR images of 3-D TOF MR angiograms, and used
intraarterial angiography (DSA) as a standard of reference.
They reported a statistically significant difference between
MIP’s and DSA scores with an average absolute error9%
(SD 14%). MPR images provided a better agreement with
DSA and a negligible bias. Although this study suggests
the potential benefit of MPR-based diagnosis, generation and
inspection of MPR’s is relatively time consuming. Our method
shares the basic idea behind MPR-based measurements. We
apply an objective vessel diameter criterion in planes or-
thogonal to the vessel axis, which is therefore similar to the
radiologist’s when analyzing MPR images. On the other hand,
the method is objective (does not depend on window leveling
settings) and requires little interaction. We hypothesize that
this correspondence between our method and MPR-based
diagnosis is responsible for the smaller bias in our method
(versus DSA) compared to manual assessment based on MIP’s
(versus DSA). This hypothesis, however, must be further
evaluated on a larger number of patients. The differences
observed between our model-based method and DSA are
close to the figures reported in the literature for intraobserver
differences using DSA. Andersonet al. [9], e.g., reported
intraobserver absolute differences of 5%, but they can be as
high as 30% [46]. Therefore, the difference between the model-
based method and DSA may not be statistically significant.
Compared to measurements based on DSA, our method avoids
the difficulties of selecting a suitable projection angle [47] by
providing true 3-D measurements.

We have applied an algorithm which estimates the bound-
aries of the vessels using knowledge of the MRA image
acquisition technique. This is a distinguishing property of
our method compared to other previously published multi-
scale techniques [17]–[25]. Whereas the algorithm contains
a scale selection procedure in the determination of the central
vessel axis, this does not influence the diameter assessment.
Moreover, our model based on splines can model noncircular
vessel cross sections. Although often it is assumed that vessels
have a circular cross section,ex vivomeasurements [28] have
shown that this assumption is rather simplistic and, especially
at the stenosis, a wide variety of geometric shapes can be
observed. Elgersma and coworkers [29] have supported this
idea based onin vivo measurements from multiple projections
of 3-D rotational angiography (RA) images and concluded that
this imposes a severe limitation to measurements performed
on (only two or three) 2-D projections. Three dimensional
approaches, such as the one presented in this work, provide
a basis for both the description of the actual cross-sectional
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shape and its quantification. They also allow definition of
stenosis indexes based on cross sectional area reduction (cf.
Fig. 9), which are more robust than those based on diameter
reduction.

The method has been illustrated on phantom and patient
data. In the phantom data the method obtained diameter and
stenosis measurements with an accuracy which was consider-
ably better than the experts. Although the results on the clinical
data are promising, a thorough validation is still required.

Other aspects of the methodology need further research.
The influence of vessel bifurcations in the deformation of the
model must be better understood. Apparently, if the stenosis
is reasonably away from the flow divider, stenosis assessment
can be performed with good accuracy. This was observed, for
instance, in the carotid bifurcation phantom and in the patient
data of Fig. 8(a). However, it is clear that with a tubular model
there will always be a region where diameter measurements
will be an extrapolation of the diameters before and after
the bifurcation [see Fig. 8(c)]. Note, however, that in such
situations a radiologist would also have to mentally perform
such an extrapolation.

The method performed poorly in the presence of large flow
artifacts [see Fig. 8(b)]. This is a potential limitation of the
methodology when applied to 3-D TOF MRA, since stenoses
are usually regions of disturbed flow. In such situations,
however, manual assessment of stenosis is also delicate. Our
method is, in principle, applicable to other techniques such as
CE or blood pool agent (BPA) MRA, which are less sensitive
to disturbed flow. We are currently starting up a study that will
evaluate our methodology in a larger set of CE MRA images.

Finally, it would be interesting to analyze a large set of
vascular segments and study the influence of the number of
control points of the B-spline representation on the accuracy of
the measurements. This analysis will probably give a basis for
building a database of models tailored to different applications
(carotids, aorta, etc.). Each model would consist not only of
the optimum number of degrees of freedom of the geometric
model but also suitable weights for the energy terms. It is
known that the weighting factors present in the formulation of
deformable models are generally chosen in andad hocfashion.
However, for a given application, suitable values can be found
based on the analysis of a representative set of data. This is
especially feasible in medical applications, where images are
acquired according to strict protocols.

APPENDIX: ANALYTICAL MODEL OF A TOROIDAL VESSEL

Krissianet al. [20] proposed a vessel model with a Gaussian
luminance profile. Although this is a simplification, it allows
us to carry out some analytical simulations that would be
otherwise quite cumbersome, if at all possible. In this appendix
we summarize the results for a toroidal model. An analogous
formulation can be derived for a cylindrical model [20].

The vessel is modeled by a torus whose outer circle is
parallel to the plane and has radius . The small circle
has radius (Fig. 2). For the toroidal model of (4), the distance
from a point to the axis of the torus is

Fig. 9. Stenosed ICA. Area and (min/max/average) diameter measurements
of the left ICA long the vessel axis for the patient in Fig. 8(a). Stenosis
index computed based on the maximal vessel narrowing and the average
distal diameter.

From the circular symmetry around the axis we can choose
and The Hessian matrix can be expressed as

(7)

Eigenvalue analysis of (7) results in

where and denote eigenvalues and eigenvectors, respec-
tively.
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